Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 16,453 Bytes
c1c3729
87876a4
 
 
 
c1c3729
87876a4
 
c1c3729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87876a4
 
c1c3729
87876a4
 
 
 
 
 
 
 
 
 
 
 
 
c1c3729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87876a4
c1c3729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87876a4
 
 
 
 
c1c3729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87876a4
c1c3729
 
 
 
 
 
87876a4
c1c3729
 
 
87876a4
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c3729
 
 
87876a4
 
c1c3729
 
 
 
 
 
87876a4
 
 
 
c1c3729
87876a4
 
 
 
c1c3729
 
87876a4
c1c3729
 
 
 
 
 
 
 
 
87876a4
 
c1c3729
87876a4
 
c1c3729
 
 
87876a4
 
c1c3729
87876a4
 
 
 
c1c3729
 
87876a4
c1c3729
87876a4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import abc
from typing import Optional
import datasets
import io
import os
import json
import hashlib
import warnings
import csv
import textwrap

# Tested with pandas=2.2.2
import pandas as pd

# Tested with pillow==10.4.0
import PIL
import PIL.Image
import PIL.PngImagePlugin

# Tested with PyMuPDF==1.24.7 PyMuPDFb==1.24.6
import pymupdf

# Tested with reportlab==4.2.2
import reportlab
import reportlab.lib.colors
import reportlab.lib.pagesizes
import reportlab.platypus
import reportlab.pdfgen


# Once properly assembled, the datasets should have these columns
ASSEMBLED_COLUMNS = (
    'sample_id', 
    'dataset_name', 
    'task_name', 
    'query',
    'annotations', 
    'image', 
    'query_info', 
    'annotations_info', 
    'image_info', 
    'image_sha256'
)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Now scroll down to the very bottom for `get_bigdocs_75m`! #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #


def pdf_to_image(pdf_stream, crop: bool=False) -> PIL.PngImagePlugin.PngImageFile:
    doc = pymupdf.open(stream=pdf_stream)
    # Render each page to an image in a list of images
    images = [
        PIL.Image.open(io.BytesIO(page.get_pixmap(dpi=144).tobytes("png")))
        for page in doc
    ]
    # Crop the footer if crop is True
    if crop:
        for i in range(len(images)):
            images[i] = images[i].crop(
                (120, 120, images[i].width - 120, images[i].height - 140)
            )
    # Determine the total width and height of the combined image
    total_width = max(im.width for im in images)
    total_height = sum(im.height for im in images)
    # Create a new image with the combined size
    combined_image = PIL.Image.new("RGB", (total_width, total_height), "white")
    # Paste each page image into the combined image
    y_offset = 0
    for im in images:
        combined_image.paste(im, (0, y_offset))
        y_offset += im.height
    # At this point combined_image is what we want, but under the wrong Python type
    # Place into buffer using PNG image format
    buffer = io.BytesIO()
    combined_image.save(buffer, "png")
    # Reload as PIL.PngImagePlugin.PngImageFile
    return PIL.Image.open(buffer)


WHITE = reportlab.lib.colors.white
BLACK = reportlab.lib.colors.black
TABLE_STYLE = reportlab.platypus.TableStyle([
    ("BACKGROUND", (0, 0), (-1, 0), WHITE),
    ("TEXTCOLOR", (0, 0), (-1, 0), BLACK),
    ("ALIGN", (0, 0), (-1, -1), "CENTER"),
    ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"),
    ("BOTTOMPADDING", (0, 0), (-1, 0), 12),
    ("BACKGROUND", (0, 1), (-1, -1), WHITE),
    ("GRID", (0, 0), (-1, -1), 1, BLACK),
])


def csv_to_image(csv_path: str) -> PIL.PngImagePlugin.PngImageFile:
    # Load the data
    with open(csv_path, newline="") as csv_stream:
        reader = csv.reader(csv_stream, delimiter="#")
        data = [row for row in reader]
    # Create a table with CSV data
    table = reportlab.platypus.Table(data)
    table.setStyle(TABLE_STYLE)
    # Virtual PDF file
    pdf_stream = io.BytesIO()
    # Build a document from the table
    reportlab.platypus.SimpleDocTemplate(pdf_stream, pagesize=reportlab.lib.pagesizes.letter).build([table])
    
    return pdf_to_image(pdf_stream)


def text_to_image(text: str, font_size: int = 10) -> PIL.PngImagePlugin.PngImageFile:
    pdf_stream = io.BytesIO()
    c = reportlab.pdfgen.canvas.Canvas(
        pdf_stream,
        pagesize=reportlab.lib.pagesizes.letter
    )
    c.setFont("Helvetica", font_size)

