Dataset Viewer
Auto-converted to Parquet
prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import sqlite3 import numpy as np import Helpers conn = sqlite3.connect('../data/SandP500.sqlite3') all_tickers = Helpers.get_all_tickers(conn) cursor = conn.cursor() prices_at_start = np.array([]) prices_at_end = np.array([]) for ticker in all_tickers: cursor.execute("SELECT closing_price " "FROM historical_prices " f"WHERE ticker is '{ticker}'" "AND date is '2013-02-08'") all_rows = cursor.fetchall() if len(all_rows) == 0: continue print(ticker) price_at_start = all_rows[0] prices_at_start =
np.append(prices_at_start, price_at_start)
numpy.append
import numpy as np from ..visualization import Viewer from ..utils import Subject, Observer, deprecated, matrices, NList import copy from numba import njit, int64, float64 from numba.types import ListType as LT @njit(int64[:](LT(LT(int64))), cache=True) def _valence(adj_x2y): valences = np.zeros(len(adj_x2y), dtype=np.int64) for idx, row in enumerate(adj_x2y): valences[idx] = len(row) return valences class Clipping(object): class __Flip(object): def __init__(self): self.x = False self.y = False self.z = False def __init__(self): self.min_x = None self.max_x = None self.min_y = None self.max_y = None self.min_z = None self.max_z = None self.flip = self.__Flip() super(Clipping, self).__init__() def __repr__(self): return ("Clipping:\n" + f"min_x: {self.mini_x} \tmax_x: {self.max_x} \t{('flipped' if self.flip.x else '')}\n" + f"min_y: {self.min_y} \tmax_y: {self.max_y} \t{('flipped' if self.flip.y else '')}\n" + f"min_z: {self.min_z} \tmax_z: {self.max_z} \t{('flipped' if self.flip.z else '')}\n") class AbstractMesh(Observer, Subject): """ This class represents a generic mesh. It must be extended by a specific mesh class. It stores all the information shared among the different kind of supported meshes. """ def __init__(self): self.__boundary_needs_update = True self.__boundary_cached = None self.__finished_loading = False self._dont_update = False self.__poly_size = None self.vertices = None #npArray (Nx3) self.__edges = None #npArray (Nx2) self.__polys = None #npArray (NxM) self.labels = None # npArray (Nx1) self.uvcoords = None self.coor = [] #Mappatura indici coordinate uv per faccia self.texture = None self.material = {} self.smoothness = False self.__adj_vtx2vtx = None self.__adj_vtx2edge = None self.__adj_vtx2poly = None #npArray (NxM) self.__adj_edge2vtx = None self.__adj_edge2edge = None self.__adj_edge2poly = None self.__adj_poly2vtx = None self.__adj_poly2edge = None self.__adj_poly2poly = None self.__bounding_box = None #npArray (2x3) self.__simplex_centroids = None #npArray (Nx1) self.__clipping = Clipping() self.__visible_polys = None self.simplex_metrics = dict() #dictionary[propertyName : ((min, max), npArray (Nx1))] self.__filename = '' Observer.__init__(self) Subject.__init__(self) # ==================== METHODS ==================== # def __setattr__(self, key, value): self.__dict__[key] = value if key[0] != "_" and self.__finished_loading: self.update() def copy(self): new = type(self)() for key in self.__dict__.keys(): if "observer" not in key and ("adj" not in key or "poly2poly" in key): setattr(new, key, copy.deepcopy(getattr(self, key))) return new def update(self): """ Update the mesh manually when the Viewer is set as not reactive. """ self.__boundary_needs_update = True self.__update_bounding_box() if (not self._dont_update): self._notify() def show(self, width = 700, height = 700, mesh_color = None, reactive = False): """ Show the mesh within the current cell. It is possible to manipulate the mesh through the UI. Parameters: UI (bool): Show or not show the graphic user interface of the viewer width (int): The width of the canvas height (int): The height of the canvas Return: Viewer: The viewer object """ view = Viewer(self, width = width, height = height, reactive=reactive) view.show() return view def set_clipping(self, min_x = None, max_x = None, min_y = None, max_y = None, min_z = None, max_z = None, flip_x = None, flip_y = None, flip_z = None): """ clipping the mesh along x, y and z axes. It doesn't affect the geometry of the mesh. Parameters: min_x (float): The minimum value of x max_x (float): The maximum value of x min_y (float): The minimum value of y max_y (float): The maximum value of y min_z (float): The minimum value of z max_z (float): The maximum value of z """ if min_x is not None: self.__clipping.min_x = min_x if max_x is not None: self.__clipping.max_x = max_x if min_y is not None: self.__clipping.min_y = min_y if max_y is not None: self.__clipping.max_y = max_y if min_z is not None: self.__clipping.min_z = min_z if max_z is not None: self.__clipping.max_z = max_z if flip_x is not None: self.__clipping.flip.x = flip_x if flip_y is not None: self.__clipping.flip.y = flip_y if flip_z is not None: self.__clipping.flip.z = flip_z self.__boundary_needs_update = True self.update() def reset_clipping(self): """ Set the clippings to the bounding box in order to show the whole mesh. """ self.set_clipping(min_x = self.bbox[0,0], max_x = self.bbox[1,0], min_y = self.bbox[0,1], max_y = self.bbox[1,1], min_z = self.bbox[0,2], max_z = self.bbox[1,2]) self.__boundary_needs_update = True self.update() def load_from_file(filename): raise NotImplementedError('This method must be implemented in the subclasses') def __compute_adjacencies(self): raise NotImplementedError('This method must be implemented in the subclasses') def save_file(self, filename): raise NotImplementedError('This method must be implemented in the subclasses') def get_metric(self, property_name, id_element): """ Get a specific metric element from the dictionary of metrics 'simplex_metrics'. Parameters: property_name (string): The name of the wanted metric id_element (int): The index of a specific element of the metric Returns: object: The specific metric element. The return type depends on the metric """ return self.simplex_metrics[property_name][id_element] @property def clipping(self): """ Return the clipping region of the current mesh. """ return self.__clipping @property def visible_polys(self): return self.__visible_polys def __compute_metrics(self): raise NotImplementedError('This method must be implemented in the subclasses') def as_triangles_flat(self): raise NotImplementedError('This method must be implemented in the subclasses') def as_edges_flat(self): raise NotImplementedError('This method must be implemented in the subclasses') def _as_threejs_colors(self): raise NotImplementedError('This method must be implemented in the subclasses') def boundary(self): """ Compute the boundary of the current mesh. It only returns the faces that are inside the clipping """ min_x = self.clipping.min_x max_x = self.clipping.max_x min_y = self.clipping.min_y max_y = self.clipping.max_y min_z = self.clipping.min_z max_z = self.clipping.max_z flip_x = self.clipping.flip.x flip_y = self.clipping.flip.y flip_z = self.clipping.flip.z centroids = np.array(self.poly_centroids) x_range = np.logical_xor(flip_x,((centroids)[:,0] >= min_x) & (centroids[:,0] <= max_x)) y_range = np.logical_xor(flip_y,((centroids[:,1] >= min_y) & (centroids[:,1] <= max_y))) z_range =
np.logical_xor(flip_z,((centroids[:,2] >= min_z) & (centroids[:,2] <= max_z)))
numpy.logical_xor
import os, math import _pickle as pickle from datetime import datetime, timedelta import numpy as np import pandas as pd from sklearn import preprocessing import argparse parser = argparse.ArgumentParser() parser.add_argument('--data-folder', default='data', help='Parent dir of the dataset') parser.add_argument('--file-name', default='electricity.csv', help='Directory containing data.csv') parser.add_argument('--pickle-name', default='electricity.pkl', help='Directory containing data.csv') parser.add_argument('--horizon', type=int, default=24, help='Forecast horizon. Default=24') parser.add_argument('--test', action='store_true', help='whenever to use test set only.') parser.add_argument('--hop', action='store_true', help='Whether to use test set for validation') # default=False if __name__ == '__main__': args = parser.parse_args() ### load the data dir_path = args.data_folder # './data' file_name = args.file_name if file_name=='electricity.csv': train_start = '2012-01-01 00:00:00' if args.test: train_end = '2013-10-19 23:00:00' test_start = '2014-05-20 00:00:00' #need additional 7 days as given info test_end = '2014-12-31 23:00:00' elif args.hop: train_end = '2012-04-30 23:00:00' test_start = '2012-04-24 00:00:00' test_end = '2012-05-31 23:00:00' else: train_end = '2013-10-19 23:00:00' test_start = '2013-10-20 00:00:00' #need additional 7 days as given info test_end = '2014-12-31 23:00:00' elif 'europe_power_system' in file_name: train_start = '2015-01-01 00:00:00' if args.test: train_end = '2017-01-15 23:00:00' test_start = '2017-06-17 00:00:00' #need additional 7 days as given info test_end = '2017-11-30 23:00:00' elif args.hop: train_end = '2015-04-30 23:00:00' test_start = '2015-04-24 00:00:00' #need additional 7 days as given info test_end = '2015-05-31 23:00:00' else: train_end = '2017-01-15 23:00:00' test_start = '2017-01-16 00:00:00' #need additional 7 days as given info test_end = '2017-11-30 23:00:00' df = pd.read_csv(os.path.join(dir_path, file_name), sep=",", index_col=0, parse_dates=True, decimal='.') df = df.reset_index() df = df.drop([df.columns[0]], axis=1).transpose() dt = df.rename(columns=df.iloc[0]).values #.drop(df.index[0]) ## The date range date_list = pd.date_range(start=train_start, end=test_end) date_list = pd.to_datetime(date_list) yr = int(date_list.year[0]) hour_list = [] for nDate in date_list: for nHour in range(24): tmp_timestamp = nDate+timedelta(hours=nHour) hour_list.append(tmp_timestamp) hour_list = np.array(hour_list) #print('hour_list', hour_list.shape[0]) #print('dt.shape[0]', dt.shape[0]) station_index = list(range(dt.shape[0])) #if args.horizon ==36: # sliding_window_dis = 24; #else: # sliding_window_dis = args.horizon; #print('sliding_window_dis: ', sliding_window_dis) sliding_window_dis = args.horizon; # 24; input_len = 168; output_len = args.horizon; #24; sample_len = input_len + output_len; #192; #168+24 coef = args.horizon/24; total_n = int((len(date_list) - 8)/coef) #800; ## The total days test_n = int(len(pd.date_range(start=test_start, end=test_end))/coef) #7 ## The testing days, day of the last 7 days train_n = total_n - test_n ## The training days #print('train_n', train_n) #print('test_n', test_n) trainX_list = [];trainX2_list = [];trainY_list = [];trainY2_list = [] testX_list = [];testX2_list = [];testY_list = [];testY2_list = [] #for station in station_index: for station in station_index: print('Station', station) sub_series = dt[station,1:].astype('float32') sub_index = np.array(range(dt.shape[1]-1))-np.min(np.where(sub_series>0)) trainX = np.zeros(shape=(train_n, input_len)) ## The input series trainY = np.zeros(shape=(train_n, output_len)) ## The output series testX =
np.zeros(shape=(test_n, input_len))
numpy.zeros
import numpy as np import sys, os if __name__== "__main__": # read samples mesh gids smgids = np.loadtxt("sample_mesh_gids.dat", dtype=int) print(smgids) # read full velo fv = np.loadtxt("./full/velo.txt") # read full velo fullJ = np.loadtxt("./full/jacobian.txt") # read sample mesh velo sv = np.loadtxt("velo.txt") # read sample mesh jac sjac = np.loadtxt("jacobian.txt") maskedVelo = [] maskedJacob= [] for i in smgids: maskedVelo.append(fv[i]) maskedJacob.append(fullJ[i,:]) maskedVelo = np.array(maskedVelo) maskedJacob = np.array(maskedJacob) assert(np.allclose(maskedVelo.shape, sv.shape)) assert(np.isnan(sv).all() == False) assert(np.isnan(fv).all() == False) assert(np.allclose(sv, maskedVelo,rtol=1e-8, atol=1e-10)) assert(
np.allclose(maskedJacob.shape, sjac.shape)
numpy.allclose
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module for tools used in vaspy """ import bz2 from itertools import zip_longest import os import re import numpy as np from typing import List, Iterable, Sequence, Tuple, Union, IO, Any, Optional def open_by_suffix(filename: str) -> IO[str]: """Open file.""" if os.path.splitext(filename)[1] == ".bz2": thefile = bz2.open(filename, mode="rt") else: thefile = open(filename, mode="rt") return thefile def each_slice( iterable: Iterable, n: int, fillvalue: Optional[float] = None ) -> Iterable[Any]: """each_slice(iterable, n[, fillvalue]) => iterator make new iterator object which get n item from [iterable] at once. """ args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) _RERANGE = re.compile(r"(\d+)-(\d+)") _RESINGLE = re.compile(r"\d+") def atom_selection_to_list( input_str: str, number: bool = True ) -> List[Union[int, str]]: """Return list of ordered "String" represents the number. Parameters ---------- input_str: str range of the atoms. the numbers deliminated by "-" or "," Returns -------- list ordered "String" represents the number. Example -------- >>> atom_selection_to_list("1-5,8,8,9-15,10", False) ['1', '10', '11', '12', '13', '14', '15', '2', '3', '4', '5', '8', '9'] >>> atom_selection_to_list("1-5,8,8,9-15,10") [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15] """ array = input_str.split(",") output = set() for each in array: if re.search(_RERANGE, each): start, stop = re.findall(_RERANGE, each)[0] # Version safety output |= set(str(i) for i in range(int(start), int(stop) + 1)) elif re.search(_RESINGLE, each): output.add(each) if number: return sorted(int(i) for i in output) return sorted(list(output)) def atomtypes_atomnums_to_atoms( atomtypes: Iterable[str], atomnums: Iterable[int] ) -> Tuple[str, ...]: """Return list representation for atom in use. Parameters ------------ atomtypes: list atom names atomnums: list atom numbers Examples -------- >>> test_nums = [2, 3, 2, 1] >>> test_elements = ['Si', 'Ag', 'H', 'Si'] >>> atomtypes_atomnums_to_atoms(test_elements, test_nums) ('Si', 'Si', 'Ag', 'Ag', 'Ag', 'H', 'H', 'Si') """ atoms = [] for elem, nums in zip(atomtypes, atomnums): for _ in range(nums): atoms.append(elem) return tuple(atoms) def atoms_to_atomtypes_atomnums(atoms: List[str]) -> Tuple[List[str], List[int]]: r"""Return atomnums and atomtypes list. Returns -------- atomnums list of number of atoms atomtypes list of atomnames Examples -------- >>> test = ['Si', 'Si', 'Ag', 'Ag', 'Ag', 'H', 'H', 'Si'] >>> atoms_to_atomtypes_atomnums(test) (['Si', 'Ag', 'H', 'Si'], [2, 3, 2, 1]) """ thelast = "" atomnums: List[int] = [] atomtypes: List[str] = [] while atoms: atom = atoms.pop(0) if thelast == atom: atomnums[-1] = atomnums[-1] + 1 else: atomnums.append(1) atomtypes.append(atom) thelast = atom return atomtypes, atomnums def cuboid(crystal_axes: Union[Sequence[List[float]], np.ndarray]) -> np.ndarray: """Return the coordinates for cuboid that includes tetrahedron represented by vectors. Parameters ------------ vectors: array-like. Three vectors for tetrahedron. (Crystal axis a,b,c) Return """ a = np.array(crystal_axes[0]) b = np.array(crystal_axes[1]) c =
