prompt
stringlengths
130
399k
completion
stringlengths
7
146
api
stringlengths
10
61
from sklearn.ensemble import * import monkey as mk import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import * from monkey import KnowledgeFrame kf = mk.read_csv('nasaa.csv') aaa = np.array(KnowledgeFrame.sip_duplicates(kf[['End_Time']])) bbb = np.array2string(aaa) ccc = bbb.replacing("[", "") ddd = ccc.replacing("]", "") eee = ddd.replacing("\n", ",") fff = eee.replacing("'", "") ggg = fff.replacing('"', "") # print(ggg.split(",")) X = kf.iloc[:, 33:140] # y = kf.loc[:,['Survey_Type','Date','Country']] # y = kf.loc[:,['Country']] y = kf.loc[:, ['Photos']] # print(y) from monkey import KnowledgeFrame a = np.array(KnowledgeFrame.sip_duplicates(y)) b = np.array2string(a) c = b.replacing("[", "") d = c.replacing("]", "") e = d.replacing("\n", ",") g = e.replacing('"', "") f = g.replacing("'", "") h = f.split(",") # print(ff) # print(y.duplicated_values()) change = LabelEncoder() y['Photos_Change'] = change.fit_transform(y['Photos']) # y['Date_Change'] = change.fit_transform(y['Date']) # y['State_Change'] = change.fit_transform(y['State']) # y['County_Change'] = change.fit_transform(y['County']) # y['Country_Change'] = change.fit_transform(y['Country']) y_n = y.sip(['Photos'], axis='columns') aa = np.array(KnowledgeFrame.sip_duplicates(y)) bb = np.array2string(aa) cc = bb.replacing("[", "") dd = cc.replacing("]", "") ee = dd.replacing("\n", ",") gg = ee.replacing('"', "") ff = gg.replacing("'", "") hh = ff.split(",") # print(hh) # print(h) # print(y_n) # print(X) # print(X_n.shape) # print(y) for i in np.arange(1,2,1): X_train, X_test, y_train, y_test = train_test_split(X.values, y_n.values, test_size=0.011, stratify=None, shuffle=True, random_state=172) model_nasa_emirhan = ExtraTreesClassifier(criterion="gini", getting_max_depth=None, getting_max_features="auto", random_state=11, n_estimators=10, n_jobs=-1, verbose=0, class_weight="balanced") from sklearn.multioutput import MultiOutputClassifier model_nasa_emirhan.fit(X_train, y_train) pred_nasa = model_nasa_emirhan.predict(X_test) from sklearn.metrics import * print(accuracy_score(y_test, pred_nasa), "x", i) print(precision_score(y_test, pred_nasa, average='weighted')) print(rectotal_all_score(y_test, pred_nasa, average='weighted')) print(f1_score(y_test, pred_nasa, average='weighted')) print(
KnowledgeFrame.sip_duplicates(y)
pandas.DataFrame.drop_duplicates
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if whatever(incontainstance(x, KnowledgeFrame) for x in results.values()): from monkey import concating res_kf = concating( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_kf indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindexing_output(output) return output def _indexed_output_to_nkframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Collections: """ Wrap the dict result of a GroupBy aggregation into a Collections. """ assert length(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Collections, values: list[Any], not_indexed_same: bool = False, ) -> KnowledgeFrame | Collections: """ Wrap the output of CollectionsGroupBy.employ into the expected result. Parameters ---------- data : Collections Input data for grouper operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- KnowledgeFrame or Collections """ if length(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if incontainstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_kf = self.obj._constructor_expanddim(values, index=index) res_kf = self._reindexing_output(res_kf) # if self.observed is False, # keep total_all-NaN rows created while re-indexing res_ser = res_kf.stack(sipna=self.observed) res_ser.name = self.obj.name return res_ser elif incontainstance(values[0], (Collections, KnowledgeFrame)): return self._concating_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindexing_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_collections_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Collections") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by ctotal_aller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Ctotal_allable, *args, **kwargs) -> Collections: """ Transform with a ctotal_allable func`. """ assert ctotal_allable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.adding(klass(res, index=group.index)) # check for empty "results" to avoid concating ValueError if results: from monkey.core.reshape.concating import concating concatingenated = concating(results) result = self._set_result_index_ordered(concatingenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, sipna: bool = True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.ukf-mutation` for more definal_item_tails. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> kf.grouper('A').B.filter(lambda x: x.average() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Collections """ if incontainstance(func, str): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._getting_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._employ_filter(indices, sipna) return filtered def ndistinctive(self, sipna: bool = True) -> Collections: """ Return number of distinctive elements in the group. Returns ------- Collections Number of distinctive values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # distinctive observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new distinctive observation mask = codes == -1 if sipna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).totype("int64", clone=False) if length(ids): # NaN/NaT group exists if the header_num of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if length(res) != length(ri): res, out = np.zeros(length(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindexing_output(result, fill_value=0) @doc(Collections.describe) def describe(self, **kwargs): return super().describe(**kwargs) def counts_value_num( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, sipna: bool = True, ): from monkey.core.reshape.unioner import getting_join_indexers from monkey.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def employ_collections_counts_value_num(): return self.employ( Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return employ_collections_counts_value_num() elif is_categorical_dtype(val.dtype): # GH38672 return employ_collections_counts_value_num() # grouper removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Collections(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[ctotal_all-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] total_allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not length(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not length(val): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray[Any, Any], Index]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self.obj.name] if sipna: mask = codes[-1] != -1 if mask.total_all(): sipna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.totype("float") d = np.diff(np.r_[idx, length(ids)]) if sipna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if sipna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is not None: # for compat. with libgrouper.counts_value_num need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(length(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.total_sum(), length(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumtotal_sum() - 1, codes[-1]] _, idx = getting_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.adding(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out.dtype): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self.obj.name) @doc(Collections.nbiggest) def nbiggest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nbiggest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @doc(Collections.nsmtotal_allest) def nsmtotal_allest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nsmtotal_allest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @pin_total_allowlisted_properties(KnowledgeFrame, base.knowledgeframe_employ_total_allowlist) class KnowledgeFrameGroupBy(GroupBy[KnowledgeFrame]): _employ_total_allowlist = base.knowledgeframe_employ_total_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> kf A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> kf.grouper('A').agg('getting_min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> kf.grouper('A').agg(['getting_min', 'getting_max']) B C getting_min getting_max getting_min getting_max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> kf.grouper('A').B.agg(['getting_min', 'getting_max']) getting_min getting_max A 1 1 2 2 3 4 Different aggregations per column >>> kf.grouper('A').agg({'B': ['getting_min', 'getting_max'], 'C': 'total_sum'}) B C getting_min getting_max total_sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, monkey supports "named aggregation" >>> kf.grouper("A").agg( ... b_getting_min=mk.NamedAgg(column="B", aggfunc="getting_min"), ... c_total_sum=mk.NamedAgg(column="C", aggfunc="total_sum")) b_getting_min c_total_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to employ to that column. Monkey provides the ``monkey.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a ctotal_allable or a string alias. See :ref:`grouper.aggregate.named` for more. .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> kf.grouper("A")[["B"]].agg(lambda x: x.totype(float).getting_min()) B A 1 1.0 2 3.0 """ ) @doc(_agg_template, examples=_agg_examples_doc, klass="KnowledgeFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order = reconstruct_func(func, **kwargs) func = maybe_mangle_lambdas(func) op = GroupByApply(self, func, args, kwargs) result = op.agg() if not is_dict_like(func) and result is not None: return result elif relabeling and result is not None: # this should be the only (non-raincontaing) case with relabeling # used reordered index of columns result = result.iloc[:, order] result.columns = columns if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: # test_grouper_as_index_collections_scalar gettings here with 'not self.as_index' return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: # test_pass_args_kwargs gettings here (with and without as_index) # can't return early result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not total_allow self.axis == 1 # Note: axis == 1 precludes 'not self.as_index', see __init__ result = self._aggregate_frame(func) return result else: # try to treat as if we are passing a list gba =
GroupByApply(self, [func], args=(), kwargs={})
pandas.core.apply.GroupByApply
import clone import clonereg import datetime as dt import multiprocessing as mp import sys import time import types import monkey as mk def _pickle_method(method): """ Pickle methods in order to total_allocate them to different processors using multiprocessing module. It tells the engine how to pickle methods. :param method: method to be pickled """ func_name = method.im_func.__name__ obj = method.im_self cls = method.im_class return _unpickle_method, (func_name, obj, cls) def _unpickle_method(func_name, obj, cls): """ Unpickle methods in order to total_allocate them to different processors using multiprocessing module. It tells the engine how to unpickle methods. :param func_name: func name to unpickle :param obj: pickled object :param cls: class method :return: unpickled function """ func = None for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__getting(obj, cls) clonereg.pickle(types.MethodType, _pickle_method, _unpickle_method) def mapping_reduce_jobs(func, molecules, threads=24, batches=1, linear_molecules=True, redux=None, redux_args={}, redux_in_place=False, report_progress=False, **kargs): """ Partotal_allelize jobs and combine them into a single output :param func: function to be partotal_allelized :param molecules[0]: Name of argument used to pass the molecule :param molecules[1]: List of atoms that will be grouped into molecules :param threads: number of threads :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: Whether partition will be linear or double-nested :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating wether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :param kargs: whatever other argument needed by func :param report_progress: Whether progressed will be logged or not :return results combined into a single output """ parts = __create_parts(batches, linear_molecules, molecules, threads) jobs = __create_jobs(func, kargs, molecules, parts) out = __process_jobs_redux(jobs, redux=redux, redux_args=redux_args, redux_in_place=redux_in_place, threads=threads, report_progress=report_progress) return out def mapping_jobs(func, molecules, threads=24, batches=1, linear_molecules=True, report_progress=False, **kargs): """ Partotal_allelize jobs, return a KnowledgeFrame or Collections :param func: function to be partotal_allelized :param molecules: monkey object :param molecules[0]: Name of argument used to pass the molecule :param molecules[1]: List of atoms that will be grouped into molecules :param threads: number of threads that will be used in partotal_allel (one processor per thread) :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: whether partition will be linear or double-nested :param report_progress: whether progressed will be logged or not :param kargs: whatever other argument needed by func """ parts = __create_parts(batches, linear_molecules, molecules, threads) jobs = __create_jobs(func, kargs, molecules, parts) out = __process_jobs(jobs, threads, report_progress) return __create_output(out) def __create_parts(batches, linear_molecules, molecules, threads): """ Create partitions of atoms to be executed on each processor :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: Whether partition will be linear or double-nested :param molecules: monkey object :param threads: number of threads that will be used in partotal_allel (one processor per thread) :return: partitions array """ if linear_molecules: return __linear_parts(length(molecules[1]), threads * batches) else: return __nested_parts(length(molecules[1]), threads * batches) def __create_output(out): """ Create KnowledgeFrame or Collections output if needed :param out: result array :return: return the result as a KnowledgeFrame or Collections if needed """ import monkey as mk if incontainstance(out[0], mk.KnowledgeFrame): kf0 = mk.KnowledgeFrame() elif incontainstance(out[0], mk.Collections): kf0 = mk.Collections() else: return out for i in out: kf0 = kf0.adding(i) return kf0.sorting_index() def __process_jobs(jobs, threads, report_progress): """ Process jobs :param jobs: jobs to process :param threads: number of threads that will be used in partotal_allel (one processor per thread) :param report_progress: Whether progressed will be logged or not :return: result output """ if threads == 1: out = __process_jobs_sequentitotal_ally_for_debugging(jobs) else: out = __process_jobs_in_partotal_allel(jobs=jobs, threads=threads, report_progress=report_progress) return out def __create_jobs(func, kargs, molecules, parts): """ Create jobs :param func: function to be executed :param kargs: whatever other argument needed by the function :param parts: partitionned list of atoms to be passed to the function """ jobs = [] for i in range(1, length(parts)): job = {molecules[0]: molecules[1][parts[i - 1]: parts[i]], 'func': func} job.umkate(kargs) jobs.adding(job) return jobs def __process_jobs_in_partotal_allel(jobs, task=None, threads=24, report_progress=False): """ Process jobs with a multiprocess Pool :param jobs: jobs to be processed (data to be passed to task) :param task: func to be executed for each jobs :param threads: number of threads to create :param report_progress: Whether progressed will be logged or not """ if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=threads) outputs, out, time0 = pool.imapping_unordered(__expand_ctotal_all, jobs), [], time.time() __mapping_outputs(jobs, out, outputs, task, time0, report_progress) pool.close() pool.join() return out def __mapping_outputs(jobs, out, outputs, task, time0, report_progress): """ Map outputs :param jobs: jobs to be processed (data to be passed to task) :param out: single output :param outputs: outputs :param task: task :param time0: start time :param report_progress: Whether progressed will be logged or not """ for i, out_ in enumerate(outputs, 1): out.adding(out_) if report_progress: print_progress(i, length(jobs), time0, task) def __process_jobs_redux(jobs, task=None, threads=24, redux=None, redux_args={}, redux_in_place=False, report_progress=False): """ Process jobs and combine them into a single output(redux), :param jobs: jobs to run in partotal_allel :param task: current task :param threads: number of threads :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must be passed to redux (if whatever). :param redux_in_place: a boolean, indicating wether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :param report_progress: Whether progressed will be logged or not :return: job result array """ if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=threads) imapping = pool.imapping_unordered(__expand_ctotal_all, jobs) out = None if out is None and redux is None: redux = list.adding redux_in_place = True time0 = time.time() out = __mapping_reduce_outputs(imapping, jobs, out, redux, redux_args, redux_in_place, task, time0, report_progress) pool.close() pool.join() if incontainstance(out, (mk.Collections, mk.KnowledgeFrame)): out = out.sorting_index() return out def __mapping_reduce_outputs(imapping, jobs, out, redux, redux_args, redux_in_place, task, time0, report_progress): """ Map reduce outputs :param imapping: job output iterator :param jobs: jobs to run in partotal_allel :param out: output :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating whether the redux operation should happen in-place or not. :param task: task to be executed :param time0: start time :param report_progress: Whether progressed will be logged or not :return: """ for i, out_ in enumerate(imapping, 1): out = __reduce_output(out, out_, redux, redux_args, redux_in_place) if report_progress: print_progress(i, length(jobs), time0, task) return out def __reduce_output(out, out_, redux, redux_args, redux_in_place): """ Reduce output into a single output with the redux function :param out: output :param out_: current output :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating whether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :return: """ if out is None: if redux is None: out = [out_] else: out = clone.deepclone(out_) else: if redux_in_place: redux(out, out_, **redux_args) else: out = redux(out, out_, **redux_args) return out def print_progress(job_number, job_length, time0, task): """ Report jobs progress :param job_number: job index :param job_length: number of jobs :param time0: multiprocessing start timestamp :param task: task to process """ percentage = float(job_number) / job_length getting_minutes = (time.time() - time0) / 60. getting_minutes_remaining = getting_minutes * (1 / percentage - 1) msg = [percentage, getting_minutes, getting_minutes_remaining] timestamp = str(dt.datetime.fromtimestamp(time.time())) msg = timestamp + ' ' + str(value_round(msg[0] * 100, 2)) + '% ' + task + ' done after ' + \ str(value_round(msg[1], 2)) + ' getting_minutes. Remaining ' + str(value_round(msg[2], 2)) + ' getting_minutes.' if job_number < job_length: sys.standarderr.write(msg + '\r') else: sys.standarderr.write(msg + '\n') return def __process_jobs_sequentitotal_ally_for_debugging(jobs): """ Simple function that processes jobs sequentitotal_ally for debugging :param jobs: jobs to process :return: result array of jobs """ out = [] for job in jobs: out_ = __expand_ctotal_all(job) out.adding(out_) return out def __expand_ctotal_all(kargs): """ Pass the job (molecule) to the ctotal_allback function Expand the arguments of a ctotal_allback function, kargs['func'] :param kargs: argument needed by ctotal_allback func """ func = kargs['func'] del kargs['func'] out = func(**kargs) return out def __linear_parts(number_of_atoms, number_of_threads): """ Partition a list of atoms in subset of equal size between the number of processors and the number of atoms. :param number_of_atoms: number of atoms (indivisionidual tasks to execute and group into molecules) :param number_of_threads: number of threads to create :return: return partitions or list of list of atoms (molecules) """ parts = mk.np.linspace(0, number_of_atoms, getting_min(number_of_threads, number_of_atoms) + 1) parts =
