Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
PanNuke / gen_script.py
matejpekar's picture
Initial commit
b9a02ac verified
raw
history blame
3.77 kB
from collections.abc import Generator
from pathlib import Path
from typing import Any
import datasets
import numpy as np
from datasets import Dataset
from datasets.splits import NamedSplit
from numpy.typing import NDArray
from PIL import Image
from tqdm import tqdm
tissue_map = {
"Bile-duct": "Bile Duct",
"HeadNeck": "Head & Neck",
"Adrenal_gland": "Adrenal Gland",
}
features = datasets.Features(
{
"image": datasets.Image(mode="RGB"),
"instances": datasets.Sequence(datasets.Image(mode="1")),
"categories": datasets.Sequence(
datasets.ClassLabel(
num_classes=5,
names=[
"Neoplastic",
"Inflammatory",
"Connective",
"Dead",
"Epithelial",
],
)
),
"tissue": datasets.ClassLabel(
num_classes=19,
names=[
"Adrenal Gland",
"Bile Duct",
"Bladder",
"Breast",
"Cervix",
"Colon",
"Esophagus",
"Head & Neck",
"Kidney",
"Liver",
"Lung",
"Ovarian",
"Pancreatic",
"Prostate",
"Skin",
"Stomach",
"Testis",
"Thyroid",
"Uterus",
],
),
}
)
def one_hot_mask(
mask: NDArray[np.float64],
) -> tuple[NDArray[np.bool], NDArray[np.uint8]]:
"""Converts a mask to one-hot encoding.
Returns:
A dictionary with the following keys:
- masks: A 3D array with shape (num_masks, height, width) containing the
one-hot encoded masks.
- labels: A 1D array with shape (num_masks,) containing the class labels.
"""
masks: list[NDArray[np.bool]] = []
labels: list[NDArray[np.uint8]] = []
for c in range(mask.shape[-1] - 1):
masks.append(mask[..., c] == np.unique(mask[..., c])[1:, None, None])
labels.append(np.full(masks[-1].shape[0], c, dtype=np.uint8))
return np.concatenate(masks), np.concatenate(labels)
def process(path: str, subfolder: str) -> Generator[dict[str, Any], None, None]:
images = np.load(Path(path, "images", subfolder, "images.npy"), mmap_mode="r")
masks = np.load(Path(path, "masks", subfolder, "masks.npy"), mmap_mode="r")
types = np.load(Path(path, "images", subfolder, "types.npy"))
for image, mask, tissue in tqdm(
zip(images, masks, types, strict=True), total=len(images)
):
mask, labels = one_hot_mask(mask)
yield {
"image": Image.fromarray(image.astype(np.uint8)),
"instances": [Image.fromarray(m) for m in mask],
"categories": labels,
"tissue": tissue_map.get(tissue, tissue),
}
if __name__ == "__main__":
fold1 = Dataset.from_generator(
process,
gen_kwargs={"path": "PanNuke/Fold 1", "subfolder": "fold1"},
features=features,
split=NamedSplit("fold1"),
keep_in_memory=True,
)
fold1.push_to_hub("RationAI/PanNuke")
fold2 = Dataset.from_generator(
process,
gen_kwargs={"path": "PanNuke/Fold 2", "subfolder": "fold2"},
features=features,
split=NamedSplit("fold2"),
keep_in_memory=True,
)
fold2.push_to_hub("RationAI/PanNuke")
fold3 = Dataset.from_generator(
process,
gen_kwargs={"path": "PanNuke/Fold 3", "subfolder": "fold3"},
features=features,
split=NamedSplit("fold3"),
keep_in_memory=True,
)
fold3.push_to_hub("RationAI/PanNuke")