    #  Wrap the text for better handling in PDF
    wrapped_text = textwrap.wrap(text, width=100)

    # Starting position on the page
    x_position = 72  # 1 inch from the left margin
    y_position = 11 * 72 - 72  # Start 1 inch from the top of an 11-inch page

    text_height = font_size * 1.2  # Approximate line height

    for line in wrapped_text:
        if y_position < 72:  # Check if we're near the bottom of the page
            c.showPage()
            c.setFont("Helvetica", font_size)
            y_position = 11 * 72 - 72  # Reset position to top of new page

        c.drawString(x_position, y_position, line)
        y_position -= text_height  # Move down for next line

    c.save()

    return pdf_to_image(pdf_stream, crop=True)


def csv_to_markdown(csv_path: str, sep: str) -> str:
    # Format with pandas, but ensure there are no consecutive spaces
    df = pd.read_csv(csv_path, sep=sep)
    return " ".join(df.to_markdown(index=False).split())


def get_sha256(
        image: PIL.PngImagePlugin.PngImageFile, 
        b: Optional[bytes]=None
    ) -> str:
    # Ignore image if bytes representation b is already provided
    if b is None:
        buffer = io.BytesIO()
        image.save(buffer, "png")
        b = buffer.getvalue()
    m = hashlib.sha256()
    m.update(b)
    return m.hexdigest()


class Assembler(abc.ABC):
    def __init__(
            self, 
            user_local_path: Optional[str], 
            raise_on_missing: Optional[bool],
            use_bad_sha256: Optional[bool]
        ):
        self.user_local_path = user_local_path
        self.raise_on_missing = raise_on_missing
        self.use_bad_sha256 = use_bad_sha256
    
    @abc.abstractmethod
    def __call__(self, sample) -> dict:
        """Processor called by `map` on each sample"""
    
    def keep_image(
            self,
            image: Optional[PIL.PngImagePlugin.PngImageFile],
            expected_sha256: str,
            b: Optional[bytes]=None
    ) -> bool:
        if image is None:
            # No image to check
            return False
        if self.use_bad_sha256:
            # We're going to use the image whether or not the sha256 is good
            return True
        sha256 = get_sha256(image, b)
        if sha256 != expected_sha256:
            # Give warning if didn't explicitly set use_bad_sha256 to False
            if self.use_bad_sha256 is None:
                warnings.warn(f"Skipping due to bad sha256", RuntimeWarning)
             # Sample will be filtered out
            return False
        else:
            # Sample will be used
            return True


class AssembleFromDisk(Assembler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        assert self.user_local_path is not None, f"user_local_path is mandatory for this dataset"

    def __call__(self, sample) -> dict:
        img_path = os.path.join(self.user_local_path, sample['img_id'])
        # Load the image
        try:
            image = PIL.Image.open(img_path)
        except Exception as e:
            if self.raise_on_missing:
                raise RuntimeError(f"Error loading image at {img_path}\n{e}")
            if self.raise_on_missing is None:
                warnings.warn(f"Skipping due to error loading image {img_path}\n{e}", RuntimeWarning)
            image = None  # Sample will be filtered out
        if image is not None:
            # Place into `buffer` using PNG image format
            buffer = io.BytesIO()
            image.save(buffer, "png")
            # Reload the image with guaranteed PNG format
            image = PIL.Image.open(buffer)
            # Check sha256
            if not self.keep_image(image, sample["image_sha256"], b=buffer.getvalue()):
                image = None
        return {"image": image}