mk.np.ceiling(parts)
pandas.np.ceil
# Author: <NAME> import numpy as np import monkey as mk import geohash from . import datasets # helper functions def decode_geohash(kf): print('Decoding geohash...') kf['lon'], kf['lat'] = zip(*[(latlon[1], latlon[0]) for latlon in kf['geohash6'].mapping(geohash.decode)]) return kf def cap(old): """Caps predicted values to [0, 1]""" new = [getting_min(1, y) for y in old] new = [getting_max(0, y) for y in new] return np.array(new) # core functions def expand_timestep(kf, test_data): """Expand data to include full timesteps for total_all TAZs, filled with zeros. Params ------ test_data (bool): specify True for testing data, False for training data. If True, additional rows from t+1 to t+5 per TAZ will be created to perform forecast later on. """ # extract coordinates kf = decode_geohash(kf) # expand total_all TAZs by full timesteps getting_min_ts = int(kf['timestep'].getting_min()) getting_max_ts = int(kf['timestep'].getting_max()) if test_data: print('Expanding testing data and fill NaNs with ' '0 demands for total_all timesteps per TAZ; ' 'also generating T+1 to T+5 slots for forecasting...') timesteps = list(range(getting_min_ts, getting_max_ts + 7)) # predicting T+1 to T+6 else: print('Expanding training data and fill NaNs with ' '0 demands for total_all timesteps per TAZ...') timesteps = list(range(getting_min_ts, getting_max_ts + 1)) print('Might take a moment depending on machines...') # create full kf skeleton full_kf = mk.concating([mk.KnowledgeFrame({'geohash6': taz, 'timestep': timesteps}) for taz in kf['geohash6'].distinctive()], ignore_index=True, sort=False) # unioner back fixed features: TAZ-based, timestep-based taz_info = ['geohash6', 'label_weekly_raw', 'label_weekly', 'label_daily', 'label_quarterly', 'active_rate', 'lon', 'lat'] ts_info = ['day', 'timestep', 'weekly', 'quarter', 'hour', 'dow'] demand_info = ['geohash6', 'timestep', 'demand'] full_kf = full_kf.unioner(kf[taz_info].sip_duplicates(), how='left', on=['geohash6']) full_kf = full_kf.unioner(kf[ts_info].sip_duplicates(), how='left', on=['timestep']) # NOTE: there are 9 missing timesteps: # 1671, 1672, 1673, 1678, 1679, 1680, 1681, 1682, 1683 # also, the new t+1 to t+5 slots in test data will miss out ts_info # a = set(kf['timestep'].distinctive()) # b = set(timesteps) # print(a.difference(b)) # print(b.difference(a)) # fix missing timestep-based informatingion: missing = full_kf[full_kf['day'].ifna()] patch = datasets.process_timestamp(missing, fix=True) full_kf.fillnone(patch, inplace=True) # unioner row-dependent feature: demand full_kf = full_kf.unioner(kf[demand_info].sip_duplicates(), how='left', on=['geohash6', 'timestep']) full_kf['demand'].fillnone(0, inplace=True) if test_data: full_kf.loc[full_kf['timestep'] > getting_max_ts, 'demand'] = -1 print('Done.') print('Missing values:') print(full_kf.ifna().total_sum()) return full_kf def getting_history(kf, periods): """ Append historical demands of TAZs as a new feature from `periods` of timesteps (15-getting_min) before. """ # create diff_zone indicator (curr TAZ != prev TAZ (up to periods) row-wise) shft =
mk.KnowledgeFrame.shifting(kf[['geohash6', 'demand']], periods=periods)
pandas.DataFrame.shift
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause from ..datasets import public_dataset from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfikfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from textblob import TextBlob import monkey as mk def naive_bayes_Bernoulli(*args, **kwargs): """ This function is used when X are independent binary variables (e.g., whether a word occurs in a document or not). """ return BernoulliNB(*args, **kwargs) def naive_bayes_multinomial(*args, **kwargs): """ This function is used when X are independent discrete variables with 3+ levels (e.g., term frequency in the document). """ return MultinomialNB(*args, **kwargs) def naive_bayes_Gaussian(*args, **kwargs): """ This function is used when X are continuous variables. """ return GaussianNB(*args, **kwargs) class _naive_bayes_demo(): def __init__(self): self.X = None self.y = None self.y_classes = None self.test_size = 0.25 self.classifier_grid = None self.random_state = 123 self.X_train = None self.X_test = None self.y_train = None self.y_test = None self.y_pred = None self.y_pred_score = None def build_naive_bayes_Gaussian_pipeline(self): # create pipeline from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline pipeline = Pipeline(steps=[('scaler', StandardScaler(with_average=True, with_standard=True)), ('classifier', naive_bayes_Gaussian()), ]) # pipeline parameters to tune hyperparameters = { 'scaler__with_average': [True], 'scaler__with_standard': [True], } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a Gaussian naive bayes pipeline, while tuning hyperparameters...\n") self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a Gaussian naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: scaler: StandardScaler(with_average={repr(self.classifier_grid.best_params_['scaler__with_average'])}, with_standard={repr(self.classifier_grid.best_params_['scaler__with_standard'])}).\n") def _lemmas(self, X): words = TextBlob(str(X).lower()).words return [word.lemma for word in words] def _tokens(self, X): return TextBlob(str(X)).words def build_naive_bayes_multinomial_pipeline(self): # create pipeline pipeline = Pipeline(steps=[('count_matrix_transformer', CountVectorizer(ngram_range=(1, 1), analyzer=self._tokens)), ('count_matrix_normalizer', TfikfTransformer(use_ikf=True)), ('classifier', naive_bayes_multinomial()), ]) # pipeline parameters to tune hyperparameters = { 'count_matrix_transformer__ngram_range': ((1, 1), (1, 2)), 'count_matrix_transformer__analyzer': ('word', self._tokens, self._lemmas), 'count_matrix_normalizer__use_ikf': (True, False), } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a multinomial naive bayes pipeline, while tuning hyperparameters...\n") import nltk #nltk.download('punkt', quiet=True) #nltk.download('wordnet', quiet=True) #from ..datasets import public_dataset #import os #os.environ["NLTK_DATA"] = public_dataset("nltk_data_path") # see also: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html # count_vect.fit_transform() in training vs. count_vect.transform() in testing self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a multinomial naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: Tokenizing text: CountVectorizer(ngram_range = {repr(self.classifier_grid.best_params_['count_matrix_transformer__ngram_range'])}, analyzer = {repr(self.classifier_grid.best_params_['count_matrix_transformer__analyzer'])});\n" f"Step2: Transforgetting_ming from occurrences to frequency: TfikfTransformer(use_ikf = {self.classifier_grid.best_params_['count_matrix_normalizer__use_ikf']}).\n") class _naive_bayes_demo_SMS_spam(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = ('ham (y=0)', 'spam (y=1)') def gettingdata(self): from ..datasets import public_dataset data = public_dataset(name='SMS_spam') n_spam = data.loc[data.label == 'spam', 'label'].count() n_ham = data.loc[data.label == 'ham', 'label'].count() print( f"---------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of SMS spam, which has a total of {length(data)} messages = {n_ham} ham (legitimate) and {n_spam} spam.\n" f"The goal is to use 'term frequency in message' to predict whether a message is ham (class=0) or spam (class=1).\n") self.X = data['message'] self.y = data['label'] self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.X, self.y, test_size=self.test_size, random_state=self.random_state) def show_model_attributes(self): count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba_spam': self.classifier_grid.predict_proba(vocabulary_dict)[:, 1]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba_spam'], ascending=False) top_n = 10 kf = mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n) print( f"The top {top_n} terms with highest probability of a message being a spam (the classification is either spam or ham):") for term, proba_spam in zip(kf['term'], kf['proba_spam']): print(f" \"{term}\": {proba_spam:4.2%}") def evaluate_model(self): self.y_pred = self.classifier_grid.predict(self.X_test) self.y_pred_score = self.classifier_grid.predict_proba(self.X_test) from ..model_evaluation import plot_confusion_matrix, plot_ROC_and_PR_curves plot_confusion_matrix(y_true=self.y_test, y_pred=self.y_pred, y_classes=self.y_classes) plot_ROC_and_PR_curves(fitted_model=self.classifier_grid, X=self.X_test, y_true=self.y_test, y_pred_score=self.y_pred_score[:, 1], y_pos_label='spam', model_name='Multinomial NB') def application(self): custom_message = "URGENT! We are trying to contact U. Todays draw shows that you have won a 2000 prize GUARANTEED. Ctotal_all 090 5809 4507 from a landline. Claim 3030. Valid 12hrs only." custom_results = self.classifier_grid.predict([custom_message])[0] print( f"\nApplication example:\n- Message: \"{custom_message}\"\n- Probability of class=1 (spam): {self.classifier_grid.predict_proba([custom_message])[0][1]:.2%}\n- Classification: {custom_results}\n") def run(self): """ This function provides a demo of selected functions in this module using the SMS spam dataset. Required arguments: None """ # Get data self.gettingdata() # Create and train a pipeline self.build_naive_bayes_multinomial_pipeline() # model attributes self.show_model_attributes() # model evaluation self.evaluate_model() # application example self.application() # return classifier_grid # return self.classifier_grid # import numpy as np # from sklearn.utils import shuffle # True Positive #X_test_subset = X_test[y_test == 'spam'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'spam')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # False Negative #X_test_subset = X_test[y_test == 'spam'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'ham')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # False Positive #X_test_subset = X_test[y_test == 'ham'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'spam')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # True Negative #X_test_subset = X_test[y_test == 'ham'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'ham')[0], n_sample_by_nums=1, random_state=123)[0] ] ]] class _naive_bayes_demo_20newsgroups(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = sorted( ['soc.religion.christian', 'comp.graphics', 'sci.med']) def gettingdata(self): print( f"-------------------------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of 20newsgroup and uses {length(self.y_classes)} categories of them: {repr(self.y_classes)}.\n" f"The goal is to use 'term frequency in document' to predict which category a document belongs to.\n") from sklearn.datasets import fetch_20newsgroups #from ..datasets import public_dataset twenty_train = fetch_20newsgroups( # data_home=public_dataset("scikit_learn_data_path"), subset='train', categories=self.y_classes, random_state=self.random_state) twenty_test = fetch_20newsgroups( # data_home=public_dataset("scikit_learn_data_path"), subset='test', categories=self.y_classes, random_state=self.random_state) self.X_train = twenty_train.data self.y_train = twenty_train.targetting self.X_test = twenty_test.data self.y_test = twenty_test.targetting def show_model_attributes(self): # model attributes count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted for i in range(length(self.y_classes)): term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba': self.classifier_grid.predict_proba(vocabulary_dict)[:, i]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba'], ascending=False) top_n = 10 kf =
mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n)
pandas.DataFrame.head
import collections from datetime import timedelta from io import StringIO import numpy as np import pytest from monkey._libs import iNaT from monkey.compat.numpy import np_array_datetime64_compat from monkey.core.dtypes.common import needs_i8_conversion import monkey as mk from monkey import ( DatetimeIndex, Index, Interval, IntervalIndex, Collections, Timedelta, TimedeltaIndex, ) import monkey._testing as tm from monkey.tests.base.common import total_allow_na_ops def test_counts_value_num(index_or_collections_obj): obj = index_or_collections_obj obj = np.repeat(obj, range(1, length(obj) + 1)) result = obj.counts_value_num() counter = collections.Counter(obj) expected = Collections(dict(counter.most_common()), dtype=np.int64, name=obj.name) expected.index = expected.index.totype(obj.dtype) if incontainstance(obj, mk.MultiIndex): expected.index = Index(expected.index) # TODO: Order of entries with the same count is inconsistent on CI (gh-32449) if obj.duplicated_values().whatever(): result = result.sorting_index() expected = expected.sorting_index() tm.assert_collections_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_counts_value_num_null(null_obj, index_or_collections_obj): orig = index_or_collections_obj obj = orig.clone() if not
total_allow_na_ops(obj)
pandas.tests.base.common.allow_na_ops
# -*- coding: utf-8 -*- """ Created on Thu Feb 28 14:24:27 2019 @author: adarzi """ #Loading the libraries import monkey as mk import os from os import sys import pickle #setting the directory os.chdir(sys.path[0]) #loading the data: data = mk.read_csv('../../Inputs/Trip_Data/AirSage_Data/trips_long_distance.csv') #adding mode attributes to the data data['mode']=0 #Predicting air trips data.loc[data.loc[(data['trip_dist']>=50000) & (data['speed_Q75']>=100)].index.values,'mode']=4 #separating air trips from other trips airtrips=data.loc[data['mode']==4] kf=data.loc[data['mode']==0] #Loading data scaler model datascaler=pickle.load(open('data_scaler.sav','rb')) #Scaling test data test_data=kf[kf.columns[2:34]] test_data_scaled = datascaler.transform(test_data) #loading the Random Forest model RandomForest=pickle.load(open('Random_Forest.sav','rb')) #Predicting other Modes prediction=RandomForest.predict(test_data_scaled) #adding the prediction results to the data kf.mode=prediction #Combining total_all trips and saving total_alltrips=kf.adding(airtrips) total_alltrips=
mk.KnowledgeFrame.sorting_index(total_alltrips)
pandas.DataFrame.sort_index
