Datasets:
Tasks:
Image-Text-to-Text
Formats:
csv
Sub-tasks:
topic-classification
Size:
100K - 1M
ArXiv:
License:
import csv | |
import random | |
from itertools import combinations | |
from pathlib import Path | |
from typing import Any, Dict, List, Union | |
import datasets | |
import numpy as np | |
import pandas as pd | |
# fmt: off | |
LANGS = [ | |
"ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", | |
"aka_Latn", "als_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "arb_Latn", "ars_Arab", | |
"ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", | |
"azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", | |
"bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", | |
"cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", | |
"dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", | |
"epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "fij_Latn", "fin_Latn", | |
"fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gaz_Latn", "gla_Latn", "gle_Latn", | |
"glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", | |
"hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", | |
"isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", | |
"kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "kaz_Cyrl", "kbp_Latn", "kea_Latn", | |
"khk_Cyrl", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kmr_Latn", | |
"knc_Arab", "knc_Latn", "kon_Latn", "kor_Hang", "lao_Laoo", "lij_Latn", "lim_Latn", | |
"lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", | |
"luo_Latn", "lus_Latn", "lvs_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", | |
"min_Arab", "min_Latn", "mkd_Cyrl", "mlt_Latn", "mni_Beng", "mos_Latn", "mri_Latn", | |
"mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nqo_Nkoo", "nso_Latn", | |
"nus_Latn", "nya_Latn", "oci_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", | |
"pbt_Arab", "pes_Arab", "plt_Latn", "pol_Latn", "por_Latn", "prs_Arab", "quy_Latn", | |
"ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Olck", "scn_Latn", | |
"shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", | |
"som_Latn", "sot_Latn", "spa_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", | |
"swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "taq_Latn", "taq_Tfng", "tat_Cyrl", | |
"tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "tpi_Latn", "tsn_Latn", | |
"tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", | |
"ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", | |
"wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", | |
"zsm_Latn", "zul_Latn" | |
] | |
# fmt: on | |
# For interactive usage: | |
# Attempt to find the script directory if __file__ is defined, otherwise default to current working directory. | |
try: | |
cwd = Path(__file__).parent | |
except NameError as _: | |
cwd = Path.cwd() | |
SEED: int = 42 | |
N: int = 1004 # length of pooled train, dev, and test splits | |
UPSAMPLING_FACTOR: int = 3 | |
NUM_NEGATIVES: int = 3 | |
NUM_REFERENCES: int = 5 | |
NUM_EXAMPLES_PER_OPTION: int = 1 | |
CATEGORIES: List[str] = [ | |
"entertainment", | |
"geography", | |
"health", | |
"politics", | |
"science", | |
"sports", | |
"travel", | |
] | |
# URLs for downloading SIB .tsv data and images. | |
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv" | |
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg" | |
# Placeholder for dataset description: fill or extend as needed. | |
_DESCRIPTION: str = ( | |
"MVLSIB is a multilingual dataset designed to provide sentence-image pairs " | |
"spanning multiple languages and categories. The goal is to support tasks such as " | |
"multimodal classification, cross-lingual information retrieval, and more. " | |
"Each row contains a textual entry (sentence) along with category information, " | |
"and the dataset also includes image references for the same set of categories." | |
) | |
def read_tsv_to_dict_list(file_path: Union[str, Path]) -> List[Dict[str, Any]]: | |
""" | |
Reads a TSV file with columns 'index_id', 'category', and 'text' into a list of dictionaries. | |
The TSV is expected to have the following columns (in order): | |