class AssembleTabFact(Assembler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Get annotations
        json_path = os.path.join(self.user_local_path, "tokenized_data/total_examples.json")
        with open(json_path, "rt") as fp:
            self.tables_data = json.load(fp)

    def __call__(self, sample) -> dict:
        csv_path = os.path.join(self.user_local_path, "data/all_csv", sample["img_id"])
        image = csv_to_image(csv_path)
        # Check sha256
        if not self.keep_image(image, sample["image_sha256"]):
            # Skip both image and annotations (will be filtered out)
            return {"image": None, "annotations": [""]}
        # Annotations
        if sample["task_name"] == "table_parsing2md":
            annotations =  [csv_to_markdown(csv_path, sep="#")]
        else:
            facts, entails, title = self.tables_data[sample["img_id"]]
            if sample["task_name"] == "caption":
                # The "caption" is the table's title
                annotations = [title]
            else:
                assert sample["task_name"] == "summary"
                # select only entries in facts with entailment label as 1
                facts = [fact for fact, entailment in zip(facts, entails) if entailment == 1]
                # concat facts with numbered bullets and new lines
                annotations = ["\n".join([f"{i+1}. {fact}" for i, fact in enumerate(facts)])]
        return {"image": image, "annotations": annotations}


class AssembleOpen4Business(Assembler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Get annotations
        self.texts, self.summaries = {}, {}
        for split in ["train", "val", "test"]:
            with open(os.path.join(self.user_local_path, f"{split}.source"), "rt") as fp:
                # Don't strip here because that may alter the image sha256
                self.texts[split] = list(line for line in fp)
            with open(os.path.join(self.user_local_path, f"{split}.target"), "rt") as fp:
                self.summaries[split] = list(line.strip() for line in fp)

    def __call__(self, sample) -> dict:
        split, line_number = sample["img_id"].split("_")
        line_number = int(line_number)
        print(split, line_number, sample["task_name"])
        try:
            text = self.texts[split][line_number]
            image = text_to_image(text)
            # Check sha256
            if not self.keep_image(image, sample["image_sha256"]):
                # Skip both image and annotations (will be filtered out)
                return {"image": None, "annotations": [""]}
            # Annotations
            if sample["task_name"] == "extraction":
                # Don't forget the strip!
                annotations =  [text.strip()]
            else:
                assert sample["task_name"] == "summary"
                annotations = [self.summaries[split][line_number]]
        except Exception as e:
            print(f"EXCEPTION on {split}, {line_number}, {sample['task_name']}. Original error: {e.__str__}")
            raise e
        return {"image": image, "annotations": annotations}


class AssembleWikiTQ(Assembler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Get annotations
        self.annotations = pd.concat([
            pd.read_csv(
                os.path.join(self.user_local_path, "data", tsv_file),
                sep="\t", on_bad_lines="skip", index_col="id"
            ) for tsv_file in {
                "training.tsv", 
                "pristine-seen-tables.tsv", 
                "pristine-unseen-tables.tsv"
            }
        ])

    def __call__(self, sample) -> dict:
        question, context, answer = self.annotations.loc[sample["img_id"]]
        csv_path = os.path.join(self.user_local_path, context)
        image = csv_to_image(csv_path)
        # Check sha256
        if not self.keep_image(image, sample["image_sha256"]):
            # Skip both image and annotations (will be filtered out)
            return {"image": None, "annotations": [""]}
        # Annotations
        if sample["task_name"] == "table_parsing2md":
            annotations =  [csv_to_markdown(csv_path, sep=",")]
            return {"image": image, "annotations": annotations}
        else:
            assert sample["task_name"] == "qa"
            query = [sample["query"][0].format(question=question)]
            answers = str(answer).split("|")
            answer = " or ".join(answers) if len(answers) > 1 else answers[0]
            annotations = [sample["annotations"][0].format(answer=answer)]
            return {"image": image, "query": query, "annotations": annotations}


KNOWN_ASSEMBLERS = {
    "ArxivOCR": None,
    "ArxivTableCap": None,
    "COCOtext": AssembleFromDisk,
    "pubtables-1m": AssembleFromDisk,
    "TextOCR": AssembleFromDisk,
    "TabFact": AssembleTabFact,
    "Open4Business": AssembleOpen4Business,
    "WikiTQ": AssembleWikiTQ,
}