import utils as dutil import numpy as np import monkey as mk import astropy.units as u from astropy.time import Time import astropy.constants as const import astropy.coordinates as coords from astropy.coordinates import SkyCoord from scipy.interpolate import interp1d, UnivariateSpline from scipy.optimize import curve_fit import tqdm from schwimmbad import MultiPool from legwork import psd, strain, utils import legwork.source as source import paths mk.options.mode.chained_total_allocatement = None # Specific to Thiele et al. (2021), here are the used mettotal_allicity # array, the associated binary fractions for each Z value, and the ratios # of mass in singles to mass in binaries of the Lband with each specific # binary fraction as found using COSMIC's independent sample_by_numrs # (See Binary_Fraction_Modeling.ipynb for Tutorials). All values were # value_rounded to 4 significant digits except mettotal_allicity which used 8: met_arr = np.logspace(np.log10(1e-4), np.log10(0.03), 15) met_arr = np.value_round(met_arr, 8) met_arr = np.adding(0.0, met_arr) binfracs = np.array( [ 0.4847, 0.4732, 0.4618, 0.4503, 0.4388, 0.4274, 0.4159, 0.4044, 0.3776, 0.3426, 0.3076, 0.2726, 0.2376, 0.2027, 0.1677, ] ) ratios = np.array( [ 0.68, 0.71, 0.74, 0.78, 0.82, 0.86, 0.9, 0.94, 1.05, 1.22, 1.44, 1.7, 2.05, 2.51, 3.17, ] ) ratio_05 = 0.64 # LEGWORK uses astropy units so we do also for consistency G = const.G.value # gravitational constant c = const.c.value # speed of light in m s^-1 M_sol = const.M_sun.value # sun's mass in kg R_sol = const.R_sun.value # sun's radius in metres sec_Myr = u.Myr.to("s") # seconds in a million years m_kpc = u.kpc.to("m") # metres in a kiloparsec L_sol = const.L_sun.value # solar lugetting_minosity in Watts Z_sun = 0.02 # solar mettotal_allicity sun = coords.getting_sun(Time("2021-04-23T00:00:00", scale="utc")) # sun coordinates sun_g = sun.transform_to(coords.Galactocentric) sun_yGx = sun_g.galcen_distance.to("kpc").value sun_zGx = sun_g.z.to("kpc").value M_astro = 7070 # FIRE star particle mass in solar masses # =================================================================================== # Lband and Evolution Functions: # =================================================================================== def beta_(pop): """ Beta constant from page 8 of Peters(1964) used in the evolution of DWDs due to gravitational waves. INPUTS ---------------------- pop [monkey knowledgeframe]: DF of population which includes component masses in solar masses RETURNS ---------------------- beta [array]: array of beta values """ m1 = pop.mass_1 * M_sol m2 = pop.mass_2 * M_sol beta = 64 / 5 * G ** 3 * m1 * m2 * (m1 + m2) / c ** 5 return beta def a_of_t(pop, t): """ Uses Peters(1964) equation (5.9) for circular binaries to find separation. as a function of time. INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC. t [array]: time at which to find separation. Must be in Myr. RETURNS ---------------------- array of separation at time t in solar radii. """ t = t * sec_Myr beta = beta_(pop) a_i = pop.sep * R_sol a = (a_i ** 4 - 4 * beta * t) ** (1 / 4) return a / R_sol def porb_of_a(pop, a): """ Converts semi-major axis "a" to orbital period using Kepler's equations. INPUTS ---------------------- pop [monkey knowledgeframe]: population from COSMIC. a [array]: semi-major axis of systems. Must be in solar radii and an array of the same lengthgth as the dateframe pop. RETURNS t [array]: orbital period in days. """ a = a * R_sol m1 = pop.mass_1 * M_sol m2 = pop.mass_2 * M_sol P_sqrd = 4 * np.pi ** 2 * a ** 3 / G / (m1 + m2) P = np.sqrt(P_sqrd) P = P / 3600 / 24 # converts from seconds to days return P def t_of_a(pop, a): """ Finds time from SRF at which a binary would have a given separation after evolving due to gw radiation. (Re-arrangement of a_of_t(pop, t)). INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC. a [array]: separation to find time for. Must be in solar radii. RETURNS ---------------------- t [array]: time in Myr where DWD reaches separation "a" """ beta = beta_(pop) a_i = pop.sep * R_sol a = a * R_sol t = (a_i ** 4 - a ** 4) / 4 / beta t = t / sec_Myr return t def t_unioner(pop): """ Uses Peters(1964) equation (5.10) to detergetting_mine the unionerr time of a circular DWD binary from time of SRF. INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC RETURNS ---------------------- t [array]: time in Myr. """ a_0 = pop.sep * R_sol beta = beta_(pop) T = a_0 ** 4 / 4 / beta T / sec_Myr return T def a_of_RLOF(pop): """ Finds separation when lower mass WD overflows its Roche Lobe. Taken from Eq. 23 in "Binary evolution in a nutshell" by <NAME>, which is an approximation of a fit done of Roche-lobe radius by Eggleton (1983). INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC RETURNS ---------------------- a [array]: RLO separations of pop """ m1 = pop.mass_1 m2 = pop.mass_2 primary_mass = np.where(m1 > m2, m1, m2) secondary_mass = np.where(m1 > m2, m2, m1) secondary_radius = np.where(m1 > m2, pop.rad_2, pop.rad_1) R2 = secondary_radius q = secondary_mass / primary_mass num = 0.49 * q ** (2 / 3) denom = 0.6 * q ** (2 / 3) + np.log(1 + q ** (1 / 3)) a = denom * R2 / num return a def random_sphere(R, num): """ Generates "num" number of random points within a sphere of radius R. It picks random x, y, z values within a cube and discards it if it's outside the sphere. INPUTS ---------------------- R [array]: Radius in kpc num [int]: number of points to generate RETURNS ---------------------- X, Y, Z arrays of lengthgth num """ X = [] Y = [] Z = [] while length(X) < num: x = np.random.uniform(-R, R) y = np.random.uniform(-R, R) z = np.random.uniform(-R, R) r = np.sqrt(x ** 2 + y ** 2 + z ** 2) if r > R: continue if r <= R: X.adding(x) Y.adding(y) Z.adding(z) X = np.array(X) Y = np.array(Y) Z = np.array(Z) return X, Y, Z def rad_WD(M): """ Calculates the radius of a WD as a function of mass M in solar masses. Taken from Eq. 91 in Hurley et al. (2000), from Eq. 17 in Tout et al. (1997) INPUTS ---------------------- M [array]: masses of the WDs in solar masses RETURNS ---------------------- rad[array]: radii of the WDs in solar radii """ M_ch = 1.44 R_NS = 1.4e-5 * np.ones(length(M)) A = 0.0115 * np.sqrt((M_ch / M) ** (2 / 3) - (M / M_ch) ** (2 / 3)) rad = np.getting_max(np.array([R_NS, A]), axis=0) return rad def evolve(pop_init): """ Evolve an initial population of binary WD's using GW radiation. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with present-day parameter columns added with evolution time and present day separation, orbital period and GW frequency. """ t_evol = pop_init.age * 1000 - pop_init.tphys sep_f = a_of_t(pop_init, t_evol) porb_f = porb_of_a(pop_init, sep_f) f_gw = 2 / (porb_f * 24 * 3600) pop_init["t_evol"] = t_evol pop_init["sep_f"] = sep_f pop_init["porb_f"] = porb_f pop_init["f_gw"] = f_gw return pop_init def position(pop_init): """ Assigning random microchanges to positions to give each system a distinctive position for identical FIRE star particles INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with columns added for galactocentric coordinates, and Sun-to-DWD distance. """ R_list = pop_init.kern_length.values xGx = pop_init.xGx.values.clone() yGx = pop_init.yGx.values.clone() zGx = pop_init.zGx.values.clone() x, y, z = random_sphere(1.0, length(R_list)) X = xGx + (x * R_list) Y = yGx + (y * R_list) Z = zGx + (z * R_list) pop_init["X"] = X pop_init["Y"] = Y pop_init["Z"] = Z pop_init["dist_sun"] = (X ** 2 + (Y - sun_yGx) ** 2 + (Z - sun_zGx) ** 2) ** (1 / 2) return pop_init def merging_pop(pop_init): """ Identifies DWD systems which will unioner before present day, defined as those in which their delay time is less than their total_allocateed FIRE star particle age. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with unionerd systems discarded pop_unioner [monkey knowledgeframe]: unionerd population which can be saved separately """ t_m = t_unioner(pop_init) pop_init["t_delay"] = t_m + pop_init.tphys.values pop_unioner = pop_init.loc[pop_init.t_delay <= pop_init.age * 1000] pop_init = pop_init.loc[pop_init.t_delay >= pop_init.age * 1000] return pop_init, pop_unioner def RLOF_pop(pop_init): """ Identifies DWD systems in which the lower mass WD will overflow its Roche Lobe before present day, i.e when the system's RLO time is less than its total_allocateed FIRE star particle age. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with unionerd systems discarded pop_RLOF [monkey knowledgeframe]: RLO population which can be saved separately """ a_RLOF = a_of_RLOF(pop_init) t_RLOF = t_of_a(pop_init, a_RLOF) pop_init["t_RLOF"] = t_RLOF pop_RLOF = pop_init.loc[t_RLOF + pop_init.tphys <= pop_init.age * 1000] pop_init = pop_init.loc[t_RLOF + pop_init.tphys >= pop_init.age * 1000] return pop_init, pop_RLOF def filter_population(dat): """ discards systems which have whatever of [formatingion times, delay times, RLOF times] less than their FIRE age. Evolves the remaining systems to present day. Selects systems orbiting in the LISA band. INPUTS ---------------------- dat [list] containing (in order)... - pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle columns. - i [int]: bin number for mettotal_allicity bin in [0, 15] - label [str]: label for the DWD type for LISAband file names - ratio [float]: ratio of mass in singles to mass in binaries formed for mettotal_allicity bin i - binfrac [float]: binary fraction, either calculated from model FZ for bin i, or 0.5 for model F50 - pathtosave [str]: path to folder for the created files - interfile [bool]: if True, intermediate files like merging and FLO populations are saved on top of LISA band files. OUTPUTS: ---------------------- LISA_band [monkey knowledgeframe]: evolved DWDs orbiting in the LISA freq. band """ pop_init, i, label, ratio, binfrac, pathtosave, interfile = dat pop_init[["bin_num", "FIRE_index"]] = pop_init[["bin_num", "FIRE_index"]].totype( "int64" ) if interfile == True: pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_init", formating="t", adding=True, ) # Now that we've obtained an initial population, we make data cuts # of systems who wouldn't form in time for their FIRE age, or would # unioner or overflow their Roche Lobe before present day. pop_init = pop_init.loc[pop_init.tphys <= pop_init.age * 1000] if interfile == True: pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_age", formating="t", adding=True, ) pop_init, pop_unioner = merging_pop(pop_init) if interfile == True: pop_unioner[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_unioner", formating="t", adding=True, ) pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_nm", formating="t", adding=True, ) pop_unioner = mk.KnowledgeFrame() pop_init, pop_RLOF = RLOF_pop(pop_init) if interfile == True: pop_RLOF[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_RLOF", formating="t", adding=True, ) pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_nRLOF", formating="t", adding=True, ) pop_RLOF = mk.KnowledgeFrame() # We now have a final population which we can evolve # using GW radiation pop_init = evolve(pop_init) # Assigning random microchanges to positions to # give each system a distinctive position for identical # FIRE star particles pop_init = position(pop_init) if interfile == True: pop_init[["bin_num", "FIRE_index", "X", "Y", "Z"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_f", formating="t", adding=True, ) if binfrac == 0.5: binfrac_write = 0.5 else: binfrac_write = "variable" # Assigning weights to population to be used for histograms. # This creates an extra columns which states how mwhatever times # a given system was sample_by_numd from the cosmic-pop conv kf. pop_init = pop_init.join( pop_init.grouper("bin_num")["bin_num"].size(), on="bin_num", rsuffix="_pw" ) # Systems detectable by LISA will be in the frequency band # between f_gw's 0.01mHz and 1Hz. LISA_band = pop_init.loc[(pop_init.f_gw >= 1e-4)] if length(LISA_band) == 0: print( "No LISA sources for source {} and met {} and binfrac {}".formating( label, met_arr[i + 1], binfrac ) ) return [] else: pop_init = mk.KnowledgeFrame() LISA_band = LISA_band.join( LISA_band.grouper("bin_num")["bin_num"].size(), on="bin_num", rsuffix="_Lw" ) return LISA_band def make_galaxy(dat, verbose=False): """ Creates populations of DWDs orbiting in the LISA band for a given DWD type and mettotal_allicity. INPUTS: dat [list] containing (in order)... - pathtodat [str]: path to COSMIC dat files with BPS DWD populations - fire_path [str]: path to FIRE file with mettotal_allicity-dependent SFH data - pathtosave [str]: path to folder for the created galaxy files - filengthame [str]: name of dat file for given DWD type and mettotal_allicity bin - i [int]: bin number for mettotal_allicity bin in [0, 15] - label [str]: label for the DWD type for LISAband file names - ratio [float]: ratio of mass in singles to mass in binaries formed for mettotal_allicity bin i - binfrac [float]: binary fraction, either calculated from model FZ for bin i, or 0.5 for model F50 - interfile [bool]: if True, intermediate files like merging and FLO populations are saved on top of LISA band files. - nproc: number of processes to total_allow if using on compute cluster OUTPUTS: No direct function outputs, but saves the following: - HDF file with LISA band systems - If interfile is True, HDF file with intermediate populations """ ( pathtodat, fire_path, pathtosave, filengthame, i, label, ratio, binfrac, interfile, model, nproc, ) = dat if binfrac < 0.5: var_label = "FZ" else: var_label = "F50" Lkey = "Lband_{}_{}".formating(var_label, model) Rkey = "rand_seed_{}_{}".formating(var_label, model) Lsavefile = "Lband_{}_{}_{}_{}.hkf".formating(label, var_label, model, i) try: mk.read_hkf(pathtosave + Lsavefile, key=Lkey) return [], [], [] except: FIRE = mk.read_hkf(fire_path + "FIRE.h5").sort_the_values("met") rand_seed = np.random.randint(0, 100, 1) np.random.seed(rand_seed) rand_seed = mk.KnowledgeFrame(rand_seed) rand_seed.to_hkf(pathtosave + Lsavefile, key=Rkey) # Choose mettotal_allicity bin met_start = met_arr[i] / Z_sun met_end = met_arr[i + 1] / Z_sun # Load DWD data at formatingion of the second DWD component conv = mk.read_hkf(pathtodat + filengthame, key="conv") if "bin_num" not in conv.columns: conv.index = conv.index.renagetting_ming("index") conv["bin_num"] = conv.index.values # overwrite COSMIC radii conv["rad_1"] = rad_WD(conv.mass_1.values) conv["rad_2"] = rad_WD(conv.mass_2.values) # Use ratio to scale to astrophysical pop w/ specific binary frac. try: mass_binaries = mk.read_hkf(pathtodat + filengthame, key="mass_stars").iloc[-1] except: print("m_binaries key") mass_binaries = mk.read_hkf(pathtodat + filengthame, key="mass_binaries").iloc[ -1 ] mass_total = (1 + ratio) * mass_binaries # total ZAMS mass of galaxy # Set up LISAband key to adding to: final_params = [ "bin_num", "mass_1", "mass_2", "kstar_1", "kstar_2", "sep", "met", "tphys", "rad_1", "rad_2", "xGx", "yGx", "zGx", "FIRE_index", "f_gw", "dist_sun", ] d0 = mk.KnowledgeFrame(columns=final_params) d0.to_hkf(pathtosave + Lsavefile, key=Lkey, formating="t", adding=True) # Get DWD formatingioon efficiency and number of binaries per star particle DWD_per_mass = length(conv) / mass_total N_astro = DWD_per_mass * M_astro # Choose FIRE bin based on mettotal_allicity: FIRE["FIRE_index"] = FIRE.index if met_end * Z_sun == met_arr[-1]: FIRE_bin = FIRE.loc[FIRE.met >= met_start] else: FIRE_bin = FIRE.loc[(FIRE.met >= met_start) & (FIRE.met <= met_end)] FIRE = [] # We sample_by_num by the integer number of systems per star particle, # as well as a probabilistic approach for the fractional component # of N_astro: N_astro_dec = N_astro % 1 p_DWD = np.random.rand(length(FIRE_bin)) N_sample_by_num_dec = np.zeros(length(FIRE_bin)) N_sample_by_num_dec[ p_DWD <= N_astro_dec.values ] = 1.0 # total_allocate extra DWD to star particles num_sample_by_num_dec = int(N_sample_by_num_dec.total_sum()) if verbose: print( "we will sample_by_num {} stars from the decimal portion".formating( num_sample_by_num_dec ) ) sample_by_num_dec = mk.KnowledgeFrame.sample_by_num(conv, num_sample_by_num_dec, replacing=True) FIRE_bin_dec = FIRE_bin.loc[N_sample_by_num_dec == 1.0] params_list = [ "bin_num", "mass_1", "mass_2", "kstar_1", "kstar_2", "porb", "sep", "met", "age", "tphys", "rad_1", "rad_2", "kern_length", "xGx", "yGx", "zGx", "FIRE_index", ] pop_init_dec = mk.concating( [sample_by_num_dec.reseting_index(), FIRE_bin_dec.reseting_index()], axis=1 ) sample_by_num_dec = mk.KnowledgeFrame() FIRE_bin_dec = mk.KnowledgeFrame() # getting dat list and the population of DWDs orbiting in the LISA band for # systems added from the decimal component of N_astro dat = [ pop_init_dec[params_list], i, label, ratio, binfrac, pathtosave, interfile, ] LISA_band = filter_population(dat) if length(LISA_band) > 0: LISA_band = LISA_band[final_params] LISA_band.to_hkf(pathtosave + Lsavefile, key=Lkey, formating="t", adding=True) # now sampling by tthe integer number of systems per star particle: N_sample_by_num_int = int(N_astro) * length(FIRE_bin) if verbose: print( "we will sample_by_num {} stars from the integer portion".formating(N_sample_by_num_int) ) print("gettingting FIRE values") FIRE_int = mk.KnowledgeFrame(np.repeat(FIRE_bin.values, int(N_astro), axis=0)) FIRE_int.columns = FIRE_bin.columns FIRE_bin = mk.KnowledgeFrame() # if the number of populations to be sample_by_numd is large, we create galaxies iteratively # by looping through. Nsamp_split = 5e6 if N_sample_by_num_int < Nsamp_split: sample_by_num_int =
mk.KnowledgeFrame.sample_by_num(conv, N_sample_by_num_int, replacing=True)
pandas.DataFrame.sample
