audio
audioduration (s) 0.69
30
| duration
float64 0.69
30
| text
stringlengths 0
463
| score
float64 0
100
|
---|---|---|---|
1.1 |
N'an ka ji min de bɛ yan.
| 2 |
|
2.014 |
Balɔbɔ ko ayi ne t'i fɛ n ba da la kuma so kɔnɔ na.
| 50 |
|
2.73 |
N ye so bɛɛ manɔn o kɔrɔ ko mara ma tiɲɛ n bolo.
| 50 |
|
4.31 |
Ne y'a fɔ mɔgɔ min ye ko ne ye Tunkara, ne ye jeli ye maninkɛ, a b'a fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ ayi fɔ.
| 35 |
|
2.74 |
À fɔ́, áw bɛ dɔ̀lɔmin ná kɛ́!
| 60 |
|
5.321995 |
Sàbaminiyan màkari bɛ́ dèli lè lá.
| 5 |
|
2.695063 |
Mɔgɔmusokɔrɔba bɛ a ɲɔgɔmusokɔrɔba fɛ.
| 0 |
|
1.014 |
Bɛɛ ye sigira sɔrɔ e la.
| 30 |
|
7.942 |
Nê man dá yìn kɛ́lɛ ɲɛ́lèli dèli dè, jamà b'í sìgi kà súman, kà súman k'à súman kan ná, nìn sí bɛ́ jɔ̀nkolonin mà.
| 0 |
|
4.323 | 0 |
||
1.892 |
tɔwari taara de man di, Malikɛn yɛrɛ ye ni kɛlɛ ye
| 20 |
|
8.316 | 0 |
||
2.622 |
Cɛkɔrɔba kɔnpila t'u la ɲɛdɔn sɔnni kɔnɔ,
| 0 |
|
4.56 | 0 |
||
3.823 |
I y'a de ye débi de sɔlɔsiyɔn d'o tɛrɛ zɔn ne ye tan, « mais » pɛ p'a régler le problɛme dɛ.
| 5 |
|
11.108 |
« ne bɛ sisan min na! » Mama ko a fɔra ko aw musomanninw ka kalange kosɛbɛ Yasa ka Baba ni ma bɔn nɔgɔ la y'a mɛ, walayi a fɔ Mama ji tɛ n toro.
| 50 |
|
7.447 |
Bɛɛ de jijalen don, kosɔbɛ « lakomini » ka sirisi de don na sɛrɛ.
| 50 |
|
1.199 |
Ka- a-
| 75 |
|
2.286 |
O kama an ka saliya kɛ i bɛ kan ka kura da i ka yɔrɔ la.
| 60 |
|
4.118 |
Fan ka sɔrɔ a ma kamalenya, fanka ni kamalenya tɛ kelen.
| 65 |
|
2.789 |
Nusan Jɔnɔrɔli esɛnsiyɛl dans de nɔbɛrɛse fɔcɔsiɲɔgɔn ye.
| 0 |
|
9.831 | 0 |
||
3.327 |
An kana fɔ k'an bɛ taa ɲe an bɛ taa ɲe an bɛ dɛsɛ baga an ka denw sanɛ.
| 60 |
|
2.073 |
Nɔ́n, í b'í ń bɛ̀kiliw fɔ́!
| 10 |
|
2.926 |
« Maligɛre kɛ san nana i la cɛ. »
| 75 |
|
4.966 |
Ka waritɛ min yɛrɛ fɔ, ka parisɛnariya jumɛn na, ka nin
| 50 |
|
4.076 |
I ziniw bɛɛ b'an de fiya « commudo » mɛ o bɛɛ la an « commudo » de ye « piremi » ye.
| 75 |
|
2.413 |
Zorisɔn kɔntarandi en ouverture de di?
| 0 |
|
7.041 |
« merci » bɔ sɔrɔ de la.
| 79 |
|
1.988 | 0 |
||
1.81 | 0 |
||
9.87 | 0 |
||
6.737 |
Unhun!
| 5 |
|
2.13 |
I bɛ se ka tugu a kɔnɔ na.
| 0 |
|
1.539 | 0 |
||
1.561 |
K'an ka sigidaw sanni.
