Datasets:
license: cc-by-4.0
task_categories:
- image-classification
language:
- en
tags:
- x-ray
- medical
- chest
size_categories:
- 100K<n<1M
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: val
path: data/val-*
- config_name: original
data_files:
- split: train
path: original/train-*
- split: test
path: original/test-*
- split: val
path: original/val-*
dataset_info:
- config_name: default
features:
- name: UID
dtype: string
- name: Fold
dtype: int64
- name: Split
dtype: string
- name: PatientID
dtype: string
- name: PhysicianID
dtype: string
- name: StudyDate
dtype: string
- name: Age
dtype: int64
- name: Sex
dtype: string
- name: HeartSize
dtype: int64
- name: PulmonaryCongestion
dtype: int64
- name: PleuralEffusion_Right
dtype: int64
- name: PleuralEffusion_Left
dtype: int64
- name: PulmonaryOpacities_Right
dtype: int64
- name: PulmonaryOpacities_Left
dtype: int64
- name: Atelectasis_Right
dtype: int64
- name: Atelectasis_Left
dtype: int64
- name: Image
dtype: image
splits:
- name: train
num_bytes: 36724515176.076
num_examples: 137593
- name: test
num_bytes: 11088307165.008
num_examples: 42928
- name: val
num_bytes: 9210192401
num_examples: 34860
download_size: 58343808539
dataset_size: 57023014742.084
- config_name: original
features:
- name: UID
dtype: string
- name: Fold
dtype: int64
- name: Split
dtype: string
- name: PatientID
dtype: string
- name: PhysicianID
dtype: string
- name: StudyDate
dtype: string
- name: Age
dtype: int64
- name: Sex
dtype: string
- name: HeartSize
dtype: int64
- name: PulmonaryCongestion
dtype: int64
- name: PleuralEffusion_Right
dtype: int64
- name: PleuralEffusion_Left
dtype: int64
- name: PulmonaryOpacities_Right
dtype: int64
- name: PulmonaryOpacities_Left
dtype: int64
- name: Atelectasis_Right
dtype: int64
- name: Atelectasis_Left
dtype: int64
- name: Image
dtype: image
splits:
- name: train
num_bytes: 793575463284.632
num_examples: 137593
- name: test
num_bytes: 235100370576.352
num_examples: 42928
- name: val
num_bytes: 197760028732.64
num_examples: 34860
download_size: 1266898242525
dataset_size: 1226435862593.624
TAIX-Ray Dataset
TAIX-Ray is a comprehensive dataset of approximately 200k bedside chest radiographs from around 50k intensive care patients at University Hospital Aachen, Germany, collected between 2010 and 2024.
Trained radiologists provided structured reports at the time of acquisition, assessing key findings such as cardiomegaly, pulmonary congestion, pleural effusion, pulmonary opacities, and atelectasis on an ordinal scale.
Code & Details
The code for data loading, preprocessing, and baseline experiments is available at: https://github.com/mueller-franzes/TAIX-Ray
How to Use
Prerequisites
Ensure you have the following dependencies installed:
pip install datasets matplotlib huggingface_hub pandas tqdm
Configurations
This dataset is available in two configurations:
| Name | Size | Image Size |
|---|---|---|
| default | 62GB | 512px |
| original | 1.2TB | variable |
Option A: Use within the Hugging Face Framework
If you want to use the dataset directly within the Hugging Face datasets library, you can load and visualize it as follows:
from datasets import load_dataset
from matplotlib import pyplot as plt
# Load the TAIX-Ray dataset
dataset = load_dataset("TLAIM/TAIX-Ray", name="default")
# Access the training split (Fold 0)
ds_train = dataset["train"]
# Retrieve a single sample from the training set
item = ds_train[0]
# Extract and display the image
image = item["Image"]
plt.imshow(image, cmap="gray")
plt.savefig("image.png") # Save the image to a file
plt.show() # Display the image
# Print metadata (excluding the image itself)
for key in item.keys():
if key != "Image":
print(f"{key}: {item[key]}")
Option B: Downloading the Dataset
If you prefer to download the dataset to a specific folder, use the following script. This will create the following folder structure:
.
├── data/
│ ├── 549a816ae020fb7da68a31d7d62d73c418a069c77294fc084dd9f7bd717becb9.png
│ ├── d8546c6108aad271211da996eb7e9eeabaf44d39cf0226a4301c3cbe12d84151.png
│ └── ...
└── metadata/
├── annotation.csv
└── split.csv
from datasets import load_dataset
from pathlib import Path
import pandas as pd
from tqdm import tqdm
# Define output paths
output_root = Path("./TAIX-Ray")
# Create folders
data_dir = output_root / "data"
metadata_dir = output_root / "metadata"
data_dir.mkdir(parents=True, exist_ok=True)
metadata_dir.mkdir(parents=True, exist_ok=True)
# Load dataset in streaming mode
dataset = load_dataset("TLAIM/TAIX-Ray", name="default", streaming=True)
# Process dataset
metadata = []
for split, split_dataset in dataset.items():
print("-------- Start Download:", split, "--------")
for item in tqdm(split_dataset, desc="Downloading"): # Stream data one-by-one
uid = item["UID"]
img = item.pop("Image") # PIL Image object
# Save image
img.save(data_dir / f"{uid}.png", format="PNG")
# Store metadata
metadata.append(item)
# Convert metadata to DataFrame
metadata_df = pd.DataFrame(metadata)
# Save annotations to CSV file
metadata_df.drop(columns=["Split", "Fold"]).to_csv(
metadata_dir / "annotation.csv", index=False
)
print("Dataset streamed and saved successfully!")