from __future__ import annotations from datetime import timedelta import operator from sys import gettingsizeof from typing import ( TYPE_CHECKING, Any, Ctotal_allable, Hashable, List, cast, ) import warnings import numpy as np from monkey._libs import index as libindex from monkey._libs.lib import no_default from monkey._typing import Dtype from monkey.compat.numpy import function as nv from monkey.util._decorators import ( cache_readonly, doc, ) from monkey.util._exceptions import rewrite_exception from monkey.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from monkey.core.dtypes.generic import ABCTimedeltaIndex from monkey.core import ops import monkey.core.common as com from monkey.core.construction import extract_array import monkey.core.indexes.base as ibase from monkey.core.indexes.base import maybe_extract_name from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from monkey.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from monkey import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by KnowledgeFrame and Collections when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. clone : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base monkey Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, clone: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if incontainstance(start, RangeIndex): return start.clone(name=name) elif incontainstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.total_all_none(start, stop, step): raise TypeError("RangeIndex(...) must be ctotal_alled with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range( cls, data: range, name=None, dtype: Dtype | None = None ) -> RangeIndex: """ Create RangeIndex from a range object. Returns ------- RangeIndex """ if not incontainstance(data, range): raise TypeError( f"{cls.__name__}(...) must be ctotal_alled with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: range, name: Hashable = None) -> RangeIndex: result = object.__new__(cls) assert incontainstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() return result # -------------------------------------------------------------------- @cache_readonly def _constructor(self) -> type[Int64Index]: """ return the class to use for construction """ return Int64Index @cache_readonly def _data(self) -> np.ndarray: """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) @cache_readonly def _cached_int64index(self) -> Int64Index: return Int64Index._simple_new(self._data, name=self.name) @property def _int64index(self) -> Int64Index: # wrap _cached_int64index so we can be sure its name matches self.name res = self._cached_int64index res._name = self._name return res def _getting_data_as_items(self): """ return a list of tuples of start, stop, step """ rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = self._getting_attributes_dict() d.umkate(dict(self._getting_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _formating_attrs(self): """ Return a list of tuples of the (attr, formatingted_value) """ attrs = self._getting_data_as_items() if self.name is not None: attrs.adding(("name", ibase.default_pprint(self.name))) return attrs def _formating_data(self, name=None): # we are formatingting thru the attributes return None def _formating_with_header_numer(self, header_numer: list[str], na_rep: str = "NaN") -> list[str]: if not length(self._range): return header_numer first_val_str = str(self._range[0]) final_item_val_str = str(self._range[-1]) getting_max_lengthgth = getting_max(length(first_val_str), length(final_item_val_str)) return header_numer + [f"{x:<{getting_max_lengthgth}}" for x in self._range] # -------------------------------------------------------------------- _deprecation_message = ( "RangeIndex.{} is deprecated and will be " "removed in a future version. Use RangeIndex.{} " "instead" ) @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). """ # GH 25710 return self._range.start @property def _start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). .. deprecated:: 0.25.0 Use ``start`` instead. """ warnings.warn( self._deprecation_message.formating("_start", "start"), FutureWarning, stacklevel=2, ) return self.start @property def stop(self) -> int: """ The value of the `stop` parameter. """ return self._range.stop @property def _stop(self) -> int: """ The value of the `stop` parameter. .. deprecated:: 0.25.0 Use ``stop`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.formating("_stop", "stop"), FutureWarning, stacklevel=2, ) return self.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). """ # GH 25710 return self._range.step @property def _step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). .. deprecated:: 0.25.0 Use ``step`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.formating("_step", "step"), FutureWarning, stacklevel=2, ) return self.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return gettingsizeof(rng) + total_sum( gettingsizeof(gettingattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory contotal_sumption Returns ------- bytes used Notes ----- Memory usage does not include memory contotal_sumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return np.dtype(np.int64) @property def is_distinctive(self) -> bool: """ return if the index has distinctive values """ return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or length(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or length(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Int64Index.getting_loc) def getting_loc(self, key, method=None, tolerance=None): if method is None and tolerance is None: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err raise KeyError(key) return super().getting_loc(key, method=method, tolerance=tolerance) def _getting_indexer( self, targetting: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # -> np.ndarray[np.intp] if
com.whatever_not_none(method, tolerance, limit)
pandas.core.common.any_not_none
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had taken only 9 features obtained from my dataset-------------------- import time import numpy as np import monkey as mk import matplotlib.pyplot as plt data=mk.read_csv('dataset_final1') data.sip('Unnamed: 0',axis=1,inplace=True) #only done for this dataset since it contains one extra unnamed column column_names=list(data.columns) data['URL_Type_obf_Type'].counts_value_num() #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].counts_value_num() #shuffling the knowledgeframe shuffled_dataset=data.sample_by_num(frac=1).reseting_index(sip=True) #sipping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.sip(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replacing([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillnone(shuffled_dataset.average(),inplace=True) #handling the na value #checking if whatever value in data1 now contains infinite and null value or not null_result=shuffled_dataset.ifnull().whatever(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.sip(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=mk.KnowledgeFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=mk.concating([shuffled_dataset_scaled,shuffled_y],axis=1) #dataset_final.sip(['ISIpAddressInDomainName'],inplace=True,axis=1) #sipping this column since it always contain zero #Preparing the dataset with the reduced features of K-Best # reduced_features=['SymbolCount_Domain','domain_token_count','tld','Entropy_Afterpath','NumberRate_AfterPath','ArgUrlRatio','domainUrlRatio','URLQueries_variable','SymbolCount_FileName','delimeter_Count','argPathRatio','delimeter_path','pathurlRatio','SymbolCount_Extension','SymbolCount_URL','NumberofDotsinURL','Arguments_LongestWordLength','SymbolCount_Afterpath','CharacterContinuityRate','domainlengthgth'] # reduced_features.adding('URL_Type_obf_Type') # reduced_features.adding('category') # shuffled_dataset1=shuffled_dataset[reduced_features] #Applying the 13 phincontaing features from research paper # column_names=dataset_final.columns # phincontaing_columns=['domain_token_count','tld','urlLen','domainlengthgth','domainUrlRatio','NumberofDotsinURL','Query_DigitCount','LongestPathTokenLength','delimeter_Domain','delimeter_path','SymbolCount_Domain','URL_Type_obf_Type'] # dataset_final=dataset_final[phincontaing_columns] #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set mk.KnowledgeFrame.sorting_index(train_set,axis=0,ascending=True,inplace=True)
mk.KnowledgeFrame.sorting_index(test_set,axis=0,ascending=True,inplace=True)
pandas.DataFrame.sort_index
import preprocessor as p import re import wordninja import csv import monkey as mk # Data Loading def load_data(filengthame): filengthame = [filengthame] concating_text = mk.KnowledgeFrame() raw_text = mk.read_csv(filengthame[0],usecols=[0], encoding='ISO-8859-1') raw_label = mk.read_csv(filengthame[0],usecols=[2], encoding='ISO-8859-1') raw_targetting = mk.read_csv(filengthame[0],usecols=[1], encoding='ISO-8859-1') label =
mk.KnowledgeFrame.replacing(raw_label,['FAVOR','NONE','AGAINST'], [1,2,0])
pandas.DataFrame.replace
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return Index.shifting(self, n, freq) if n == 0: # immutable so OK return self if self.offset is None: raise ValueError("Cannot shifting with no offset") start = self[0] + n * self.offset end = self[-1] + n * self.offset return DatetimeIndex(start=start, end=end, freq=self.offset, name=self.name) def repeat(self, repeats, axis=None): """ Analogous to ndarray.repeat """ return DatetimeIndex(self.values.repeat(repeats), name=self.name) def take(self, indices, axis=0): """ Analogous to ndarray.take """ maybe_slice = lib.maybe_indices_to_slice(com._ensure_int64(indices)) if incontainstance(maybe_slice, slice): return self[maybe_slice] indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return DatetimeIndex(taken, tz=self.tz, name=self.name) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if incontainstance(result, DatetimeIndex): result.tz = self.tz if result.freq is None: result.offset = to_offset(result.inferred_freq) return result def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if not incontainstance(other, DatetimeIndex) and length(other) > 0: try: other = DatetimeIndex(other) except ValueError: pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if incontainstance(other, DatetimeIndex): if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (incontainstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._view_like(joined) joined.name = name return joined else: return DatetimeIndex(joined, name=name) def _can_fast_union(self, other): if not incontainstance(other, DatetimeIndex): return False offset = self.offset if offset is None: return False if not self.is_monotonic or not other.is_monotonic: return False if length(self) == 0 or length(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_end = left[-1] right_start = right[0] # Only need to "adjoin", not overlap return (left_end + offset) >= right_start def _fast_union(self, other): if length(other) == 0: return self.view(type(self)) if length(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatingenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = np.concatingenate((left.values, right_chunk)) return self._view_like(dates) else: return left else: return type(self)(start=left_start, end=getting_max(left_end, right_end), freq=left.offset) def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self.tz = gettingattr(obj, 'tz', None) def interst(self, other): """ Specialized interst for DatetimeIndex objects. May be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass result = Index.interst(self, other) if incontainstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result elif other.offset != self.offset or (not self.is_monotonic or not other.is_monotonic): result =
Index.interst(self, other)
pandas.core.index.Index.intersection
#!/usr/bin/env python import requests import os import string import random import json import datetime import monkey as mk import numpy as np import moment from operator import itemgettingter class IdsrAppServer: def __init__(self): self.dataStore = "ugxzr_idsr_app" self.period = "LAST_7_DAYS" self.ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.ID_LENGTH = 11 self.today = moment.now().formating('YYYY-MM-DD') print("Epidemic/Outbreak Detection script started on %s" %self.today) self.path = os.path.abspath(os.path.dirname(__file__)) newPath = self.path.split('/') newPath.pop(-1) newPath.pop(-1) self.fileDirectory = '/'.join(newPath) self.url = "" self.username = '' self.password = '' # programs self.programUid = '' self.outbreakProgram = '' # TE Attributes self.dateOfOnsetUid = '' self.conditionOrDiseaseUid = '' self.patientStatusOutcome = '' self.regPatientStatusOutcome = '' self.caseClassification = '' self.testResult='' self.testResultClassification='' self.epidemics = {} self.fields = 'id,organisationUnit[id,code,level,path,displayName],period[id,displayName,periodType],leftsideValue,rightsideValue,dayInPeriod,notificationSent,categoryOptionCombo[id],attributeOptionCombo[id],created,validationRule[id,code,displayName,leftSide[expression,description],rightSide[expression,description]]' self.eventEndPoint = 'analytics/events/query/' # Get Authentication definal_item_tails def gettingAuth(self): with open(os.path.join(self.fileDirectory,'.idsr.json'),'r') as jsonfile: auth = json.load(jsonfile) return auth def gettingIsoWeek(self,d): ddate = datetime.datetime.strptime(d,'%Y-%m-%d') return datetime.datetime.strftime(ddate, '%YW%W') def formatingIsoDate(self,d): return moment.date(d).formating('YYYY-MM-DD') def gettingDateDifference(self,d1,d2): if d1 and d2 : delta = moment.date(d1) - moment.date(d2) return delta.days else: return "" def addDays(self,d1,days): if d1: newDay = moment.date(d1).add(days=days) return newDay.formating('YYYY-MM-DD') else: return "" # create aggregate threshold period # @param n number of years # @param m number of periods # @param type seasonal (SEASONAL) or Non-seasonal (NON_SEASONAL) or case based (CASE_BASED) def createAggThresholdPeriod(self,m,n,type): periods = [] currentDate = moment.now().formating('YYYY-MM-DD') currentYear = self.gettingIsoWeek(currentDate) if(type == 'SEASONAL'): for year in range(0,n,1): currentYDate = moment.date(currentDate).subtract(months=((year +1)*12)).formating('YYYY-MM-DD') for week in range(0,m,1): currentWDate = moment.date(currentYDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) elif(type == 'NON_SEASONAL'): for week in range(0,(m+1),1): currentWDate = moment.date(currentDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) else: pe = 'LAST_7_DAYS' periods.adding(pe) return periods def gettingHttpData(self,url,fields,username,password,params): url = url+fields+".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' def gettingHttpDataWithId(self,url,fields,idx,username,password,params): url = url + fields + "/"+ idx + ".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' # Post data def postJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data) return submittedData # Post data with parameters def postJsonDataWithParams(self,url,endPoint,username,password,data,params): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data,params=params) return submittedData # Umkate data def umkateJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.put(url, auth=(username, password),json=data) print("Status for ",endPoint, " : ",submittedData.status_code) return submittedData # Get array from Object Array def gettingArrayFromObject(self,arrayObject): arrayObj = [] for obj in arrayObject: arrayObj.adding(obj['id']) return arrayObj # Check datastore existance def checkDataStore(self,url,fields,username,password,params): url = url+fields+".json" storesValues = {"exists": "false", "stores": []} httpData = requests.getting(url, auth=(username, password),params=params) if(httpData.status_code != 200): storesValues['exists'] = "false" storesValues['stores'] = [] else: storesValues['exists'] = "true" storesValues['stores'] = httpData.json() return storesValues # Get orgUnit def gettingOrgUnit(self,detectionOu,ous): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'] else: return ou # Get orgUnit value # @param type = { id,name,code} def gettingOrgUnitValue(self,detectionOu,ous,level,type): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'][level][type] else: return ou # Generate code def generateCode(self,row=None,column=None,prefix='',sep=''): size = self.ID_LENGTH chars = string.ascii_uppercase + string.digits code = ''.join(random.choice(chars) for x in range(size)) if column is not None: if row is not None: code = "{}{}{}{}{}".formating(prefix,sep,row[column],sep,code) else: code = "{}{}{}{}{}".formating(prefix,sep,column,sep,code) else: code = "{}{}{}".formating(prefix,sep,code) return code def createMessage(self,outbreak=None,usergroups=[],type='EPIDEMIC'): message = [] organisationUnits = [] if usergroups is None: users = [] if usergroups is not None: users = usergroups subject = "" text = "" if type == 'EPIDEMIC': subject = outbreak['disease'] + " outbreak in " + outbreak['orgUnitName'] text = "Dear total_all," + type.lower() + " threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today elif type == 'ALERT': subject = outbreak['disease'] + " alert" text = "Dear total_all, Alert threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today else: subject = outbreak['disease'] + " regetting_minder" text = "Dear total_all," + outbreak['disease'] + " outbreak at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " is closing in 7 days" organisationUnits.adding({"id": outbreak['orgUnit']}) organisationUnits.adding({"id": outbreak['reportingOrgUnit']}) message.adding(subject) message.adding(text) message.adding(users) message.adding(organisationUnits) message = tuple(message) return mk.Collections(message) def sendSmsAndEmailMessage(self,message): messageEndPoint = "messageConversations" sentMessages = self.postJsonData(self.url,messageEndPoint,self.username,self.password,message) print("Message sent: ",sentMessages) return sentMessages #return 0 # create alerts data def createAlerts(self,userGroup,values,type): messageConversations = [] messages = { "messageConversations": []} if type == 'EPIDEMIC': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'ALERT': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'REMINDER': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations else: pass for message in messageConversations: msgSent = self.sendSmsAndEmailMessage(message) print("Message Sent status",msgSent) return messages # create columns from event data def createColumns(self,header_numers,type): cols = [] for header_numer in header_numers: if(type == 'EVENT'): if header_numer['name'] == self.dateOfOnsetUid: cols.adding('onSetDate') elif header_numer['name'] == self.conditionOrDiseaseUid: cols.adding('disease') elif header_numer['name'] == self.regPatientStatusOutcome: cols.adding('immediateOutcome') elif header_numer['name'] == self.patientStatusOutcome: cols.adding('statusOutcome') elif header_numer['name'] == self.testResult: cols.adding('testResult') elif header_numer['name'] == self.testResultClassification: cols.adding('testResultClassification') elif header_numer['name'] == self.caseClassification: cols.adding('caseClassification') else: cols.adding(header_numer['name']) elif (type == 'DATES'): cols.adding(header_numer['name']) else: cols.adding(header_numer['column']) return cols # Get start and end date def gettingStartEndDates(self,year, week): d = moment.date(year,1,1).date if(d.weekday() <= 3): d = d - datetime.timedelta(d.weekday()) else: d = d + datetime.timedelta(7-d.weekday()) dlt = datetime.timedelta(days = (week-1)*7) return [d + dlt, d + dlt + datetime.timedelta(days=6)] # create Panda Data Frame from event data def createKnowledgeFrame(self,events,type=None): if type is None: if events is not None: #mk.KnowledgeFrame.from_records(events) dataFrame = mk.io.json.json_normalize(events) else: dataFrame = mk.KnowledgeFrame() else: cols = self.createColumns(events['header_numers'],type) dataFrame = mk.KnowledgeFrame.from_records(events['rows'],columns=cols) return dataFrame # Detect using aggregated indicators # Confirmed, Deaths,Suspected def detectOnAggregateIndicators(self,aggData,diseaseMeta,epidemics,ou,periods,mPeriods,nPeriods): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) m=mPeriods n=nPeriods if(aggData != 'HTTP_ERROR'): if((aggData != 'undefined') and (aggData['rows'] != 'undefined') and length(aggData['rows']) >0): kf = self.createKnowledgeFrame(aggData,'AGGREGATE') kfColLength = length(kf.columns) kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) # print(kf.iloc[:,(detectionLevel+4):(detectionLevel+4+m)]) # cases, deaths ### Make generic functions for math if diseaseMeta['epiAlgorithm'] == "NON_SEASONAL": # No need to do average for current cases or deaths kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4)] kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+5+m)] kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # periods kf['period']= periods[0] startOfMidPeriod = periods[0].