Dataset Viewer
Auto-converted to Parquet Duplicate
problem
stringclasses
10 values
solution
stringclasses
10 values
type
stringclasses
5 values
idx
int64
47
257
Suppose air molecules have a collision cross section of $10^{-16} \mathrm{~cm}^{2}$. If the (number) density of air molecules is $10^{19} \mathrm{~cm}^{-3}$, what is the collision mean free path in cm? Answer to one significant figure.
\[ \ell=\frac{1}{n \sigma}=\frac{1}{10^{19} 10^{-16}}=\boxed{1e-3} \mathrm{~cm} \]
Introduction to Astronomy (8.282J Spring 2006)
47
Preamble: You are given an equation of motion of the form: \[ \dot{y}+5 y=10 u \] What is the time constant for this system?
We find the homogenous solution, solving: \[ \dot{y}+5 y=0 \] by trying a solution of the form $y=A \cdot e^{s, t}$. Calculation: \[ \dot{y}=A \cdot s \cdot e^{s \cdot t} \mid \Rightarrow A \cdot s \cdot e^{s t}+5 A \cdot e^{s t}=0 \] yields that $s=-5$, meaning the solution is $y=A \cdot e^{-5 \cdot t}=A \cdot e^{-t / \tau}$, meaning $\tau = \boxed{0.2}$.
Dynamics and Control (2.003 Spring 2005)
128
Calculate the volume in mL of $0.25 \mathrm{M} \mathrm{NaI}$ that would be needed to precipitate all the $\mathrm{g}^{2+}$ ion from $45 \mathrm{~mL}$ of a $0.10 \mathrm{M} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ solution according to the following reaction: \[ 2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{HgI}_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq}) \]
\[ \begin{aligned} &2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{HgI}_{2}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq}) \\ &\frac{0.10 \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~L}} \times 0.045 \mathrm{~L}=4.5 \times 10^{-3} \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \\ &4.5 \times 10^{-3} \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{2 \mathrm{~mol} \mathrm{NaI}}{1 \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}}=9.00 \times 10^{-3} \mathrm{~mol} \mathrm{NaI} \\ &\frac{9.00 \times 10^{-3} \mathrm{~mol} \mathrm{NaI}}{0.25 \frac{\mathrm{mol} \mathrm{NaI}}{\mathrm{L}}}=3.6 \times 10^{-2} \mathrm{~L} \times \frac{1000 \mathrm{ml}}{1 \mathrm{~L}}=\boxed{36} \mathrm{~mL} \mathrm{NaI} \end{aligned} \]
Introduction to Solid State Chemistry (3.091 Fall 2010)
224
A cubic metal $(r=0.77 \AA$ ) exhibits plastic deformation by slip along $<111>$ directions. Determine its planar packing density (atoms $/ \mathrm{m}^{2}$) for its densest family of planes. Please format your answer as $n \times 10^x$ where $n$ is to 2 decimal places.
Slip along $<111>$ directions suggests a BCC system, corresponding to $\{110\},<111>$ slip. Therefore: \[ \begin{aligned} &a \sqrt{3}=4 r \\ &a=\frac{4 r}{\sqrt{3}}=1.78 \times 10^{-10} \mathrm{~m} \end{aligned} \] Densest planes are $\{110\}$, so we find: \[ \frac{2 \text { atoms }}{a^{2} \sqrt{2}}=\boxed{4.46e19} \text { atoms } / \mathrm{m}^{2} \]
Introduction to Solid State Chemistry (3.091 Fall 2010)
215
Rewrite the function $\cos (\pi t)-\sqrt{3} \sin (\pi t)$ in the form $A \cos (\omega t-\phi)$. It may help to begin by drawing a right triangle with sides $a$ and $b$.
The right triangle has hypotenuse of length $\sqrt{1^{2}+(-\sqrt{3})^{2}}=2$. The circular frequency of both summands is $\pi$, so $\omega=\pi$. The argument of the hypotenuse is $-\pi / 3$, so $f(t)=\boxed{2 \cos (\pi t+\pi / 3)}$.
Differential Equations (18.03 Spring 2010)
83
Given the ordinary differential equation $\ddot{x}-a^{2} x=0$, where $a$ is a nonzero real-valued constant, find a solution $x(t)$ to this equation such that $x(0) = 1$ and $\dot{x}(0)=0$.
First, notice that both $x(t)=e^{a t}$ and $x(t)=e^{-a t}$ are solutions to $\ddot{x}-a^{2} x=0$. Then for any constants $c_{1}$ and $c_{2}$, $x(t)=c_{1} e^{a t}+c_{2} e^{-a t}$ are also solutions to $\ddot{x}-a^{2} x=0$. Moreover, $x(0)=c_{1}+c_{2}$, and $\dot{x}(0)=a\left(c_{1}-c_{2}\right)$. Assuming $a \neq 0$, to satisfy the given conditions, we need $c_{1}+c_{2}=1$ and $a\left(c_{1}-c_{2}\right)=0$, which implies $c_{1}=c_{2}=1 / 2$. So $x(t)=\boxed{\frac{1}{2}(\exp{a*t} + \exp{-a*t})}$.