np.array(crystal_axes[2])
numpy.array
__author__ = 'Mario' import numpy as np from scipy.stats import norm class EuropeanLookback(): def __init__(self, strike, expiry, spot, sigma, rate, dividend, M, flag, N=100, Vbar=.12, alpha=.69): # Instantiate variables self.strike = float(strike) self.expiry = float(expiry) self.spot = float(spot) self.sigma = float(sigma) self.sigma2 = sigma2 = float(sigma)*float(sigma) self.rate = float(rate) self.dividend = float(dividend) self.alpha = float(alpha) self.dt = float(expiry)/float(N) self.Vbar = Vbar self.xi = xi = .025 self.N = N self.M = int(M) self.beta1 = -.88 self.beta2 = -.42 self.beta3 = -.0003 self.alphadt = self.alpha*self.dt self.xisdt = self.xi*np.sqrt(self.dt) self.erddt = np.exp((self.rate-self.dividend)*self.dt) self.egam1 = np.exp(2*(self.rate-self.dividend)*self.dt) self.egam2 = -2*self.erddt + 1 self.eveg1 = np.exp(-self.alpha*self.dt) self.eveg2 = self.Vbar - self.Vbar*self.eveg1 self.VectorizedMonteCarlo(float(spot), float(rate), float(sigma), float(expiry), int(N), int(M), float(strike), float(sigma2), flag) def VectorizedMonteCarlo(self, spot, rate, sigma, expiry, N, M, strike, sigma2, flag): # Initialize the matrices newdt = float(expiry)/float(N) # Get the dt for the Weiner process dW = np.sqrt(newdt)*np.random.normal(0,1,(M,N-1)) # Create the brownian motion W = np.cumsum(dW, axis=1) # Set up the Weiner Process as a Matrix time = np.linspace(0, expiry, N) # Set the discrete time space tempA = np.zeros((M,1)) # Create an initial zero vector for the first column #This is the Random aspects and the stochastic volatility Wnew = np.c_[tempA,W] # Append the Weiner matrix to the zeros vector Vt = self.sigma2 Vtn = np.abs(Vt + self.alphadt*(self.Vbar - Vt) + self.xisdt*np.sqrt(Vt)*Wnew) tt = np.tile(np.array(time),(M,1)) # Create a matrix of time x M so we have time for every iteration self.tau = expiry-1 ### Calculate the lookback option ### assetpath1 = np.array(spot*np.exp((rate-.5*Vtn)*tt+np.sqrt(Vtn)*Wnew)) #European standard Antithetic1 assetpath2 = np.array(spot*np.exp((rate-.5*Vtn)*tt+
np.sqrt(Vtn)
numpy.sqrt
import unittest from scipy.stats import gaussian_kde from scipy.linalg import cholesky import numpy as np from pyapprox.bayesian_inference.laplace import * from pyapprox.density import NormalDensity, ObsDataDensity from pyapprox.utilities import get_low_rank_matrix from pyapprox.randomized_svd import randomized_svd, MatVecOperator, \ adjust_sign_svd from pyapprox.tests.test_density import helper_gradient from pyapprox.multivariate_gaussian import MultivariateGaussian,\ CholeskySqrtCovarianceOperator, CovarianceOperator, get_operator_diagonal from pyapprox.models.wrappers import evaluate_1darray_function_on_2d_array class QuadraticMisfitModel(object): def __init__(self,num_vars,rank,num_qoi, obs=None,noise_covariance=None,Amatrix=None): self.num_vars = num_vars self.rank=rank self.num_qoi=num_qoi if Amatrix is None: self.Amatrix = get_low_rank_matrix(num_qoi,num_vars,rank) else: self.Amatrix=Amatrix if obs is None: self.obs = np.zeros(num_qoi) else: self.obs=obs if noise_covariance is None: self.noise_covariance = np.eye(num_qoi) else: self.noise_covariance=noise_covariance self.noise_covariance_inv = np.linalg.inv(self.noise_covariance) def value(self,sample): assert sample.ndim==1 residual = np.dot(self.Amatrix,sample)-self.obs return np.asarray( [0.5*np.dot(residual.T,np.dot(self.noise_covariance_inv,residual))]) def gradient(self,sample): assert sample.ndim==1 grad = np.dot(self.Amatrix.T,np.dot(self.noise_covariance_inv, np.dot(self.Amatrix,sample)-self.obs)) return grad def gradient_set(self,samples): assert samples.ndim==2 num_vars, num_samples = samples.shape gradients = np.empty((num_vars,num_samples),dtype=float) for i in range(num_samples): gradients[:,i] = self.gradient(samples[:,i]) return gradients def hessian(self,sample): assert sample.ndim==1 or sample.shape[1]==1 return np.dot( np.dot(self.Amatrix.T,self.noise_covariance_inv),self.Amatrix) def __call__(self,samples,opts=dict()): eval_type=opts.get('eval_type','value') if eval_type=='value': return evaluate_1darray_function_on_2d_array( self.value,samples,opts) elif eval_type=='value_grad': vals = evaluate_1darray_function_on_2d_array( self.value,samples,opts) return np.hstack((vals,self.gradient_set(samples).T)) elif eval_type=='grad': return self.gradient_set(samples).T else: raise Exception('%s is not a valid eval_type'%eval_type) class LogUnormalizedPosterior(object): def __init__(self, misfit, misfit_gradient, prior_pdf, prior_log_pdf, prior_log_pdf_gradient): """ Initialize the object. Parameters ---------- """ self.misfit = misfit self.misfit_gradient = misfit_gradient self.prior_pdf = prior_pdf self.prior_log_pdf = prior_log_pdf self.prior_log_pdf_gradient = prior_log_pdf_gradient def gradient(self,samples): """ Evaluate the gradient of the logarithm of the unnormalized posterior likelihood(x)*posterior(x) at a sample x Parameters ---------- samples : (num_vars,num_samples) vector The location at which to evalute the unnormalized posterior Returns ------- val : (1x1) vector The logarithm of the unnormalized posterior """ if samples.ndim==1: samples=samples[:,np.newaxis] grad = -self.misfit_gradient(samples) + \ self.prior_log_pdf_gradient(samples) return grad def __call__(self,samples,opts=dict()): """ Evaluate the logarithm of the unnormalized posterior likelihood(x)*posterior(x) at samples x Parameters ---------- sampels : np.ndarray (num_vars, num_samples) The samples at which to evalute the unnormalized posterior Returns ------- values : np.ndarray (num_samples,1) The logarithm of the unnormalized posterior """ if samples.ndim==1: samples=samples[:,np.newaxis] eval_type = opts.get('eval_type','value') if eval_type=='value': values = -self.misfit(samples)+self.prior_log_pdf(samples) assert values.ndim==2 elif eval_type=='grad': values = self.gradient(samples).T elif eval_type=='value_grad': values = -self.misfit(samples)+self.prior.log_pdf(samples) grad = self.gradient(samples) values = np.hstack((values,grad)) else: raise Exception() return values def assert_ndarray_allclose(matrix1,matrix2,atol=1e-8,rtol=1e-5,msg=None): """ A more useful function for testing equivalence of numpy arrays. Print norms used by np.allclose function to determine equivalence. Matrix1 is considered the truth """ if not np.allclose(matrix1,matrix2,atol=atol,rtol=rtol): if msg is not None: print(msg) diff = np.absolute(matrix1-matrix2) abs_error = diff.max() rel_error = (diff/np.absolute(matrix1)).max() print('abs error:', abs_error) print('rel error:', rel_error) print('atol:', atol) print('rtol:', rtol) print('matrix1 shape',matrix1.shape) print('matrix2 shape',matrix2.shape) assert False, 'matrices are not equivalent' def setup_quadratic_misfit_problem(prior,rank,noise_sigma2=1): # Define observations num_qoi = 2*rank #assert num_qoi>=rank noise_covariance = np.eye(num_qoi)*noise_sigma2 noise_covariance_inv = np.linalg.inv(noise_covariance) # In high dimensions computing cholesky factor is too expensive. # That is why we use PDE based operator noise_covariance_chol_factor = np.linalg.cholesky(noise_covariance) truth_sample = prior.generate_samples(1)[:,0] num_vars = truth_sample.shape[0] Amatrix = get_low_rank_matrix(num_qoi,num_vars,rank) noise = np.dot(noise_covariance_chol_factor, np.random.normal(0.,noise_sigma2,num_qoi)) obs = np.dot(Amatrix,truth_sample)+noise # Define mistit model misfit_model = QuadraticMisfitModel(num_vars,rank,num_qoi,Amatrix) return misfit_model, noise_covariance_inv, obs def posterior_covariance_helper(prior, rank, comparison_tol, test_sampling=False, plot=False): """ Test that the Laplace posterior approximation can be obtained using the action of the sqrt prior covariance computed using a PDE solve Parameters ---------- prior : MultivariateGaussian object The model which must be able to compute the action of the sqrt of the prior covariance (and its tranpose) on a set of vectors rank : integer The rank of the linear model used to generate the observations comparision_tol : tolerances for each of the internal comparisons. This allows different accuracy for PDE based operators """ # Define prior sqrt covariance and covariance operators L_op = prior.sqrt_covariance_operator # Extract prior information required for computing exact posterior # mean and covariance num_vars = prior.num_vars() prior_mean = np.zeros((num_vars),float) L = L_op(np.eye(num_vars),False) L_T = L_op(np.eye(num_vars),True) assert_ndarray_allclose(L.T,L_T,rtol=comparison_tol,atol=0, msg='Comparing prior sqrt and transpose') prior_covariance = np.dot(L,L_T) prior_pointwise_variance = prior.pointwise_variance() assert_ndarray_allclose( np.diag(prior_covariance), prior_pointwise_variance, rtol=1e-14, atol=0,msg='Comparing prior pointwise variance') misfit_model, noise_covariance_inv, obs = setup_quadratic_misfit_problem( prior,rank,noise_sigma2=1) # Get analytical mean and covariance prior_hessian = np.linalg.inv(prior_covariance) exact_laplace_mean, exact_laplace_covariance = \ laplace_posterior_approximation_for_linear_models( misfit_model.Amatrix, prior.mean, prior_hessian, noise_covariance_inv, obs) # Define prior conditioned misfit operator sample = np.zeros(num_vars) misfit_hessian_operator = MisfitHessianVecOperator( misfit_model, sample, fd_eps=None) LHL_op = PriorConditionedHessianMatVecOperator( L_op, misfit_hessian_operator) # For testing purposes build entire L*H*L matrix using operator # and compare to result based upon explicit matrix mutiplication LHL_op = LHL_op.apply(np.eye(num_vars),transpose=False) H = misfit_model.hessian(sample) assert np.allclose(H,np.dot(np.dot( misfit_model.Amatrix.T,noise_covariance_inv),misfit_model.Amatrix)) LHL_mat = np.dot(L_T,np.dot(H,L)) assert_ndarray_allclose(LHL_mat, LHL_op, rtol=comparison_tol, msg='Comparing prior matrix and operator based LHL') # Test singular values obtained by randomized svd using operator # are the same as those obtained using singular decomposition Utrue,Strue,Vtrue = np.linalg.svd(LHL_mat) Utrue, Vtrue = adjust_sign_svd(Utrue,Vtrue) standard_svd_opts = { 'num_singular_values':rank, 'num_extra_samples':10} svd_opts={'single_pass':True, 'standard_opts':standard_svd_opts} L_post_op = get_laplace_covariance_sqrt_operator( L_op, misfit_hessian_operator, svd_opts, weights=None, min_singular_value=0.0) #print np.max((Strue[:rank]-L_post_op.e_r)/Strue[0]) max_error = np.max(Strue[:rank]-L_post_op.e_r) assert max_error/Strue[0]<comparison_tol, max_error/Strue[0] assert_ndarray_allclose(Vtrue.T[:,:rank],L_post_op.V_r,rtol=1e-6, msg='Comparing eigenvectors') L_post_op.V_r=Vtrue.T[:,:rank] # Test posterior sqrt covariance operator transpose is the same as # explicit matrix transpose of matrix obtained by prior sqrt # covariance operator L_post = L_post_op.apply(np.eye(num_vars),transpose=False) L_post_T = L_post_op.apply(np.eye(num_vars),transpose=True) assert_ndarray_allclose(L_post.T,L_post_T,rtol=comparison_tol, msg='Comparing posterior sqrt and transpose') # Test posterior covariance operator produced matrix is the same # as the exact posterior covariance obtained using analytical formula if rank==num_vars: # this test only makes sense if entire set of directions is found # if low rank approx is used then this will ofcourse induce errors post_covariance = np.dot(L_post,L_post_T) assert_ndarray_allclose( exact_laplace_covariance,post_covariance,rtol=comparison_tol, atol=0., msg='Comparing matrix and operator based posterior covariance') # Test pointwise covariance of posterior post_pointwise_variance, prior_pointwise_variance=\ get_pointwise_laplace_variance_using_prior_variance( prior, L_post_op, prior_pointwise_variance) assert_ndarray_allclose( np.diag(exact_laplace_covariance),post_pointwise_variance, rtol=comparison_tol,atol=0.,msg='Comparing pointwise variance') if not test_sampling: return num_samples = int(2e5) posterior_samples = sample_from_laplace_posterior( exact_laplace_mean, L_post_op, num_vars, num_samples, weights=None) assert_ndarray_allclose( exact_laplace_covariance,np.cov(posterior_samples), atol=1e-2*exact_laplace_covariance.max(),rtol=0., msg='Comparing