2D_profile_large / README.md
fabiencasenave's picture
Update README.md
36025c8 verified
metadata
license: cc-by-sa-4.0
size_categories:
  - n<1K
task_categories:
  - graph-ml
pretty_name: 2D external aero CFD RANS datasets, under geometrical variations
tags:
  - physics learning
  - geometry learning
configs:
  - config_name: default
    data_files:
      - split: all_samples
        path: data/all_samples-*
dataset_info:
  description:
    legal:
      owner: Safran
      license: CC-by-SA 4.0
    data_production:
      type: simulation
      physics: 2D stationary RANS
      simulator: elsA
    split:
      train:
        - 0
        - 1
        - 2
        - 3
        - 4
        - 5
        - 6
        - 7
        - 8
        - 9
        - 10
        - 11
        - 12
        - 13
        - 14
        - 15
        - 16
        - 17
        - 18
        - 19
        - 20
        - 21
        - 22
        - 23
        - 24
        - 25
        - 26
        - 27
        - 28
        - 29
        - 30
        - 31
        - 32
        - 33
        - 34
        - 35
        - 36
        - 37
        - 38
        - 39
        - 40
        - 41
        - 42
        - 43
        - 44
        - 45
        - 46
        - 47
        - 48
        - 49
        - 50
        - 51
        - 52
        - 53
        - 54
        - 55
        - 56
        - 57
        - 58
        - 59
        - 60
        - 61
        - 62
        - 63
        - 64
        - 65
        - 66
        - 67
        - 68
        - 69
        - 70
        - 71
        - 72
        - 73
        - 74
        - 75
        - 76
        - 77
        - 78
        - 79
        - 80
        - 81
        - 82
        - 83
        - 84
        - 85
        - 86
        - 87
        - 88
        - 89
        - 90
        - 91
        - 92
        - 93
        - 94
        - 95
        - 96
        - 97
        - 98
        - 99
        - 100
        - 101
        - 102
        - 103
        - 104
        - 105
        - 106
        - 107
        - 108
        - 109
        - 110
        - 111
        - 112
        - 113
        - 114
        - 115
        - 116
        - 117
        - 118
        - 119
        - 120
        - 121
        - 122
        - 123
        - 124
        - 125
        - 126
        - 127
        - 128
        - 129
        - 130
        - 131
        - 132
        - 133
        - 134
        - 135
        - 136
        - 137
        - 138
        - 139
        - 140
        - 141
        - 142
        - 143
        - 144
        - 145
        - 146
        - 147
        - 148
        - 149
        - 150
        - 151
        - 152
        - 153
        - 154
        - 155
        - 156
        - 157
        - 158
        - 159
        - 160
        - 161
        - 162
        - 163
        - 164
        - 165
        - 166
        - 167
        - 168
        - 169
        - 170
        - 171
        - 172
        - 173
        - 174
        - 175
        - 176
        - 177
        - 178
        - 179
        - 180
        - 181
        - 182
        - 183
        - 184
        - 185
        - 186
        - 187
        - 188
        - 189
        - 190
        - 191
        - 192
        - 193
        - 194
        - 195
        - 196
        - 197
        - 198
        - 199
        - 200
        - 201
        - 202
        - 203
        - 204
        - 205
        - 206
        - 207
        - 208
        - 209
        - 210
        - 211
        - 212
        - 213
        - 214
        - 215
        - 216
        - 217
        - 218
        - 219
        - 220
        - 221
        - 222
        - 223
        - 224
        - 225
        - 226
        - 227
        - 228
        - 229
        - 230
        - 231
        - 232
        - 233
        - 234
        - 235
        - 236
        - 237
        - 238
        - 239
        - 240
        - 241
        - 242
        - 243
        - 244
        - 245
        - 246
        - 247
        - 248
        - 249
        - 250
        - 251
        - 252
        - 253
        - 254
        - 255
        - 256
        - 257
        - 258
        - 259
        - 260
        - 261
        - 262
        - 263
        - 264
        - 265
        - 266
        - 267
        - 268
        - 269
        - 270
        - 271
        - 272
        - 273
        - 274
        - 275
        - 276
        - 277
        - 278
        - 279
        - 280
        - 281
        - 282
        - 283
        - 284
        - 285
        - 286
        - 287
        - 288
        - 289
        - 290
        - 291
        - 292
        - 293
        - 294
        - 295
        - 296
        - 297
        - 298
      test:
        - 299
        - 300
        - 301
        - 302
        - 303
        - 304
        - 305
        - 306
        - 307
        - 308
        - 309
        - 310
        - 311
        - 312
        - 313
        - 314
        - 315
        - 316
        - 317
        - 318
        - 319
        - 320
        - 321
        - 322
        - 323
        - 324
        - 325
        - 326
        - 327
        - 328
        - 329
        - 330
        - 331
        - 332
        - 333
        - 334
        - 335
        - 336
        - 337
        - 338
        - 339
        - 340
        - 341
        - 342
        - 343
        - 344
        - 345
        - 346
        - 347
        - 348
        - 349
        - 350
        - 351
        - 352
        - 353
        - 354
        - 355
        - 356
        - 357
        - 358
        - 359
        - 360
        - 361
        - 362
        - 363
        - 364
        - 365
        - 366
        - 367
        - 368
        - 369
        - 370
        - 371
        - 372
        - 373
        - 374
        - 375
        - 376
        - 377
        - 378
        - 379
        - 380
        - 381
        - 382
        - 383
        - 384
        - 385
        - 386
        - 387
        - 388
        - 389
        - 390
        - 391
        - 392
        - 393
        - 394
        - 395
        - 396
        - 397
        - 398
    task: regression
    in_scalars_names:
      - camb
      - rot
      - t_le
      - t_mx
      - t_te
      - u_mx
    out_scalars_names: []
    in_timeseries_names: []
    out_timeseries_names: []
    in_fields_names: []
    out_fields_names:
      - Mach
      - Pressure
      - Velocity-x
      - Velocity-y
    in_meshes_names:
      - /Base_2_2/Zone
    out_meshes_names: []
  features:
    - name: sample
      dtype: binary
  splits:
    - name: all_samples
      num_bytes: 328720977
      num_examples: 399
  download_size: 225335734
  dataset_size: 328720977