1. index_id | |
2. category | |
3. text | |
Parameters | |
---------- | |
file_path : Union[str, Path] | |
The path to the TSV file. | |
Returns | |
------- | |
List[Dict[str, Any]] | |
A list of dictionaries, where each element has keys: | |
- 'index_id': int | |
- 'category': str | |
- 'text': str | |
Raises | |
------ | |
ValueError | |
If the TSV headers do not match the expected format. | |
""" | |
data: List[Dict[str, Any]] = [] | |
expected_headers = ["index_id", "category", "text"] | |
with open(file_path, mode="r", encoding="utf-8") as tsvfile: | |
reader = csv.DictReader(tsvfile, delimiter="\t") | |
# Validate headers | |
if reader.fieldnames != expected_headers: | |
raise ValueError( | |
f"Expected headers {expected_headers}, but got {reader.fieldnames}" | |
) | |
# Start enumerating from line 2 to account for the header line | |
for _, row in enumerate(reader, start=2): | |
# | |
if all( | |
(row[key].strip() == key) or (row[key].strip() == "") | |
for key in expected_headers | |
): | |
continue | |
# Convert index_id to integer | |
index_id = int(row["index_id"]) | |
# Strip leading/trailing whitespace | |
category = row["category"].strip() | |
text = row["text"].strip() | |
# Append the processed row to data | |
data.append({"index_id": index_id, "category": category, "text": text}) | |
return data | |
def read_lang_tsv(filepaths: List[str]) -> List[Dict[str, Any]]: | |
""" | |
Reads a list of TSV file paths containing SIB data in the same language | |
and merges them into a single, sorted list of dictionaries. | |
Specifically: | |
1. Calls `read_tsv_to_dict_list` for each file path. | |
2. Merges all resulting dictionaries. | |
3. Sorts by 'index_id'. | |
Also normalizes the category "science/technology" to "science" for internal consistency. | |
Parameters | |
---------- | |
filepaths : List[str] | |
A list of TSV file paths for a specific language. | |
Returns | |
------- | |
List[Dict[str, Any]] | |
A list of dictionaries sorted by 'index_id' with normalized categories. | |
""" | |
# Read each file into a list of dicts | |
dicos = [read_tsv_to_dict_list(path) for path in filepaths] | |
# Flatten and sort by index_id | |
out: List[Dict[str, Any]] = sorted( | |
[line for dico in dicos for line in dico], key=lambda row: row["index_id"] | |
) | |
# Normalize "science/technology" to "science" | |
for line in out: | |
if line["category"] == "science/technology": | |
line["category"] = "science" | |
return out | |
def replicate_and_negatives( | |
df: pd.DataFrame, | |
num_replicates: int = 3, | |
num_negatives: int = 4, | |
num_positives: int = 4, | |
seed: int = 42, | |
) -> pd.DataFrame: | |
""" | |
Create multiple replicated rows from the input DataFrame `df` and | |
sample negative and positive examples for each row. | |
*Negative* samples are drawn from rows whose category is different | |
from the row's category. **Additionally, each negative example for | |
a given row is drawn from a distinct category among the negatives, | |
if there are enough categories to do so without replacement.** | |
*Positive* samples are drawn from rows of the same category (excluding | |
the row's own 'index_id'). | |
Parameters | |
---------- | |
df : pd.DataFrame | |
The original input DataFrame with columns ['index_id', 'category', 'text']. | |
num_replicates : int, optional | |
Number of times to replicate each row, by default 2. | |
num_negatives : int, optional | |
Number of negative samples to pick for each row, by default 2. | |
num_positives : int, optional | |
Number of positive samples to pick for each row, by default 2. | |
seed : int, optional | |
Seed for random operations, by default 42. | |
Returns | |
------- | |
pd.DataFrame | |
A new DataFrame containing replicated rows plus columns: | |
- neg_id_i, neg_cat_i, neg_text_i for i in [0 .. num_negatives-1] | |
- pos_id_i, pos_cat_i, pos_text_i for i in [0 .. num_positives-1] | |
Notes | |
----- | |
- Negative examples for a row are taken from distinct categories | |
(other than the row's category) if enough categories exist. If | |