posterior samples covariance') assert_ndarray_allclose( exact_laplace_mean.squeeze(), np.mean(posterior_samples,axis=1),atol=2e-2,rtol=0., msg='Comparing posterior samples mean') if plot: # plot marginals of posterior using orginal ordering from pyapprox.visualization import plot_multiple_2d_gaussian_slices texfilename= 'slices.tex' plot_multiple_2d_gaussian_slices( exact_laplace_mean[:10], np.diag(exact_laplace_covariance)[:10], texfilename, reference_gaussian_data=(0.,1.),show=False) # plot marginals of posterior in rotated coordinates # from most to least important. # The following is not feasiable in practice as we cannot compute # entire covariance matrix in full space. But we have # C_r = V_r*L*V_r*D*V_r.T*L.T*V_r.T # is we compute matrix products from right to left we only have to # compute at most (d x r) matrices. And if only want first 20 say # variances then can apply C_r to vectors e_i i=1,...,20 # then we need at most (dx20 matrices) texfilename= 'rotated-slices.tex' V_r= L_post_op.V_r plot_multiple_2d_gaussian_slices( np.dot(V_r.T,exact_laplace_mean[:10]), np.diag(np.dot(V_r.T,np.dot(exact_laplace_covariance,V_r)))[:10], texfilename, reference_gaussian_data=(0.,1.),show=True) class TestLaplace(unittest.TestCase): def setUp( self ): np.random.seed(2) @unittest.skip(reason="only shows how to plot") def test_plot_multiple_2d_gaussian_slices(self): from pyapprox.visualization import plot_multiple_2d_gaussian_slices mean=np.array([0,1,-1]) covariance = np.diag(np.array([1,0.5,0.025])) texfilename= 'slices.tex' plot_multiple_2d_gaussian_slices( mean[:10], np.diag(covariance)[:10],texfilename, reference_gaussian_data=(0.,1.),show=False) import glob, os filenames = glob.glob(texfilename[:-4]+'*') for filename in filenames: os.remove(filename) def test_operator_diagonal(self): num_vars = 4; eval_concurrency=2 randn = np.random.normal(0.,1.,(num_vars,num_vars)) prior_covariance = np.dot(randn.T,randn) sqrt_covar_op = CholeskySqrtCovarianceOperator( prior_covariance,eval_concurrency) covariance_operator=CovarianceOperator(sqrt_covar_op) diagonal = get_operator_diagonal( covariance_operator, num_vars, eval_concurrency, transpose=None) assert np.allclose(diagonal,np.diag(prior_covariance)) def test_posterior_dense_matrix_covariance_operator(self): num_vars = 121; rank = 10; eval_concurrency=20 #randn = np.random.normal(0.,1.,(num_vars,num_vars)) #prior_covariance = np.dot(randn.T,randn) prior_covariance = np.eye(num_vars) prior_sqrt_covariance_op = CholeskySqrtCovarianceOperator( prior_covariance,eval_concurrency) prior = MultivariateGaussian(prior_sqrt_covariance_op) comparison_tol = 6e-7 posterior_covariance_helper( prior, rank, comparison_tol,test_sampling=True) def test_log_unnormalized_posterior(self): num_dims = 4; rank = 3; num_qoi=3 obs = np.random.normal(0.,1.,(num_qoi)) prior_mean = np.zeros((num_dims),float) prior_covariance = np.eye(num_dims)*0.25 prior_covariance_chol_factor = np.linalg.cholesky(prior_covariance) noise_covariance = np.eye(num_qoi)*0.1 noise_covariance_inv = np.linalg.inv(noise_covariance) misfit_model = QuadraticMisfitModel( num_dims, rank, num_qoi, obs, noise_covariance=noise_covariance) prior_density = NormalDensity(prior_mean,covariance=prior_covariance) objective = LogUnormalizedPosterior( misfit_model,misfit_model.gradient_set,prior_density.pdf, prior_density.log_pdf,prior_density.log_pdf_gradient) samples = prior_density.generate_samples(2) exact_log_unnormalized_posterior_vals = np.log( np.exp(-misfit_model(samples))* prior_density.pdf(samples)) log_unnormalized_posterior_vals = objective(samples) assert np.allclose(exact_log_unnormalized_posterior_vals, log_unnormalized_posterior_vals) exact_log_unnormalized_posterior_grads = \ -misfit_model.gradient_set(samples)+\ prior_density.log_pdf_gradient(samples) log_unnormalized_posterior_grads = objective( samples,{'eval_type':'grad'}) assert np.allclose(exact_log_unnormalized_posterior_grads.T, log_unnormalized_posterior_grads) def test_get_map_point(self): num_dims = 4; rank = 3; num_qoi=3 obs = np.random.normal(0.,1.,(num_qoi)) prior_mean = np.zeros((num_dims),float) prior_covariance = np.eye(num_dims)*0.25 prior_covariance_chol_factor = np.linalg.cholesky(prior_covariance) noise_covariance = np.eye(num_qoi)*0.1 noise_covariance_inv = np.linalg.inv(noise_covariance) misfit_model = QuadraticMisfitModel( num_dims, rank, num_qoi, obs, noise_covariance=noise_covariance) # exact map point should be mean of Gaussian posterior prior_hessian = np.linalg.inv(prior_covariance) exact_map_point = \ laplace_posterior_approximation_for_linear_models( misfit_model.Amatrix,prior_mean,prior_hessian, noise_covariance_inv,obs)[0] prior_density = NormalDensity(prior_mean,covariance=prior_covariance) objective = LogUnormalizedPosterior( misfit_model,misfit_model.gradient_set,prior_density.pdf, prior_density.log_pdf,prior_density.log_pdf_gradient) initial_point = prior_mean map_point, obj_min = find_map_point(objective,initial_point) assert np.allclose(exact_map_point.squeeze(), map_point) assert np.allclose( objective.gradient(map_point),objective.gradient(exact_map_point)) assert np.allclose(objective.gradient(map_point),np.zeros(num_dims)) def test_push_forward_gaussian_though_linear_model(self): num_qoi = 1 num_dims = 2 A = np.random.normal(0.,1.,(num_qoi,num_dims)) b = np.random.normal(0.,1.,(num_qoi)) mean = np.ones((num_dims),float) covariance = 0.1*np.eye(num_dims) covariance_chol_factor = cholesky(covariance) push_forward_mean, push_forward_covariance =\ push_forward_gaussian_though_linear_model(A,b,mean,covariance) # Generate samples from original density and push forward through model # and approximate density using KDE num_samples = 1000000 samples = dot(covariance_chol_factor, np.random.normal(0.,1.,(num_dims,num_samples)))+\ np.tile(mean.reshape(num_dims,1),num_samples) push_forward_samples = dot(A,samples)+b kde_density = ObsDataDensity(push_forward_samples) push_forward_density = NormalDensity( push_forward_mean,covariance=push_forward_covariance) test_samples = np.linspace( push_forward_samples.min(), push_forward_samples.max(),100).reshape(1,100) kde_values = kde_density.pdf(test_samples) normal_values = push_forward_density.pdf(test_samples) assert np.linalg.norm(kde_values-normal_values[:,0])<4e-2 #plt = kde_density.plot_density(1000,show=False) #import pylab #pylab.setp(plt, linewidth=2, color='r') #push_forward_density.plot_density(100,show=True) def test_quadratic_misfit_model(self): num_dims = 10; rank = 3; num_qoi=3 obs = np.random.normal(0.,1.,(num_qoi)) model = QuadraticMisfitModel(num_dims,rank,num_qoi,obs) sample = np.random.normal(0.,1.,(num_dims)) helper_gradient(model.value,model.gradient,sample) def test_neg_log_posterior(self): num_dims = 10; rank = 3; num_qoi=3 obs = np.random.normal(0.,1.,(num_qoi)) noise_covariance = np.eye(num_qoi)*0.1 misfit_model=QuadraticMisfitModel( num_dims,rank,num_qoi,obs,noise_covariance=noise_covariance) prior_mean = np.ones((num_dims),float) prior_covariance = np.eye(num_dims)*0.25 prior_density = NormalDensity(prior_mean,covariance=prior_covariance) objective = LogUnormalizedPosterior( misfit_model,misfit_model.gradient_set,prior_density.pdf, prior_density.log_pdf,prior_density.log_pdf_gradient) sample = np.random.normal(0.,1.,(num_dims)) helper_gradient(misfit_model.value,misfit_model.gradient,sample) def test_directional_derivative_using_finite_difference(self): num_dims = 10; rank = 3; num_qoi=3 model = QuadraticMisfitModel(num_dims,rank,num_qoi) directions = np.random.normal(0.,1.,(num_dims,2)) directions /= np.linalg.norm(directions,axis=0) # derivatives of function values sample = np.random.normal(0.,1.,(num_dims,1)) opts = {'eval_type':'value_grad'} result = model(sample,opts)[0,:] # result is num_samples x num_qoi. There is only one sample so take # first row of result above value_at_sample = result[0:1]# must be a vector gradient = result[1:] #gradient = model.gradient(sample) assert np.allclose(
np.dot(gradient,directions)
numpy.dot
"""Class for playing and annotating video sources in Python using Tkinter.""" import json import logging import pathlib import datetime import tkinter import tkinter.filedialog import numpy as np import cv2 import PIL.Image import PIL.ImageTk logger = logging.getLogger("VideoPyer") logging.basicConfig(level=logging.INFO) # Delay should be changed with caution # Tkinter event loop gets flooded with delays < 60 ms DELAY = 60 # Default colour options BKG_COLOUR = "#3E4149" COLOUR_MAP = {"blue": "#749CE2", "pink": "#E274CF", "green": "#8CE274"} class VideoPyer: # pylint: disable=too-many-instance-attributes """Play, pause and record position of mouse clicks on videos.""" def __init__(self, window: tkinter.Tk, title: str) -> None: """Set up video frame and menus of GUI, variables and logging. Args: window (tkinter.Tk): Main instance of tkinter.Tk. title (str): Title of Tk window. """ self.window = window self.window.title(title) self.window.configure(background=BKG_COLOUR) # Frame that will contain the video video_frame = tkinter.Frame(self.window) video_frame.pack(side=tkinter.TOP, pady=5) self.canvas = tkinter.Canvas(video_frame, bg=BKG_COLOUR) # Log position of double click on canvas to record salient 'point' self.canvas.bind("<Double-1>", self.log_point) # Log head direction arrow drawn on press and release of click self.canvas.bind("<Button-1>", self.log_click) self.canvas.bind("<ButtonRelease-1>", self.draw_line) self.arrow_start_x, self.arrow_start_y = None, None # Store start pos of click # Remove a selected tk object on backspace self.canvas.bind("<BackSpace>", self.remove_tk_object) self.selected_tk_object = None # Current object user selects # Rotate head direction arrow with Up or Down keys self.canvas.bind("<KeyPress>", self.rotate) self.canvas.focus_set() # Enable listen to key presses by default self.canvas.pack() # Frame that will display the menu buttons menu_frame = tkinter.Frame(self.window) menu_frame.pack(side=tkinter.BOTTOM, pady=5) # Button to select video self.btn_select = tkinter.Button( menu_frame, text="Select video", width=10, command=self.select_and_open_source, highlightbackground=BKG_COLOUR, ) self.btn_select.grid(row=0, column=0) # Button to begin play self.btn_play = tkinter.Button( menu_frame, text="Play", width=8, command=self.resume_video, highlightbackground=BKG_COLOUR, state="disabled", ) self.btn_play.grid(row=0, column=1) # Button to pause self.pause = False self.btn_pause = tkinter.Button( menu_frame, text="Pause", width=8, command=self.pause_video, highlightbackground=BKG_COLOUR, state="disabled", ) self.btn_pause.grid(row=0, column=2) # Mini menu to select marker colour for salient 'points' colours = list(COLOUR_MAP.keys()) var = tkinter.StringVar(video_frame) var.set(colours[0]) self.marker_colour = colours[0] opt_colour = tkinter.OptionMenu( video_frame, var, *colours, command=self.set_colour, ) opt_colour.config(bg=BKG_COLOUR, width=8) opt_colour.place(x=3, y=3) # Set up some variables for logging (points and arrows are logged independently) self.annotation_logs = dict() self.tkid_to_idx = dict() self.arrow_head_x, self.arrow_head_y = 0, 0 self.frame_counter, self.mouse_x, self.mouse_y = 0, 0, 0 self.arrows_log_keys = [ "frame_counter", "arrow_start_x", "arrow_start_y", "arrow_head_x", "arrow_head_y", "marker_colour", ] self.points_log_keys = ["frame_counter", "mouse_x", "mouse_y", "marker_colour"] self.filename = None # File currently loaded self.vid = None # OpenCV capture instance self.img = None # Holds current frame of video self.window.mainloop() def set_colour(self, value: str) -> None: """Set colour of visible marker for double mouse clicks.""" self.marker_colour = value def shrink(self, c_id: int, x: int, y: int, radius: int) -> None: """Shrink a Tk circle object over time before finalling removing it. Args: c_id (int): Integer ID of circle/oval object from Tk. x (int): X coord for circle centre. y (int): Y coord for circle centre. radius (int): Circle radius. """ if radius > 0.0: radius -= 0.5 self.canvas.coords(c_id, x - radius, y - radius, x + radius, y + radius) self.canvas.after(100, self.shrink, c_id, x, y, radius) else: self.canvas.delete(c_id) # Remove circle entirely def log_point(self, event: tkinter.Event) -> None: """Log the (x,y) coords of double mouse click during video and the frame number. Coordinates are given from top left of canvas. A fading marker becomes visible.""" logger.info( "Point (%d,%d). Frame %d. Colour %s.", event.x, event.y, self.frame_counter, self.marker_colour, ) self.mouse_x, self.mouse_y = event.x, event.y self.arrow_start_x, self.arrow_start_y = (event.x, event.y) # Potential arrow radius = 8 c_id = self.canvas.create_oval( self.mouse_x - radius, self.mouse_y - radius, self.mouse_x + radius, self.mouse_y + radius, fill=COLOUR_MAP[self.marker_colour], ) self.shrink(c_id, self.mouse_x, self.mouse_y, radius) # Shrink circle over time # Add relevant keys to logs for current file for key in self.points_log_keys: self.annotation_logs[self.filename]["points"].setdefault(key, []).append( getattr(self, key) ) def log_click(self, event: tkinter.Event) -> None: """Log (x,y) coords of mouse click during video. Check if user is clicking on existing line object to get ready for further commands (e.g. remove, rotate).""" self.arrow_start_x, self.arrow_start_y = event.x, event.y self.selected_tk_object = self.canvas.find_withtag("current")[ 0 ] # Top most object under mouse def draw_line(self, event: