Dataset Viewer (First 5GB)
Auto-converted to Parquet
image_rgb
imagewidth (px)
500
500
image_d
imagewidth (px)
500
500
sequence_id
stringlengths
18
18
frame
int64
1
75
sequence_length
int64
30
75
label
class label
6 classes
label_desc
stringclasses
6 values
A000C000S000SEQ000
1
31
0None
None
A000C000S000SEQ000
2
31
0None
None
A000C000S000SEQ000
3
31
0None
None
A000C000S000SEQ000
4
31
0None
None
A000C000S000SEQ000
5
31
0None
None
A000C000S000SEQ000
6
31
0None
None
A000C000S000SEQ000
7
31
0None
None
A000C000S000SEQ000
8
31
0None
None
A000C000S000SEQ000
9
31
0None
None
A000C000S000SEQ000
10
31
0None
None
A000C000S000SEQ000
11
31
0None
None
A000C000S000SEQ000
12
31
0None
None
A000C000S000SEQ000
13
31
0None
None
A000C000S000SEQ000
14
31
0None
None
A000C000S000SEQ000
15
31
0None
None
A000C000S000SEQ000
16
31
0None
None
A000C000S000SEQ000
17
31
0None
None
A000C000S000SEQ000
18
31
0None
None
A000C000S000SEQ000
19
31
0None
None
A000C000S000SEQ000
20
31
0None
None
A000C000S000SEQ000
21
31
0None
None
A000C000S000SEQ000
22
31
0None
None
A000C000S000SEQ000
23
31
0None
None
A000C000S000SEQ000
24
31
0None
None
A000C000S000SEQ000
25
31
0None
None
A000C000S000SEQ000
26
31
0None
None
A000C000S000SEQ000
27
31
0None
None
A000C000S000SEQ000
28
31
0None
None
A000C000S000SEQ000
29
31
0None
None
A000C000S000SEQ000
30
31
0None
None
A000C000S000SEQ000
31
31
0None
None
A000C000S000SEQ001
1
31
0None
None
A000C000S000SEQ001
2
31
0None
None
A000C000S000SEQ001
3
31
0None
None
A000C000S000SEQ001
4
31
0None
None
A000C000S000SEQ001
5
31
0None
None
A000C000S000SEQ001
6
31
0None
None
A000C000S000SEQ001
7
31
0None
None
A000C000S000SEQ001
8
31
0None
None
A000C000S000SEQ001
9
31
0None
None
A000C000S000SEQ001
10
31
0None
None
A000C000S000SEQ001
11
31
0None
None
A000C000S000SEQ001
12
31
0None
None
A000C000S000SEQ001
13
31
0None
None
A000C000S000SEQ001
14
31
0None
None
A000C000S000SEQ001
15
31
0None
None
A000C000S000SEQ001
16
31
0None
None
A000C000S000SEQ001
17
31
0None
None
A000C000S000SEQ001
18
31
0None
None
A000C000S000SEQ001
19
31
0None
None
A000C000S000SEQ001
20
31
0None
None
A000C000S000SEQ001
21
31
0None
None
A000C000S000SEQ001
22
31
0None
None
A000C000S000SEQ001
23
31
0None
None
A000C000S000SEQ001
24
31
0None
None
A000C000S000SEQ001
25
31
0None
None
A000C000S000SEQ001
26
31
0None
None
A000C000S000SEQ001
27
31
0None
None
A000C000S000SEQ001
28
31
0None
None
A000C000S000SEQ001
29
31
0None
None
A000C000S000SEQ001
30
31
0None
None
A000C000S000SEQ001
31
31
0None
None
A000C000S000SEQ002
1
31
0None
None
A000C000S000SEQ002
2
31
0None
None
A000C000S000SEQ002
3
31
0None
None
A000C000S000SEQ002
4
31
0None
None
A000C000S000SEQ002
5
31
0None
None
A000C000S000SEQ002
6
31
0None
None
A000C000S000SEQ002
7
31
0None
None
A000C000S000SEQ002
8
31
0None
None
A000C000S000SEQ002
9
31
0None
None
A000C000S000SEQ002
10
31
0None
None
A000C000S000SEQ002
11
31
0None
None
A000C000S000SEQ002
12
31
0None
None
A000C000S000SEQ002
13
31
0None
None
A000C000S000SEQ002
14
31
0None
None
A000C000S000SEQ002
15
31
0None
None
A000C000S000SEQ002
16
31
0None
None
A000C000S000SEQ002
17
31
0None
None
A000C000S000SEQ002
18
31
0None
None
A000C000S000SEQ002
19
31
0None
None
A000C000S000SEQ002
20
31
0None
None
A000C000S000SEQ002
21
31
0None
None
A000C000S000SEQ002
22
31
0None
None
A000C000S000SEQ002
23
31
0None
None
A000C000S000SEQ002
24
31
0None
None
A000C000S000SEQ002
25
31
0None
None
A000C000S000SEQ002
26
31
0None
None
A000C000S000SEQ002
27
31
0None
None
A000C000S000SEQ002
28
31
0None
None
A000C000S000SEQ002
29
31
0None
None
A000C000S000SEQ002
30
31
0None
None
A000C000S000SEQ002
31
31
0None
None
A000C000S000SEQ004
1
31
0None
None
A000C000S000SEQ004
2
31
0None
None
A000C000S000SEQ004
3
31
0None
None
A000C000S000SEQ004
4
31
0None
None
A000C000S000SEQ004
5
31
0None
None
A000C000S000SEQ004
6
31
0None
None
A000C000S000SEQ004
7
31
0None
None
drawing

University of Technology Chemnitz, Germany
Department Robotics and Human Machine Interaction
Author: Robert Schulz

TUC-AR Dtaset Card

TUC-AR is a small scale action recognition dataset, containing 6(+1) action categories for human machine interaction. This version contains video sequences, stored as images, frame by frame.

Dataset Details

  • RGB and depth input recorded by Intel RealSense D435 depth camera
  • 8 subjects
  • 11,031 sequences (train 8,893/ val 2,138)
  • 3 perspectives per scene
  • 6(+1) action classes
    Action Label
    A000 None
    A001 Waving
    A002 Pointing
    A003 Clapping
    A004 Follow
    A005 Walking
    A006 Stop

Use

  1. Install the RSProduction Machine Learning package (PyPi, GitHub)
pip install rsp-ml
  1. Use the HF datasat with rsp.ml.dataset.TUC_AR
from rsp.ml.dataset import TUC_AR
import rsp.ml.multi_transforms as multi_transforms

transforms = multi_transforms.Compose([multi_transforms.Resize((400, 400))])
tuc_ar_ds = TUC_AR(
              split='val',
              depth_channel=True,
              transforms=transforms,
              num_actions=10,
              streaming=True)

Dataset Card Contact

In case of any doubts about the dataset preprocessing and preparation, please contact TUC RHMi.

Acknowledgement

Thanks go out to Flower Labs. The structure and layout of this HuggigFace dataset is inspired by their dataset flwrlabs/ucf101.

Downloads last month
193