mvl-sib / mvl-sib200.py
fdschmidt93's picture
chore(dataset): remove prompt
ef940c3
raw
history blame
28.1 kB
import csv
import random
from itertools import combinations
from pathlib import Path
from typing import Any, Dict, List, Union
import datasets
import numpy as np
import pandas as pd
# fmt: off
LANGS = [
"ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab",
"aka_Latn", "als_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "arb_Latn", "ars_Arab",
"ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab",
"azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng",
"bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl",
"cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn",
"dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn",
"epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "fij_Latn", "fin_Latn",
"fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gaz_Latn", "gla_Latn", "gle_Latn",
"glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva",
"hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn",
"isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn",
"kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "kaz_Cyrl", "kbp_Latn", "kea_Latn",
"khk_Cyrl", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kmr_Latn",
"knc_Arab", "knc_Latn", "kon_Latn", "kor_Hang", "lao_Laoo", "lij_Latn", "lim_Latn",
"lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn",
"luo_Latn", "lus_Latn", "lvs_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva",
"min_Arab", "min_Latn", "mkd_Cyrl", "mlt_Latn", "mni_Beng", "mos_Latn", "mri_Latn",
"mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nqo_Nkoo", "nso_Latn",
"nus_Latn", "nya_Latn", "oci_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn",
"pbt_Arab", "pes_Arab", "plt_Latn", "pol_Latn", "por_Latn", "prs_Arab", "quy_Latn",
"ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Olck", "scn_Latn",
"shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab",
"som_Latn", "sot_Latn", "spa_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn",
"swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "taq_Latn", "taq_Tfng", "tat_Cyrl",
"tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "tpi_Latn", "tsn_Latn",
"tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab",
"ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn",
"wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant",
"zsm_Latn", "zul_Latn"
]
# fmt: on
# For interactive usage:
# Attempt to find the script directory if __file__ is defined, otherwise default to current working directory.
try:
cwd = Path(__file__).parent
except NameError as _:
cwd = Path.cwd()
SEED: int = 42
N: int = 1004 # length of pooled train, dev, and test splits
UPSAMPLING_FACTOR: int = 3
NUM_NEGATIVES: int = 3
NUM_REFERENCES: int = 5
NUM_EXAMPLES_PER_OPTION: int = 1
CATEGORIES: List[str] = [
"entertainment",
"geography",
"health",
"politics",
"science",
"sports",
"travel",
]
# URLs for downloading SIB .tsv data and images.
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv"
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg"
# Placeholder for dataset description: fill or extend as needed.
_DESCRIPTION: str = (
"MVLSIB is a multilingual dataset designed to provide sentence-image pairs "
"spanning multiple languages and categories. The goal is to support tasks such as "
"multimodal classification, cross-lingual information retrieval, and more. "
"Each row contains a textual entry (sentence) along with category information, "
"and the dataset also includes image references for the same set of categories."
)
def read_tsv_to_dict_list(file_path: Union[str, Path]) -> List[Dict[str, Any]]:
"""
Reads a TSV file with columns 'index_id', 'category', and 'text' into a list of dictionaries.
The TSV is expected to have the following columns (in order):
1. index_id
2. category
3. text
Parameters
----------
file_path : Union[str, Path]
The path to the TSV file.
Returns
-------
List[Dict[str, Any]]
A list of dictionaries, where each element has keys:
- 'index_id': int
- 'category': str
- 'text': str
Raises
------
ValueError
If the TSV headers do not match the expected format.
"""
data: List[Dict[str, Any]] = []
expected_headers = ["index_id", "category", "text"]
with open(file_path, mode="r", encoding="utf-8") as tsvfile:
reader = csv.DictReader(tsvfile, delimiter="\t")
# Validate headers
if reader.fieldnames != expected_headers:
raise ValueError(
f"Expected headers {expected_headers}, but got {reader.fieldnames}"
)
# Start enumerating from line 2 to account for the header line
for _, row in enumerate(reader, start=2):
#
if all(
(row[key].strip() == key) or (row[key].strip() == "")
for key in expected_headers
):
continue
# Convert index_id to integer
index_id = int(row["index_id"])
# Strip leading/trailing whitespace
category = row["category"].strip()
text = row["text"].strip()
# Append the processed row to data
data.append({"index_id": index_id, "category": category, "text": text})
return data
def read_lang_tsv(filepaths: List[str]) -> List[Dict[str, Any]]:
"""
Reads a list of TSV file paths containing SIB data in the same language
and merges them into a single, sorted list of dictionaries.
