csqa-sparqltotext / README.md
glecorve's picture
Enriched README
8c8a754
---
license: cc-by-sa-4.0
dataset_info:
features:
- name: id
dtype: string
- name: turns
list:
- name: id
dtype: int64
- name: ques_type_id
dtype: int64
- name: question-type
dtype: string
- name: description
dtype: string
- name: entities_in_utterance
list: string
- name: relations
list: string
- name: type_list
list: string
- name: speaker
dtype: string
- name: utterance
dtype: string
- name: all_entities
list: string
- name: active_set
list: string
- name: sec_ques_sub_type
dtype: int64
- name: sec_ques_type
dtype: int64
- name: set_op_choice
dtype: int64
- name: is_inc
dtype: int64
- name: count_ques_sub_type
dtype: int64
- name: count_ques_type
dtype: int64
- name: is_incomplete
dtype: int64
- name: inc_ques_type
dtype: int64
- name: set_op
dtype: int64
- name: bool_ques_type
dtype: int64
- name: entities
list: string
- name: clarification_step
dtype: int64
- name: gold_actions
list:
list: string
- name: is_spurious
dtype: bool
- name: masked_verbalized_answer
dtype: string
- name: parsed_active_set
list: string
- name: sparql_query
dtype: string
- name: verbalized_all_entities
list: string
- name: verbalized_answer
dtype: string
- name: verbalized_entities_in_utterance
list: string
- name: verbalized_gold_actions
list:
list: string
- name: verbalized_parsed_active_set
list: string
- name: verbalized_sparql_query
dtype: string
- name: verbalized_triple
dtype: string
- name: verbalized_type_list
list: string
splits:
- name: train
num_bytes: 6815016095
num_examples: 152391
- name: test
num_bytes: 1007873839
num_examples: 27797
- name: validation
num_bytes: 692344634
num_examples: 16813
download_size: 2406342185
dataset_size: 8515234568
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
task_categories:
- conversational
- question-answering
tags:
- qa
- knowledge-graph
- sparql
- multi-hop
language:
- en
---
# Dataset Card for CSQA-SPARQLtoText
## Table of Contents
- [Dataset Card for CSQA-SPARQLtoText](#dataset-card-for-csqa-sparqltotext)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported tasks](#supported-tasks)
- [Knowledge based question-answering](#knowledge-based-question-answering)
- [SPARQL queries and natural language questions](#sparql-queries-and-natural-language-questions)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Types of questions](#types-of-questions)
- [Data splits](#data-splits)
- [JSON fields](#json-fields)
- [Original fields](#original-fields)
- [New fields](#new-fields)
- [Verbalized fields](#verbalized-fields)
- [Format of the SPARQL queries](#format-of-the-sparql-queries)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [This version of the corpus (with SPARQL queries)](#this-version-of-the-corpus-with-sparql-queries)
- [Original corpus (CSQA)](#original-corpus-csqa)
- [CARTON](#carton)
## Dataset Description
- **Paper:** [SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications (AACL-IJCNLP 2022)](https://aclanthology.org/2022.aacl-main.11/)
- **Point of Contact:** GwΓ©nolΓ© LecorvΓ©
### Dataset Summary
CSQA corpus (Complex Sequential Question-Answering, see https://amritasaha1812.github.io/CSQA/) is a large corpus for conversational knowledge-based question answering. The version here is augmented with various fields to make it easier to run specific tasks, especially SPARQL-to-text conversion.
The original data has been post-processing as follows:
1. Verbalization templates were applied on the answers and their entities were verbalized (replaced by their label in Wikidata)
2. Questions were parsed using the CARTON algorithm to produce a sequence of action in a specific grammar
3. Sequence of actions were mapped to SPARQL queries and entities were verbalized (replaced by their label in Wikidata)
### Supported tasks
- Knowledge-based question-answering
- Text-to-SPARQL conversion
#### Knowledge based question-answering
Below is an example of dialogue:
- Q1: Which occupation is the profession of Edmond Yernaux ?
- A1: politician
- Q2: Which collectable has that occupation as its principal topic ?
- A2: Notitia Parliamentaria, An History of the Counties, etc.
#### SPARQL queries and natural language questions
```SQL
SELECT DISTINCT ?x WHERE
{ ?x rdf:type ontology:occupation . resource:Edmond_Yernaux property:occupation ?x }
```
is equivalent to:
```txt
Which occupation is the profession of Edmond Yernaux ?
```
### Languages
- English
## Dataset Structure
The corpus follows the global architecture from the original version of CSQA (https://amritasaha1812.github.io/CSQA/).
There is one directory of the train, dev, and test sets, respectively.
Dialogues are stored in separate directories, 100 dialogues per directory.
Finally, each dialogue is stored in a JSON file as a list of turns.
