Datasets:
image
imagewidth (px) 2.38k
8.78k
| unique_id
stringlengths 14
14
| width
int32 2.38k
8.78k
| height
int32 1.74k
10.3k
| image_mode_on_disk
stringclasses 1
value | original_file_format
stringclasses 1
value |
---|---|---|---|---|---|
img_00001_b6f2
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00002_ff16
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00003_b5b8
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00004_4db0
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00005_30ce
| 3,080 | 5,472 |
RGB
|
JPEG
|
|
img_00006_e34f
| 3,953 | 6,123 |
RGB
|
JPEG
|
|
img_00007_8554
| 4,592 | 3,064 |
RGB
|
JPEG
|
|
img_00008_19d4
| 4,999 | 3,333 |
RGB
|
JPEG
|
|
img_00009_a1bc
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00010_d51f
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00011_4e05
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00012_a9fd
| 5,000 | 2,808 |
RGB
|
JPEG
|
|
img_00013_4810
| 3,359 | 5,972 |
RGB
|
JPEG
|
|
img_00014_c61d
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00015_1c26
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00016_b046
| 3,858 | 2,500 |
RGB
|
JPEG
|
|
img_00017_9be7
| 5,616 | 3,744 |
RGB
|
JPEG
|
|
img_00018_9b9d
| 5,152 | 7,728 |
RGB
|
JPEG
|
|
img_00019_9395
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00020_32a2
| 6,016 | 4,000 |
RGB
|
JPEG
|
|
img_00021_e3c2
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00022_e55f
| 2,936 | 4,880 |
RGB
|
JPEG
|
|
img_00023_1680
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00024_327a
| 5,220 | 5,220 |
RGB
|
JPEG
|
|
img_00025_27bf
| 3,024 | 4,032 |
RGB
|
JPEG
|
|
img_00026_fb39
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00027_c7af
| 4,581 | 3,054 |
RGB
|
JPEG
|
|
img_00028_f076
| 3,072 | 4,608 |
RGB
|
JPEG
|
|
img_00029_ee38
| 5,856 | 4,000 |
RGB
|
JPEG
|
|
img_00030_425f
| 5,616 | 3,744 |
RGB
|
JPEG
|
|
img_00031_6785
| 3,264 | 4,896 |
RGB
|
JPEG
|
|
img_00032_efb0
| 3,920 | 5,880 |
RGB
|
JPEG
|
|
img_00033_5dba
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00034_8cc8
| 3,712 | 5,568 |
RGB
|
JPEG
|
|
img_00035_5403
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00036_6136
| 2,706 | 4,060 |
RGB
|
JPEG
|
|
img_00037_c510
| 5,617 | 4,157 |
RGB
|
JPEG
|
|
img_00038_954e
| 4,592 | 3,448 |
RGB
|
JPEG
|
|
img_00039_c948
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00040_8617
| 3,456 | 5,184 |
RGB
|
JPEG
|
|
img_00041_184a
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00042_466e
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00043_9e5e
| 3,024 | 4,032 |
RGB
|
JPEG
|
|
img_00044_b239
| 5,456 | 8,184 |
RGB
|
JPEG
|
|
img_00045_d1c7
| 3,156 | 1,742 |
RGB
|
JPEG
|
|
img_00046_e8cd
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00047_2d9a
| 6,016 | 4,012 |
RGB
|
JPEG
|
|
img_00048_7167
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00049_f10d
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00050_3703
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00051_10da
| 3,280 | 4,928 |
RGB
|
JPEG
|
|
img_00052_da2b
| 3,280 | 4,928 |
RGB
|
JPEG
|
|
img_00053_f34d
| 4,024 | 6,048 |
RGB
|
JPEG
|
|
img_00054_9417
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00055_5507
| 4,330 | 5,773 |
RGB
|
JPEG
|
|
img_00056_f2b1
| 5,520 | 4,140 |
RGB
|
JPEG
|
|
img_00057_184b
| 7,280 | 5,456 |
RGB
|
JPEG
|
|
img_00058_111c
| 6,480 | 4,320 |
RGB
|
JPEG
|
|
img_00059_12bb
| 7,282 | 4,857 |
RGB
|
JPEG
|
|
img_00060_1ce2
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00061_d8f7
| 3,456 | 5,184 |
RGB
|
JPEG
|
|
img_00062_143d