Specifically:
1. Calls `read_tsv_to_dict_list` for each file path.
2. Merges all resulting dictionaries.
3. Sorts by 'index_id'.
Also normalizes the category "science/technology" to "science" for internal consistency.
Parameters
----------
filepaths : List[str]
A list of TSV file paths for a specific language.
Returns
-------
List[Dict[str, Any]]
A list of dictionaries sorted by 'index_id' with normalized categories.
"""
# Read each file into a list of dicts
dicos = [read_tsv_to_dict_list(path) for path in filepaths]
# Flatten and sort by index_id
out: List[Dict[str, Any]] = sorted(
[line for dico in dicos for line in dico], key=lambda row: row["index_id"]
)
# Normalize "science/technology" to "science"
for line in out:
if line["category"] == "science/technology":
line["category"] = "science"
return out
def replicate_and_negatives(
df: pd.DataFrame,
num_replicates: int = 3,
num_negatives: int = 4,
num_positives: int = 4,
seed: int = 42,
) -> pd.DataFrame:
"""
Create multiple replicated rows from the input DataFrame `df` and
sample negative and positive examples for each row.
*Negative* samples are drawn from rows whose category is different
from the row's category. **Additionally, each negative example for
a given row is drawn from a distinct category among the negatives,
if there are enough categories to do so without replacement.**
*Positive* samples are drawn from rows of the same category (excluding
the row's own 'index_id').
Parameters
----------
df : pd.DataFrame
The original input DataFrame with columns ['index_id', 'category', 'text'].
num_replicates : int, optional
Number of times to replicate each row, by default 2.
num_negatives : int, optional
Number of negative samples to pick for each row, by default 2.
num_positives : int, optional
Number of positive samples to pick for each row, by default 2.
seed : int, optional
Seed for random operations, by default 42.
Returns
-------
pd.DataFrame
A new DataFrame containing replicated rows plus columns:
- neg_id_i, neg_cat_i, neg_text_i for i in [0 .. num_negatives-1]
- pos_id_i, pos_cat_i, pos_text_i for i in [0 .. num_positives-1]
Notes
-----
- Negative examples for a row are taken from distinct categories
(other than the row's category) if enough categories exist. If
fewer categories exist than `num_negatives`, we sample categories
with replacement, so some duplicates may appear.
- Positive sampling excludes the row's own 'index_id'.
If there are fewer available positives than `num_positives`,
we sample with replacement.
"""
rng = np.random.default_rng(seed=seed)
# --- 1) Replicate the DataFrame k (=num_replicates) times ---
df_new = pd.concat([df] * num_replicates, ignore_index=True)
# --- 2) Create empty columns for negative and positive samples ---
for i in range(num_negatives):
df_new[f"neg_id_{i}"] = None
df_new[f"neg_cat_{i}"] = None
df_new[f"neg_text_{i}"] = None
for i in range(num_positives):
df_new[f"pos_id_{i}"] = None
df_new[f"pos_cat_{i}"] = None
df_new[f"pos_text_{i}"] = None
# --- Precompute a dictionary of all rows by category (for negatives sampling) ---
# Key: category -> DataFrame of that category
unique_cats = df_new["category"].unique()
cat_to_df: Dict[str, pd.DataFrame] = {}
for c in unique_cats:
cat_to_df[c] = df_new[df_new["category"] == c].reset_index(drop=True)
# --- 4) Build a "positive pool" dictionary by category ---
# For positive sampling, we exclude the row's own 'index_id' in each row's step
pos_pool_by_cat = {}
for c in unique_cats:
pos_pool_by_cat[c] = df.loc[
df["category"] == c, ["index_id", "category", "text"]
].reset_index(drop=True)
# --- 5) Group df_new by category and populate negative/positive samples ---
grouped = df_new.groupby("category", group_keys=False)
output_chunks: List[pd.DataFrame] = []
for cat, group_df in grouped:
g_size = len(group_df)
# The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row
# Prepare arrays for final negative columns
neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
neg_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
neg_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
# Prepare arrays for final positive columns
pos_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
pos_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
pos_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
# For convenience, get all categories *except* the current one (cat)
# We'll sample from these as negative categories
negative_candidate_cats = [c for c in unique_cats if c != cat]
# For each row in the current group
row_ids_for_group = group_df["index_id"].to_numpy()
for i_row in range(g_size):
row_id = row_ids_for_group[i_row]