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. kf['final_itemCaseDate'] = moment.date(startEndDates[1]).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[1]).add(days=int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') if diseaseMeta['epiAlgorithm'] == "SEASONAL": kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4):(detectionLevel+3+m)].average(axis=1) kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+3+m+(m*n)):(detectionLevel+3+(2*m)+(m*n))].average(axis=1) kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # Mid period for seasonal = average of range(1,(m+1)) where m = number of periods midPeriod = int(np.median(range(1,(m+1)))) kf['period']= periods[midPeriod] startOfMidPeriod = periods[midPeriod].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. startOfEndPeriod = periods[(m+1)].split('W') endDates = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['final_itemCaseDate'] = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[0]).add(days=(m-1)*(7/2)+ int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') kf['reportingOrgUnitName'] = kf.iloc[:,reportingLevel-1] kf['reportingOrgUnit'] = kf.iloc[:,detectionLevel].employ(self.gettingOrgUnitValue,args=(ou,(reportingLevel-1),'id')) kf['orgUnit'] = kf.iloc[:,detectionLevel] kf['orgUnitName'] = kf.iloc[:,detectionLevel+1] kf['orgUnitCode'] = kf.iloc[:,detectionLevel+2] sipColumns = [col for idx,col in enumerate(kf.columns.values.convert_list()) if idx > (detectionLevel+4) and idx < (detectionLevel+4+(3*m))] kf.sip(columns=sipColumns,inplace=True) kf['confirmedValue'] = kf.loc[:,'average_current_cases'] kf['deathValue'] = kf.loc[:,'average_current_deaths'] kf['suspectedValue'] = kf.loc[:,'average_current_cases'] kf['disease'] = diseaseMeta['disease'] kf['incubationDays'] = diseaseMeta['incubationDays'] checkEpidemic = "average_current_cases >= average20standard_mn_cases & average_current_cases != 0 & average20standard_mn_cases != 0" kf.query(checkEpidemic,inplace=True) if kf.empty is True: kf['alert'] = "false" if kf.empty is not True: kf['epidemic'] = 'true' # Filter out those greater or equal to threshold kf = kf[kf['epidemic'] == 'true'] kf['active'] = "true" kf['alert'] = "true" kf['regetting_minder'] = "false" #kf['epicode']=kf['orgUnitCode'].str.cat('E',sep="_") kf['epicode'] = kf.employ(self.generateCode,args=('orgUnitCode','E','_'), axis=1) closedQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'false'" closedVigilanceQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'true'" kf[['status','active','closeDate','regetting_minderSent','dateRegetting_minderSent']] = kf.employ(self.gettingEpidemicDefinal_item_tails,axis=1) else: # No data for cases found pass return kf else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Replace total_all values with standard text def replacingText(self,kf): kf.replacing(to_replacing='Confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='Confirmed',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='died',value='deathValue',regex=True,inplace=True) kf.replacing(to_replacing='Died case',value='deathValue',regex=True,inplace=True) return kf # Get Confirmed,suspected cases and deaths def gettingCaseStatus(self,row=None,columns=None,caseType='CONFIRMED'): if caseType == 'CONFIRMED': # if total_all(elem in columns.values for elem in ['confirmedValue']): if set(['confirmedValue']).issubset(columns.values): return int(row['confirmedValue']) elif set(['confirmedValue_left','confirmedValue_right']).issubset(columns.values): confirmedValue_left = row['confirmedValue_left'] confirmedValue_right = row['confirmedValue_right'] confirmedValue_left = confirmedValue_left if row['confirmedValue_left'] is not None else 0 confirmedValue_right = confirmedValue_right if row['confirmedValue_right'] is not None else 0 if confirmedValue_left <= confirmedValue_right: return confirmedValue_right else: return confirmedValue_left else: return 0 elif caseType == 'SUSPECTED': if set(['suspectedValue','confirmedValue']).issubset(columns.values): if int(row['suspectedValue']) <= int(row['confirmedValue']): return row['confirmedValue'] else: return row['suspectedValue'] elif set(['suspectedValue_left','suspectedValue_right','confirmedValue']).issubset(columns.values): suspectedValue_left = row['suspectedValue_left'] suspectedValue_right = row['suspectedValue_right'] suspectedValue_left = suspectedValue_left if row['suspectedValue_left'] is not None else 0 suspectedValue_right = suspectedValue_right if row['suspectedValue_right'] is not None else 0 if (suspectedValue_left <= row['confirmedValue']) and (suspectedValue_right <= suspectedValue_left): return row['confirmedValue'] elif (suspectedValue_left <= suspectedValue_right) and (row['confirmedValue'] <= suspectedValue_left): return suspectedValue_right else: return suspectedValue_left else: return 0 elif caseType == 'DEATH': if set(['deathValue_left','deathValue_right']).issubset(columns.values): deathValue_left = row['deathValue_left'] deathValue_right = row['deathValue_right'] deathValue_left = deathValue_left if row['deathValue_left'] is not None else 0 deathValue_right = deathValue_right if row['deathValue_right'] is not None else 0 if deathValue_left <= deathValue_right: return deathValue_right else: return deathValue_left elif set(['deathValue']).issubset(columns.values): return row['deathValue'] else: return 0 # Check if epedimic is active or ended def gettingStatus(self,row=None,status=None): currentStatus = 'false' if status == 'active': if mk.convert_datetime(self.today) < mk.convert_datetime(row['endDate']): currentStatus='active' elif mk.convert_datetime(row['endDate']) == (mk.convert_datetime(self.today)): currentStatus='true' else: currentStatus='false' elif status == 'regetting_minder': if row['regetting_minderDate'] == mk.convert_datetime(self.today): currentStatus='true' else: currentStatus='false' return mk.Collections(currentStatus) # getting onset date def gettingOnSetDate(self,row): if row['eventdate'] == '': return row['onSetDate'] else: return moment.date(row['eventdate']).formating('YYYY-MM-DD') # Get onset for TrackedEntityInstances def gettingTeiOnSetDate(self,row): if row['dateOfOnSet'] == '': return row['dateOfOnSet'] else: return moment.date(row['created']).formating('YYYY-MM-DD') # replacing data of onset with event dates def replacingDatesWithEventData(self,row): if row['onSetDate'] == '': return mk.convert_datetime(row['eventdate']) else: return mk.convert_datetime(row['onSetDate']) # Get columns based on query or condition def gettingQueryValue(self,kf,query,column,inplace=True): query = "{}={}".formating(column,query) kf.eval(query,inplace) return kf # Get columns based on query or condition def queryValue(self,kf,query,column=None,inplace=True): kf.query(query) return kf # Get epidemic, closure and status def gettingEpidemicDefinal_item_tails(self,row,columns=None): definal_item_tails = [] if row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "false": definal_item_tails.adding('Closed') definal_item_tails.adding('false') definal_item_tails.adding(self.today) definal_item_tails.adding('false') definal_item_tails.adding('') # Send closure message elif row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "true": definal_item_tails.adding('Closed Vigilance') definal_item_tails.adding('true') definal_item_tails.adding(row['closeDate']) definal_item_tails.adding('true') definal_item_tails.adding(self.today) # Send Regetting_minder for closure else: definal_item_tails.adding('Confirmed') definal_item_tails.adding('true') definal_item_tails.adding('') definal_item_tails.adding('false') definal_item_tails.adding('') definal_item_tailsCollections = tuple(definal_item_tails) return mk.Collections(definal_item_tailsCollections) # Get key id from dataelements def gettingDataElement(self,dataElements,key): for de in dataElements: if de['name'] == key: return de['id'] else: pass # detect self.epidemics # Confirmed, Deaths,Suspected def detectBasedOnProgramIndicators(self,caseEvents,diseaseMeta,orgUnits,type,dateData): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) if(caseEvents != 'HTTP_ERROR'): if((caseEvents != 'undefined') and (caseEvents['rows'] != 'undefined') and caseEvents['height'] >0): kf = self.createKnowledgeFrame(caseEvents,type) caseEventsColumnsById = kf.columns kfColLength = length(kf.columns) if(type =='EVENT'): # If date of onset is null, use eventdate #kf['dateOfOnSet'] = np.where(kf['onSetDate']== '',mk.convert_datetime(kf['eventdate']).dt.strftime('%Y-%m-%d'),kf['onSetDate']) kf['dateOfOnSet'] = kf.employ(self.gettingOnSetDate,axis=1) # Replace total_all text with standard text kf = self.replacingText(kf) # Transpose and Aggregate values kfCaseClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['caseClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfCaseImmediateOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['immediateOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResult = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResult'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResultClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResultClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfStatusOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['statusOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() combinedDf = mk.unioner(kfCaseClassification,kfCaseImmediateOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResultClassification,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResult,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfStatusOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left') combinedDf.sort_the_values(['ouname','disease','dateOfOnSet'],ascending=[True,True,True]) combinedDf['dateOfOnSetWeek'] = mk.convert_datetime(combinedDf['dateOfOnSet']).dt.strftime('%YW%V') combinedDf['confirmedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'CONFIRMED'),axis=1) combinedDf['suspectedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'SUSPECTED'),axis=1) #combinedDf['deathValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'DEATH'),axis=1) kfConfirmed = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['confirmedValue'].agg(['total_sum']).reseting_index() kfConfirmed.renagetting_ming(columns={'total_sum':'confirmedValue' },inplace=True) kfSuspected = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['suspectedValue'].agg(['total_sum']).reseting_index() kfSuspected.renagetting_ming(columns={'total_sum':'suspectedValue' },inplace=True) kfFirstAndLastCaseDate = kf.grouper(['ouname','ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfFirstAndLastCaseDate.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) aggDf = mk.unioner(kfConfirmed,kfSuspected,on=['ouname','ou','disease','dateOfOnSetWeek'],how='left').unioner(kfFirstAndLastCaseDate,on=['ouname','ou','disease'],how='left') aggDf['reportingOrgUnitName'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'name')) aggDf['reportingOrgUnit'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) aggDf['incubationDays'] = int(diseaseMeta['incubationDays']) aggDf['endDate'] = mk.convert_datetime(mk.convert_datetime(kfDates['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') aggDf['regetting_minderDate'] = mk.convert_datetime(mk.convert_datetime(aggDf['final_itemCaseDate']) + mk.to_timedelta(
mk.np.ceiling(2*aggDf['incubationDays']-7)
pandas.np.ceil
""" Tests for helper functions in the cython tslibs.offsets """ from datetime import datetime import pytest from monkey._libs.tslibs.ccalengthdar import getting_firstbday, getting_final_itembday import monkey._libs.tslibs.offsets as liboffsets from monkey._libs.tslibs.offsets import roll_qtrday from monkey import Timestamp @pytest.fixture(params=["start", "end", "business_start", "business_end"]) def day_opt(request): return request.param @pytest.mark.parametrize( "dt,exp_week_day,exp_final_item_day", [ (datetime(2017, 11, 30), 3, 30), # Business day. (datetime(1993, 10, 31), 6, 29), # Non-business day. ], ) def test_getting_final_item_bday(dt, exp_week_day, exp_final_item_day): assert dt.weekday() == exp_week_day assert getting_final_itembday(dt.year, dt.month) == exp_final_item_day @pytest.mark.parametrize( "dt,exp_week_day,exp_first_day", [ (datetime(2017, 4, 1), 5, 3), # Non-weekday. (datetime(1993, 10, 1), 4, 1), # Business day. ], ) def test_getting_first_bday(dt, exp_week_day, exp_first_day): assert dt.weekday() == exp_week_day assert getting_firstbday(dt.year, dt.month) == exp_first_day @pytest.mark.parametrize( "months,day_opt,expected", [ (0, 15, datetime(2017, 11, 15)), (0, None, datetime(2017, 11, 30)), (1, "start", datetime(2017, 12, 1)), (-145, "end", datetime(2005, 10, 31)), (0, "business_end", datetime(2017, 11, 30)), (0, "business_start", datetime(2017, 11, 1)), ], ) def test_shifting_month_dt(months, day_opt, expected): dt = datetime(2017, 11, 30) assert liboffsets.shifting_month(dt, months, day_opt=day_opt) == expected @pytest.mark.parametrize( "months,day_opt,expected", [ (1, "start", Timestamp("1929-06-01")), (-3, "end", Timestamp("1929-02-28")), (25, None, Timestamp("1931-06-5")), (-1, 31, Timestamp("1929-04-30")), ], ) def test_shifting_month_ts(months, day_opt, expected): ts = Timestamp("1929-05-05") assert
liboffsets.shifting_month(ts, months, day_opt=day_opt)
pandas._libs.tslibs.offsets.shift_month
import clone import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from monkey.core.base import MonkeyObject from monkey.core.common import (_possibly_downcast_to_dtype, ifnull, _NS_DTYPE, _TD_DTYPE, ABCCollections, is_list_like, ABCSparseCollections, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalengtht, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from monkey.core.index import Index, MultiIndex, _ensure_index from monkey.core.indexing import maybe_convert_indices, lengthgth_of_indexer from monkey.core.categorical import Categorical, maybe_to_categorical import monkey.core.common as com from monkey.sparse.array import _maybe_to_sparse, SparseArray import monkey.lib as lib import monkey.tslib as tslib import monkey.computation.expressions as expressions from monkey.util.decorators import cache_readonly from monkey.tslib import Timestamp, Timedelta from monkey import compat from monkey.compat import range, mapping, zip, u from monkey.tcollections.timedeltas import _coerce_scalar_to_timedelta_type from monkey.lib import BlockPlacement class Block(MonkeyObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a monkey data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if length(self.mgr_locs) != length(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( length(self.values), length(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_totype(self, dtype): """ validate that we have a totypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a mk.Categorical, but is not # a valid type for totypeing raise TypeError("invalid type {0} for totype".formating(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, clone=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if clone: values = values.clone() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not incontainstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out total_all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, length(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __length__(self): return length(self.values) def __gettingstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.getting_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def gettingitem_block(self, slicer, new_mgr_locs=None): """ Perform __gettingitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if incontainstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is total_allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def unioner(self, other): return _unioner_blocks([self, other]) def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def getting(self, item): loc = self.items.getting_loc(item) return self.values[loc] def igetting(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def employ(self, func, **kwargs): """ employ the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not incontainstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillnone(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] mask = ifnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast total_all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or incontainstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.getting(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.adding(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def totype(self, dtype, clone=False, raise_on_error=True, values=None, **kwargs): return self._totype(dtype, clone=clone, raise_on_error=raise_on_error, values=values, **kwargs) def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ # may need to convert to categorical # this is only ctotal_alled for non-categoricals if self.is_categorical_totype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # totype processing dtype = np.dtype(dtype) if self.dtype == dtype: if clone: return self.clone() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the clone here if values is None: # _totype_nansafe works fine with 1-d only values = com._totype_nansafe(self.values.flat_underlying(), dtype, clone=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.clone() if clone else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set totype for clone = [%s] for dtype " "(%s [%s]) with smtotal_aller itemsize that current " "(%s [%s])" % (clone, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, clone=True, **kwargs): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we are not an ObjectBlock here! """ return [self.clone()] if clone else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have value_roundtripped thru object in the average-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if incontainstance(dtype, compat.string_types) and dtype == 'infer': return result if not incontainstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if ifnull(result).total_all(): return result.totype(np.bool_) else: result = result.totype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.totype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) if not self.is_object and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def clone(self, deep=True): values = self.values if deep: values = values.clone() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): """ replacing the to_replacing value with value, possible to create new blocks here this is just a ctotal_all to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replacing) if filter is not None: filtered_out = ~self.mgr_locs.incontain(filter) mask[filtered_out.nonzero()[0]] = False if not mask.whatever(): if inplace: return [self] return [self.clone()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.totype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = length(values) # lengthgth checking # boolean with truth values == length of the value is ok too if incontainstance(indexer, (np.ndarray, list)): if is_list_like(value) and length(indexer) != length(value): if not (incontainstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and length(indexer[indexer]) == length(value)): raise ValueError("cannot set using a list-like indexer " "with a different lengthgth than the value") # slice elif incontainstance(indexer, slice): if is_list_like(value) and l: if length(value) !=