| 0 |
|
4.983 |
Mìmiina ni hàkini ɲuman yé kà ɲɛ̀ sì.
| 69 |
|
1.02 | 0 |
||
1.887 |
Unhun!
| 0 |
|
2.636 |
« pour que » vɛrɛman ka sɛgɛsɛgɛliw bɔ.
| 5 |
|
3.003 | 0 |
||
5.617 | 0 |
||
5.685 |
Lafin bɛ « lacouge » cɛmana sɔn ko min ma?
| 5 |
|
8.972 |
Ayi awɔ peremanden kɔni « parce que » peremiyɛr ani ansogo fɛn mɛ a ma fɔ ko peremanden ɲe e bɛna erisɛsiyɔn de da wa?
| 50 |
|
4.346 |
N'u kɔnɔtɛla a ka se o ko bɛ ka ɲinan kosɛbɛ, ee, kuma duman kosɛbɛ k'a miiri bɛ ko bila ka wuli k'a la.
| 50 |
|
2.149 |
Mìri wó, í ka wó!
| 50 |
|
2.337 |
N'o ye misiw ye, misiw fɔra farala k'aw n'i b'o dilan komi n'den?
| 78 |
|
2.549 | 0 |
||
5.394 |
Cɛ tɛrɛ ɲɔpɔrɔtan ka ɲi siso kan « parce que » dɔw kɔnɔ ko Pali a bɛ sɔrɔ.
| 76 |
|
6.104 |
«An yɛrɛ bɛna an ka ko ɲɛdabɔ an ni ɲɔgɔn cɛ, nka mɔgɔ wɛrɛ sen b'a la. »
| 55 |
|
2.777 | 0 |
||
1.811 |
Mɛtenan, faamu de bɛ se ka décision ta.
| 50 |
|
7.447 |
N'aw bɛ kɛlɛn-kɛlɛnni wa
| 0 |
|
2.072 |
Nêbɛliba kélen kélen nín bɔ́,
| 5 |
|
13.265 |
Siga foyi tɛ o kuma na, siri bɛ muso jɔfɛn o jɔfɛn bɛ dafɛn ye an ka dugawu dobi ani halusilamɛfure bɛɛ lajɛlen ye.
| 60 |
|
5.984 |
Ni sinfinna kan nana anw fo ka na laɲiniw kɛ, an kan'u si, an kan'u si, an kan'u kɛ...
| 70 |
|
4.327 |
Tilenin in bi karidɔgɔn ye jɔn kalo tile tan ni kɔnɔntan.
| 50 |
|
1.123 |
Sálo nà síni!
| 50 |
|
1.396 |
Àwɔ!
| 75 |
|
12.498 |
K'o sabu kɛ bi-bi na o yɛlɛmalen don k'o kɛ banakuntanw sɔrɔyɔrɔ ye, wulu-wulu de bɛ fan bɛɛ, ɲaman bɛ fan bɛɛ, dimɔgɔw bɛ mɔgɔw kan sosow ɲɛmɛrɛ, ɲinɛ, tɛ ee!
| 55 |
|
2.978 |
Ko caman b'a kɔnɔ, ko caman b'a kɔnɔ.
| 79 |
|
12.875 |
Na, i mɔgɔsiridimi min ka ɲi hanfɔ dajɛla la ko jamana Siridani.
| 70 |
|
12.728 |
Sinankuya dabɔ tun tɛ dɔgɔyama ye, nɛni tɛ, waso tɛ, kojugu fɔ tɛ, kɛlɛko tɛ.
| 70 |
|
4.217 |
N bɛ don miiriw kɔnɔ, mɛ misirilanfɛnama fila bisɛ de b'olu filankolo a kan.
| 70 |
|
7.532 |
Fulaw bɛ kɛlɛn-kɛlɛn de ye u ɲumakan
| 70 |
|
2.148 |
Ni bɛɛ y'i ka dalala se dingɛ,
| 60 |
|
10.13 |
An ka laji an ka sigi k'a fɔcɛ an k'an bolo di ɲɔgɔn ma n'an m'an bolo di ɲɔgɔn ma wa don o don de bɛ kɛ nin ye san o san samiya de bɛ kɛ nin ye.
