Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
2.38k
8.78k
unique_id
stringlengths
14
14
width
int32
2.38k
8.78k
height
int32
1.74k
10.3k
image_mode_on_disk
stringclasses
1 value
original_file_format
stringclasses
1 value
img_00001_b6f2
6,000
4,000
RGB
JPEG
img_00002_ff16
4,000
6,000
RGB
JPEG
img_00003_b5b8
4,000
6,000
RGB
JPEG
img_00004_4db0
4,000
6,000
RGB
JPEG
img_00005_30ce
3,080
5,472
RGB
JPEG
img_00006_e34f
3,953
6,123
RGB
JPEG
img_00007_8554
4,592
3,064
RGB
JPEG
img_00008_19d4
4,999
3,333
RGB
JPEG
img_00009_a1bc
4,000
6,000
RGB
JPEG
img_00010_d51f
4,160
6,240
RGB
JPEG
img_00011_4e05
4,000
6,000
RGB
JPEG
img_00012_a9fd
5,000
2,808
RGB
JPEG
img_00013_4810
3,359
5,972
RGB
JPEG
img_00014_c61d
4,000
6,000
RGB
JPEG
img_00015_1c26
4,000
6,000
RGB
JPEG
img_00016_b046
3,858
2,500
RGB
JPEG
img_00017_9be7
5,616
3,744
RGB
JPEG
img_00018_9b9d
5,152
7,728
RGB
JPEG
img_00019_9395
4,000
6,000
RGB
JPEG
img_00020_32a2
6,016
4,000
RGB
JPEG
img_00021_e3c2
6,000
4,000
RGB
JPEG
img_00022_e55f
2,936
4,880
RGB
JPEG
img_00023_1680
6,000
4,000
RGB
JPEG
img_00024_327a
5,220
5,220
RGB
JPEG
img_00025_27bf
3,024
4,032
RGB
JPEG
img_00026_fb39
4,160
6,240
RGB
JPEG
img_00027_c7af
4,581
3,054
RGB
JPEG
img_00028_f076
3,072
4,608
RGB
JPEG
img_00029_ee38
5,856
4,000
RGB
JPEG
img_00030_425f
5,616
3,744
RGB
JPEG
img_00031_6785
3,264
4,896
RGB
JPEG
img_00032_efb0
3,920
5,880
RGB
JPEG
img_00033_5dba
6,000
4,000
RGB
JPEG
img_00034_8cc8
3,712
5,568
RGB
JPEG
img_00035_5403
6,000
4,000
RGB
JPEG
img_00036_6136
2,706
4,060
RGB
JPEG
img_00037_c510
5,617
4,157
RGB
JPEG
img_00038_954e
4,592
3,448
RGB
JPEG
img_00039_c948
4,160
6,240
RGB
JPEG
img_00040_8617
3,456
5,184
RGB
JPEG
img_00041_184a
4,000
6,000
RGB
JPEG
img_00042_466e
4,000
6,000
RGB
JPEG
img_00043_9e5e
3,024
4,032
RGB
JPEG
img_00044_b239
5,456
8,184
RGB
JPEG
img_00045_d1c7
3,156
1,742
RGB
JPEG
img_00046_e8cd
4,160
6,240
RGB
JPEG
img_00047_2d9a
6,016
4,012
RGB
JPEG
img_00048_7167
5,184
3,456
RGB
JPEG
img_00049_f10d
4,160
6,240
RGB
JPEG
img_00050_3703
6,240
4,160
RGB
JPEG
img_00051_10da
3,280
4,928
RGB
JPEG
img_00052_da2b
3,280
4,928
RGB
JPEG
img_00053_f34d
4,024
6,048
RGB
JPEG
img_00054_9417
7,952
5,304
RGB
JPEG
img_00055_5507
4,330
5,773
RGB
JPEG
img_00056_f2b1
5,520
4,140
RGB
JPEG
img_00057_184b
7,280
5,456
RGB
JPEG
img_00058_111c
6,480
4,320
RGB
JPEG
img_00059_12bb
7,282
4,857
RGB
JPEG
img_00060_1ce2
6,240
4,160
RGB
JPEG
img_00061_d8f7
3,456
5,184
RGB
JPEG
img_00062_143d
5,492
6,728
RGB
JPEG
img_00063_e6e4
8,192
5,461
RGB
JPEG
img_00064_03bd
7,952
5,304
RGB
JPEG
img_00065_7eda
7,744
5,165
RGB
JPEG
img_00066_6abb
4,096
6,144
RGB
JPEG
img_00067_9be1
8,192
5,461
RGB
JPEG
img_00068_849b
8,192
5,461
RGB
JPEG
img_00069_bc62
7,360
4,912
RGB
JPEG
img_00070_1964
8,192
5,461
RGB
JPEG
img_00071_561b
4,912
7,360
RGB
JPEG
img_00072_da8c
6,240
4,160
RGB
JPEG
img_00073_1009
5,461
8,192
RGB
JPEG
img_00074_f4c7
7,183
5,131
RGB
JPEG
img_00075_e918
7,952
5,304
RGB
JPEG
img_00076_0464
8,192
5,461
RGB
JPEG
img_00077_859a
6,480
4,137
RGB
JPEG
img_00078_ebe5
4,912
7,360
RGB
JPEG
img_00079_1ba7
4,912
4,912
RGB
JPEG
img_00080_1eea
7,426
4,953
RGB
JPEG
img_00081_4008
4,794
4,794
RGB
JPEG
img_00082_594a
4,160
6,240
RGB
JPEG
img_00083_9609
7,652
4,305
RGB
JPEG
img_00084_ad21
8,192
5,461
RGB
JPEG
img_00085_7f57
7,500
4,998
RGB
JPEG
img_00086_09a2
7,952
4,709
RGB
JPEG
img_00087_59f9
5,046
6,820
RGB
JPEG
img_00088_08e6
8,192
5,462
RGB
JPEG
img_00089_3350
5,304
7,952
RGB
JPEG
img_00090_1297
5,230
5,230
RGB
JPEG
img_00091_da52
5,161
7,738
RGB
JPEG
img_00092_a00d
6,170
4,113
RGB
JPEG
img_00093_1b22
4,167
4,667
RGB
JPEG
img_00094_2a1f
4,070
5,427
RGB
JPEG
img_00095_fe11
5,472
3,648
RGB
JPEG
img_00096_af07
6,000
4,000
RGB
JPEG
img_00097_2047
4,608
3,456
RGB
JPEG
img_00098_1731
3,456
5,184
RGB
JPEG
img_00099_18ee
6,016
4,000
RGB
JPEG
img_00100_2134
7,479
4,728
RGB
JPEG
End of preview. Expand in Data Studio