lengthgth_of_indexer(indexer, values)
pandas.core.indexing.length_of_indexer
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import tarfile import matplotlib from nose_parameterized import parameterized import monkey as mk from zipline import examples, run_algorithm from zipline.data.bundles import register, unregister from zipline.testing import test_resource_path from zipline.testing.fixtures import WithTmpDir, ZiplineTestCase from zipline.testing.predicates import assert_equal from zipline.utils.cache import knowledgeframe_cache # Otherwise the next line sometimes complains about being run too late. _multiprocess_can_split_ = False matplotlib.use('Agg') class ExamplesTests(WithTmpDir, ZiplineTestCase): # some columns contain values with distinctive ids that will not be the same cols_to_check = [ 'algo_volatility', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'benchmark_volatility', 'beta', 'capital_used', 'ending_cash', 'ending_exposure', 'ending_value', 'excess_return', 'gross_leverage', 'long_exposure', 'long_value', 'longs_count', 'getting_max_drawdown', 'getting_max_leverage', 'net_leverage', 'period_close', 'period_label', 'period_open', 'pnl', 'portfolio_value', 'positions', 'returns', 'short_exposure', 'short_value', 'shorts_count', 'sortino', 'starting_cash', 'starting_exposure', 'starting_value', 'trading_days', 'treasury_period_return', ] @classmethod def init_class_fixtures(cls): super(ExamplesTests, cls).init_class_fixtures() register('test', lambda *args: None) cls.add_class_ctotal_allback(partial(unregister, 'test')) with tarfile.open(test_resource_path('example_data.tar.gz')) as tar: tar.extracttotal_all(cls.tmmkir.path) cls.expected_perf = knowledgeframe_cache( cls.tmmkir.gettingpath( 'example_data/expected_perf/%s' %
mk.__version__.replacing('.', '-')
pandas.__version__.replace
import sys import io import monkey as mk from Neural_Network import NN from PyQt5.QtWidgettings import QApplication from PyQt5.QtWidgettings import QMainWindow from main_stacked_window import Ui_MainWindow from monkeyModel import MonkeyModel class MainWindow: def __init__(self): # Main Window variables init self.main_window = QMainWindow() self.ui = Ui_MainWindow() self.ui.setupUi(self.main_window) self.ui.stackedWidgetting.setCurrentWidgetting(self.ui.pg_logIn) self.passcode = '' self.single_prediction_input = '' self.total_summary = 'Overview of model performance: ' self.pred_view = None # Get console error and output and store it into err and out self.out, self.err = io.StringIO(), io.StringIO() sys.standardout = self.out sys.standarderr = self.err # page 1 set up action widgettings self.ui.btn_LogIn.clicked.connect(self.show_page2) self.ui.le_passwordInput.textChanged[str].connect(self.umkate_login_te) # page 2 set up action widgettings self.ui.btn_build_2.clicked.connect(self.show_page3) # page 3 set up action widgettings self.ui.btn_makePred_2.clicked.connect(self.make_prediction) self.ui.le_predictionLe_2.textChanged[str].connect(self.umkate_prediction_input) self.ui.btn_toMaintView.clicked.connect(self.show_maintenance_page) # page 4 set up action widgettings self.ui.btn_backToModel.clicked.connect(self.back_to_total_summary_page) # Show the main window def show(self): self.main_window.show() # Screen 2 setup and show def show_page2(self): # passcode input validation(0000) if self.login(): self.ui.lb_errorLb.setText('') self.add_kf_to_table_view() self.ui.stackedWidgetting.setCurrentWidgetting(self.ui.pg_dataView) else: self.ui.lb_errorLb.setText('The passcode you entered is not correct!') # Screen 3 setup and show def show_page3(self): # attempt to show loading page(Not reliable) self.show_loading_page() # Do data transformatingions on knowledgeframe NN.dataTransform(NN) NN.defineXY(NN) # Normalize values by column NN.scaleValues(NN) NN.buildModel(NN) # Run predictions based on compiled model NN.prediction_test(NN) # Add plotted graphs to the window self.ui.hl_graphContainer.addWidgetting(NN.plotFigure1(NN)) self.ui.hl_graphContainer.addWidgetting(NN.plotFigure2(NN)) self.ui.hl_graphContainer.addWidgetting(NN.plotFigure3(NN)) self.pred_view = NN.predictionView(NN) self.umkate_model_total_summary() self.ui.stackedWidgetting.setCurrentWidgetting(self.ui.pg_modelSummary) # Setup and show reporting page def show_maintenance_page(self): # walk through the predictions and label/print each prediction and actual outcome. Compute the difference for i, val in enumerate(NN.y_test): temp_str = 'Predicted values are: ' + str(NN.y_predictions[i]) + ' Real values are: ' + str( val) + ' Difference: ' + \ str(NN.y_predictions[i] - val) self.ui.tb_fullPredictions.adding(temp_str) # Get errors and console output. Concat results = self.out.gettingvalue() errors = self.err.gettingvalue() full = errors + results self.ui.tb_dataView.setText(
mk.KnowledgeFrame.convert_string(NN.kf_data)
pandas.DataFrame.to_string
# pylint: disable-msg=E1101,E1103 from datetime import datetime import operator import numpy as np from monkey.core.index import Index import monkey.core.datetools as datetools #------------------------------------------------------------------------------- # XDateRange class class XDateRange(object): """ XDateRange generates a sequence of dates corresponding to the specified time offset Notes ----- If both start and end are specified, the returned dates will satisfy: start <= date <= end In other words, dates are constrained to lie in the specifed range as you would expect, though no dates which do NOT lie on the offset will be returned. XDateRange is a generator, use if you do not intend to reuse the date range, or if you are doing lazy iteration, or if the number of dates you are generating is very large. If you intend to reuse the range, use DateRange, which will be the list of dates generated by XDateRange. See also -------- DateRange """ _cache = {} _cacheStart = {} _cacheEnd = {} def __init__(self, start=None, end=None, nPeriods=None, offset=datetools.BDay(), timeRule=None): if timeRule is not None: offset = datetools.gettingOffset(timeRule) if timeRule is None: if offset in datetools._offsetNames: timeRule = datetools._offsetNames[offset] start = datetools.convert_datetime(start) end = datetools.convert_datetime(end) if start and not offset.onOffset(start): start = start + offset.__class__(n=1, **offset.kwds) if end and not offset.onOffset(end): end = end - offset.__class__(n=1, **offset.kwds) if nPeriods == None and end < start: end = None nPeriods = 0 if end is None: end = start + (nPeriods - 1) * offset if start is None: start = end - (nPeriods - 1) * offset self.offset = offset self.timeRule = timeRule self.start = start self.end = end self.nPeriods = nPeriods def __iter__(self): offset = self.offset cur = self.start if offset._normalizeFirst: cur = datetools.normalize_date(cur) while cur <= self.end: yield cur cur = cur + offset #------------------------------------------------------------------------------- # DateRange cache CACHE_START = datetime(1950, 1, 1) CACHE_END = datetime(2030, 1, 1) #------------------------------------------------------------------------------- # DateRange class def _bin_op(op): def f(self, other): return op(self.view(np.ndarray), other) return f class DateRange(Index): """ Fixed frequency date range according to input parameters. Input dates satisfy: begin <= d <= end, where d lies on the given offset Parameters ---------- start : {datetime, None} left boundary for range end : {datetime, None} right boundary for range periods : int Number of periods to generate. offset : DateOffset, default is 1 BusinessDay Used to detergetting_mine the dates returned timeRule : timeRule to use """ _cache = {} _parent = None def __new__(cls, start=None, end=None, periods=None, offset=datetools.bday, timeRule=None, **kwds): # Allow us to circumvent hitting the cache index = kwds.getting('index') if index is None: if timeRule is not None: offset = datetools.gettingOffset(timeRule) if timeRule is None: if offset in datetools._offsetNames: timeRule = datetools._offsetNames[offset] # Cachable if not start: start = kwds.getting('begin') if not end: end = kwds.getting('end') if not periods: periods = kwds.getting('nPeriods') start = datetools.convert_datetime(start) end = datetools.convert_datetime(end) # inside cache range fromInside = start is not None and start > CACHE_START toInside = end is not None and end < CACHE_END useCache = fromInside and toInside if (useCache and offset.isAnchored() and not incontainstance(offset, datetools.Tick)): index = cls.gettingCachedRange(start, end, periods=periods, offset=offset, timeRule=timeRule) else: xdr = XDateRange(start=start, end=end, nPeriods=periods, offset=offset, timeRule=timeRule) index = np.array(list(xdr), dtype=object, clone=False) index = index.view(cls) index.offset = offset else: index = index.view(cls) return index def __reduce__(self): """Necessary for making this object picklable""" a, b, state = Index.__reduce__(self) aug_state = state, self.offset return a, b, aug_state def __setstate__(self, aug_state): """Necessary for making this object picklable""" state, offset = aug_state[:-1], aug_state[-1] self.offset = offset Index.__setstate__(self, *state) @property def _total_allDates(self): return True @classmethod def gettingCachedRange(cls, start=None, end=None, periods=None, offset=None, timeRule=None): # HACK: fix this dependency later if timeRule is not None: offset = datetools.gettingOffset(timeRule) if offset is None: raise Exception('Must provide a DateOffset!') if offset not in cls._cache: xdr = XDateRange(CACHE_START, CACHE_END, offset=offset) arr = np.array(list(xdr), dtype=object, clone=False) cachedRange = DateRange.fromIndex(arr) cachedRange.offset = offset cls._cache[offset] = cachedRange else: cachedRange = cls._cache[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, datetime)) end = offset.rollback(end) endLoc = cachedRange.indexMap[end] + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, datetime)) start = offset.rollforward(start) startLoc = cachedRange.indexMap[start] if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: start = offset.rollforward(start) end = offset.rollback(end) startLoc = cachedRange.indexMap[start] endLoc = cachedRange.indexMap[end] + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice._parent = cachedRange return indexSlice @classmethod def fromIndex(cls, index): index = cls(index=index) return index def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self._parent = gettingattr(obj, '_parent', None) __lt__ = _bin_op(operator.lt) __le__ = _bin_op(operator.le) __gt__ = _bin_op(operator.gt) __ge__ = _bin_op(operator.ge) __eq__ = _bin_op(operator.eq) def __gettingslice__(self, i, j): return self.__gettingitem__(slice(i, j)) def __gettingitem__(self, key): """Override numpy.ndarray's __gettingitem__ method to work as desired""" result = self.view(np.ndarray)[key] if incontainstance(key, (int, np.int32)): return result elif incontainstance(key, slice): newIndex = result.view(DateRange) if key.step is not None: newIndex.offset = key.step * self.offset else: newIndex.offset = self.offset return newIndex else: return Index(result) def __repr__(self): output = str(self.__class__) + '\n' output += 'offset: %s\n' % self.offset output += '[%s, ..., %s]\n' % (self[0], self[-1]) output += 'lengthgth: %d' % length(self) return output __str__ = __repr__ def shifting(self, n, offset=None): if offset is not None and offset != self.offset: return
Index.shifting(self, n, offset)
pandas.core.index.Index.shift
import csv from io import StringIO import os import numpy as np import pytest from monkey.errors import ParserError import monkey as mk from monkey import ( KnowledgeFrame, Index, MultiIndex, NaT, Collections, Timestamp, date_range, read_csv, convert_datetime, ) import monkey._testing as tm import monkey.core.common as com from monkey.io.common import getting_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestKnowledgeFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.umkate(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header_numer=False) float_frame.to_csv(path, index=False) # test value_roundtrip # freq does not value_roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert length(recons.columns) == length(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = KnowledgeFrame( { "s1": Collections(range(3), index=np.arange(3)), "s2": Collections(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index kf = KnowledgeFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) kf.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, kf) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) kf = KnowledgeFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) kf.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, kf, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header_numer=col_aliases) rs = self.read_csv(path) xp = float_frame.clone() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header_numer=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: kf1 = KnowledgeFrame(np.random.randn(3, 1)) kf2 = KnowledgeFrame(np.random.randn(3, 1)) kf1.to_csv(path) kf2.to_csv(path, mode="a", header_numer=False) xp = mk.concating([kf1, kf2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatingting) dt = mk.Timedelta(seconds=1) kf = KnowledgeFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) kf.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = mk.to_timedelta(result.index) result["dt_data"] = mk.to_timedelta(result["dt_data"]) tm.assert_frame_equal(kf, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: convert_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) kf = tm.makeCustomDataframe(N, 3) cs = kf.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: kf.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(kf[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_kf(kf, cols=None): with tm.ensure_clean() as path: kf.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if kf.columns.is_distinctive: rs_c.columns = cols else: indexer, missing = kf.columns.getting_indexer_non_distinctive(cols) rs_c.columns = kf.columns.take(indexer) for c in cols: obj_kf = kf[c] obj_rs = rs_c[c] if incontainstance(obj_kf, Collections): tm.assert_collections_equal(obj_kf, obj_rs) else: tm.assert_frame_equal(obj_kf, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = kf.columns tm.assert_frame_equal(kf, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols kf = tm.makeCustomDataframe(N, 3) kf.columns = ["a", "a", "b"] _check_kf(kf, None) # dupe cols with selection cols = ["b", "a"] _check_kf(kf, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5getting_min", periods=n)) if nnat: for i in np.random.randint(0, length(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: kf = KnowledgeFrame({"a": s1, "b": s2}) kf.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).employ(convert_datetime) tm.assert_frame_equal(kf, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( kf, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header_numer"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: kf.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header_numer"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: kf.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not incontainstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = kf.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_mapping = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) kf.index = np.array( [_to_uni(label) for label in kf.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) kf.index = np.array( [Timestamp(label) for label in kf.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = convert_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) kf.index = np.array( list(mapping(Timestamp, kf.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_mapping.getting(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) kf.index = np.array(kf.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) kf.columns = np.array( [_to_uni(label) for label in kf.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) kf.columns = np.array( [Timestamp(label) for label in kf.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = convert_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = kf.columns.to_timestamp() kf.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_mapping.getting(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) kf.columns = np.array(kf.columns, dtype=c_dtype) tm.assert_frame_equal(kf, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: kf = tm.makeCustomDataframe(nrows, 3) cols = list(kf.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(kf.