Differential Equations (18.03 Spring 2010)
95
Preamble: Here we consider a system described by the differential equation \[ \ddot{y}+10 \dot{y}+10000 y=0 . \] Subproblem 0: What is the value of the natural frequency \(\omega_{n}\) in radians per second? Solution: $\omega_{n}=\sqrt{\frac{k}{m}}$ So $\omega_{n} =\boxed{100} \mathrm{rad} / \mathrm{s}$ Final answer: The final answer is 100. I hope it is correct. Subproblem 1: What is the value of the damping ratio \(\zeta\)? Solution: $\zeta=\frac{b}{2 \sqrt{k m}}$ So $\zeta =\boxed{0.05}$ Final answer: The final answer is 0.05. I hope it is correct. Subproblem 2: What is the value of the damped natural frequency \(\omega_{d}\) in radians per second? Give your answer to three significant figures.
$\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ So $\omega_{d}=\boxed{99.9} \mathrm{rad} / \mathrm{s}$
Dynamics and Control (2.003 Spring 2005)
133
Preamble: A formation energy of $2.0 \mathrm{eV}$ is required to create a vacancy in a particular metal. At $800^{\circ} \mathrm{C}$ there is one vacancy for every 10,000 atoms. At what temperature (in Celsius) will there be one vacancy for every 1,000 atoms? Format your answer as an integer.
We need to know the temperature dependence of the vacancy density: \[ \frac{1}{10^{4}}=A e^{-\frac{\Delta H_{v}}{k T_{1}}} \quad \text { and } \frac{1}{10^{3}}=A e^{-\frac{\Delta H_{v}}{k T_{x}}} \] From the ratio: $\frac{\frac{1}{10^{4}}}{\frac{1}{10^{3}}}=\frac{10^{3}}{10^{4}}=\frac{\mathrm{Ae}^{-\Delta \mathrm{H}_{v} / \mathrm{k} T_{1}}}{\mathrm{Ae}^{-\Delta \mathrm{H}_{v} / \mathrm{kT} \mathrm{x}}}$ we get $-\ln 10=-\frac{\Delta \mathrm{H}_{\mathrm{v}}}{\mathrm{k}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{\mathrm{x}}}\right)$ \[ \begin{aligned} &\therefore \quad\left(\frac{1}{T_{1}}-\frac{1}{T_{x}}\right)=\frac{k \ln 10}{\Delta H_{v}} \\ &\frac{1}{T_{x}}=\frac{1}{T_{1}}-\frac{k \ln 10}{\Delta H_{v}}=\frac{1}{1073}-\frac{1.38 \times 10^{-23} \times \ln 10}{2 \times 1.6 \times 10^{-19}}=8.33 \times 10^{-4} \\ &T_{x}=1200 \mathrm{~K}= \boxed{928}^{\circ} \mathrm{C} \end{aligned} \]
Introduction to Solid State Chemistry (3.091 Fall 2010)
209
Preamble: In Cambridge, shoppers can buy apples from two sources: a local orchard, and a store that ships apples from out of state. The orchard can produce up to 50 apples per day at a constant marginal cost of 25 cents per apple. The store can supply any remaining apples demanded, at a constant marginal cost of 75 cents per unit. When apples cost 75 cents per apple, the residents of Cambridge buy 150 apples in a day. Assume that the city of Cambridge sets the price of apples within its borders. What price should it set, in cents?
The city should set the price of apples to be $\boxed{75}$ cents since that is the marginal cost when residents eat at least 50 apples a day, which they do when the price is 75 cents or less.
Principles of Microeconomics (14.01 Fall 2011)
257
At $100^{\circ} \mathrm{C}$ copper $(\mathrm{Cu})$ has a lattice constant of $3.655 \AA$. What is its density in $g/cm^3$ at this temperature? Please round your answer to 2 decimal places.
$\mathrm{Cu}$ is FCC, so $\mathrm{n}=4$ \[ \begin{aligned} &\mathrm{a}=3.655 \AA=3.655 \times 10^{-10} \mathrm{~m} \\ &\text { atomic weight }=63.55 \mathrm{~g} / \mathrm{mole} \\ &\frac{\text { atomic weight }}{\rho} \times 10^{-6}=\frac{N_{\mathrm{A}}}{\mathrm{n}} \times \mathrm{a}^{3} \\ &\rho=\frac{(63.55 \mathrm{~g} / \mathrm{mole})(4 \text { atoms } / \text { unit cell })}{\left(6.023 \times 10^{23} \text { atoms } / \mathrm{mole}\right)\left(3.655 \times 10^{-10} \mathrm{~m}^{3}\right)}= \boxed{8.64} \mathrm{~g} / \mathrm{cm}^{3} \end{aligned} \]
Introduction to Solid State Chemistry (3.091 Fall 2010)
190
README.md exists but content is empty.
Downloads last month
4