# ------------- Negative Sampling -------------
# 1) Choose distinct categories if possible. If not enough categories
# exist to cover num_negatives, we sample categories with replacement.
replace_for_cats = len(negative_candidate_cats) < num_negatives
chosen_neg_cats = rng.choice(
negative_candidate_cats, size=num_negatives, replace=replace_for_cats
)
# 2) For each chosen negative category, pick a random row
for j, neg_cat in enumerate(chosen_neg_cats):
neg_pool = cat_to_df[neg_cat]
pick_idx = rng.integers(len(neg_pool)) # random index
neg_id_cols[j][i_row] = neg_pool["index_id"].iloc[pick_idx]
neg_cat_cols[j][i_row] = neg_pool["category"].iloc[pick_idx]
neg_text_cols[j][i_row] = neg_pool["text"].iloc[pick_idx]
# ------------- Positive Sampling -------------
pos_pool_cat = pos_pool_by_cat[cat]
# Exclude the row's own ID in the sampling
valid_mask = pos_pool_cat["index_id"] != row_id
valid_pos_pool = pos_pool_cat[valid_mask]
# If not enough positives remain, sample with replacement
replace_pos_for_row = len(valid_pos_pool) < num_positives
if len(valid_pos_pool) == 0:
# Edge case: if there's literally no other row of the same category,
# we won't be able to sample. You could decide to fill with NaN
# or replicate the single example. Here we do the "safe" approach
# of sampling from the entire cat's pool if possible.
valid_pos_pool = pos_pool_cat
replace_pos_for_row = True
valid_idx_array = valid_pos_pool.index.to_numpy()
chosen_indices = rng.choice(
valid_idx_array, size=num_positives, replace=replace_pos_for_row
)
for j in range(num_positives):
pick_idx = chosen_indices[j]
pos_id_cols[j][i_row] = valid_pos_pool["index_id"].loc[pick_idx]
pos_cat_cols[j][i_row] = valid_pos_pool["category"].loc[pick_idx]
pos_text_cols[j][i_row] = valid_pos_pool["text"].loc[pick_idx]
# Attach negative columns to group_df
for j in range(num_negatives):
group_df[f"neg_id_{j}"] = neg_id_cols[j]
group_df[f"neg_cat_{j}"] = neg_cat_cols[j]
group_df[f"neg_text_{j}"] = neg_text_cols[j]
# Attach positive columns to group_df
for j in range(num_positives):
group_df[f"pos_id_{j}"] = pos_id_cols[j]
group_df[f"pos_cat_{j}"] = pos_cat_cols[j]
group_df[f"pos_text_{j}"] = pos_text_cols[j]
output_chunks.append(group_df)
# --- 6) Combine all chunks and restore index order ---
df_out = pd.concat(output_chunks, axis=0)
df_out.sort_index(inplace=True)
return df_out
def get_reference_image_ids(
N: int, num_images: int, k: int, seed: int
) -> List[List[int]]:
"""
Generates reference image ID combinations for each row in a dataset of size N.
We pick (k)-combinations from the range [1 .. num_images-1]. Then we sample
from these combinations (with replacement) for each of N rows, and shuffle them
in a reproducible manner.
Parameters
----------
N : int
Number of rows in the dataset.
num_images : int
Total number of images available per category.
k : int
Number of images to select in each combination.
seed : int
Global seed for random operations.
Returns
-------
List[List[int]]
A list of length N, where each element is a list of k unique image IDs.
Notes
-----
- We use Python's `random.choices` to draw from all possible k-combinations.
- Each combination is then locally shuffled to remove ordering biases.
"""
all_combinations = list(combinations(range(0, num_images), k))
random.seed(seed)
sampled_combinations = [list(x) for x in random.choices(all_combinations, k=N)]
for i, tuple_ in enumerate(sampled_combinations):
# Use a unique seed for each shuffle to ensure reproducibility
random.seed(seed + i)
random.shuffle(tuple_)
return sampled_combinations
class MVLSIBConfig(datasets.BuilderConfig):
"""
Configuration class for the MVLSIB (Multilingual Visual Language SIB) dataset.
Parameters
----------
name : str
The configuration name, typically in the format "task.lang".
upsampling_factor : int, optional
How many times to replicate each row for additional sampling variety, default: 3.
num_references : int, optional
Number of positive references to sample for each row, default: 5.
num_negatives : int, optional
Number of negative samples to pair with each row, default: 3.
seed : int, optional
Seed for random operations, default: 42.