tkinter.Event) -> None: """Draw a line between on coords on press and release of click and log. The frame number recorded will be that at the time on release of click.""" self.arrow_head_x, self.arrow_head_y = event.x, event.y # Only draw intentional arrows (i.e. not just a result from regular clicks) if ( np.linalg.norm( np.array([self.arrow_start_x, self.arrow_start_y]) - np.array([self.arrow_head_x, self.arrow_head_y]) ) > 20 ): l_id = self.canvas.create_line( self.arrow_head_x, self.arrow_head_y, self.arrow_start_x, self.arrow_start_y, fill="yellow", arrow="first", ) logger.info( "Arrow %d (%d,%d) -> (%d, %d). Frame %d. Colour %s.", l_id, self.arrow_start_x, self.arrow_start_y, self.arrow_head_x, self.arrow_head_y, self.frame_counter, self.marker_colour, ) # Add arrow coordinates to logs for key in self.arrows_log_keys: self.annotation_logs[self.filename]["arrows"].setdefault( key, [] ).append(getattr(self, key)) # Maintain standard indexing starting from 0 self.tkid_to_idx[l_id] = ( len(self.annotation_logs[self.filename]["arrows"]["arrow_start_x"]) - 1 ) self.arrow_start_x, self.arrow_start_y = None, None def remove_tk_object(self, event: tkinter.Event) -> None: """Remove the tk object that is currently selected from the canvas and logs (only head direction arrows are currently removeable from logs).""" if self.selected_tk_object: self.canvas.delete(self.selected_tk_object) logger.info("Object w/ id %d removed from canvas.", self.selected_tk_object) # Remove object from our logs remove_idx = self.tkid_to_idx.get(self.selected_tk_object) if remove_idx is not None: # Else not a line object and thus not logged # Remove the object's recorded annotations for all keys for key in self.arrows_log_keys: self.annotation_logs[self.filename]["arrows"].setdefault(key, []) del self.annotation_logs[self.filename]["arrows"][key][remove_idx] # Decrement the indices larger than the object just removed for k in self.tkid_to_idx: if k > self.selected_tk_object: self.tkid_to_idx[k] -= 1 del self.tkid_to_idx[self.selected_tk_object] self.selected_tk_object = None else: logger.info("No object selected to remove via %s.", event.keysym) def rotate(self, event: tkinter.Event) -> None: """Rotate the selected object by 1 degree (increment or decrement depending on Up or Down key press). Currently only head direction arrows can be rotated.""" if ( self.selected_tk_object and self.canvas.type(self.selected_tk_object) == "line" ): # Calculate angle between arrow and 0 radians East x0, y0, x1, y1 = self.canvas.coords(self.selected_tk_object) vec = np.array([x0 - x1, y0 - y1]) unit_vec = vec / np.linalg.norm(vec) theta = np.arctan2(unit_vec[1], unit_vec[0]) # np.arctan2 takes (y, x) # Increment or decrement angle if event.keysym == "Up": theta += np.deg2rad(1) elif event.keysym == "Down": theta -= np.deg2rad(1) # Rotate arrow around it's origin radius = np.linalg.norm(np.array([x0, y0]) -
np.array([x1, y1])
numpy.array
from DNN.hans_on_feedforward_neural_network import Feedforward_neural_network import numpy as np Net = Feedforward_neural_network() #--------------------------多元回归实验----------------------------- # ---------------------------准备数据------------------------------- #------------------------------------------------------------------- # 20 维到 3 维的转换 X_data = np.random.uniform(0, 100, size=(1000, 20)) W = np.random.random(size=(20, 3)) Y_data = np.dot(X_data, W) # 给标签加上高斯白噪声,使之成为非线性关系 Y_data = Y_data +
np.random.normal(0, 10, size=Y_data.shape)
numpy.random.normal
#Contains MeldCohort and MeldSubject classes from contextlib import contextmanager from meld_classifier.paths import ( DEMOGRAPHIC_FEATURES_FILE, CORTEX_LABEL_FILE, SURFACE_FILE, DEFAULT_HDF5_FILE_ROOT, BOUNDARY_ZONE_FILE, NVERT, BASE_PATH, ) import pandas as pd import numpy as np import nibabel as nb import os import h5py import glob import logging import meld_classifier.mesh_tools as mt import scipy class MeldCohort: """Class to define cohort-level parameters such as subject ids, mesh""" def __init__(self, hdf5_file_root=DEFAULT_HDF5_FILE_ROOT, dataset=None, data_dir=BASE_PATH): self.data_dir = data_dir self.hdf5_file_root = hdf5_file_root self.dataset = dataset self.log = logging.getLogger(__name__) # class properties (readonly attributes): # full_feature_list: list of features available in this cohort self._full_feature_list = None # surface information known to MeldCohort # cortex_label: information about which nodes are cortex self._cortex_label = None self._cortex_mask = None # coords: spherical 2D coordinates self._coords = None # surf: inflated mesh, surface vertices and triangles self._surf = None # surf_partial: partially inflated mesh, surface vertices and triangles self._surf_partial = None # surf_area: surface area for each triangle self._surf_area = None # adj_mat: sparse adjacency matrix for all vertices self._adj_mat = None # lobes: labels for cortical lobes self._lobes = None # neighbours: list of neighbours for each vertex self._neighbours = None @property def full_feature_list(self): """list of features available in this cohort""" if self._full_feature_list is None: self._full_feature_list = [] subject_ids = self.get_subject_ids() # get union of all features from subjects in this cohort features = set() for subj in subject_ids: features = features.union(MeldSubject(subj, self).get_feature_list().copy()) self._full_feature_list = sorted(list(features)) self.log.info(f"full_feature_list: {self._full_feature_list}") return self._full_feature_list @property def cortex_label(self): if self._cortex_label is None: p = os.path.join(self.data_dir, CORTEX_LABEL_FILE) self._cortex_label = np.sort(nb.freesurfer.io.read_label(p)) return self._cortex_label @property def cortex_mask(self): if self._cortex_mask is None: self._cortex_mask = np.zeros(NVERT, dtype=bool) self._cortex_mask[self.cortex_label] = True return self._cortex_mask @property def surf_area(self): if self._surf_area is None: p = os.path.join(self.data_dir, "fsaverage_sym/surf/lh.area") self._surf_area = nb.freesurfer.read_morph_data(p) return self._surf_area @property def surf(self): """inflated surface, dict with 'faces' and 'coords'""" if self._surf is None: p = os.path.join(self.data_dir, "fsaverage_sym", "surf", "lh.inflated") self._surf = mt.load_mesh_geometry(p) return self._surf @property def surf_partial(self): """partially inflated surface, dict with 'faces' and 'coords'""" if self._surf_partial is None: p = os.path.join(self.data_dir, "fsaverage_sym", "surf", "lh.partial_inflated") vertices, faces = nb.freesurfer.io.read_geometry(p) self._surf_partial = {"faces": faces, "coords": vertices} return self._surf_partial @property def adj_mat(self): if self._adj_mat is None: all_edges = np.vstack( [self.surf["faces"][:, :2], self.surf["faces"][:, 1:3], self.surf["faces"][:, [2, 0]]] ) self._adj_mat = scipy.sparse.coo_matrix( (np.ones(len(all_edges), np.uint8), (all_edges[:, 0], all_edges[:, 1])), shape=(len(self.surf["coords"]), len(self.surf["coords"])), ).tocsr() return self._adj_mat @property def neighbours(self): if self._neighbours is None: self._neighbours = mt.get_neighbours_from_tris(self.surf["faces"]) return self._neighbours @property def lobes(self): if self._lobes is None: p = os.path.join(self.data_dir, "fsaverage_sym/label/lh.lobes.annot") self._lobes = nb.freesurfer.read_annot(p) return self._lobes @property def coords(self): if self._coords is None: surf = mt.load_mesh_geometry(os.path.join(self.data_dir, SURFACE_FILE)) # spherical 2D coordinates. ignore radius # spherical_coords = mt.spherical_np(surf["coords"])[:, 1:] # surf_coords_norm = (surf['coords']-np.min(surf['coords'],axis=0))/(np.max(surf['coords'],axis=0)-np.min(surf['coords'],axis=0)) # norm_coords = (spherical_coords - np.min(spherical_coords, axis=0)) / ( # np.max(spherical_coords, axis=0) - np.min(spherical_coords, axis=0) # ) # round to have around 1500 unique coordinates # rounded_norm_coords = np.round(norm_coords * 5, 1) / 5 self._coords = surf["coords"] #rounded_norm_coords return self._coords def read_subject_ids_from_dataset(self): """Read subject ids from the dataset csv file. Returns subject_ids, trainval_ids, test_ids""" assert self.dataset is not None, "please set a valid dataset csv file" df = pd.read_csv(os.path.join(self.data_dir, self.dataset)) subject_ids = list(df.subject_id) trainval_ids = list(df[df.split == "trainval"].subject_id) test_ids = list(df[df.split == "test"].subject_id) return subject_ids, trainval_ids, test_ids def get_sites(self): """get all valid site codes that exist on this system""" sites = [] for f in glob.glob(os.path.join(self.data_dir, "MELD_*")): if os.path.isdir(f): sites.append(f.split("_")[-1]) return sites @contextmanager def _site_hdf5(self, site_code, group, write=False, hdf5_file_root=None): """ Hdf5 file handle for specified site_code and group (patient or control). This function is to be used in a context block as follows: ``` with cohort._site_hdf5('H1', 'patient') as f: # read information from f pass # f is automatically closed outside of the `with` block ``` Args: site_code: hospital site code, e.g. 'H1' group: 'patient' or 'control' write (optional): flag to open hdf5 file with writing permissions, or to create the hdf5 if it does not exist. Yields: a pointer to the opened hdf5 file. """ if hdf5_file_root is None: hdf5_file_root = self.hdf5_file_root p = os.path.join(self.data_dir, f"MELD_{site_code}", hdf5_file_root.format(site_code=site_code, group=group)) # open existing file or create new one if os.path.isfile(p) and not write: f = h5py.File(p, "r") elif os.path.isfile(p) and write: f = h5py.File(p, "r+") elif not os.path.isfile(p) and write: f = h5py.File(p, "a") else: f = None try: yield f finally: if f is not None: f.close() def get_subject_ids(self, **kwargs): """Output list of subject_ids. List can be filtered by sites (given as list of site_codes, e.g. 'H2'), groups (patient / control / both), features (subject_features_to_exclude), Sites are given as a list of site_codes (e.g. 'H2'). Optionally filter subjects by group (patient or control). If self.dataset is not none, restrict subjects to subjects in dataset csv file. subject_features_to_exclude: exclude subjects that dont have this feature Args: site_codes (list of str): hospital site codes, e.g. ['H1']. group (str): 'patient', 'control', or 'both'. subject_features_to_exclude (list of str): exclude subjects that dont have this feature subject_features_to_include (list of str): exclude subjects that have this feature scanners (list of str): list of scanners to include lesional_only (bool): filter out lesion negative patients Returns: subject_ids: the list of subject ids """ # parse kwargs: # get groups if kwargs.get("group", "both") == "both": groups = ["patient", "control"] else: groups = [kwargs.get("group", "both")] # get sites site_codes = kwargs.get("site_codes", self.get_sites()) if isinstance(site_codes, str): site_codes = [site_codes] # get scanners scanners = kwargs.get("scanners", ["3T", "15T"]) if not isinstance(scanners, list): scanners = [scanners] lesional_only = kwargs.get("lesional_only", True) subject_features_to_exclude = kwargs.get("subject_features_to_exclude", [""]) subject_features_to_include = kwargs.get("subject_features_to_include", [""]) # get subjects for specified groups and sites subject_ids = [] for site_code in site_codes: for group in groups: with self._site_hdf5(site_code, group) as f: if f is None: continue cur_scanners = f[site_code].keys() for scanner in cur_scanners: subject_ids += list(f[os.path.join(site_code, scanner, group)].keys()) self.log.info(f"total number of subjects: {len(subject_ids)}") # restrict to ids in dataset (if specified) if self.dataset is not None: subjects_in_dataset, _, _ = self.read_subject_ids_from_dataset() subject_ids = list(np.array(subject_ids)[np.in1d(subject_ids, subjects_in_dataset)]) self.log.info( f"total number of subjects after restricting to subjects from {self.dataset}: {len(subject_ids)}" ) # get list of features that is used to filter subjects # e.g. use this to filter subjects without FLAIR features _, required_subject_features = self._filter_features( subject_features_to_exclude, return_excluded=True, ) self.log.debug("selecting subjects that have features: {}".format(required_subject_features)) # get list of features that determine whether to exclude subjects # e.g. use this to filter subjects with FLAIR features _, undesired_subject_features = self._filter_features( subject_features_to_include, return_excluded=True, ) self.log.debug("selecting subjects that don't have features: {}".format(undesired_subject_features)) # filter ids by scanner, features and whether they have lesions. filtered_subject_ids = [] for subject_id in subject_ids: subj = MeldSubject(subject_id, self) # check scanner if subj.scanner not in scanners: continue # check required features if not subj.has_features(required_subject_features): continue # check undesired features if subj.has_features(undesired_subject_features) and len(undesired_subject_features) > 0: continue # check lesion mask presence if lesional_only and subj.is_patient and not subj.has_lesion(): continue # subject has passed all filters, add to list filtered_subject_ids.append(subject_id) self.log.info( f"total number after filtering by scanner {scanners}, features, lesional_only {lesional_only}: {len(filtered_subject_ids)}" ) return filtered_subject_ids def get_features(self, features_to_exclude=[""]): """ get filtered list of features. """ # get list of all features that we want to train