Plants

High resolution image subset from the Aesthetic-Train-V2 dataset, contains a broad mix of plants and leaf types with a small distribution of flowers/fruits.

Dataset Details

  • Curator: Roscosmos
  • Version: 1.0.0
  • Total Images: 948
  • Average Image Size (on disk): ~4.93 MB compressed
  • Primary Content: plants / leaves
  • Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.

Dataset Creation & Provenance

1. Original Master Dataset

This dataset is a subset derived from: zhang0jhon/Aesthetic-Train-V2

2. Iterative Curation Methodology

CLIP retrieval / manual curation.

Dataset Structure & Content

This dataset offers the following configurations/subsets:

  • Default (Full train data) configuration: Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is train. Each example (row) in the dataset contains the following fields:

  • image: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.

  • unique_id: A unique identifier assigned to each image.

  • width: The width of the image in pixels (from the full-resolution image).

  • height: The height of the image in pixels (from the full-resolution image).

Usage

To download and load this dataset from the Hugging Face Hub:


from datasets import load_dataset, Dataset, DatasetDict

# Login using e.g. `huggingface-cli login` to access this dataset

# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Plants", "default")

print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")

if isinstance(ds_main, Dataset):
    print(f"Number of samples: {len(ds_main)}")
    print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
    print(f"Available splits: {list(ds_main.keys())}")
    for split_name, dataset_obj in ds_main.items():
        print(f"  Split '{split_name}': {len(dataset_obj)} samples")
        print(f"  Features of '{split_name}': {dataset_obj.features}")

Citation

@inproceedings{zhang2025diffusion4k,
    title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
    title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    note={arXiv:2506.01331},
}

Disclaimer and Bias Considerations

Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.

Contact

N/A

Downloads last month
45