Dataset Card

image/png image/png

This dataset contains a single huggingface split, named 'all_samples'.

The samples contains a single huggingface feature, named called "sample".

Samples are instances of plaid.containers.sample.Sample. Mesh objects included in samples follow the CGNS standard, and can be converted in Muscat.Containers.Mesh.Mesh.

Example of commands:

import pickle
from datasets import load_dataset
from plaid.containers.sample import Sample

# Load the dataset
dataset = load_dataset("chanel/dataset", split="all_samples")

# Get the first sample of the first split
split_names = list(dataset.description["split"].keys())
ids_split_0 = dataset.description["split"][split_names[0]]
sample_0_split_0 = dataset[ids_split_0[0]]["sample"]
plaid_sample = Sample.model_validate(pickle.loads(sample_0_split_0))
print("type(plaid_sample) =", type(plaid_sample))

print("plaid_sample =", plaid_sample)

# Get a field from the sample
field_names = plaid_sample.get_field_names()
field = plaid_sample.get_field(field_names[0])
print("field_names[0] =", field_names[0])

print("field.shape =", field.shape)

# Get the mesh and convert it to Muscat
from Muscat.Bridges import CGNSBridge
CGNS_tree = plaid_sample.get_mesh()
mesh = CGNSBridge.CGNSToMesh(CGNS_tree)
print(mesh)

Dataset Details

Dataset Description

This dataset contains 2D external aero CFD RANS solutions, under geometrical variations (correspond to "large" in the Zenodo repository).

The variablity in the samples are 6 input scalars and the geometry (mesh). Outputs of interest are 4 fields. Samples have been computed on large refined meshes, which have been cut close to the profil, and adapted (remeshed) using an anisotropic metric based on the output fields of interest.

Dataset created using the PLAID library and datamodel, version 0.1.

  • Language: PLAID
  • License: cc-by-sa-4.0
  • Owner: Safran

Dataset Sources