|
--- |
|
dataset_info: |
|
features: |
|
- name: video |
|
dtype: string |
|
- name: question |
|
dtype: string |
|
- name: options |
|
list: string |
|
- name: answer |
|
dtype: string |
|
- name: answer_text |
|
dtype: string |
|
- name: meta |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
- name: qa_subtype |
|
dtype: string |
|
- name: qa_type |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_bytes: 515277 |
|
num_examples: 1289 |
|
download_size: 174366 |
|
dataset_size: 515277 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
task_categories: |
|
- video-text-to-text |
|
--- |
|
|
|
# VideoEval-Pro |
|
|
|
VideoEval-Pro is a robust and realistic long video understanding benchmark containing open-ended, short-answer QA problems. The dataset is constructed by reformatting questions from four existing long video understanding MCQ benchmarks: Video-MME, MLVU, LVBench, and LongVideoBench into free-form questions. The paper can be found [here](https://huggingface.co/papers/2505.14640). |
|
|
|
The evaluation code and scripts are available at: [TIGER-AI-Lab/VideoEval-Pro](https://github.com/TIGER-AI-Lab/VideoEval-Pro) |
|
|
|
|
|
## Dataset Structure |
|
Each example in the dataset contains: |
|
- `video`: Name (path) of the video file |
|
- `question`: The question about the video content |
|
- `options`: Original options from the source benchmark |
|
- `answer`: The correct MCQ answer |
|
- `answer_text`: The correct free-form answer |
|
- `meta`: Additional metadata from the source benchmark |
|
- `source`: Source benchmark |
|
- `qa_subtype`: Question task subtype |
|
- `qa_type`: Question task type |
|
|
|
## Evaluation Steps |
|
|
|
1. **Download and Prepare Videos** |
|
```bash |
|
# Navigate to videos directory |
|
cd videos |
|
|
|
# Merge all split tar.gz files into a single archive |
|
cat videos_part_*.tar.gz > videos_merged.tar.gz |
|
|
|
# Extract the merged archive |
|
tar -xzf videos_merged.tar.gz |
|
|
|
# [Optional] Clean up the split files and merged archive |
|
rm videos_part_*.tar.gz videos_merged.tar.gz |
|
|
|
# After extraction, you will get a directory containing all videos |
|
# The path to this directory will be used as --video_root in evaluation |
|
# For example: 'VideoEval-Pro/videos' |
|
``` |
|
|
|
2. **[Optional] Pre-extract Frames** |
|
To improve efficiency, you can pre-extract frames from videos. The extracted frames should be organized as follows: |
|
``` |
|
frames_root/ |
|
├── video_name_1/ # Directory name is thevideo name |
|
│ ├── 000001.jpg # Frame images |
|
│ ├── 000002.jpg |
|
│ └── ... |
|
├── video_name_2/ |
|
│ ├── 000001.jpg |
|
│ ├── 000002.jpg |
|
│ └── ... |
|
└── ... |
|
``` |
|
|
|
After frame extraction, the path to the frames will be used as `--frames_root`. Set `--using_frames True` when running the evaluation script. |
|
|
|
3. **Setup Evaluation Environment** |
|
```bash |
|
# Clone the repository from the GitHub repository |
|
git clone https://github.com/TIGER-AI-Lab/VideoEval-Pro |
|
cd VideoEval-Pro |
|
|
|
# Create conda environment from requirements.txt (there are different requirements files for different models) |
|
conda create -n videoevalpro --file requirements.txt |
|
conda activate videoevalpro |
|
``` |
|
|
|
4. **Run Evaluation** |
|
```bash |
|
cd VideoEval-Pro |
|
|
|
# Set PYTHONPATH |
|
export PYTHONPATH=. |
|
|
|
# Run evaluation script with the following parameters: |
|
# --video_root: Path to video files folder |
|
# --frames_root: Path to video frames folder [For using_frames] |
|
# --output_path: Path to save output results |
|
# --using_frames: Whether to use pre-extracted frames |
|
# --model_path: Path to model |
|
# --device: Device to run inference on |
|
# --num_frames: Number of frames to sample from video |
|
# --max_retries: Maximum number of retries for failed inference |
|
# --num_threads: Number of threads for parallel processing |
|
|
|
python tools/*_chat.py \ |
|
--video_root <path_to_videos> \ |
|
--frames_root <path_to_frames> \ |
|
--output_path <path_to_save_results> \ |
|
--using_frames <True/False> \ |
|
--model_path <model_name_or_path> \ |
|
--device <device> \ |
|
--num_frames <number_of_frames> \ |
|
--max_retries <max_retries> \ |
|
--num_threads <num_threads> |
|
|
|
E.g.: |
|
python tools/qwen_chat.py \ |
|
--video_root ./videos \ |
|
--frames_root ./frames \ |
|
--output_path ./results/qwen_results.jsonl \ |
|
--using_frames False \ |
|
--model_path Qwen/Qwen2-VL-7B-Instruct \ |
|
--device cuda \ |
|
--num_frames 32 \ |
|
--max_retries 10 \ |
|
--num_threads 1 |
|
``` |
|
|
|
5. **Judge the results** |
|
```bash |
|
cd VideoEval-Pro |
|
|
|
# Set PYTHONPATH |
|
export PYTHONPATH=. |
|
|
|
# Run judge script *gpt4o_judge.py* with the following parameters: |
|
# --input_path: Path to save output results |
|
# --output_path: Path to judged results |
|
# --model_name: Version of the judge model |
|
# --num_threads: Number of threads for parallel processing |
|
|
|
python tools/gpt4o_judge.py \ |
|
--input_path <path_to_saved_results> \ |
|
--output_path <path_to_judged_results> \ |
|
--model_name <model_version> \ |
|
--num_threads <num_threads> |
|
|
|
E.g.: |
|
python tools/gpt4o_judge.py \ |
|
--input_path ./results/qwen_results.jsonl \ |
|
--output_path ./results/qwen_results_judged.jsonl \ |
|
--model_name gpt-4o-2024-08-06 \ |
|
--num_threads 1 |
|
``` |
|
**Note: the released results are judged by *gpt-4o-2024-08-06*** |