fewer categories exist than `num_negatives`, we sample categories | |
with replacement, so some duplicates may appear. | |
- Positive sampling excludes the row's own 'index_id'. | |
If there are fewer available positives than `num_positives`, | |
we sample with replacement. | |
""" | |
rng = np.random.default_rng(seed=seed) | |
# --- 1) Replicate the DataFrame k (=num_replicates) times --- | |
df_new = pd.concat([df] * num_replicates, ignore_index=True) | |
# --- 2) Create empty columns for negative and positive samples --- | |
for i in range(num_negatives): | |
df_new[f"neg_id_{i}"] = None | |
df_new[f"neg_cat_{i}"] = None | |
df_new[f"neg_text_{i}"] = None | |
for i in range(num_positives): | |
df_new[f"pos_id_{i}"] = None | |
df_new[f"pos_cat_{i}"] = None | |
df_new[f"pos_text_{i}"] = None | |
# --- Precompute a dictionary of all rows by category (for negatives sampling) --- | |
# Key: category -> DataFrame of that category | |
unique_cats = df_new["category"].unique() | |
cat_to_df: Dict[str, pd.DataFrame] = {} | |
for c in unique_cats: | |
cat_to_df[c] = df_new[df_new["category"] == c].reset_index(drop=True) | |
# --- 4) Build a "positive pool" dictionary by category --- | |
# For positive sampling, we exclude the row's own 'index_id' in each row's step | |
pos_pool_by_cat = {} | |
for c in unique_cats: | |
pos_pool_by_cat[c] = df.loc[ | |
df["category"] == c, ["index_id", "category", "text"] | |
].reset_index(drop=True) | |
# --- 5) Group df_new by category and populate negative/positive samples --- | |
grouped = df_new.groupby("category", group_keys=False) | |
output_chunks: List[pd.DataFrame] = [] | |
for cat, group_df in grouped: | |
g_size = len(group_df) | |
# The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row | |
# Prepare arrays for final negative columns | |
neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)] | |
neg_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)] | |
neg_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)] | |
# Prepare arrays for final positive columns | |
pos_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)] | |
pos_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)] | |
pos_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)] | |
# For convenience, get all categories *except* the current one (cat) | |
# We'll sample from these as negative categories | |
negative_candidate_cats = [c for c in unique_cats if c != cat] | |
# For each row in the current group | |
row_ids_for_group = group_df["index_id"].to_numpy() | |
for i_row in range(g_size): | |
row_id = row_ids_for_group[i_row] | |
# ------------- Negative Sampling ------------- | |
# 1) Choose distinct categories if possible. If not enough categories | |
# exist to cover num_negatives, we sample categories with replacement. | |
replace_for_cats = len(negative_candidate_cats) < num_negatives | |
chosen_neg_cats = rng.choice( | |
negative_candidate_cats, size=num_negatives, replace=replace_for_cats | |
) | |
# 2) For each chosen negative category, pick a random row | |
for j, neg_cat in enumerate(chosen_neg_cats): | |
neg_pool = cat_to_df[neg_cat] | |
pick_idx = rng.integers(len(neg_pool)) # random index | |
neg_id_cols[j][i_row] = neg_pool["index_id"].iloc[pick_idx] | |
neg_cat_cols[j][i_row] = neg_pool["category"].iloc[pick_idx] | |
neg_text_cols[j][i_row] = neg_pool["text"].iloc[pick_idx] | |
# ------------- Positive Sampling ------------- | |
pos_pool_cat = pos_pool_by_cat[cat] | |
# Exclude the row's own ID in the sampling | |
valid_mask = pos_pool_cat["index_id"] != row_id | |
valid_pos_pool = pos_pool_cat[valid_mask] | |
# If not enough positives remain, sample with replacement | |
replace_pos_for_row = len(valid_pos_pool) < num_positives | |
if len(valid_pos_pool) == 0: | |
# Edge case: if there's literally no other row of the same category, | |
# we won't be able to sample. You could decide to fill with NaN | |
# or replicate the single example. Here we do the "safe" approach | |
# of sampling from the entire cat's pool if possible. | |
valid_pos_pool = pos_pool_cat | |
replace_pos_for_row = True | |