### Types of questions
Comparison of question types compared to related datasets:
| | | [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) | [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) | [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) | [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) | [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) |
|--------------------------|-----------------|:---------------:|:------:|:-----------:|:----:|:---------:|
| **Number of triplets in query** | 1 | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | 2 | | βœ“ | βœ“ | βœ“ | βœ“ |
| | More | | | βœ“ | βœ“ | βœ“ |
| **Logical connector between triplets** | Conjunction | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Disjunction | | | | βœ“ | βœ“ |
| | Exclusion | | | | βœ“ | βœ“ |
| **Topology of the query graph** | Direct | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Sibling | | βœ“ | βœ“ | βœ“ | βœ“ |
| | Chain | | βœ“ | βœ“ | βœ“ | βœ“ |
| | Mixed | | | βœ“ | | βœ“ |
| | Other | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Variable typing in the query** | None | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Target variable | | βœ“ | βœ“ | βœ“ | βœ“ |
| | Internal variable | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Comparisons clauses** | None | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | String | | | βœ“ | | βœ“ |
| | Number | | | βœ“ | βœ“ | βœ“ |
| | Date | | | βœ“ | | βœ“ |
| **Superlative clauses** | No | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Yes | | | | βœ“ | |
| **Answer type** | Entity (open) | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Entity (closed) | | | | βœ“ | βœ“ |
| | Number | | | βœ“ | βœ“ | βœ“ |
| | Boolean | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Answer cardinality** | 0 (unanswerable) | | | βœ“ | | βœ“ |
| | 1 | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | More | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Number of target variables** | 0 (β‡’ ASK verb) | | βœ“ | βœ“ | βœ“ | βœ“ |
| | 1 | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | 2 | | | βœ“ | | βœ“ |
| **Dialogue context** | Self-sufficient | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Coreference | | | | βœ“ | βœ“ |
| | Ellipsis | | | | βœ“ | βœ“ |
| **Meaning** | Meaningful | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Non-sense | | | | | βœ“ |
### Data splits
Text verbalization is only available for a subset of the test set, referred to as *challenge set*. Other sample only contain dialogues in the form of follow-up sparql queries.
| | Train | Validation | Test |
| --------------------- | ---------- | ---------- | ---------- |
| Questions | 1.5M | 167K | 260K |
| Dialogues | 152K | 17K | 28K |
| NL question per query | 1 |
| Characters per query | 163 (Β± 100) |
| Tokens per question | 10 (Β± 4) |
### JSON fields
Each turn of a dialogue contains the following fields:
#### Original fields
* `ques_type_id`: ID corresponding to the question utterance
* `description`: Description of type of question
* `relations`: ID's of predicates used in the utterance
* `entities_in_utterance`: ID's of entities used in the question
* `speaker`: The nature of speaker: `SYSTEM` or `USER`
* `utterance`: The utterance: either the question, clarification or response
* `active_set`: A regular expression which identifies the entity set of answer list
* `all_entities`: List of ALL entities which constitute the answer of the question
* `question-type`: Type of question (broad types used for evaluation as given in the original authors' paper)
* `type_list`: List containing entity IDs of all entity parents used in the question
#### New fields
* `is_spurious`: introduced by CARTON,
* `is_incomplete`: either the question is self-sufficient (complete) or it relies on information given by the previous turns (incomplete)
* `parsed_active_set`:
* `gold_actions`: sequence of ACTIONs as returned by CARTON
* `sparql_query`: SPARQL query
#### Verbalized fields
Fields with `verbalized` in their name are verbalized versions of another fields, ie IDs were replaced by actual words/labels.
### Format of the SPARQL queries
* Clauses are in random order
* Variables names are represented as random letters. The letters change from one turn to another.
* Delimiters are spaced
## Additional Information
### Licensing Information
* Content from original dataset: CC-BY-SA 4.0
* New content: CC BY-SA 4.0
### Citation Information
#### This version of the corpus (with SPARQL queries)
```bibtex
@inproceedings{lecorve2022sparql2text,
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
year={2022}
}
```
#### Original corpus (CSQA)
```bibtex
@InProceedings{saha2018complex,
title = {Complex {Sequential} {Question} {Answering}: {Towards} {Learning} to {Converse} {Over} {Linked} {Question} {Answer} {Pairs} with a {Knowledge} {Graph}},
volume = {32},
issn = {2374-3468},
url = {https://ojs.aaai.org/index.php/AAAI/article/view/11332},
booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
author = {Saha, Amrita and Pahuja, Vardaan and Khapra, Mitesh and Sankaranarayanan, Karthik and Chandar, Sarath},
month = apr,
year = {2018}
}
```
#### CARTON
```bibtex
@InProceedings{plepi2021context,
author="Plepi, Joan and Kacupaj, Endri and Singh, Kuldeep and Thakkar, Harsh and Lehmann, Jens",
editor="Verborgh, Ruben and Hose, Katja and Paulheim, Heiko and Champin, Pierre-Antoine and Maleshkova, Maria and Corcho, Oscar and Ristoski, Petar and Alam, Mehwish",
title="Context Transformer with Stacked Pointer Networks for Conversational Question Answering over Knowledge Graphs",
booktitle="Proceedings of The Semantic Web",
year="2021",
publisher="Springer International Publishing",
pages="356--371",
isbn="978-3-030-77385-4"
}
```