# # # # # # # # # # # # # # # # # # # # # # #
# This is the function you are looking for! #
# # # # # # # # # # # # # # # # # # # # # # #
def get_bigdocs_75m(
        formal_name: str,
        user_local_path: Optional[str]=None,
        *,
        load_from_cache_file: Optional[bool]=None,
        num_proc: Optional[int]=4,
        writer_batch_size: int=100,
        raise_on_missing: Optional[bool]=None,
        use_bad_sha256: Optional[bool]=None,
        bigdocs_load_dataset_kwargs: Optional[dict]=None,
        unprocessed: Optional[datasets.DatasetDict]=None
    ) -> datasets.DatasetDict:
    """
    Get a subset of BigDocs-7.5M

    Some parts of BigDocs-7.5M are distributed without their "image" column,
    and instead have an "img_id" column. The present function substitutes
    such images back in.

    For the following `formal_name`, the the user is responsible to download
    the specified dataset and specify its location through `user_local_path`.

        - COCOtext: http://images.cocodataset.org/zips/train2014.zip
        - pubtables-1m: https://www.microsoft.com/en-us/research/publication/pubtables-1m
        - TextOCR: https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
        - TabFact: https://github.com/wenhuchen/Table-Fact-Checking
        - Open4Business: https://github.com/amanpreet692/Open4Business
        - WikiTQ: https://github.com/ppasupat/WikiTableQuestions

    Args:
        formal_name (`str`): The desired subset of BigDocs-7.5M .
        user_local_path (`Optional[str]`): The local path containing the images to be linked.
        load_from_cache_file (`Optional[bool]): Passed to `map`, `filter` and the likes.
        num_proc (`Optional[int]): Passed to `map`, `filter` and the likes.
        writer_batch_size (`int`, defaults to 100): Passed to `map`. Too large values may cause OOM.
        raise_on_missing (`Optional[bool]`):
            Determines what to do when there is an error loading an image.
                - `True`: raise an error.
                - `None`: print a warning and skip the sample (default).
                - `False`: silently skip the sample.
        use_bad_sha256 (`Optional[bool]):
            Determines what to do when the sha256 integrity test fails.
                - `True`: ignore the sha256 integrity test.
                - `None`: print a warning and skip samples with bad sha256 (default).
                - `False`: silently skip entries with bad sha256.
        bigdocs_load_dataset_kwargs (`Optional[dict]`): Arguments passed to datasets.load_dataset when retrieving ServiceNow/BigDocs-7.5M .
        unprocessed (Optional[datasets.DatasetDict]): If provided, will be used in stead of ServiceNow/BigDocs-7.5M .
    """
    # Get the unprocessed ServiceNow/BigDocs-7.5M
    if unprocessed is None:
        if bigdocs_load_dataset_kwargs is None:
            bigdocs_load_dataset_kwargs = {}
        unprocessed = datasets.load_dataset(
            "ServiceNow/BigDocs-7.5M", 
            formal_name, 
            **bigdocs_load_dataset_kwargs
        )
    # Get the correct processor
    try:
        assembler = KNOWN_ASSEMBLERS[formal_name]
    except KeyError:
        raise ValueError(f"Unknown formal_name: {formal_name}")
    # Do the processing
    if assembler is None:
        assert user_local_path is None
        processed = unprocessed
    else:
        processor = assembler(user_local_path, raise_on_missing, use_bad_sha256)
        processed = unprocessed.map(
            processor, 
            remove_columns="img_id", 
            load_from_cache_file=load_from_cache_file, 
            num_proc=num_proc,
            writer_batch_size=writer_batch_size
        )
        # Drop missing images (we can skip if we raised on missing images).
        if not raise_on_missing:
            processed = processed.filter((lambda image: image is not None), input_columns="image", num_proc=num_proc)
        # Column order
        processed = processed.select_columns(list(ASSEMBLED_COLUMNS))
    
    return processed