valid_idx_array = valid_pos_pool.index.to_numpy() | |
chosen_indices = rng.choice( | |
valid_idx_array, size=num_positives, replace=replace_pos_for_row | |
) | |
for j in range(num_positives): | |
pick_idx = chosen_indices[j] | |
pos_id_cols[j][i_row] = valid_pos_pool["index_id"].loc[pick_idx] | |
pos_cat_cols[j][i_row] = valid_pos_pool["category"].loc[pick_idx] | |
pos_text_cols[j][i_row] = valid_pos_pool["text"].loc[pick_idx] | |
# Attach negative columns to group_df | |
for j in range(num_negatives): | |
group_df[f"neg_id_{j}"] = neg_id_cols[j] | |
group_df[f"neg_cat_{j}"] = neg_cat_cols[j] | |
group_df[f"neg_text_{j}"] = neg_text_cols[j] | |
# Attach positive columns to group_df | |
for j in range(num_positives): | |
group_df[f"pos_id_{j}"] = pos_id_cols[j] | |
group_df[f"pos_cat_{j}"] = pos_cat_cols[j] | |
group_df[f"pos_text_{j}"] = pos_text_cols[j] | |
output_chunks.append(group_df) | |
# --- 6) Combine all chunks and restore index order --- | |
df_out = pd.concat(output_chunks, axis=0) | |
df_out.sort_index(inplace=True) | |
return df_out | |
def get_reference_image_ids( | |
N: int, num_images: int, k: int, seed: int | |
) -> List[List[int]]: | |
""" | |
Generates reference image ID combinations for each row in a dataset of size N. | |
We pick (k)-combinations from the range [1 .. num_images-1]. Then we sample | |
from these combinations (with replacement) for each of N rows, and shuffle them | |
in a reproducible manner. | |
Parameters | |
---------- | |
N : int | |
Number of rows in the dataset. | |
num_images : int | |
Total number of images available per category. | |
k : int | |
Number of images to select in each combination. | |
seed : int | |
Global seed for random operations. | |
Returns | |
------- | |
List[List[int]] | |
A list of length N, where each element is a list of k unique image IDs. | |
Notes | |
----- | |
- We use Python's `random.choices` to draw from all possible k-combinations. | |
- Each combination is then locally shuffled to remove ordering biases. | |
""" | |
all_combinations = list(combinations(range(0, num_images), k)) | |
random.seed(seed) | |
sampled_combinations = [list(x) for x in random.choices(all_combinations, k=N)] | |
for i, tuple_ in enumerate(sampled_combinations): | |
# Use a unique seed for each shuffle to ensure reproducibility | |
random.seed(seed + i) | |
random.shuffle(tuple_) | |
return sampled_combinations | |
class MVLSIBConfig(datasets.BuilderConfig): | |
""" | |
Configuration class for the MVLSIB (Multilingual Visual Language SIB) dataset. | |
Parameters | |
---------- | |
name : str | |
The configuration name, typically in the format "task.lang". | |
upsampling_factor : int, optional | |
How many times to replicate each row for additional sampling variety, default: 3. | |
num_references : int, optional | |
Number of positive references to sample for each row, default: 5. | |
num_negatives : int, optional | |
Number of negative samples to pair with each row, default: 3. | |
seed : int, optional | |
Seed for random operations, default: 42. | |
""" | |
def __init__( | |
self, | |
name: str, | |
upsampling_factor: int = UPSAMPLING_FACTOR, | |
num_references: int = NUM_REFERENCES, | |
num_negatives: int = NUM_NEGATIVES, | |
seed: int = SEED, | |
**kwargs: Any, | |
): | |
super(MVLSIBConfig, self).__init__(**kwargs) | |
self.name: str = name | |
self.task, self.lang = name.split(".") | |
self.upsampling_factor: int = upsampling_factor | |
self.num_references: int = num_references | |
self.num_negatives: int = num_negatives | |
self.seed: int = seed | |
def _builder_configs() -> List[MVLSIBConfig]: | |
""" | |
Internal helper to build the list of MVLSIBConfig objects | |
for all tasks ('img2sent', 'sent2img') and all available languages in LANGS. | |
Returns | |
------- | |
List[MVLSIBConfig] | |
A list of dataset configuration objects, each specifying a (task, language) pair. | |
""" | |
configs: List[MVLSIBConfig] = [] | |
for task in ("img2sent", "sent2img"): | |
for lang in LANGS: | |
cfg = MVLSIBConfig( | |
name=f"{task}.{lang}", | |
version=datasets.Version("1.0.0"), | |