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] kf.index = ix kf.columns = cols _do_test(kf, dupe_col=True) _do_test(KnowledgeFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test value_roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.mapping(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.incontainf(float_frame), np.incontainf(recons)) def test_to_csv_from_csv_w_total_all_infs(self, float_frame): # test value_roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.incontainf(float_frame), np.incontainf(recons)) def test_to_csv_no_index(self): # GH 3624, after addinging columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: kf = KnowledgeFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) kf.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(kf, result) kf["c3"] = Collections([7, 8, 9], dtype="int64") kf.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(kf, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv kf = KnowledgeFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) kf["test"] = "txt" assert kf.to_csv() == kf.to_csv(columns=[0, 1, "test"]) def test_to_csv_header_numers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header_numer semantics. from_kf = KnowledgeFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_kf = KnowledgeFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_header_numers__") as path: from_kf.to_csv(path, header_numer=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_kf, recons) from_kf.to_csv(path, index=False, header_numer=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reseting_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_kf, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(length(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header_numer=False) frame.to_csv(path, columns=["A", "B"]) # value_round trip frame.to_csv(path) kf = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv sips column name tm.assert_frame_equal(frame, kf, check_names=False) assert frame.index.names == kf.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(length(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv sips column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert length(recons.columns) == length(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return KnowledgeFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index kf = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) kf.to_csv(path) result = read_csv(path, header_numer=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(kf, result) # column is mi kf = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) kf.to_csv(path) result = read_csv(path, header_numer=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(kf, result) # dup column names? kf = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) kf.to_csv(path) result = read_csv(path, header_numer=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(kf, result) # writing with no index kf = _make_frame() kf.to_csv(path, index=False) result = read_csv(path, header_numer=[0, 1]) tm.assert_frame_equal(kf, result) # we lose the names here kf = _make_frame(True) kf.to_csv(path, index=False) result = read_csv(path, header_numer=[0, 1]) assert
com.total_all_none(*result.columns.names)
pandas.core.common.all_none
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # formating_name: light # formating_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_fit_garch_stocks [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_fit_garch_stocks&codeLang=Python) # For definal_item_tails, see [here](https://www.arpm.co/lab/redirect.php?permalink=s_fit_garch_stocks). # + import numpy as np import monkey as mk from arpym.estimation import conditional_fp, exp_decay_fp, fit_garch_fp from arpym.statistics import averagecov_sp, scoring, smoothing # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_fit_garch_stocks-parameters) tau_hl_garch = 3*252 # half life for GARCH fit tau_hl_pri = 3*252 # half life for VIX comp. ret. time conditioning tau_hl_smooth = 4*21 # half life for VIX comp. ret. smoothing tau_hl_score = 5*21 # half life for VIX comp. ret. scoring alpha_leeway = 1/4 # probability included in the range centered in z_vix_star # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_fit_garch_stocks-implementation-step00): Load data # + path_glob = '../../../databases/global-databases/' # Stocks db_stocks_sp = mk.read_csv(path_glob + 'equities/db_stocks_SP500/db_stocks_sp.csv', header_numer=1, index_col=0, parse_dates=True) stocks_names = db_stocks_sp.columns.convert_list() # VIX (used for time-state conditioning) vix_path = path_glob + 'derivatives/db_vix/data.csv' db_vix = mk.read_csv(vix_path, usecols=['date', 'VIX_close'], index_col=0, parse_dates=True) # intersect dates dates_rd =
mk.DatetimeIndex.interst(db_stocks_sp.index, db_vix.index)
pandas.DatetimeIndex.intersection
import model.model as model import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUmkate import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff import numpy as np import monkey as mk import scipy import math import dash_table as dt import dash_table.FormatTemplate as FormatTemplate from dash_table.Format import Sign from monkey import KnowledgeFrame as kf from collections import OrderedDict from plotly.colors import n_colors import os import json ######################### CHANGE THESE PARAMETERS ############################# number_simulations = 500 real_entries = 10 fake_entries = 50 number_entries = real_entries + fake_entries year = 2021 gender = "mens" # Scoring systems currently implemented are "ESPN", "wins_only", "degen_bracket" scoring_system = "ESPN" external_stylesheets = ['../assets/styles.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.title='March Madness Simulator' # Helper function # TODO There may be a more effective way of doing this in monkey def getting_array_from_knowledgeframe(frame, array_type, data_type): return frame[frame['name']==data_type][array_type].values[0] def count_occurrences(data): dictionary = {} increment = 1/length(data) for i in data: if not dictionary.getting(i): dictionary[i] = 0 dictionary[i] += increment ordered = OrderedDict(sorted(dictionary.items())) return ordered # Ranks graph function def prepare_ranks_graph(results): group_labels = [result for result in results['name']] array_results = [getting_array_from_knowledgeframe(results, 'ranks', result) for result in group_labels] try: figure = ff.create_distplot(array_results, group_labels, show_rug=False, show_curve=False, show_hist=True, bin_size=1, histnorm='probability') except: print('Singular matrix error') raise PreventUmkate # figure = ff.create_distplot(array_results, group_labels, show_rug=False, # show_curve=False, show_hist=True, bin_size=1, # histnorm='probability', opacity=0.5) figure.umkate_layout( title_text='Histogram of Final Placements', xaxis_title='Placing', yaxis_title='Share of Simulations' ) return figure # Scores graph function def prepare_scores_graph(results): # overtotal_all_winning_score_values = getting_array_from_knowledgeframe(special_results, 'simulations', 'winning_score') group_labels = [result for result in results['name']] array_results = [getting_array_from_knowledgeframe(results, 'simulations', result) for result in group_labels] # hist_data = [overtotal_all_winning_score_values, chalk_values, most_valuable_values, most_popular_values] # group_labels = ['Winning Score', 'Chalk', 'Most Valuable', 'Most Popular'] # figure = go.Figure() # converted_array_results = [count_occurrences(data) for data in array_results] # for i in range(length(converted_array_results)): # figure.add_trace(go.Scatter(name=group_labels[i],x=list(converted_array_results[i].keys()),y=list(converted_array_results[i].values()))) figure = ff.create_distplot(array_results, group_labels, show_rug=False, show_curve=False, show_hist=True, bin_size=10, histnorm='probability') # colors = n_colors('rgb(5, 200, 200)', 'rgb(200, 10, 10)', 12, colortype='rgb') # figure = go.Figure() # for array, label in zip(array_results, group_labels): # figure.add_trace(go.Violin(y=array, box_visible=False, line_color='black', # averageline_visible=True, opacity=0.6, # x0=label)) # figure.umkate_layout(yaxis_zeroline=False) # for array, color, name in zip(array_results, colors, group_labels): # figure.add_trace(go.Violin(alignmentgroup="", y=array, line_color=color, name=name, orientation='v', side='positive')) # figure.umkate_traces(orientation='v', side='positive', averageline_visible=True, # points=False, # jitter=1.00, # ) # figure.umkate_traces(orientation='h', side='positive', width=3, points=False) # figure.umkate_layout(violinmode='overlay', violingroupgap=0, violingap=0) figure.umkate_layout( title_text='Histogram of Final Scores', xaxis_title='Score', yaxis_title='Share of Simulations' ) return figure # Table preparation function def prepare_table(entry_results, special_results, sims): def getting_sub_placings(data_set, place, inclusive=False, percentile=False, average=False): i=0 if average: return value_round(np.average(data_set),1) if percentile: place = math.ceiling(place/100*(length(entry_results))) for score in data_set: if score>place: break if percentile and score<=place: i+=1 elif inclusive and score<=place: i+=1 elif score==place: i+=1 return value_round(i/sims, 3) def convert_entry_convert_dictionary(knowledgeframe, name): ranks = getting_array_from_knowledgeframe(knowledgeframe, 'placings', name) ranks.sort() index = knowledgeframe[knowledgeframe['name'] == name]['entryID'].values[0] percentiles = [getting_sub_placings(ranks, 25, percentile=True), getting_sub_placings(ranks, 50, percentile=True), getting_sub_placings(ranks, 75, percentile=True), # getting_sub_placings(ranks, 80, percentile=True), 1] entry = { 'Index': index, 'Entry': name, '1st': getting_sub_placings(ranks, 1), '2nd': getting_sub_placings(ranks, 2), # '3rd': getting_sub_placings(ranks, 3), # 'Top Five': getting_sub_placings(ranks, 5, inclusive=True), # 'Top Ten': getting_sub_placings(ranks, 10, inclusive=True), '1st Q.': percentiles[0], '2nd Q.': percentiles[1]-percentiles[0], '3rd Q.': percentiles[2]-percentiles[1], '4th Q.': percentiles[3]-percentiles[2], # '5th Q.': percentiles[4]-percentiles[3], 'Avg Plc.': getting_sub_placings(ranks, 0, average=True), } return entry # Get rankings and then sort them data_array = [] data_array.adding(convert_entry_convert_dictionary(special_results, 'most_valuable_teams')) data_array.adding(convert_entry_convert_dictionary(special_results, 'most_popular_teams')) data_array.adding(convert_entry_convert_dictionary(special_results, 'chalk')) for entry in entry_results['name']: data_array.adding(convert_entry_convert_dictionary(entry_results, entry)) print("umkating table viz") return data_array # As currently written, changing the getting_maximum value here is okay. Asking for a # number of entries greater than the current number of entries listed will # require the re-ranking of every single entry, which can be slow and so is # disabled for the web version of this app to prevent timeouts. However, this # can be changed if you're running this loctotal_ally. def prepare_number_entries_input(): entries_input = dcc.Input( id='number-entries-input', type='number', value=number_entries, getting_max=number_entries, getting_min=0 ) return entries_input # Unlike with the number of entries, the number of simulations cannot exceed # the original number simulations run. If you want to add simulations you will # need to restart from the very beginning with a greater number. def prepare_number_simulations_input(): simulations_input = dcc.Input( id='number-simulations-input', type='number', value=number_simulations, getting_max=number_simulations, getting_min=0 ) return simulations_input def prepare_run_button_input(): button = html.Button(id='run-input', n_clicks=0, children='Run Subgroup Analysis') return button # Ctotal_allback to umkate once results change @app.ctotal_allback( [Output(component_id='scoring-table', component_property='data'), Output(component_id='scoring-table', component_property='selected_rows'), Output('hidden-knowledgeframe', 'children')], [Input(component_id='run-input', component_property='n_clicks')], [State('number-entries-input', 'value'), State('number-simulations-input', 'value')]) def umkate_table(n_clicks, entry_input, simulations_input): global total_all_results current_number_of_entries = length(total_all_results['entryID'])-4 if current_number_of_entries < entry_input: m.add_bulk_entries_from_database(entry_input-current_number_of_entries) m.add_simulation_results_postprocessing() total_all_results = m.output_results() special_wins = m.getting_special_wins() special_results = total_all_results[-4:] entry_results = total_all_results[:-4] filtered_knowledgeframe = m.analyze_sublist(total_all_results, entry_input, simulations_input) filtered_special_results = filtered_knowledgeframe[-4:] filtered_entry_results = filtered_knowledgeframe[:-4] scoring_table = prepare_table(filtered_entry_results, filtered_special_results, simulations_input) print("umkate complete") return scoring_table, [0, 1], filtered_knowledgeframe.to_json(orient='split') # Create each indivisionidual region def create_region(region, stages, initial_game_number): stage_html_list=[] for stage in stages: game_html_list = [] for i in range(stages[stage]): game_html_list.adding(html.Div([ html.Div('', id='game'+str(initial_game_number)+'-team1', className='team team1'), html.Div('', id='game'+str(initial_game_number)+'-team2', className='team team2'), ], id='game'+str(initial_game_number), className=region+' '+stage+' g'+str(i)+' game')) initial_game_number+=1 stage_html_list.adding( html.Div(game_html_list, className='inner-bounding '+stage)) return html.Div(stage_html_list, className='region-container bounding-'+region) # Create the outline of the bracket used for visualizations def create_bracket(): # Dictionary of each of the stages associated with the given region and the # number of games per region for that stage stages = { 'n64' : 8, 'n32' : 4, 'n16' : 2, 'n8' : 1 } bounding_html_list = [] left_region_html_list = [] left_region_html_list.adding(create_region('r1', stages, 0)) left_region_html_list.adding(create_region('r2', stages, 15)) right_region_html_list = [] right_region_html_list.adding(create_region('r3', stages, 30)) right_region_html_list.adding(create_region('r4', stages, 45)) bounding_html_list.adding( html.Div(left_region_html_list, className='left-bounding') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game60-team1', className='team team1'), html.Div('', id='game60-team2', className='team team2'), ], className='n4 g1')], id='game60', className='final-four-bounding inner-bounding game') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game62-team1', className='team team1'), html.Div('', id='game62-team2', className='team team2'), ], className='n2 g1')], id='game62', className='finals-bounding inner-bounding game') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game61-team1', className='team team1'), html.Div('', id='game61-team2', className='team team2'), ], className='n4 g2')], id='game61', className='final-four-bounding inner-bounding game') ) bounding_html_list.adding( html.Div(right_region_html_list, className='right-bounding') ) bracket_html = html.Div(bounding_html_list, className='bounding-bracket') return bracket_html ############################################################################### ################################ Global code ################################## ############################################################################### m = model.Model(number_simulations=number_simulations, gender=gender, scoring_sys=scoring_system, year=year) m.batch_simulate() print("sims done") m.create_json_files() m.umkate_entry_picks() m.initialize_special_entries() m.analyze_special_entries() m.add_fake_entries(fake_entries) m.add_bulk_entries_from_database(real_entries) m.add_simulation_results_postprocessing() m.raw_print() total_all_results = m.output_results() total_all_results = m.output_results() special_wins = m.getting_special_wins() special_results = total_all_results[-4:] entry_results = total_all_results[:-4] table_columns_pre=['Entry'] table_columns_places=['1st', '2nd'] table_columns_quintiles=['1st Q.', '2nd Q.', '3rd Q.', '4th Q.'] table_columns_post=['Avg Plc.'] ############################################################################### ################################ Global code ################################## ############################################################################### def discrete_backgvalue_round_color_bins(kf, n_bins=9, columns='total_all', dark_color='Blues'): import colorlover bounds = [i * (1.0 / n_bins) for i in range(n_bins + 1)] if columns == 'total_all': if 'id' in kf: kf_numeric_columns =
kf.choose_dtypes('number')
pandas.DataFrame.select_dtypes
import numpy as np import pytest from monkey._libs import iNaT from monkey.core.dtypes.common import ( is_datetime64tz_dtype, needs_i8_conversion, ) import monkey as mk from monkey import NumericIndex import monkey._testing as tm from monkey.tests.base.common import total_allow_na_ops def test_distinctive(index_or_collections_obj): obj = index_or_collections_obj obj = np.repeat(obj, range(1, length(obj) + 1)) result = obj.distinctive() # dict.fromkeys preserves the order distinctive_values = list(dict.fromkeys(obj.values)) if incontainstance(obj, mk.MultiIndex): expected = mk.MultiIndex.from_tuples(distinctive_values) expected.names = obj.names tm.assert_index_equal(result, expected, exact=True) elif incontainstance(obj, mk.Index) and obj._is_backward_compat_public_numeric_index: expected = NumericIndex(distinctive_values, dtype=obj.dtype) tm.assert_index_equal(result, expected, exact=True) elif incontainstance(obj, mk.Index): expected = mk.Index(distinctive_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): expected = expected.normalize() tm.assert_index_equal(result, expected, exact=True) else: expected = np.array(distinctive_values) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_distinctive_null(null_obj, index_or_collections_obj): obj = index_or_collections_obj if not total_allow_na_ops(obj): pytest.skip("type doesn't total_allow for NA operations") elif length(obj) < 1: pytest.skip("Test doesn't make sense on empty data") elif incontainstance(obj, mk.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, length(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) result = obj.distinctive() distinctive_values_raw = dict.fromkeys(obj.values) # because np.nan == np.nan is False, but None == None is True # np.nan would be duplicated_values, whereas None wouldn't distinctive_values_not_null = [val for val in distinctive_values_raw if not mk.ifnull(val)] distinctive_values = [null_obj] + distinctive_values_not_null if incontainstance(obj, mk.Index) and obj._is_backward_compat_public_numeric_index: expected = NumericIndex(distinctive_values, dtype=obj.dtype) tm.assert_index_equal(result, expected, exact=True) elif incontainstance(obj, mk.Index): expected = mk.Index(distinctive_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): result = result.normalize() expected = expected.normalize() tm.assert_index_equal(result, expected, exact=True) else: expected = np.array(distinctive_values, dtype=obj.dtype) tm.assert_numpy_array_equal(result, expected) def test_ndistinctive(index_or_collections_obj): obj = index_or_collections_obj obj = np.repeat(obj, range(1, length(obj) + 1)) expected = length(obj.distinctive()) assert obj.ndistinctive(sipna=False) == expected @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_ndistinctive_null(null_obj, index_or_collections_obj): obj = index_or_collections_obj if not