models on # if a subject does not have a feature, 0 is returned for this feature during dataset creation features = self._filter_features(features_to_exclude=features_to_exclude) self.log.debug("features that will be loaded in train/test datasets: {}".format(features)) return features def _filter_features(self, features_to_exclude, return_excluded=False): """Return a list of features, with features_to_exclude removed. Args: features_to_exclude (list of str): list of features that should be excluded, NB 'FLAIR' will exclude all FLAIR features but all other features must be exact matches return_excluded (bool): if True, return list of excluded features. Returns: tuple: features: the list of features with appropriate features excluded. excluded_features: list of all excluded features. Only returned, if return_exluded is specified. """ all_features = self.full_feature_list.copy() excludable_features = [] filtered_features = self.full_feature_list.copy() for feature in self.full_feature_list.copy(): for exclude in features_to_exclude: if exclude == "": pass elif exclude == "FLAIR": if exclude in feature: filtered_features.remove(feature) excludable_features.append(feature) elif feature == exclude: if exclude in self.full_feature_list: # only remove if still in list filtered_features.remove(feature) excludable_features.append(feature) if return_excluded: return filtered_features, excludable_features else: return filtered_features def split_hemispheres(self, input_data): """ split vector of cortex-masked data back into 2 full overlays, including zeros for medial wall Returns: hemisphere_data: dictionary with keys "left" and "right". """ # make sure that input_data has expected format assert len(input_data) == 2 * len(self.cortex_label) # split data in two hemispheres hemisphere_data = {} for i, hemi in enumerate(["left", "right"]): feature_data = np.zeros((NVERT,) + input_data.shape[1:]) feature_data[self.cortex_label] = input_data[i * len(self.cortex_label) : (i + 1) * len(self.cortex_label)] hemisphere_data[hemi] = feature_data return hemisphere_data class MeldSubject: """ individual patient from meld cohort, can read subject data and other info """ def __init__(self, subject_id, cohort): self.subject_id = subject_id self.cohort = cohort self.log = logging.getLogger(__name__) # unseeded rng for generating random numbers self.rng = np.random.default_rng() @property def scanner(self): _, site_code, scanner, group, ID = self.subject_id.split("_") return scanner @property def group(self): _, site_code, scanner, group, ID = self.subject_id.split("_") if group == "FCD": group = "patient" elif group == "C": group = "control" else: print( f"Error: incorrect naming scheme used for {self.subject_id}. Unable to determine if patient or control." ) return group @property def site_code(self): _, site_code, scanner, group, ID = self.subject_id.split("_") return site_code def surf_dir_path(self, hemi): """return path to features dir (surf_dir)""" return os.path.join(self.site_code, self.scanner, self.group, self.subject_id, hemi) @property def is_patient(self): return self.group == "patient" @property def has_flair(self): return "FLAIR" in " ".join(self.get_feature_list()) def has_lesion(self): return self.get_lesion_hemisphere() in ["lh", "rh"] def get_lesion_hemisphere(self): """ return 'lh', 'rh', or None """ if not self.is_patient: return None with self.cohort._site_hdf5(self.site_code, self.group) as f: surf_dir_lh = f.require_group(self.surf_dir_path("lh")) if ".on_lh.lesion.mgh" in surf_dir_lh.keys(): return "lh" surf_dir_rh = f.require_group(self.surf_dir_path("rh")) if ".on_lh.lesion.mgh" in surf_dir_rh.keys(): return "rh" return None def has_features(self, features): missing_features = np.setdiff1d(features, self.get_feature_list()) return len(missing_features) == 0 def get_feature_list(self, hemi="lh"): """Outputs a list of the features a participant has for each hemisphere""" with self.cohort._site_hdf5(self.site_code, self.group) as f: keys = list(f[self.surf_dir_path(hemi)].keys()) # remove lesion and boundaries from list of features if ".on_lh.lesion.mgh" in keys: keys.remove(".on_lh.lesion.mgh") if ".on_lh.boundary_zone.mgh" in keys: keys.remove(".on_lh.boundary_zone.mgh") return keys def get_demographic_features( self, feature_names, csv_file=DEMOGRAPHIC_FEATURES_FILE, normalize=False, default=None ): """ Read demographic features from csv file. Features are given as (partial) column titles Args: feature_names: list of partial column titles of features that should be returned csv_path: csv file containing demographics information. can be raw participants file or qc-ed values. "{site_code}" is replaced with current site_code. normalize: implemented for "Age of Onset" and "Duration" default: default value to be used when subject does not exist. Either "random" (which will choose a random value from the current demographics feature column) or any other value which will be used as default value. Returns: list of features, matching structure of feature_names """ csv_path = os.path.join(self.cohort.data_dir, csv_file) return_single = False if isinstance(feature_names, str): return_single = True feature_names = [feature_names] df = pd.read_csv(csv_path, header=0, encoding="latin") # get index column id_col = None for col in df.keys(): if "ID" in col: id_col = col # ensure that found an index column if id_col is None: self.log.warning("No ID column found in file, please check the csv file") return None df = df.set_index(id_col) # find desired demographic features features = [] for desired_name in feature_names: matched_name = None for col in df.keys(): if desired_name in col: if matched_name is not None: # already found another matching col self.log.warning( f"Multiple columns matching {desired_name} found ({matched_name}, {col}), please make search more specific" ) return None matched_name = col # ensure that found necessary data if matched_name is None: if "urfer" in desired_name: matched_name = "Freesurfer_nul" else: self.log.warning(f"Unable to find column matching {desired_name}, please double check for typos") return None # read feature # if subject does not exists, add None if self.subject_id in df.index: if matched_name == "Freesurfer_nul": feature = "5.3" else: feature = df.loc[self.subject_id][matched_name] if normalize: if matched_name == "Age of onset": feature = np.log(feature + 1) feature = feature / df[matched_name].max() elif matched_name == "Duration": feature = (feature - df[matched_name].min()) / (df[matched_name].max() - df[matched_name].min()) else: self.log.info(f"demographic feature normalisation not implemented for feature {matched_name}") elif default == "random": # unseeded rng for generating random numbers rng = np.random.default_rng() feature = np.clip(np.random.normal(0, 0.1) + rng.choice(df[matched_name]), 0, 1) else: feature = default features.append(feature) if return_single: return features[0] return features def load_feature_values(self, feature, hemi="lh"): """ Load and return values of specified feature. """ feature_values = np.zeros(NVERT, dtype=np.float32) # read data from hdf5 with self.cohort._site_hdf5(self.site_code, self.group) as f: surf_dir = f[self.surf_dir_path(hemi)] if feature in surf_dir.keys(): feature_values[:] = surf_dir[feature][:] else: self.log.debug(f"missing feature: {feature} set to zero") return feature_values def load_feature_lesion_data(self, features, hemi="lh", features_to_ignore=[]): """ Load all patient's data into memory Args: features: list of features to be loaded hemi: 'lh' or 'rh' features_to_ignore: list of features that should be replaced with 0 upon loading Returns: feature_data, label """ # load all features feature_values = [] for feature in features: if feature in features_to_ignore: # append zeros for features_to_ignore feature_values.append(np.zeros(NVERT, dtype=np.float32)) else: # read feature_values feature_values.append(self.load_feature_values(feature, hemi=hemi)) feature_values = np.stack(feature_values, axis=-1) # load lesion data lesion_values = np.ceil(self.load_feature_values(".on_lh.lesion.mgh", hemi=hemi)).astype(int) return feature_values, lesion_values def load_boundary_zone(self, max_distance=40, feat_name=".on_lh.boundary_zone.mgh"): """ load and return boundary zone mask max_distance - distance from lesion mask to extend boundary zone in mm 30 for training exclusion, 20 for sensitivity testing """ cortex_mask = self.cohort.cortex_mask boundary_zones = np.zeros(2 * sum(cortex_mask)).astype(float) hemi = self.get_lesion_hemisphere() for k, h in enumerate(["lh", "rh"]): if hemi == h: bz = self.load_feature_values(feat_name, hemi=hemi) if max_distance is not None: bz = bz < max_distance boundary_zones[k * sum(cortex_mask) : (k + 1) * sum(cortex_mask)] = bz[cortex_mask] else: bz = np.zeros(len(cortex_mask)) boundary_zones[k * sum(cortex_mask) : (k + 1) * sum(cortex_mask)] = bz[cortex_mask] return boundary_zones def get_histology(self): """ get histological classification from cleaned up demographics files """ histology = self.get_demographic_features("Histo") return histology # TODO write test def write_feature_values(self, feature, feature_values, hemis=["lh", "rh"], hdf5_file=None, hdf5_file_root=None): """ write feature to subject's hdf5. Args: feature: name of the feature feature_values: feature values to be written to the hdf5 hemis: hemispheres that should be written. If only one hemisphere is given, it is assumed that all values given with feature_values belong to this hemisphere. hdf5_file: uses self.cohort._site_hdf5 by default, but another filename can be specified, e.g. to write predicted lesions to another hdf5 hdf5_file_root: optional to specify a different root from baseline, if writing to a new file """ # check that feature_values have expected length if hdf5_file_root is None: hdf5_file_root = self.cohort.hdf5_file_root assert len(feature_values) == sum(self.cohort.cortex_mask) * len(hemis) n_vert_cortex = sum(self.cohort.cortex_mask) # open hdf5 file if hdf5_file is not None: if not os.path.isfile(hdf5_file): hdf5_file_context = h5py.File(hdf5_file, "a") else: hdf5_file_context = h5py.File(hdf5_file, "r+") else: hdf5_file_context = self.cohort._site_hdf5( self.site_code, self.group, write=True, hdf5_file_root=hdf5_file_root ) with hdf5_file_context as f: for i, hemi in enumerate(hemis): group = f.require_group(self.surf_dir_path(hemi)) hemi_data = np.zeros(NVERT) hemi_data[self.cohort.cortex_mask] = feature_values[i * n_vert_cortex : (i + 1) * n_vert_cortex] dset = group.require_dataset( feature, shape=(NVERT,), dtype="float32", compression="gzip", compression_opts=9 ) dset[:] = hemi_data def delete(self, f, feat): print("delete") del f[feat] def get_lesion_area(self): """ calculate lesion area as the proportion of the hemisphere that is lesion. Returns: lesion_area, lesion_hemisphere, lesion_lobe """ hemi = self.get_lesion_hemisphere() lobes_i, _, lobes_labels = self.cohort.lobes if hemi is not None: lesion = self.load_feature_values(".on_lh.lesion.mgh", hemi=hemi).astype(bool) total_area = np.sum(self.cohort.surf_area[self.cohort.cortex_mask]) lesion_area =
np.sum(self.cohort.surf_area[lesion])
numpy.sum
import numpy as np import math import os def load_obj(dire): fin = open(dire,'r') lines = fin.readlines() fin.close() vertices = [] triangles = [] for i in range(len(lines)): line = lines[i].split() if len(line)==0: continue if line[0] == 'v': x = float(line[1]) y = float(line[2]) z = float(line[3]) vertices.append([x,y,z]) if line[0] == 'f': x = int(line[1].split("/")[0]) y = int(line[2].split("/")[0]) z = int(line[3].split("/")[0]) triangles.append([x-1,y-1,z-1]) vertices = np.array(vertices, np.float32) #remove isolated points triangles_ =
np.array(triangles, np.int32)
numpy.array