description=f"MVLSIB: {task}.{lang}", | |
) | |
configs.append(cfg) | |
return configs | |
class MVLSIB(datasets.GeneratorBasedBuilder): | |
""" | |
MVLSIB is a multilingual dataset that provides matched | |
(sentence -> image) or (image -> sentence) examples for | |
classification or retrieval tasks. | |
Each configuration is specified by a task (img2sent or sent2img) | |
and a language code, e.g. 'img2sent.eng_Latn'. | |
The dataset is structured such that each row includes: | |
- A set of reference items (images or sentences, depending on the task). | |
- A set of 4 possible answers (1 positive, 3 negative). | |
- A label indicating which of the 4 answers is correct. | |
""" | |
BUILDER_CONFIGS = _builder_configs() | |
BUILDER_CONFIG_CLASS = MVLSIBConfig | |
def _info(self) -> datasets.DatasetInfo: | |
""" | |
Returns the dataset metadata, including features. | |
The dataset has two major tasks: | |
- 'img2sent': Given reference images, choose the best matching sentence. | |
- 'sent2img': Given reference sentences, choose the best matching image. | |
Each example row in 'img2sent' includes: | |
- images (list of str URLs to images) | |
- sentences (list of str, one positive, three negatives) | |
- categories (list of str categories matching each sentence) | |
- label (int specifying which of the sentences is correct) | |
- id (an integer ID) | |
- index_id (the original row ID from the SIB .tsv) | |
Each example row in 'sent2img' includes: | |
- sentences (list of str, the positive reference sentences) | |
- images (list of str URLs to images, one positive, three negatives) | |
- categories (list of str categories matching each image) | |
- label (int specifying which of the images is correct) | |
- id (an integer ID) | |
- index_id (the original row ID from the SIB .tsv) | |
Returns | |
------- | |
datasets.DatasetInfo | |
The Hugging Face DatasetInfo object describing the dataset features, | |
licensing, homepage, citation, etc. | |
""" | |
from datasets import DatasetInfo, Features, Sequence, Value | |
img2sents = Features( | |
{ | |
"images": Sequence(Value("string")), | |
"sentences": Sequence(Value("string")), | |
"categories": Sequence(Value("string")), | |
"label": Value("int8"), | |
"id": Value("int64"), | |
"index_id": Value("int64"), | |
} | |
) | |
sent2imgs = Features( | |
{ | |
"sentences": Sequence(Value("string")), | |
"images": Sequence(Value("string")), | |
"categories": Sequence(Value("string")), | |
"label": Value("int8"), | |
"id": Value("int64"), | |
"index_id": Value("int64"), | |
} | |
) | |
features = { | |
"img2sent": img2sents, | |
"sent2img": sent2imgs, | |
} | |
return DatasetInfo( | |
description=_DESCRIPTION, | |
features=features[self.config.task], | |
supervised_keys=None, | |
) | |
def _split_generators( | |
self, dl_manager: datasets.DownloadManager, *args: Any, **kwargs: Any | |
) -> List[datasets.SplitGenerator]: | |
""" | |
Defines the splits of the dataset. In this case, we only produce a single 'test' split, | |
but in principle, you can define train/dev/test or others. | |
Parameters | |
---------- | |
dl_manager : datasets.DownloadManager | |
The Hugging Face DownloadManager used to download files. | |
Returns | |
------- | |
List[datasets.SplitGenerator] | |
A list of SplitGenerator objects. Each defines a split name | |
and a gen_kwargs dict for the `_generate_examples` method. | |
""" | |
# Download SIB tsv files for train, dev, and test | |
files = dl_manager.download( | |
[ | |
_SIB_URL.format(lang=self.config.lang, split=split) | |
for split in ("train", "dev", "test") | |
] | |
) | |
# Download images for each category | |
images: Dict[str, List[str]] = {} | |
for cat in CATEGORIES: | |
images[cat] = [] | |
for i in range(10): | |
images[cat].append( | |
dl_manager.download(_IMG_URL.format(category=cat, no=i)) | |
) | |
return [ | |
datasets.SplitGenerator( | |
name="test", | |
gen_kwargs={"sib_filepaths": files, "images_filepaths": images}, | |
), | |
] | |
def _generate_examples( | |
self, | |
sib_filepaths: List[str], | |
images_filepaths: Dict[str, List[str]], | |
*args: Any, | |
