Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,276 Bytes
19bcfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e207a94
 
 
 
 
 
 
 
 
 
19bcfb7
 
e207a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
dataset_info:
  features:
  - name: id
    dtype: string
  - name: query
    dtype: string
  - name: answer
    dtype: string
  - name: text
    dtype: string
  - name: choices
    sequence: string
  - name: gold
    dtype: int64
  splits:
  - name: test
    num_bytes: 384180
    num_examples: 496
  download_size: 140144
  dataset_size: 384180
license: cc-by-nc-4.0
task_categories:
- text-classification
language:
- en
tags:
- finance
pretty_name: FinBen FOMC
size_categories:
- n<1K
---

---

# Dataset Card for FinBen-FOMC

## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://huggingface.co/datasets/TheFinAI/finben-fomc
- **Repository:** https://huggingface.co/datasets/TheFinAI/finben-fomc
- **Paper:** FinBen: An Holistic Financial Benchmark for Large Language Models
- **Leaderboard:** https://huggingface.co/spaces/finosfoundation/Open-Financial-LLM-Leaderboard

### Dataset Summary

FinBen-FOMC is a financial sentiment classification dataset adapted from **FOMC (Shah et al., 2023a)**. The dataset is designed for training and evaluating large language models (LLMs) on classifying central bank policy stances as **Hawkish, Dovish, or Neutral**.

### Supported Tasks and Leaderboards

- **Task:** Hawkish-Dovish Classification
- **Evaluation Metric:** F1 Score, Accuracy
- **Test Size:** 496 instances

### Languages

- English

## Dataset Structure

### Data Instances

Each instance consists of a structured format with the following fields:

- **id**: A unique identifier for each data instance.
- **query**: An excerpt from a central bank’s release.
- **answer**: The classification label (`HAWKISH`, `DOVISH`, or `NEUTRAL`).

### Data Fields

- **id**: Unique string identifier for the data instance.
- **query**: The input text containing an excerpt from a central bank statement.
- **answer**: The classification label (`HAWKISH`, `DOVISH`, or `NEUTRAL`).

### Data Splits

The dataset is split into:

- **Test:** 496 instances

## Dataset Creation

### Curation Rationale

The dataset is adapted from **FOMC (Shah et al., 2023a)** to improve its suitability for LLM-based classification tasks in central bank policy analysis.

### Source Data

#### Initial Data Collection and Normalization

The dataset originates from Federal Open Market Committee (FOMC) statements and other central bank releases.

#### Who are the source language producers?

Central bank officials and policy documents.

### Annotations

#### Annotation Process

Annotations follow a structured classification framework to label monetary policy stances.

#### Who are the annotators?

Financial experts and researchers.

### Personal and Sensitive Information

No personally identifiable information (PII) is included.

## Considerations for Using the Data

### Social Impact of Dataset

This dataset enhances financial NLP capabilities, allowing more accurate analysis of monetary policy signals.

### Discussion of Biases

Potential biases may exist due to:

- Interpretation differences in policy statements.
- Variability in central bank language across periods.

### Other Known Limitations

- Requires financial domain expertise for best model performance.
- May not generalize well to non-FOMC policy documents.

## Additional Information

### Dataset Curators

- The Fin AI Team

### Licensing Information

- **License:** CC BY-NC 4.0

### Citation Information

**Original Dataset:**

```bibtex
@inproceedings{shah2023trillion,
  title={Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis},
  author={Shah, Agam and Paturi, Suvan and Chava, Sudheer},
  booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  editor={Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki},
  pages={6664--6679},
  year={2023},
  organization={Association for Computational Linguistics},
  address={Toronto, Canada},
  doi={10.18653/v1/2023.acl-long.368}
}
```

**Adapted Version (FinBen-FOMC):**

```bibtex
@article{xie2024finben,
  title={FinBen: A Holistic Financial Benchmark for Large Language Models},
  author={Xie, Qianqian and others},
  journal={arXiv preprint arXiv:2402.12659},
  year={2024}
}
```