# Licensed under an MIT open source license - see LICENSE """ SCOUSE - Semi-automated multi-COmponent Universal Spectral-line fitting Engine Copyright (c) 2016-2018 <NAME> CONTACT: <EMAIL> """ import numpy as np import sys import warnings import pyspeckit import matplotlib.pyplot as plt import itertools import time from astropy import log from astropy import units as u from astropy.utils.console import ProgressBar from .indiv_spec_description import * from .parallel_map import * from .saa_description import add_indiv_spectra, clean_up, merge_models from .solution_description import fit, print_fit_information from .verbose_output import print_to_terminal def initialise_indiv_spectra(scouseobject, verbose=False, njobs=1): """ Here, the individual spectra are primed ready for fitting. We create a new object for each spectrum and they are contained within a dictionary which can be located within the relavent SAA. Parameters ---------- scouseobject : Instance of the scousepy class verbose : bool (optional) verbose output njobs : number (optional) number of cores used for the computation - prep spec is parallelised """ # Cycle through potentially multiple wsaa values for i in range(len(scouseobject.wsaa)): # Get the relavent SAA dictionary saa_dict = scouseobject.saa_dict[i] # initialise the progress bar if verbose: count=0 progress_bar = print_to_terminal(stage='s3', step='init', length=len(saa_dict.keys()), var=scouseobject.wsaa[i]) for _key in saa_dict.keys(): prep_spec(_key, saa_dict, njobs, scouseobject) if verbose: progress_bar.update() if verbose: print("") def prep_spec(_key, saa_dict, njobs, scouseobject): """ Prepares the spectra for automated fitting Parameters ---------- _key : number key for SAA dictionary entry - used to select the correct SAA saa_dict : dictionary dictionary of spectral averaging areas njobs : number number of cores used for the computation - prep spec is parallelised scouseobject : Instance of the scousepy class """ # get the relavent SAA SAA = saa_dict[_key] # Initialise indiv spectra indiv_spectra = {} # We only care about the SAA's that are to be fit at this stage if SAA.to_be_fit: if np.size(SAA.indices_flat) != 0.0: # Parallel if njobs > 1: args = [scouseobject, SAA] inputs = [[k] + args for k in range(len(SAA.indices_flat))] # Send to parallel_map indiv_spec = parallel_map(get_indiv_spec,inputs,numcores=njobs) # flatten the output from parallel map merged_spec = [spec for spec in indiv_spec if spec is not None] merged_spec = np.asarray(merged_spec) for k in range(len(SAA.indices_flat)): # Add the spectra to the dict key = SAA.indices_flat[k] indiv_spectra[key] = merged_spec[k] else: for k in range(len(SAA.indices_flat)): key = SAA.indices_flat[k] args = [scouseobject, SAA] inputs = [[k] + args] inputs = inputs[0] indiv_spec = get_indiv_spec(inputs) indiv_spectra[key] = indiv_spec # add the spectra to the spectral averaging areas add_indiv_spectra(SAA, indiv_spectra) def get_indiv_spec(inputs): """ Returns a spectrum Parameters ---------- inputs : list list containing inputs to parallel map - contains the index of the relavent spectrum, the scouseobject, and the SAA """ idx, scouseobject, SAA = inputs # get the coordinates of the pixel based on the flattened index _coords = np.unravel_index(SAA.indices_flat[idx],scouseobject.cube.shape[1:]) # create a pyspeckit spectrum indiv_spec = spectrum(_coords, \ scouseobject.cube[:,_coords[0], _coords[1]].value, \ idx=SAA.indices_flat[idx], \ scouse=scouseobject) return indiv_spec def fit_indiv_spectra(scouseobject, saa_dict, wsaa, njobs=1, spatial=False, verbose=False, stage=3): """ Automated fitting procedure for individual spectra Parameters ---------- scouseobject : Instance of the scousepy class saa_dict : dictionary dictionary of spectral averaging areas wsaa : number width of the SAA njobs : number (optional) number of cores used for the computation - prep spec is parallelised spatial : bool (optional) not implemented yet verbose : bool (optional) verbose output stage : number (optional) indicates whether the fitting is being performed during stage 3 or 6 """ if verbose: if stage == 3: progress_bar = print_to_terminal(stage='s3', step='fitting', length=len(saa_dict.keys()), var=wsaa) else: progress_bar = print_to_terminal(stage='s6', step='fitting', length=len(saa_dict.keys()), var=wsaa) for _key in saa_dict.keys(): fitting_spec(_key, scouseobject, saa_dict, wsaa, njobs, spatial) if verbose: progress_bar.update() if verbose: print("") def fitting_spec(_key, scouseobject, saa_dict, wsaa, njobs, spatial): """ The automated fitting process followed by scouse Parameters ---------- _key : number key for SAA dictionary entry - used to select the correct SAA scouseobject : Instance of the scousepy class saa_dict : dictionary dictionary of spectral averaging areas wsaa : number width of the SAA njobs : number number of cores used for the computation - prep spec is parallelised spatial : bool not implemented yet """ # get the relavent SAA SAA = saa_dict[_key] # We only care about those locations we have SAA fits for. if SAA.to_be_fit: # Shhh with warnings.catch_warnings(): warnings.simplefilter('ignore') old_log = log.level log.setLevel('ERROR') # Generate a template spectrum template_spectrum = generate_template_spectrum(scouseobject) log.setLevel(old_log) # Get the SAA model solution parent_model = SAA.model # Parallel if njobs > 1: if np.size(SAA.indices_flat) != 0.0: args = [scouseobject, SAA, parent_model, template_spectrum] inputs = [[k] + args for k in range(len(SAA.indices_flat))] # Send to parallel_map bfs = parallel_map(fit_a_spectrum, inputs, numcores=njobs) merged_bfs = [core_bf for core_bf in bfs if core_bf is not None] merged_bfs = np.asarray(merged_bfs) for k in range(len(SAA.indices_flat)): # Add the models to the spectra key = SAA.indices_flat[k] add_model_parent(SAA.indiv_spectra[key], merged_bfs[k,0]) add_model_dud(SAA.indiv_spectra[key], merged_bfs[k,1]) else: # If njobs = 1 just cycle through for k in range(len(SAA.indices_flat)): key = SAA.indices_flat[k] args = [scouseobject, SAA, parent_model, template_spectrum] inputs = [[k] + args] inputs = inputs[0] bfs = fit_a_spectrum(inputs) add_model_parent(SAA.indiv_spectra[key], bfs[0]) add_model_dud(SAA.indiv_spectra[key], bfs[1]) def generate_template_spectrum(scouseobject): """ Generate a template spectrum to be passed to the fitter. This will contain some basic information that will be updated during the fitting process. This is implemented because the parallelised fitting replaces the spectrum in memory and things...break Parameters ---------- scouseobject : Instance of the scousepy class """ x=scouseobject.xtrim y=scouseobject.saa_dict[0][0].ytrim rms=scouseobject.saa_dict[0][0].rms return pyspeckit.Spectrum(data=y, error=np.ones(len(y))*rms, xarr=x, doplot=False, unit=scouseobject.cube.header['BUNIT'], xarrkwargs={'unit':'km/s', 'refX': scouseobject.cube.wcs.wcs.restfrq*u.Hz, 'velocity_convention': 'radio', }, verbose=False ) def get_flux(scouseobject, indiv_spec): """ Returns flux for a given spectrum Parameters ---------- scouseobject : Instance of the scousepy class indiv_spec : Instance of the fit class the spectrum to be fit, produced by prep spec """ y=scouseobject.cube[:,indiv_spec.coordinates[0],indiv_spec.coordinates[1]] y=y[scouseobject.trimids] return y def get_spec(scouseobject, indiv_spec, template_spectrum): """ Here we update the template with values corresponding to the spectrum we want to fit Parameters ---------- scouseobject : Instance of the scousepy class indiv_spec : pyspeckit spectrum the spectrum to be fit, produced by prep spec template_spectrum : pyspeckit spectrum dummy spectrum to be updated """ y = get_flux(scouseobject, indiv_spec) rms=indiv_spec.rms template_spectrum.data = u.Quantity(y).value template_spectrum.error = u.Quantity(np.ones(len(y))*rms).value template_spectrum.specfit.spectofit = u.Quantity(y).value template_spectrum.specfit.errspec = u.Quantity(np.ones(len(y))*rms).value return template_spectrum def fit_a_spectrum(inputs): """ Process used for fitting spectra. Returns a best-fit solution and a dud for every spectrum. Parameters ---------- inputs : list list containing inputs to parallel map - contains the spectrum index, the scouseobject, SAA, the best-fitting model solution to the SAA, and the template spectrum """ idx, scouseobject, SAA, parent_model, template_spectrum = inputs key = SAA.indices_flat[idx] spec=None # Shhh with warnings.catch_warnings(): warnings.simplefilter('ignore') old_log = log.level log.setLevel('ERROR') # update the template spec = get_spec(scouseobject, SAA.indiv_spectra[key], template_spectrum) log.setLevel(old_log) # begin the fitting process bf = fitting_process_parent(scouseobject, SAA, key, spec, parent_model) # if the result is a zero component fit, create a dud spectrum if bf.ncomps == 0.0: dud = bf else: dud = fitting_process_duds(scouseobject, SAA, key, spec) return [bf, dud] def fitting_process_parent(scouseobject, SAA, key, spec, parent_model): """ Pyspeckit fitting of an individual spectrum using the parent SAA model Parameters ---------- scouseobject : Instance of the scousepy class SAA : Instance of the saa class scousepy spectral averaging area key : number index of the individual spectrum spec : pyspeckit spectrum the spectrum to fit parent_model : instance of the fit class best-fitting model solution to the parent SAA """ # Check the model happy = False initfit = True fit_dud = False while not happy: if np.all(np.isfinite(np.array(spec.flux))): if initfit: guesses = np.asarray(parent_model.params) if np.sum(guesses) != 0.0: with warnings.catch_warnings(): warnings.simplefilter('ignore') old_log = log.level log.setLevel('ERROR') spec.specfit(interactive=False, \ clear_all_connections=True,\ xmin=scouseobject.ppv_vol[0], \ xmax=scouseobject.ppv_vol[1], \ fittype = scouseobject.fittype, \ guesses = guesses,\ verbose=False,\ use_lmfit=True) log.setLevel(old_log) modparnames = spec.specfit.fitter.parnames modncomps = spec.specfit.npeaks modparams = spec.specfit.modelpars moderrors = spec.specfit.modelerrs modrms = spec.error[0] _inputs = [modparnames, [modncomps], modparams, moderrors, [modrms]] happy, guesses = check_spec(scouseobject, parent_model, _inputs, happy) initfit = False else: # If no satisfactory model can be found - fit a dud! fit_dud=True happy = True else: # If no satisfactory model can be found - fit a dud! fit_dud = True happy = True if fit_dud: bf = fitting_process_duds(scouseobject, SAA, key, spec) else: bf = fit(spec, idx=key, scouse=scouseobject) return bf def fitting_process_duds(scouseobject, SAA, key, spec): """ Fitting duds Parameters ---------- scouseobject : Instance of the scousepy class SAA : Instance of the saa class scousepy spectral averaging area key : number index of the individual spectrum spec : pyspeckit spectrum the spectrum to fit """ bf = fit(spec, idx=key, scouse=scouseobject, fit_dud=True,\ noise=SAA.indiv_spectra[key].rms, \ duddata=np.array(spec.flux)) return bf def check_spec(scouseobject, parent_model, inputs, happy): """ This routine controls the fit quality. Here we are going to check the output spectrum against user-defined tolerance levels described in Henshaw et al. 2016 and against the SAA fit. Parameters ---------- scouseobject : Instance of the scousepy class parent_model : instance of the fit class best-fitting model solution to the parent SAA inputs : list contains various information about the model (see fitting_process_parent) happy : bool fitting stops when happy = True """ guesses = np.asarray(inputs[2]) condition_passed = np.zeros(3, dtype='bool') condition_passed, guesses = check_rms(scouseobject, inputs, guesses, condition_passed) if condition_passed[0]: condition_passed, guesses = check_dispersion(scouseobject, inputs, parent_model, guesses, condition_passed) if (condition_passed[0]) and (condition_passed[1]): condition_passed, guesses = check_velocity(scouseobject, inputs, parent_model, guesses, condition_passed) if np.all(condition_passed): if (inputs[1][0] == 1): happy = True else: happy, guesses = check_distinct(scouseobject, inputs, parent_model, guesses, happy) return happy, guesses def unpack_inputs(inputs): """ Unpacks the input list Parameters: ----------- inputs : list contains various information about the model (see fitting_process_parent) """ parnames = [pname.lower() for pname in inputs[0]] nparams = np.size(parnames) ncomponents = inputs[1][0] params = inputs[2] errors = inputs[3] rms = inputs[4][0] return parnames, nparams, ncomponents, params, errors, rms def get_index(parnames, namelist): """ Searches for a particular parname in a list and returns the index of where that parname appears Parameters ---------- parnames : list list of strings containing the names of the parameters in the pyspeckit fit. This will vary depending on the input model so keep as general as possibleself namelist : list list of various names used by pyspeckit for parameters in the model """ foundname = [pname in namelist for pname in parnames] foundname = np.array(foundname) idx = np.where(foundname==True)[0] return np.asscalar(idx[0]) def check_rms(scouseobject, inputs, guesses, condition_passed): """ Check the rms of the best-fitting model components Parameters ---------- scouseobject : Instance of the scousepy class inputs : list contains various information about the model (see fitting_process_parent) guesses : array like array or list of guesses to be fed to pyspeckit in case refitting is required condition_passed : list boolean list indicating which quality control steps have been satisfied Notes ----- I'm comparing one of the parameters in _peaknames against the rms value. This isn't strictly correct for models other than Gaussian, since e.g. Tex isn't equivalent to the amplitude of the model component. However, in the absence of anything else to compare, I will leave this for now and think of something better. """ parnames, nparams, ncomponents, params, errors, rms = unpack_inputs(inputs) # Find where the peak is located in the parameter array namelist = ['tex', 'amp', 'amplitude', 'peak', 'tant', 'tmb'] idx = get_index(parnames, namelist) # Now check all components to see if they are above the rms threshold for i in range(int(ncomponents)): if (params[int((i*nparams)+idx)] < rms*scouseobject.tolerances[0]): # or \ #(params[int((i*nparams)+idx)] < errors[int((i*nparams)+idx)]*scouseobject.tolerances[0]): # set to zero guesses[int((i*nparams)):int((i*nparams)+nparams)] = 0.0 violating_comps = (guesses==0.0) if np.any(violating_comps): condition_passed[0]=False else: condition_passed[0]=True guesses = guesses[(guesses != 0.0)] return condition_passed, guesses def check_dispersion(scouseobject,inputs,parent_model,guesses,condition_passed): """ Check the fwhm of the best-fitting model components Parameters ---------- scouseobject : Instance of the scousepy class inputs : list contains various information about the model (see fitting_process_parent) parent_model : instance of the fit class best-fitting model solution to the parent SAA guesses : array like array or list of guesses to be fed to pyspeckit in case refitting is required condition_passed : list boolean list indicating which quality control steps have been satisfied """ fwhmconv = 2.*np.sqrt(2.