**kwargs: Any, | |
) -> Any: | |
""" | |
Generator function that yields dataset examples in the format needed by | |
Hugging Face Datasets. | |
Depending on the task (img2sent or sent2img), the function constructs examples where: | |
- img2sent: reference images, 4 candidate sentences (1 positive, 3 negative) | |
- sent2img: reference sentences, 4 candidate images (1 positive, 3 negative) | |
Parameters | |
---------- | |
sib_filepaths : List[str] | |
The downloaded .tsv file paths (train/dev/test) for the specified language. | |
images_filepaths : Dict[str, List[str]] | |
A dictionary from category -> list of 10 image URLs, as downloaded from `_split_generators`. | |
Yields | |
------ | |
Tuple[int, Dict[str, Any]] | |
A tuple where the first element is an integer index, | |
and the second is a dictionary matching the features specification | |
of the dataset. | |
""" | |
# Read the SIB .tsv files for the given language and combine into a single DataFrame | |
records = read_lang_tsv(sib_filepaths) | |
df = pd.DataFrame.from_records(records) | |
# Expand the dataset with negative and positive samples | |
ext_df = replicate_and_negatives( | |
df, | |
num_replicates=self.config.upsampling_factor, | |
num_negatives=self.config.num_negatives, | |
# every line already has a positive | |
num_positives=self.config.num_references - 1, | |
seed=self.config.seed, | |
) | |
sent_ids = list(range(self.config.num_negatives + 1)) | |
N = len(ext_df) | |
num_images = len(next(iter(images_filepaths.values()))) # e.g., 10 images/cat | |
if self.config.task == "img2sent": | |
# Pre-generate image ID combinations for each row | |
image_ids = get_reference_image_ids( | |
N=N, | |
num_images=num_images, | |
k=self.config.num_references, | |
seed=self.config.seed, | |
) | |
for i, row in ext_df.iterrows(): | |
# Construct the list of candidate sentences (pos + neg) | |
text = [row["text"]] | |
categories = [row["category"]] | |
for j in range(self.config.num_negatives): | |
text.append(row[f"neg_text_{j}"]) | |
categories.append(row[f"neg_cat_{j}"]) | |
# Shuffle candidate sentences in a reproducible manner | |
random.seed(i) | |
random.shuffle(sent_ids) | |
label = sent_ids[0] | |
# Reorder sentences and categories according to the shuffled indices | |
_, categories_shuffled = zip(*sorted(zip(sent_ids, categories))) | |
_, sentences_shuffled = zip(*sorted(zip(sent_ids, text))) | |
# Fetch the reference images for the row | |
row_image_ids = image_ids[i] | |
cat = row["category"] | |
cat_images = images_filepaths[cat] | |
row_images = [ | |
cat_images[row_image_ids[j]] | |
for j in range(self.config.num_references) | |
] | |
yield ( | |
i, | |
{ | |
"id": i, | |
"index_id": row["index_id"], | |
"images": row_images, | |
"categories": categories_shuffled, | |
"sentences": sentences_shuffled, | |
"label": label, | |
}, | |
) | |
else: | |
# sent2img: We first sample image indices (pos + neg) for each row | |
rng = np.random.default_rng(seed=self.config.seed) | |
choice_image_ids = rng.integers( | |
0, num_images, (N, 1 + self.config.num_negatives) | |
).tolist() | |
for i, row in ext_df.iterrows(): | |
# The positive text | |
pos_text = [row["text"]] | |
# For the negative categories, we gather them similarly | |
cats = [row["category"]] | |
for j in range(self.config.num_negatives): | |
cats.append(row[f"neg_cat_{j}"]) | |
for j in range(self.config.num_references - 1): | |
pos_text.append(row[f"pos_text_{j}"]) | |
random.seed(i) | |
random.shuffle(sent_ids) | |
label = sent_ids[0] | |
# Reorder categories based on the shuffled indices | |
# NOTE: positive text is quasi-shuffled already | |
_, categories_shuffled = zip(*sorted(zip(sent_ids, cats))) | |
# Match the categories to the sampled image indices | |
row_image_ids = choice_image_ids[i] | |
row_images = [ | |
images_filepaths[cat][idx] | |
for idx, cat in zip(row_image_ids, categories_shuffled) | |
] | |
yield ( | |
i, | |
{ | |
"id": i, | |
"index_id": row["index_id"], | |
"images": row_images, | |
"categories": categories_shuffled, | |
"sentences": pos_text, | |
"label": label, | |
}, | |
) | |