| 65 |
|
1.069 |
Kɛsɔn k'u sigira yen.
| 60 |
|
3.31 |
Anw jɔyɔrɔba bɛ siran, a b'aw lakaran ni ko la Bamakɔ ye « collectivité » ye.
| 75 |
|
11.173 |
N'o tɛ n'u y'a ko ye sisan k'a fɔ ko n'an yɛlɛla sa yɔrɔw la sa min ka yɔrɔ mara nɔgɔ alamani bɛ bi o kan min ka yɔrɔ mara nɔgɔ a bɛ taa ni tɔgɔ yɔrɔ bɛ cɛ ya.
| 5 |
|
5.175 |
O de la, an ka jamana kuntigi n'o ye Jinaldi Haramɛ Asimi Koyita ye, n'ale de ye nin jɛkulu ye IESI.
| 50 |
|
1.81 |
O yɔrɔ tɛ mɔgɔ bɛɛ lajɛlen fo.
| 40 |
|
7.895 |
Ne ma da in kɛlɛ ɲɛleli, delidenjama b'i sigi ka suma ka suma ka na nin siyɛ Jɔnkolonin.
| 0 |
|
2.11 |
Alajɔkɔrɔba la.
| 0 |
|
6.326 |
« en russe de bɔni parange, mɛ e ma fi ne kɛ ka n geto. »
| 45 |
|
1.751 |
An ka dɔnmakofa ba si tɛ.
| 5 |
|
1.37 |
Mais o si « parce que » i tɛ se poɔgɔrɔba.
| 0 |
|
3.181 |
A selen dɛkisɛ la mɔma a fɛkisɛ « manifi tribjɔn en dɔturu numɛ » de ma.
| 0 |
|
2.27 |
Lɔyɔrɔ don Alokisiyɔn, Razjo Malikɛ.
| 0 |
|
1.803 |
N'u tɛ muso a kɛ, n'u tɛ fanelen, n'u tɛ banelen.
| 78 |
|
5.818 | 0 |
||
5.473 |
Fama, ale kɛ ninnu bɔ, an b'a fɔ jumɛn ta?
| 79 |
|
4.439 |
N'a ye N'Vite a suivre sanze activité la, a nu se den an kɔri a mɛn a senni la.
| 0 |
|
2.07 | 0 |
||
5.78 | 0 |
||
1.143 |
An y'a ye k’a fɔ
| 0 |
|
1.232 |
Bi b'i na.
| 15 |
|
7.229 |
Ne tɔgɔ ye Valeri Dako, ne ye Sanu-Pɛrɛ-Muchɛl tala ɲɛmɔgɔ ye « réseau » parlementaire de faama, minisiri afirikani de siri anw ma.
| 15 |
|
1.826 | 0 |
||
24.592 |
Unhun ni faama ni magan macuga minɛ.
| 5 |
|
16.639 | 0 |
||
15.381 | 0 |
||
19.074 | 0 |
||
16.535 | 0 |
||
24.096 |
Aaa a ko bɛ minnu bolo dɔw bɛ dɔw la faamuyali bɛ se ka to a la an bɛ se k'o kɛ an baara taabolo ye ayiwa Jɛnɛbasso ale ni sulimani ɲaari olu wilila ka se mininɛkura kɔnɔna na y'a dɔrɔ aw b'a dɔn k'a fɔ mininɛkura ɲaman ko o ma dogo mɔgɔ si la unun sanga n'a ka waati de don mɛ a bɛ wagati bɔ sisan nɔn fɛmi ye o ɲama in ye o daga bɔra sigida filanan mɔgɔw da la ayiwa nisɔndiya ko don ngɔ!