*np.log(2.)) parnames, nparams, ncomponents, params, errors, rms = unpack_inputs(inputs) # Find where the velocity dispersion is located in the parameter array namelist = ['dispersion', 'width', 'fwhm'] idx = get_index(parnames, namelist) for i in range(int(ncomponents)): # Find the closest matching component in the parent SAA model diff = find_closest_match(i, nparams, ncomponents, params, parent_model) idmin = np.where(diff == np.min(diff))[0] idmin = idmin[0] # Work out the relative change in velocity dispersion relchange = params[int((i*nparams)+idx)]/parent_model.params[int((idmin*nparams)+idx)] if relchange < 1.: relchange = 1./relchange # Does this satisfy the criteria if (params[int((i*nparams)+idx)]*fwhmconv < scouseobject.cube.header['CDELT3']*scouseobject.tolerances[1]) or \ (relchange > scouseobject.tolerances[2]): # set to zero guesses[int((i*nparams)):int((i*nparams)+nparams)] = 0.0 violating_comps = (guesses==0.0) if np.any(violating_comps): condition_passed[1]=False else: condition_passed[1]=True guesses = guesses[(guesses != 0.0)] return condition_passed, guesses def check_velocity(scouseobject,inputs,parent_model,guesses,condition_passed): """ Check the centroid velocity of the best-fitting model components Parameters ---------- scouseobject : Instance of the scousepy class inputs : list contains various information about the model (see fitting_process_parent) parent_model : instance of the fit class best-fitting model solution to the parent SAA guesses : array like array or list of guesses to be fed to pyspeckit in case refitting is required condition_passed : list boolean list indicating which quality control steps have been satisfied """ parnames, nparams, ncomponents, params, errors, rms = unpack_inputs(inputs) # Find where the peak is located in the parameter array namelist = ['velocity', 'shift', 'centroid', 'center'] idxv = get_index(parnames, namelist) # Find where the velocity dispersion is located in the parameter array namelist = ['dispersion', 'width', 'fwhm'] idxd = get_index(parnames, namelist) for i in range(int(ncomponents)): # Find the closest matching component in the parent SAA model diff = find_closest_match(i, nparams, ncomponents, params, parent_model) idmin = np.where(diff == np.min(diff))[0] idmin = idmin[0] # Limits for tolerance lower_lim = parent_model.params[int((idmin*nparams)+idxv)]-(scouseobject.tolerances[3]*parent_model.params[int((idmin*nparams)+idxd)]) upper_lim = parent_model.params[int((idmin*nparams)+idxv)]+(scouseobject.tolerances[3]*parent_model.params[int((idmin*nparams)+idxd)]) # Does this satisfy the criteria if (params[(i*nparams)+idxv] < lower_lim) or \ (params[(i*nparams)+idxv] > upper_lim): # set to zero guesses[int((i*nparams)):int((i*nparams)+nparams)] = 0.0 violating_comps = (guesses==0.0) if np.any(violating_comps): condition_passed[2]=False else: condition_passed[2]=True guesses = guesses[(guesses != 0.0)] return condition_passed, guesses def check_distinct(scouseobject,inputs,parent_model,guesses,happy): """ Check to see if component pairs can be distinguished in velocity Parameters ---------- scouseobject : Instance of the scousepy class inputs : list contains various information about the model (see fitting_process_parent) parent_model : instance of the fit class best-fitting model solution to the parent SAA guesses : array like array or list of guesses to be fed to pyspeckit in case refitting is required condition_passed : list boolean list indicating which quality control steps have been satisfied """ parnames, nparams, ncomponents, params, errors, rms = unpack_inputs(inputs) # Find where the peak is located in the parameter array namelist = ['tex', 'amp', 'amplitude', 'peak', 'tant', 'tmb'] idxp = get_index(parnames, namelist) # Find where the peak is located in the parameter array namelist = ['velocity', 'shift', 'centroid', 'center'] idxv = get_index(parnames, namelist) # Find where the velocity dispersion is located in the parameter array namelist = ['dispersion', 'width', 'fwhm'] idxd = get_index(parnames, namelist) fwhmconv = 2.*np.sqrt(2.*np.log(2.)) intlist = [params[int((i*nparams)+idxp)] for i in range(int(ncomponents))] velolist = [params[int((i*nparams)+idxv)] for i in range(int(ncomponents))] displist = [params[int((i*nparams)+idxd)] for i in range(int(ncomponents))] diff = np.zeros(int(ncomponents)) validvs = np.ones(int(ncomponents)) for i in range(int(ncomponents)): if validvs[i] != 0.0: # Calculate the velocity difference between all components for j in range(int(ncomponents)): diff[j] = abs(velolist[i]-velolist[j]) diff[(diff==0.0)] = np.nan # Find the minimum difference (i.e. the adjacent component) idmin = np.where(diff==np.nanmin(diff))[0] idmin = idmin[0] adjacent_intensity = intlist[idmin] adjacent_velocity = velolist[idmin] adjacent_dispersion = displist[idmin] # Get the separation between each component and its neighbour sep =
np.abs(velolist[i] - adjacent_velocity)
numpy.abs
import math import numpy as np from scipy import signal def gaussian_pdf_1d(mu, sigma, length): '''Generate one dimension Gaussian distribution - input mu: the mean of pdf - input sigma: the standard derivation of pdf - input length: the size of pdf - output: a row vector represents one dimension Gaussian distribution ''' # create an array half_len = length / 2 if np.remainder(length, 2) == 0: ax = np.arange(-half_len, half_len, 1) else: ax = np.arange(-half_len, half_len + 1, 1) ax = ax.reshape([-1, ax.size]) denominator = sigma * np.sqrt(2 * np.pi) nominator = np.exp( -np.square(ax - mu) / (2 * sigma * sigma) ) return nominator / denominator def gaussian_pdf_2d(mu, sigma, row, col): '''Generate two dimensional Gaussian distribution - input mu: the mean of pdf - input sigma: the standard derivation of pdf - input row: length in row axis - input column: length in column axis - output: a 2D matrix represents two dimensional Gaussian distribution ''' # create row vector as 1D Gaussian pdf g_row = gaussian_pdf_1d(mu, sigma, row) # create column vector as 1D Gaussian pdf g_col = gaussian_pdf_1d(mu, sigma, col).transpose() return signal.convolve2d(g_row, g_col, mode='full') def get_derivatives(gray, sigma=0.4): '''Compute gradient information of the input grayscale image - Input gray: H x W matrix as image - Output mag: H x W matrix represents the magnitude of derivatives - Output magx: H x W matrix represents the magnitude of derivatives along x-axis - Output magy: H x W matrix represents the magnitude of derivatives along y-axis - Output ori: H x W matrix represents the orientation of derivatives ''' mu = 0 sigma = sigma # 0.4, less sigma, more blurred edge Ga = gaussian_pdf_2d(mu, sigma, 5, 5) # Filter dx = np.array([[1, 0, -1]]) # Horizontal dy = np.array([[1], [0], [-1]]) # Vertical #dx = np.array([[1, -1]]) # Horizontal #dy = np.array([[1],[-1]]) # Vertical # Convolution of image #Gx = np.convolve(Ga, dx, 'same') #Gy = np.convolve(Ga, dy, 'same') #lx = np.convolve(I_gray, Gx, 'same') #ly = np.convolve(I_gray, Gy, 'same') Gx = signal.convolve2d(Ga, dx, mode='same', boundary='fill') Gy = signal.convolve2d(Ga, dy, mode='same', boundary='fill') lx = signal.convolve2d(gray, Gx, mode='same', boundary='fill') ly = signal.convolve2d(gray, Gy, mode='same', boundary='fill') # Magnitude mag = np.sqrt(lx*lx+ly*ly) # Angle angle =
np.arctan(ly/lx)
numpy.arctan
""" desisim.spec_qa.redshifts ========================= Module to run high_level QA on a given DESI run Written by JXP on 3 Sep 2015 """ from __future__ import print_function, absolute_import, division import matplotlib # matplotlib.use('Agg') import numpy as np import sys, os, pdb, glob from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from astropy.io import fits from astropy.table import Table, vstack, hstack, MaskedColumn, join try: from scipy import constants C_LIGHT = constants.c/1000.0 except TypeError: # This can happen during documentation builds. C_LIGHT = 299792458.0/1000.0 import desispec.io from .utils import elg_flux_lim, get_sty_otype, catastrophic_dv, match_otype from desiutil.log import get_logger, DEBUG def calc_dz(simz_tab): '''Calcualte deltaz/(1+z) for a given simz_tab ''' dz = (simz_tab['Z']-simz_tab['TRUEZ'])/(1+simz_tab['TRUEZ']) # return dz def calc_dzsig(simz_tab): '''Calcualte deltaz/sig(z) for a given simz_tab ''' dzsig = (simz_tab['Z']-simz_tab['TRUEZ'])/simz_tab['ZERR'] # return dzsig def calc_obj_stats(simz_tab, objtype): """Calculate redshift statistics for a given objtype Parameters ---------- simz_tab : Table TODO: document this objtype : str Object type, e.g. 'ELG', 'LRG' Returns ------- stat_dict : dict Survey results for a given object type """ # zstats ngood, nfail, nmiss, nlost = zstats(simz_tab, objtype=objtype, count=True, survey=True) ntot = ngood+nfail+nmiss+nlost # Grab the masks objtype_mask, z_mask, survey_mask, dv_mask, zwarn_mask = criteria(simz_tab, objtype=objtype) # Init stat_dict = {} #dict(OBJTYPE=objtype) # N targets (irrespective of the Survey) stat_dict['N_TARG'] = ntot # Number of objects with Redshift Analysis stat_dict['N_zA'] = np.count_nonzero(z_mask & objtype_mask) # Redshift measured (includes catastrophics) # For ELGs, cut on OII_Flux too stat_dict['N_SURVEY'] = np.count_nonzero(survey_mask & objtype_mask & z_mask) # Catastrophic failures in the survey stat_dict['N_CAT'] = nfail if stat_dict['N_SURVEY'] > 0: stat_dict['CAT_RATE'] = float(nfail)/stat_dict['N_SURVEY'] else: stat_dict['CAT_RATE'] = 0 # Good redshifts in the survey stat_dict['N_GOODZ'] = ngood # Redshift with ZWARN=0 in the survey stat_dict['N_ZWARN0'] = ngood+nfail # Survey Efficiency if stat_dict['N_SURVEY'] > 0: stat_dict['EFF'] = float(ngood)/float(stat_dict['N_SURVEY']) else: stat_dict['EFF'] = 1. # Purity if stat_dict['N_ZWARN0'] > 0: stat_dict['PURITY'] = float(ngood)/float(stat_dict['N_ZWARN0']) else: stat_dict['PURITY'] = 1. # delta z gdz_tab = slice_simz(simz_tab, objtype=objtype, survey=True, goodz=True, all_zwarn0=True, z_analy=True) dz = calc_dz(gdz_tab) if len(dz) == 0: dz = np.zeros(1) not_nan = np.isfinite(dz) stat_dict['MEAN_DZ'] = float(np.mean(dz[not_nan])) stat_dict['MEDIAN_DZ'] = float(np.median(dz[not_nan])) stat_dict['RMS_DZ'] = float(np.std(dz[not_nan])) # Return return stat_dict def spectype_confusion(simz_tab, zb_tab=None): """ Generate a Confusion Matrix for spectral types See the Confusion_matrix_spectypes Notebook in docs/nb for an example Parameters ---------- simz_tab : Table Truth table; may be input from truth.fits zb_tab : Table (optional) zcatalog/zbest table; may be input from zcatalog-mini.fits If provided, used to match the simz_tab to the zbest quantities Returns ------- simz_tab : astropy.Table Merged table of simpsec data results : dict Nested dict. First key is the TRUESPECTYPE Second key is the SPECTYPE e.g. results['QSO']['QSO'] reports the number of True QSO classified as QSO results['QSO']['Galaxy'] reports the number of True QSO classified as Galaxy """ # Process simz_tab as need be if zb_tab is not None: match_truth_z(simz_tab, zb_tab, mini_read=True) # Cut down to those processed with the Redshift fitter measured_z = simz_tab['ZWARN'].mask == False cut_simz = simz_tab[measured_z] # Strip those columns strip_ttypes = np.char.rstrip(cut_simz['TRUESPECTYPE']) strip_stypes = np.char.rstrip(cut_simz['SPECTYPE']) # All TRUE, SPEC types ttypes = np.unique(strip_ttypes) stypes = np.unique(strip_stypes) # Init results = {} for ttype in ttypes: results[ttype] = {} # Fill for ttype in ttypes: itrue = strip_ttypes == ttype # Init correct answer in case there are none results[ttype][ttype] = 0 # import pdb; pdb.set_trace() for stype in stypes: results[ttype][stype] = np.sum(strip_stypes[itrue] == stype) # Return return results def find_zbest_files(fibermap_data): from desimodel.footprint import radec2pix # Init zbest_files = [] # Search for zbest files with healpy ra_targ = fibermap_data['TARGET_RA'].data dec_targ = fibermap_data['TARGET_DEC'].data # Getting some NAN in RA/DEC good = np.isfinite(ra_targ) & np.isfinite(dec_targ) pixels = radec2pix(64, ra_targ[good], dec_targ[good]) uni_pixels = np.unique(pixels) for uni_pix in uni_pixels: zbest_files.append(desispec.io.findfile('zbest', groupname=uni_pix, nside=64)) # Return return zbest_files def load_z(fibermap_files, zbest_files=None, outfil=None): '''Load input and output redshift values for a set of exposures Parameters ---------- fibermap_files: list List of fibermap files; None of these should be calibration.. zbest_files: list, optional List of zbest output files Slurped from fibermap info if not provided outfil: str, optional Output file for the table Returns ------- simz_tab: astropy.Table Merged table of simpsec data zb_tab: astropy.Table Merged table of zbest output ''' # imports log = get_logger() # Init if zbest_files is None: flag_load_zbest = True zbest_files = [] else: flag_load_zbest = False # Load up fibermap and simspec tables fbm_tabs = [] sps_tabs = [] for fibermap_file in fibermap_files: # zbest? if flag_load_zbest: fibermap_data = desispec.io.read_fibermap(fibermap_file) zbest_files += find_zbest_files(fibermap_data) log.info('Reading: {:s}'.format(fibermap_file)) # Load simspec (for fibermap too!) simspec_file = fibermap_file.replace('fibermap','simspec') sps_hdu = fits.open(simspec_file) # Make Tables fbm_tabs.append(Table(sps_hdu['FIBERMAP'].data,masked=True)) truth = Table(sps_hdu['TRUTH'].data,masked=True) if 'TRUTH_ELG' in sps_hdu: truth_elg = Table(sps_hdu['TRUTH_ELG'].data) truth = join(truth, truth_elg['TARGETID', 'OIIFLUX'], keys='TARGETID', join_type='left') else: truth['OIIFLUX'] = 0.0 sps_tabs.append(truth) sps_hdu.close() # Stack + Sort fbm_tab = vstack(fbm_tabs) sps_tab = vstack(sps_tabs) del fbm_tabs, sps_tabs fbm_tab.sort('TARGETID') sps_tab.sort('TARGETID') # Add the version number header keywords from fibermap_files[0] hdr = fits.getheader(fibermap_files[0].replace('fibermap', 'simspec')) for key, value in sorted(hdr.items()): if key.startswith('DEPNAM') or key.startswith('DEPVER'): fbm_tab.meta[key] = value # Drop to unique univ, uni_idx = np.unique(np.array(fbm_tab['TARGETID']),return_index=True) fbm_tab = fbm_tab[uni_idx] sps_tab = sps_tab[uni_idx] # Combine assert np.all(fbm_tab['TARGETID'] == sps_tab['TARGETID']) keep_colnames = list() for colname in sps_tab.colnames: if colname not in fbm_tab.colnames: keep_colnames.append(colname) simz_tab = hstack([fbm_tab,sps_tab[keep_colnames]],join_type='exact') # Cleanup some names #simz_tab.rename_column('OBJTYPE_1', 'OBJTYPE') #simz_tab.rename_column('OBJTYPE_2', 'TRUETYPE') # Update QSO naming qsol = np.where( match_otype(simz_tab, 'QSO') & (simz_tab['TRUEZ'] >= 2.1))[0] simz_tab['TEMPLATETYPE'][qsol] = 'QSO_L' qsot = np.where( match_otype(simz_tab, 'QSO') & (simz_tab['TRUEZ'] < 2.1))[0] simz_tab['TEMPLATETYPE'][qsot] = 'QSO_T' # Load up zbest files zb_tabs = [] for zbest_file in zbest_files: try: zb_hdu = fits.open(zbest_file) except FileNotFoundError: log.error("zbest file {} not found".format(zbest_file)) else: zb_tabs.append(Table(zb_hdu[1].data)) # Stack zb_tab = vstack(zb_tabs) univ, uni_idx = np.unique(np.array(zb_tab['TARGETID']),return_index=True) zb_tab = zb_tab[uni_idx] # Return return simz_tab, zb_tab def match_truth_z(simz_tab, zb_tab, mini_read=False, outfil=None): """ Match truth and zbest tables :param simz_tab: astropy.Table; Either generated from load_z() or read from disk via 'truth.fits' :param zb_tab: astropy.Table; Either generated from load_z() or read from disk via 'zcatalog-mini.fits' :param mini_read: bool, optional; Tables were read from the summary tables written to disk :param outfil: str, optional :return: simz_tab: modified in place """ nsim = len(simz_tab) # Match up sim_id = np.array(simz_tab['TARGETID']) z_id = np.array(zb_tab['TARGETID']) inz = np.in1d(z_id,sim_id,assume_unique=True) ins = np.in1d(sim_id,z_id,assume_unique=True) z_idx = np.arange(z_id.shape[0])[inz] sim_idx = np.arange(sim_id.shape[0])[ins] assert np.array_equal(sim_id[sim_idx],z_id[z_idx]) # Fill up ztags = ['Z','ZERR','ZWARN','SPECTYPE'] # This is for truth and zcat tables read from disk as opposed to the fibermap files if mini_read: ztags += ['DESI_TARGET'] # And clean up the QSO names stypes = np.char.rstrip(simz_tab['TEMPLATETYPE']) qsol = np.where((stypes == 'QSO') & (simz_tab['TRUEZ'] >= 2.1))[0] simz_tab['TEMPLATETYPE'][qsol] = 'QSO_L' qsot = np.where((stypes == 'QSO') & (simz_tab['TRUEZ'] < 2.1))[0] simz_tab['TEMPLATETYPE'][qsot] = 'QSO_T' # Generate the new columns new_clms = [] mask = np.array([True]*nsim) mask[sim_idx] = False for kk,ztag in enumerate(ztags): # Generate a MaskedColumn new_clm = MaskedColumn([zb_tab[ztag][z_idx[0]]]*nsim, name=ztag, mask=mask) #name=new_tags[kk], mask=mask) # Fill new_clm[sim_idx] = zb_tab[ztag][z_idx] # Append new_clms.append(new_clm) # Add columns simz_tab.add_columns(new_clms) # Write? if outfil is not None: simz_tab.write(outfil,overwrite=True) return def obj_requirements(zstats, objtype): """Assess where a given objtype passes the requirements Requirements from Doc 318 (August 2014) Parameters ---------- zstats : Object This parameter is not documented. objtype : str Object type, e.g. 'ELG', 'LRG' Returns ------- dict Pass/fail dict """ log = get_logger() pf_dict = {} # all_dict=dict(ELG={'RMS_DZ':0.0005, 'MEAN_DZ': 0.0002, 'CAT_RATE': 0.05, 'EFF': 0.90}, LRG={'RMS_DZ':0.0005, 'MEAN_DZ': 0.0002, 'CAT_RATE': 0.05, 'EFF': 0.95}, BGS={'RMS_DZ':0.0005, 'MEAN_DZ': 0.0002, 'CAT_RATE': 0.05, 'EFF': 0.95}, MWS={'RMS_DZ':0.0005, 'MEAN_DZ': 0.0002, 'CAT_RATE': 0.05, 'EFF': 0.95}, QSO_T={'RMS_DZ':0.0025, 'MEAN_DZ': 0.0004, 'CAT_RATE': 0.05, 'EFF': 0.90}, QSO_L={'RMS_DZ':0.0025, 'CAT_RATE': 0.02, 'EFF': 0.90}) req_dict = all_dict[objtype] tst_fail = '' passf = str('PASS') for key in req_dict: ipassf = str('PASS') if key in ['EFF']: # Greater than requirement if zstats[key] < req_dict[key]: ipassf = str('FAIL') tst_fail = tst_fail+key+'-' log.warning('{:s} failed requirement {:s}: {} < {}'.format(objtype, key, zstats[key], req_dict[key])) else: log.debug('{:s} passed requirement {:s}: {} >= {}'.format(objtype, key, zstats[key], req_dict[key])) else: if zstats[key] > req_dict[key]: ipassf = str('FAIL') tst_fail = tst_fail+key+'-' log.warning('{:s} failed requirement {:s}: {} > {}'.format(objtype, key, zstats[key], req_dict[key])) else: log.debug('{:s} passed requirement {:s}: {} <= {}'.format(objtype, key, zstats[key], req_dict[key])) # Update pf_dict[key] = ipassf if ipassf == str('FAIL'): passf = str('FAIL') if passf == str('FAIL'): tst_fail = tst_fail[:-1] # log.warning('OBJ={:s} failed tests {:s}'.format(objtype,tst_fail)) # #pf_dict['FINAL'] = passf return pf_dict, passf def zstats(simz_tab, objtype=None, dvlimit=None, count=False, survey=False): """ Perform statistics on the input truth+z table good = Satisfies dv criteria and ZWARN==0 fail = Fails dv criteria with ZWARN==0 (catastrophic failures) miss = Satisfies dv criteria but ZWARN!=0 (missed opportunities) lost = Fails dv criteria and ZWARN!=0 (lost, but at least we knew it) Args: simz_tab: objtype: dvlimit: float, optional -- Over-rides object specific dv limits count: bool, optional survey: bool, optional -- Restrict to targets meeting the Survey criteria (e.g. ELG flux) Returns: if count=True: just the raw counts of each category :: ngood, nfail, nmiss, nlost else: percentile of each relative to ntot, and ntot """ # Grab the masks objtype_mask, z_mask, survey_mask, dv_mask, zwarn_mask = criteria( simz_tab, dvlimit=dvlimit, objtype=objtype) # Score-card good = zwarn_mask & dv_mask & objtype_mask & z_mask cat = zwarn_mask & (~dv_mask) & objtype_mask & z_mask miss = (~zwarn_mask) & dv_mask & objtype_mask & z_mask lost = (~zwarn_mask) & (~dv_mask) & objtype_mask & z_mask # Restrict to the Survey design? tot_msk = objtype_mask & z_mask if survey: good &= survey_mask cat &= survey_mask miss &= survey_mask lost &= survey_mask tot_msk &= survey_mask # ngood = np.count_nonzero(good) nfail = np.count_nonzero(cat) nmiss = np.count_nonzero(miss) nlost = np.count_nonzero(lost) ntot = np.count_nonzero(tot_msk) # Check assert(ntot == ngood+nfail+nmiss+nlost) # Return if count: return ngood, nfail, nmiss, nlost elif ntot == 0: return (np.nan, np.nan, np.nan, np.nan, 0) else: return 100*ngood/ntot, 100*nfail/ntot, 100*nmiss/ntot, 100*nlost/ntot, ntot def criteria(simz_tab, objtype=None, dvlimit=None): """Analyze the input table for various criteria Parameters ---------- simz_tab : Table objtype : str, optional -- Restrict analysis to a specific object type Returns ------- objtype_mask : ndarray Match to input objtype (if any given) z_mask : ndarray Analyzed by the redshift analysis software survey_mask : ndarray Part of the DESI survey (not filler) dv_mask : ndarray Satisfies the dv criterion; Either specific to each objtype or using an input dvlimit zwarn_mask : ndarray ZWARN=0 """ # Init nrow = len(simz_tab) stypes = np.char.rstrip(simz_tab['TEMPLATETYPE'].astype(str)) # Object type if objtype is None: objtype_mask = np.array([True]*nrow) else: if objtype in ['STAR', 'WD', 'QSO']: objtype_mask = stypes == objtype else: objtype_mask = match_otype(simz_tab, objtype) # Use DESI_TARGET when possible # Redshift analysis z_mask = simz_tab['Z'].mask == False # Not masked in Table # Survey survey_mask = (simz_tab['Z'].mask == False) elg = np.where(match_otype(simz_tab, 'ELG') & survey_mask)[0] if len(elg) > 0: elg_mask = elg_flux_lim(simz_tab['TRUEZ'][elg], simz_tab['OIIFLUX'][elg]) # Update survey_mask[elg[~elg_mask]] = False # zwarn -- Masked array zwarn_mask = np.array([False]*nrow) idx = np.where((simz_tab['ZWARN'] == 0) & (simz_tab['ZWARN'].mask == False))[0] zwarn_mask[idx] = True # Catastrophic/Good (This gets a bit more messy...) dv_mask = np.array([True]*nrow) for obj in np.unique(stypes): if obj in ['ELG','LRG','QSO_L','QSO_T', 'BGS', 'MWS']: # Use DESI_TARGET when possible omask = np.where(match_otype(simz_tab, obj))[0] # & (simz_tab['ZWARN']==0))[0] else: omask = np.where(stypes == obj)[0] if dvlimit is None: try: dv = catastrophic_dv(obj) # km/s except: dv = 1000. else: dv = dvlimit dz = calc_dz(simz_tab[omask]) # dz/1+z cat = np.where(np.abs(dz)*C_LIGHT > dv)[0] dv_mask[omask[cat]] = False # Return return objtype_mask, z_mask, survey_mask, dv_mask, zwarn_mask def slice_simz(simz_tab, objtype=None, z_analy=False, survey=False, catastrophic=False, goodz=False, all_zwarn0=False, **kwargs): """Slice input simz_tab in one of many ways Parameters ---------- z_analy : bool, optional redshift analysis required? all_zwarn0 : bool, optional Ignores catastrophic failures in the slicing to return all sources with ZWARN==0 survey : bool, optional Only include objects that satisfy the Survey requirements e.g. ELGs with sufficient OII_flux catastrophic : bool, optional Restrict to catastropic failures goodz : bool, optional Restrict to good redshifts all_zwarn0 : bool, optional Restrict to ZWARN=0 cases **kwargs : passed to criteria Returns ------- simz_table : Table cut by input parameters """ # Grab the masks objtype_mask, z_mask, survey_mask, dv_mask, zwarn_mask = criteria( simz_tab, objtype=objtype, **kwargs) # Slice me final_mask = objtype_mask if z_analy: final_mask &= z_mask if survey: final_mask &= survey_mask if catastrophic: final_mask &= (~dv_mask) final_mask &= zwarn_mask # Must also have ZWARN=0 if goodz: final_mask &= dv_mask final_mask &= zwarn_mask if all_zwarn0: final_mask &= zwarn_mask # Return return simz_tab[final_mask] def obj_fig(simz_tab, objtype, summ_stats, outfile=None): """Generate QA plot for a given object type """ from astropy.stats import sigma_clip logs = get_logger() gdz_tab = slice_simz(simz_tab,objtype=objtype, survey=True,goodz=True, all_zwarn0=True) if objtype == 'ELG': allgd_tab = slice_simz(simz_tab,objtype=objtype, survey=False,goodz=True, all_zwarn0=True) if len(gdz_tab) <= 1: logs.info("Not enough objects of type {:s} for QA".format(objtype)) return # Plot sty_otype = get_sty_otype() fig = plt.figure(figsize=(8, 6.0)) gs = gridspec.GridSpec(2,2) # Title fig.suptitle('{:s}: Summary'.format(sty_otype[objtype]['lbl']), fontsize='large') # Offset for kk in range(4): yoff = 0. ax= plt.subplot(gs[kk]) if kk == 0: yval = calc_dzsig(gdz_tab) ylbl = (r'$(z_{\rm red}-z_{\rm true}) / \sigma(z)$') ylim = 5. # Stats with clipping clip_y = sigma_clip(yval, sigma=5.) rms = np.std(clip_y) redchi2 = np.sum(clip_y**2)/np.sum(~clip_y.mask) # xtxt = 0.05 ytxt = 1.0 for req_tst in ['EFF','CAT_RATE']: ytxt -= 0.12 if summ_stats[objtype]['REQ_INDIV'][req_tst] == 'FAIL': tcolor='red' else: tcolor='green' ax.text(xtxt, ytxt, '{:s}: {:.3f}'.format(req_tst, summ_stats[objtype][req_tst]), color=tcolor, transform=ax.transAxes, ha='left', fontsize='small') # Additional ytxt -= 0.12 ax.text(xtxt, ytxt, '{:s}: {:.3f}'.format('RMS:', rms), color='black', transform=ax.transAxes, ha='left', fontsize='small') ytxt -= 0.12 ax.text(xtxt, ytxt, '{:s}: {:.3f}'.format(r'$\chi^2_\nu$:', redchi2), color='black', transform=ax.transAxes, ha='left', fontsize='small') else: yval = calc_dz(gdz_tab) if kk == 1: ylbl = (r'$(z_{\rm red}-z_{\rm true}) / (1+z)$') else: ylbl = r'$\delta v_{\rm red-true}$ [km/s]' ylim = max(5.*summ_stats[objtype]['RMS_DZ'],1e-5) if (np.median(summ_stats[objtype]['MEDIAN_DZ']) > summ_stats[objtype]['RMS_DZ']): yoff = summ_stats[objtype]['MEDIAN_DZ'] if kk==1: # Stats xtxt = 0.05 ytxt = 1.0 dx = ((ylim/2.)//0.0001 +1)*0.0001 ax.xaxis.set_major_locator(plt.MultipleLocator(dx)) for stat in ['RMS_DZ','MEAN_DZ', 'MEDIAN_DZ']: ytxt -= 0.12 try: pfail = summ_stats[objtype]['REQ_INDIV'][stat] except KeyError: tcolor='black' else: if pfail == 'FAIL': tcolor='red' else: tcolor='green' ax.text(xtxt, ytxt, '{:s}: {:.5f}'.format(stat, summ_stats[objtype][stat]), color=tcolor, transform=ax.transAxes, ha='left', fontsize='small') # Histogram if kk < 2: binsz = ylim/10. #i0, i1 = int( np.min(yval) / binsz) - 1, int( np.max(yval) / binsz) + 1 i0, i1 = int(-ylim/binsz) - 1, int( ylim/ binsz) + 1 rng = tuple( binsz*np.array([i0,i1]) ) nbin = i1-i0 # Histogram hist, edges = np.histogram(yval, range=rng, bins=nbin) xhist = (edges[1:] + edges[:-1])/2. #ax.hist(xhist, color='black', bins=edges, weights=hist)#, histtype='step') ax.hist(xhist, color=sty_otype[objtype]['color'], bins=edges, weights=hist)#, histtype='step') ax.set_xlabel(ylbl) ax.set_xlim(-ylim, ylim) else: if kk == 2: lbl = r'$z_{\rm true}$' xval = gdz_tab['TRUEZ'] xmin,xmax=np.min(xval),np.max(xval) dx = np.maximum(1,(xmax-xmin)//0.5)*0.1 ax.xaxis.set_major_locator(plt.MultipleLocator(dx)) #xmin,xmax=0.6,1.65 elif kk == 3: if objtype == 'ELG': lbl = r'[OII] Flux ($10^{-16}$)' #xval = gdz_tab['OIIFLUX']*1e16 xval = allgd_tab['OIIFLUX']*1e16 yval = calc_dz(allgd_tab) # Avoid NAN gdy = np.isfinite(yval) xval = xval[gdy] yval = yval[gdy] xmin,xmax=0.5,20 ax.set_xscale("log", nonposx='clip') elif objtype == 'QSO': lbl = 'g (Mag)' xval = 22.5 - 2.5 * np.log10(gdz_tab['FLUX_G']) xmin,xmax=np.min(xval),np.max(xval) else: lbl = 'r (Mag)' xval = 22.5 - 2.5 * np.log10(gdz_tab['FLUX_R']) xmin,xmax=np.min(xval),
np.max(xval)
numpy.max
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
1