"""
def __init__(
self,
name: str,
upsampling_factor: int = UPSAMPLING_FACTOR,
num_references: int = NUM_REFERENCES,
num_negatives: int = NUM_NEGATIVES,
seed: int = SEED,
**kwargs: Any,
):
super(MVLSIBConfig, self).__init__(**kwargs)
self.name: str = name
self.task, self.lang = name.split(".")
self.upsampling_factor: int = upsampling_factor
self.num_references: int = num_references
self.num_negatives: int = num_negatives
self.seed: int = seed
def _builder_configs() -> List[MVLSIBConfig]:
"""
Internal helper to build the list of MVLSIBConfig objects
for all tasks ('img2sent', 'sent2img') and all available languages in LANGS.
Returns
-------
List[MVLSIBConfig]
A list of dataset configuration objects, each specifying a (task, language) pair.
"""
configs: List[MVLSIBConfig] = []
for task in ("img2sent", "sent2img"):
for lang in LANGS:
cfg = MVLSIBConfig(
name=f"{task}.{lang}",
version=datasets.Version("1.0.0"),
description=f"MVLSIB: {task}.{lang}",
)
configs.append(cfg)
return configs
class MVLSIB(datasets.GeneratorBasedBuilder):
"""
MVLSIB is a multilingual dataset that provides matched
(sentence -> image) or (image -> sentence) examples for
classification or retrieval tasks.
Each configuration is specified by a task (img2sent or sent2img)
and a language code, e.g. 'img2sent.eng_Latn'.
The dataset is structured such that each row includes:
- A set of reference items (images or sentences, depending on the task).
- A set of 4 possible answers (1 positive, 3 negative).
- A label indicating which of the 4 answers is correct.
"""
BUILDER_CONFIGS = _builder_configs()
BUILDER_CONFIG_CLASS = MVLSIBConfig
def _info(self) -> datasets.DatasetInfo:
"""
Returns the dataset metadata, including features.
The dataset has two major tasks:
- 'img2sent': Given reference images, choose the best matching sentence.
- 'sent2img': Given reference sentences, choose the best matching image.
Each example row in 'img2sent' includes:
- images (list of str URLs to images)
- sentences (list of str, one positive, three negatives)
- categories (list of str categories matching each sentence)
- label (int specifying which of the sentences is correct)
- id (an integer ID)
- index_id (the original row ID from the SIB .tsv)
Each example row in 'sent2img' includes:
- sentences (list of str, the positive reference sentences)
- images (list of str URLs to images, one positive, three negatives)
- categories (list of str categories matching each image)
- label (int specifying which of the images is correct)
- id (an integer ID)
- index_id (the original row ID from the SIB .tsv)
Returns
-------
datasets.DatasetInfo
The Hugging Face DatasetInfo object describing the dataset features,
licensing, homepage, citation, etc.
"""
from datasets import DatasetInfo, Features, Sequence, Value
img2sents = Features(
{
"images": Sequence(Value("string")),
"sentences": Sequence(Value("string")),
"categories": Sequence(Value("string")),
"label": Value("int8"),
"id": Value("int64"),
"index_id": Value("int64"),
}
)
sent2imgs = Features(
{
"sentences": Sequence(Value("string")),
"images": Sequence(Value("string")),
"categories": Sequence(Value("string")),
"label": Value("int8"),
"id": Value("int64"),
"index_id": Value("int64"),
}
)
features = {
"img2sent": img2sents,
"sent2img": sent2imgs,
}
return DatasetInfo(
description=_DESCRIPTION,
features=features[self.config.task],
supervised_keys=None,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager, *args: Any, **kwargs: Any
) -> List[datasets.SplitGenerator]:
"""
Defines the splits of the dataset. In this case, we only produce a single 'test' split,
but in principle, you can define train/dev/test or others.
Parameters
----------
dl_manager : datasets.DownloadManager
The Hugging Face DownloadManager used to download files.
Returns
-------
List[datasets.SplitGenerator]
A list of SplitGenerator objects. Each defines a split name
and a gen_kwargs dict for the `_generate_examples` method.