| 69 |
|
15.427 |
N'bɛɛ k'i janto
| 0 |
|
17.184 |
Tiɲɛ yɛrɛ la, ni gudɔrɔn kɛrɛfɛlaw n'olu ma gudɔrɔni ka pavé nu fɛnw k'a la, hali ni y'a furu a tan ke yen yɔrɔn nɔgɔlɔ, ni fiɲɛ kɔni cira, «pucheur » bɛna gudɔrɔn kan diyagoya a bɛ nɔgɔ, sinɔgɔ k'a fɔ ko fɛn wɛrɛ bɛ gudɔrɔn nɔgɔ a ka gɛlɛn parce que le fɛtike mɔbili yɛrɛ bolo a san fɛ, mɔbili fiɲɛ yɛ
| 76 |
|
22.225 |
Numɔlɔ min bɛ jurufɔ, numɔnɛ ye, numɔnɛ de kisiw tɛ kabana juru, u bɛ n'bolo mɛ jurufɔw ye kalaba.
| 70 |
|
21.247 | 0 |
||
27.873 |
Dɔnsɔn, cɛntɔrɔba sɔn, fɔ la tɛ, mɔnɔntidon si tɔgɔlen digɛ.
| 0 |
Transcription Scorer Dataset
The Transcription Scorer dataset was created to support research in reference-free evaluation of Automatic Speech Recognition (ASR) systems using human feedback. Unlike traditional evaluation metrics such as WER and its derivatives, this dataset reflects judgments of ASR outputs by human raters across multiple criteria, simulating the way a teacher grades students.
⚙️ What’s Inside
This dataset contains 1200 audio samples (from diverse sources including music with lyrics) totaling 2.28 hours. It is made of short to meduim length segments each associated with:
- One transcriptions (drawn by selecting the best hypothesis of two Bambara ASR models)
- A score between 0 and 100 assigned by human annotators
bucket (s) | partially‑reviewed |
---|---|
0.6 – 15 | 965 |
15 – 30 | 235 |
Sources:
- Transcriptions were generated by two ASR models:
- Djelia-V1 (proprietary, access through API)
- Soloni (open-source from RobotsMali)
- Additional 81 transcriptions were intentionally randomized/shuffled to measure baseline judgment.
Most of the audios were collected by RobotsMali AI4D Lab with the Office de Radio et Télévision du Mali which gave us early access to a few archives of some of their past emissions in Bamanankan. But this dataset also include a few samples from bam-asr-early.
The evaluation was based on the following criteria but we also left room for a personnal subjective judgement so it also include some form of human preference feedback as the annotations were partially reviwed by professional Bambara linguists. So it is a Human feedback dataset but not based on preferences only, the score is actually designed to be a refective of the quality of the transcriptions enough to be used as a proxy metric.
Usage
This dataset is intended for researchers and developers who face a label scarcity situation making traditional ASR evaluation metrics like WER impossible (which is especially relevent to low resource languges such as Bambara). By leveraging human-assigned scores, it enables the development of scoring models which outputs can be used as a proxy to transcription quality. Whether you're building evaluation tools or studying human feedback in speech systems, you might find this dataset useful if you face label scarcity.
- Developing reference-free evaluation metrics
- Training reward models for RLHF-based fine-tuning of ASR systems
- Understanding how human preferences relate to transcription quality
from datasets import load_dataset
# Load the dataset into Hugging Face Dataset object
dataset = load_dataset("RobotsMali/transcription-scorer", "partially-reviewed")
Data Splits
- Train: 1000 examples (~1.92h)
- Test: 200 examples (~0.37h)
This initial version is only partially reviewed, so you may contribute by opening a PR or a discussion if you find that some assigned scores are innacurate.
Fields
audio
: raw audioduration
: audio length (seconds)transcription
: text output to be scoredscore
: human-assigned score (0–100)
Known Limitations / Issues
- Human scoring may contain inconsistencies.
- Only partial review/consensus exists — scores may be refined in future versions.
- The dataset is very limited in context diversity and transcription variance, only two models were used to generate transcriptions for the same ~560 audios + 80 shuffled transcriptions for baseline estimation so it will benefit from additional data from different distribution.
🤝 Contribute
Feel something was misjudged? Want to improve score consistency? Add transcriptions from another model ? Please open a discussion — we welcome feedback and collaboration.
📜 Citation
@misc{transcription_scorer_2025,
title={A Dataset of human evaluations of Automatic Speech Recognition for low Resource Bambara language},
author={RobotsMali AI4D Lab},
year={2025},
publisher={Hugging Face}
}
- Downloads last month
- 56