| 5,492 | 6,728 |
RGB
|
JPEG
|
|
img_00063_e6e4
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00064_03bd
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00065_7eda
| 7,744 | 5,165 |
RGB
|
JPEG
|
|
img_00066_6abb
| 4,096 | 6,144 |
RGB
|
JPEG
|
|
img_00067_9be1
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00068_849b
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00069_bc62
| 7,360 | 4,912 |
RGB
|
JPEG
|
|
img_00070_1964
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00071_561b
| 4,912 | 7,360 |
RGB
|
JPEG
|
|
img_00072_da8c
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00073_1009
| 5,461 | 8,192 |
RGB
|
JPEG
|
|
img_00074_f4c7
| 7,183 | 5,131 |
RGB
|
JPEG
|
|
img_00075_e918
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00076_0464
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00077_859a
| 6,480 | 4,137 |
RGB
|
JPEG
|
|
img_00078_ebe5
| 4,912 | 7,360 |
RGB
|
JPEG
|
|
img_00079_1ba7
| 4,912 | 4,912 |
RGB
|
JPEG
|
|
img_00080_1eea
| 7,426 | 4,953 |
RGB
|
JPEG
|
|
img_00081_4008
| 4,794 | 4,794 |
RGB
|
JPEG
|
|
img_00082_594a
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00083_9609
| 7,652 | 4,305 |
RGB
|
JPEG
|
|
img_00084_ad21
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00085_7f57
| 7,500 | 4,998 |
RGB
|
JPEG
|
|
img_00086_09a2
| 7,952 | 4,709 |
RGB
|
JPEG
|
|
img_00087_59f9
| 5,046 | 6,820 |
RGB
|
JPEG
|
|
img_00088_08e6
| 8,192 | 5,462 |
RGB
|
JPEG
|
|
img_00089_3350
| 5,304 | 7,952 |
RGB
|
JPEG
|
|
img_00090_1297
| 5,230 | 5,230 |
RGB
|
JPEG
|
|
img_00091_da52
| 5,161 | 7,738 |
RGB
|
JPEG
|
|
img_00092_a00d
| 6,170 | 4,113 |
RGB
|
JPEG
|
|
img_00093_1b22
| 4,167 | 4,667 |
RGB
|
JPEG
|
|
img_00094_2a1f
| 4,070 | 5,427 |
RGB
|
JPEG
|
|
img_00095_fe11
| 5,472 | 3,648 |
RGB
|
JPEG
|
|
img_00096_af07
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00097_2047
| 4,608 | 3,456 |
RGB
|
JPEG
|
|
img_00098_1731
| 3,456 | 5,184 |
RGB
|
JPEG
|
|
img_00099_18ee
| 6,016 | 4,000 |
RGB
|
JPEG
|
|
img_00100_2134
| 7,479 | 4,728 |
RGB
|
JPEG
|
Plants
High resolution image subset from the Aesthetic-Train-V2 dataset, contains a broad mix of plants and leaf types with a small distribution of flowers/fruits.
Dataset Details
- Curator: Roscosmos
- Version: 1.0.0
- Total Images: 948
- Average Image Size (on disk): ~4.93 MB compressed
- Primary Content: plants / leaves
- Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.
Dataset Creation & Provenance
1. Original Master Dataset
This dataset is a subset derived from:
zhang0jhon/Aesthetic-Train-V2
- Link: https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
- Providence: Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
- Original License: MIT
2. Iterative Curation Methodology
CLIP retrieval / manual curation.
Dataset Structure & Content
This dataset offers the following configurations/subsets:
Default (Full
train
data) configuration: Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration istrain
. Each example (row) in the dataset contains the following fields:image
: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.unique_id
: A unique identifier assigned to each image.width
: The width of the image in pixels (from the full-resolution image).height
: The height of the image in pixels (from the full-resolution image).
Usage
To download and load this dataset from the Hugging Face Hub:
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Plants", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
Citation
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
Contact
N/A
- Downloads last month
- 45