"""
# Download SIB tsv files for train, dev, and test
files = dl_manager.download(
[
_SIB_URL.format(lang=self.config.lang, split=split)
for split in ("train", "dev", "test")
]
)
# Download images for each category
images: Dict[str, List[str]] = {}
for cat in CATEGORIES:
images[cat] = []
for i in range(10):
images[cat].append(
dl_manager.download(_IMG_URL.format(category=cat, no=i))
)
return [
datasets.SplitGenerator(
name="test",
gen_kwargs={"sib_filepaths": files, "images_filepaths": images},
),
]
def _generate_examples(
self,
sib_filepaths: List[str],
images_filepaths: Dict[str, List[str]],
*args: Any,
**kwargs: Any,
) -> Any:
"""
Generator function that yields dataset examples in the format needed by
Hugging Face Datasets.
Depending on the task (img2sent or sent2img), the function constructs examples where:
- img2sent: reference images, 4 candidate sentences (1 positive, 3 negative)
- sent2img: reference sentences, 4 candidate images (1 positive, 3 negative)
Parameters
----------
sib_filepaths : List[str]
The downloaded .tsv file paths (train/dev/test) for the specified language.
images_filepaths : Dict[str, List[str]]
A dictionary from category -> list of 10 image URLs, as downloaded from `_split_generators`.
Yields
------
Tuple[int, Dict[str, Any]]
A tuple where the first element is an integer index,
and the second is a dictionary matching the features specification
of the dataset.
"""
# Read the SIB .tsv files for the given language and combine into a single DataFrame
records = read_lang_tsv(sib_filepaths)
df = pd.DataFrame.from_records(records)
# Expand the dataset with negative and positive samples
ext_df = replicate_and_negatives(
df,
num_replicates=self.config.upsampling_factor,
num_negatives=self.config.num_negatives,
# every line already has a positive
num_positives=self.config.num_references - 1,
seed=self.config.seed,
)
sent_ids = list(range(self.config.num_negatives + 1))
N = len(ext_df)
num_images = len(next(iter(images_filepaths.values()))) # e.g., 10 images/cat
if self.config.task == "img2sent":
# Pre-generate image ID combinations for each row
image_ids = get_reference_image_ids(
N=N,
num_images=num_images,
k=self.config.num_references,
seed=self.config.seed,
)
for i, row in ext_df.iterrows():
# Construct the list of candidate sentences (pos + neg)
text = [row["text"]]
categories = [row["category"]]
for j in range(self.config.num_negatives):
text.append(row[f"neg_text_{j}"])
categories.append(row[f"neg_cat_{j}"])
# Shuffle candidate sentences in a reproducible manner
random.seed(i)
random.shuffle(sent_ids)
label = sent_ids[0]
# Reorder sentences and categories according to the shuffled indices
_, categories_shuffled = zip(*sorted(zip(sent_ids, categories)))
_, sentences_shuffled = zip(*sorted(zip(sent_ids, text)))
# Fetch the reference images for the row
row_image_ids = image_ids[i]
cat = row["category"]
cat_images = images_filepaths[cat]
row_images = [
cat_images[row_image_ids[j]]
for j in range(self.config.num_references)
]
yield (
i,
{
"id": i,
"index_id": row["index_id"],
"images": row_images,
"categories": categories_shuffled,
"sentences": sentences_shuffled,
"label": label,
},
)
else:
# sent2img: We first sample image indices (pos + neg) for each row
rng = np.random.default_rng(seed=self.config.seed)
choice_image_ids = rng.integers(
0, num_images, (N, 1 + self.config.num_negatives)
).tolist()
for i, row in ext_df.iterrows():
# The positive text
pos_text = [row["text"]]
# For the negative categories, we gather them similarly
cats = [row["category"]]
for j in range(self.config.num_negatives):
cats.append(row[f"neg_cat_{j}"])
for j in range(self.config.num_references - 1):
pos_text.append(row[f"pos_text_{j}"])
random.seed(i)
random.shuffle(sent_ids)
label = sent_ids[0]
# Reorder categories based on the shuffled indices
# NOTE: positive text is quasi-shuffled already
_, categories_shuffled = zip(*sorted(zip(sent_ids, cats)))
# Match the categories to the sampled image indices
row_image_ids = choice_image_ids[i]
row_images = [
images_filepaths[cat][idx]
for idx, cat in zip(row_image_ids, categories_shuffled)
]
yield (
i,
{
"id": i,
"index_id": row["index_id"],
"images": row_images,
"categories": categories_shuffled,
"sentences": pos_text,
"label": label,
},
)