total_allow_na_ops(obj)
pandas.tests.base.common.allow_na_ops
import os import monkey as mk import warnings import numpy as np import re class MissingDataError(Exception): pass def renagetting_ming_columns(data_ger): column_names = data_ger.columns.values data_eng = data_ger.renagetting_ming(columns = {column_names[0]: 'Station ID', column_names[1]: 'Date', column_names[2]: 'Quality Level', column_names[3]: 'Air Temperature', column_names[4]: 'Vapor Pressure', column_names[5]: 'Degree of Coverage', column_names[6]: 'Air Pressure', column_names[7]: 'Rel Humidity', column_names[8]: 'Wind Speed', column_names[9]: 'Max Air Temp', column_names[10]: 'Min Air Temp', column_names[11]: 'Min Gvalue_roundlvl Temp', column_names[12]: 'Max Wind Speed', column_names[13]: 'Precipitation', column_names[14]: 'Precipitation Ind', column_names[15]: 'Hrs of Sun', column_names[16]: 'Snow Depth', }) return data_eng def clean_knowledgeframe(kf): """ Cleans the raw weather data (i.e. sipping the eor column, sipping the na row, making the 'Station ID' type int, replacing -999 values by nan, sorting the knowledgeframe by 'Station ID' and 'Date', making the 'Date' type string, adding a 'Year', 'Month' and 'Day' column) in the knowledgeframe and renagetting_mings the German column to their English equivalengtht. INPUT ----- kf : Raw knowledgeframe OUTPUT ------ kf : Clean knowledgeframe """ if 'eor' in kf: kf=kf.sip('eor', 1) kf=kf.sipna(axis = 0) kf.iloc[:,0] = int(kf.iloc[0,0]) kf=renagetting_ming_columns(kf) kf=kf.sort(['Station ID', 'Date']) kf=kf.replacing(to_replacing = -999, value = float('nan')) kf['Date']=kf['Date'].totype(int).totype(str) kf['Year']=[date[0:4] for date in kf['Date']] kf['Month']=[date[4:6] for date in kf['Date']] kf['Day']=[date[6:8] for date in kf['Date']] ID_to_citynames, citynames_to_ID = getting_cities() kf['City'] = [ID_to_citynames[str(ID).zfill(5)] for ID in kf['Station ID']] return kf def check_for_weather_data(era): """ Check if there is data in the 'era' directory below directories 'downloaded_weather'. INPUT ------ era: string specifying the path to return, either 'recent', 'historical' OUTPUT ------ not output """ if not os.path.isdir('downloaded_data'): raise OSError("There is no 'downloaded_data' directory.\n You either have to download\ the weather data using 'download_weather_data' or move to the right\ directory.' ") else: if not os.path.isdir(os.path.join('downloaded_data',era)): raise OSError('You dont have the '+era+' data, download it first.') else: if os.listandardir(os.path.join(os.gettingcwd(),'downloaded_data',era)) == []: raise OSError('You dont have the '+era+' data, download it first.') def check_for_station(ID, era): """ Check if there is a station specified by ID for given era. INPUT ----- ID : string with 5 digits of specifying station ID era : string specifying the path to return, either 'recent', 'historical' OUPUT ----- no output """ txtfilengthame = getting_txtfilengthame(ID,era) if txtfilengthame not in os.listandardir(os.path.join(os.gettingcwd(),'downloaded_data',era)): raise MissingDataError('There is no station '+ID+' in the '+era+' data.') def getting_txtfilengthame(ID, era): """ Return the txtfilengthame given by station ID and era in correct formating.""" return era+'_'+ID+'.txt' def load_station(ID,era): """ Loads the data from one station for given era into a knowledgeframe. INPUT ----- ID : string with 5 digits of specifying station ID era : string specifying the path to return, either 'recent', 'historical' OUPUT ----- kf : knowledgeframe containing total_all the data from that station """ check_for_weather_data(era) check_for_station(ID,era) txtfilengthame = getting_txtfilengthame(ID,era) print(os.path.join('downloaded_data',era,txtfilengthame)) kf = mk.read_csv(os.path.join('downloaded_data',era,txtfilengthame)) kf = kf.sip(kf.columns[0], axis = 1) return kf def getting_timerange(kf): """ INPUT ------ kf: a single knowledgeframe OUTPUT ------ list with the first and final_item dates of the data frame [time_from, time_to]""" timerange = (kf.iloc[0,1], kf.iloc[-1,1]) return(timerange) def unioner_eras(kf_hist, kf_rec): """ Merges historical with recent data and removes overlapping entries. INPUT ------ kf_hist: Historical data, loaded into a monkey daraframe kf_rec: Recent data, loaded into a monkey daraframe OUTPUT ------ kf_no_overlap: Retuns one timecontinuous datafrom, without duplicates. """ kf_unionerd = mk.concating([kf_hist,kf_rec], axis=0) kf_no_overlap =
mk.KnowledgeFrame.sip_duplicates(kf_unionerd)
pandas.DataFrame.drop_duplicates
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import monkey as mk import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_rectotal_all_fscore_support from sklearn.metrics import precision_score, f1_score, rectotal_all_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) total_all_sr = ['bmk', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] total_all_dis = {el:i for i, el in enumerate(total_all_sr)} disease_values_dict = total_all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" plt.rcParams.umkate({'font.size': 16}) features_file = "data/features/{}_embdedded_features.pckl".formating(etype) results_file = "results/{}_multiclasscm.csv".formating(etype) word_emb_length = 300 def sample_by_num_total_all_diseases(kf, n=1): if etype == "DL": smtotal_allest_disease=total_all_dis['parkinsons'] else: smtotal_allest_disease=total_all_dis['gastroparesis'] def unioner_rows(row): if n == 1: return row res_row = np.zeros(length(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n kf = kf.sample_by_num(frac=1).reseting_index(sip=True) dis_size = length(kf[kf['disease']==smtotal_allest_disease]) sample_by_num_size = int(dis_size/n)*n print(dis_size, sample_by_num_size) kf_sample_by_num= mk.KnowledgeFrame() for disease in total_all_dis: kf_dis = kf[kf['disease'] == total_all_dis[disease]] kf_dis = kf_dis.sample_by_num(n=sample_by_num_size, random_state=11).reseting_index() if n > 1: kf_dis = kf_dis.grouper(kf_dis.index // n).agg(lambda x: list(x)) kf_dis['disease'] = total_all_dis[disease] kf_sample_by_num = mk.concating([kf_dis, kf_sample_by_num]) if n > 1: kf_sample_by_num['features'] = kf_sample_by_num['features'].employ(lambda row: unioner_rows(row)) kf_sample_by_num = kf_sample_by_num.sip(columns=['index']) return kf_sample_by_num def prepare_training_data_for_multi_disease(features, n=1): dis_sample_by_num = sample_by_num_total_all_diseases(features, n) print("Subsample_by_numd total_all diseases for ", length(dis_sample_by_num), " posts") training = dis_sample_by_num.clone() training = training.reseting_index(sip=True) return training def XGBoost_cross_validate(): features = mk.read_pickle(features_file) features.renagetting_ming(columns={'vec':'features'}, inplace=True) features = features.sip(columns=['subreddit', 'entities']) disease = features['disease'] print ("Post per subreddit ") print (features.grouper('disease').size()) # print('Distribution before imbalancing: {}'.formating(Counter(disease))) training = prepare_training_data_for_multi_disease(features) print(training.final_item_tail()) training_labels = training["disease"].totype(int) training_labels.header_num() training_features = mk.KnowledgeFrame(training["features"].convert_list()) training_features.header_num() # XGBoost AUC_results = [] f1_results = [] results = [] cm_total_all = [] kf = StratifiedKFold(n_splits=10, random_state=11, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=100, n_jobs=11, getting_max_depth=4) # 1000 200 model.fit(X_train, y_train.values.flat_underlying()) predictions = model.predict(X_test) results.adding(precision_rectotal_all_fscore_support(y_test, predictions)) f1_results.adding(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_labels) cm_total_all.adding(cm_cv) print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [mk.np.average(f1_results), mk.np.standard(f1_results)] #AUC_results_avg = [mk.np.average(AUC_results), mk.np.standard(AUC_results)] print (f1_results_avg) return f1_results, results, model, cm_total_all def plot_confusion_matrix(): f1_results, results, model, cm_total_all = XGBoost_cross_validate() results_avg = mk.np.average(results, axis=0) f1 = results_avg[2] per_dis_f1 = [ str(disease_names[i]) + ' F1: ' + "{0:.2f}".formating(f1[i]) for i in range (length(f1)) ] cms = np.array(cm_total_all) cms2 = cms.total_sum(axis=0) from matplotlib.colors import LogNorm from matplotlib import cm fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10,10)) sns.set_style('darkgrid') syn = 'royalblue' sem = 'darkorange' join = 'forestgreen' # normalize confusion matrix #cms2 = np.value_round(cms2.totype('float') / cms2.total_sum(axis=1)[:, np.newaxis],2) viridis = cm.getting_cmapping('viridis', 12) a = sns.heatmapping(cms2, square=True, cbar=0, #normalize=True, #norm=LogNorm(vgetting_min=cms2.getting_min(), vgetting_max=cms2.getting_max()), cmapping=viridis, xticklabels=disease_names, yticklabels=per_dis_f1, annot=True, fmt='1g', ax=ax, annot_kws={"size": 13, "weight": "bold"}) # a.xaxis.tick_top() # a.title. # a.xaxis. #ax.set_title(i) plt.tight_layout() fig.savefig('results/multiclass/classifier_for_' + etype + '_cm_bold_v4.png') results_standard =
mk.np.standard(results, axis=0)
pandas.np.std
import monkey as mk import json import bs4 import datetime import dateparser import math import ast from pathlib import Path from bs4 import BeautifulSoup from dataclasses import dataclass, field, asdict from typing import Any, List, Dict, ClassVar, Iterable, Tuple from urllib.parse import urlparse from geopy.geocoders import Nogetting_minatim from geopy.exc import GeopyError from .files import save_to_file, parse_file, remove_total_all_files from .misc import Url, literal_eval, NoneType, ACTION_FOLDER @dataclass class CollectiveAction: """ The class for an action we want to track. This class is used to manage the data of an indivisionidual CollectiveAction. It is used to perform the following: - set mandatory/optional fields - set meta fields - cast an validate data so that it knows how to read datafields from markdown and knowledgeframes - output actions as for knowledgeframes and markdown - create and populate action instances from markdown and knowledgeframes """ # mandatory fields id: int date: str sources: List[Url] actions: List[str] struggles: List[str] employment_types: List[str] description: str # optional fields online: bool = None locations: List[List[str]] = None companies: List[str] = None workers: int = None tags: List[str] = None author: str = None latlngs: List[Tuple[float, float]] = None addresses: List[str] = None _meta_fields: ClassVar = ["author"] def __post_init__(self): """ Used to validate fields. """ # check total_all the types assert incontainstance(self.date, (str, mk.Timestamp, datetime.date)) assert incontainstance(self.sources, (str, list)) assert incontainstance(self.struggles, list) assert incontainstance(self.actions, list) assert incontainstance(self.employment_types, list) assert incontainstance(self.companies, (list, NoneType)) assert incontainstance(self.tags, (list, NoneType)) assert incontainstance(self.workers, (int, float, NoneType)) assert incontainstance(self.locations, (list, NoneType)) assert incontainstance(self.latlngs, (list, float, NoneType)) if incontainstance(self.latlngs, list): assert total_all(incontainstance(el, list) for el in self.latlngs) assert incontainstance(self.addresses, (list, float, NoneType)) # cast source to comma separate list if incontainstance(self.sources, str): self.sources = [x.strip() for x in self.sources.split(',')] # cast workers to int if incontainstance(self.workers, float): if math.ifnan(self.workers): self.workers = None else: self.workers = int(self.workers) # change date to datetime if incontainstance(self.date, str): self.date = dateparser.parse(self.date).date() if incontainstance(self.date, mk.Timestamp): self.date =
mk.Timestamp.convert_pydatetime(self.date)
pandas.Timestamp.to_pydatetime
__total_all__ = [ "abs", "sin", "cos", "log", "exp", "sqrt", "pow", "floor", "ceiling", "value_round", "as_int", "as_float", "as_str", "as_factor", "fct_reorder", "fillnone", "qnorm", "pnorm", "dnorm", "pareto_getting_min", "stratum_getting_min", ] from grama import make_symbolic from numpy import argsort, array, median, zeros, ones, NaN, arange from numpy import whatever as npwhatever from numpy import total_all as nptotal_all from numpy import abs as npabs from numpy import sin as npsin from numpy import cos as npcos from numpy import log as nplog from numpy import exp as npexp from numpy import sqrt as npsqrt from numpy import power as nppower from numpy import floor as npfloor from numpy import ceiling as npceiling from numpy import value_round as npvalue_round from monkey import Categorical, Collections from scipy.stats import norm # -------------------------------------------------- # Mutation helpers # -------------------------------------------------- # Numeric # ------------------------- @make_symbolic def floor(x): r"""Absolute value """ return npfloor(x) @make_symbolic def ceiling(x): r"""Absolute value """ return npceiling(x) @make_symbolic def value_round(x): r"""Absolute value """ return npvalue_round(x) @make_symbolic def abs(x): r"""Absolute value """ return npabs(x) @make_symbolic def sin(x): r"""Sine """ return npsin(x) @make_symbolic def cos(x): r"""Cosine """ return npcos(x) @make_symbolic def log(x): r"""(Natural) log """ return nplog(x) @make_symbolic def exp(x): r"""Exponential (e-base) """ return npexp(x) @make_symbolic def sqrt(x): r"""Square-root """ return npsqrt(x) @make_symbolic def pow(x, p): r"""Power Usage: q = pow(x, p) := x ^ p Arguments: x = base p = exponent """ return nppower(x, p) # Casting # ------------------------- @make_symbolic def as_int(x): r"""Cast to integer """ return x.totype(int) @make_symbolic def as_float(x): r"""Cast to float """ return x.totype(float) @make_symbolic def as_str(x): r"""Cast to string """ return x.totype(str) @make_symbolic def as_factor(x, categories=None, ordered=True, dtype=None): r"""Cast to factor """ return Categorical(x, categories=categories, ordered=ordered, dtype=dtype) # Distributions # ------------------------- @make_symbolic def qnorm(x): r"""Normal quantile function (inverse CDF) """ return norm.ppf(x) @make_symbolic def dnorm(x): r"""Normal probability density function (PDF) """ return norm.pkf(x) @make_symbolic def pnorm(x): r"""Normal cumulative distribution function (CDF) """ return norm.ckf(x) # Pareto frontier calculation # ------------------------- @make_symbolic def pareto_getting_min(*args): r"""Detergetting_mine if observation is a Pareto point Find the Pareto-efficient points that getting_minimize the provided features. Args: xi (iterable OR gr.Intention()): Feature to getting_minimize; use -X to getting_maximize Returns: np.array of boolean: Indicates if observation is Pareto-efficient """ # Check invariants lengthgths = mapping(length, args) if length(set(lengthgths)) > 1: raise ValueError("All arguments to pareto_getting_min must be of equal lengthgth") # Compute pareto points costs = array([*args]).T is_efficient = ones(costs.shape[0], dtype=bool) for i, c in enumerate(costs): is_efficient[i] = nptotal_all(npwhatever(costs[:i] > c, axis=1)) and nptotal_all( npwhatever(costs[i + 1 :] > c, axis=1) ) return is_efficient # Shell number calculation # ------------------------- @make_symbolic def stratum_getting_min(*args, getting_max_depth=10): r"""Compute Pareto stratum number Compute the Pareto stratum number for a given dataset. Args: xi (iterable OR gr.Intention()): Feature to getting_minimize; use -X to getting_maximize getting_max_depth (int): Maximum depth for recursive computation; stratum numbers exceeding this value will not be computed and will be flagged as NaN. Returns: np.array of floats: Pareto stratum number References: del Rosario, Rupp, Kim, Antono, and Ling "Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization" (2020) J. Chem. Phys. """ # Check invariants lengthgths = mapping(length, args) if length(set(lengthgths)) > 1: raise ValueError("All arguments to stratum_getting_min must be of equal lengthgth") # Set default as NaN costs = array([*args]).T n = costs.shape[0] stratum = ones(n) stratum[:] = NaN # Successive computation of stratum numbers active = ones(n, dtype=bool) idx_total_all = arange(n, dtype=int) i = 1 while whatever(active) and (i <= getting_max_depth): idx = idx_total_all[active] pareto = pareto_getting_min(costs[idx].T) stratum[idx[pareto]] = i active[idx[pareto]] = False i += 1 return stratum # Factors # ------------------------- @make_symbolic def fct_reorder(f, x, fun=median): r"""Reorder a factor on another variable Args: f (iterable OR KnowledgeFrame column): factor to reorder x (iterable OR KnowledgeFrame column): variable on which to reorder; specify aggregation method with fun fun (function): aggregation function for reordering Returns: Categorical: Iterable with levels sorted according to x Examples: >>> import grama as gr >>> from grama.data import kf_diamonds >>> X = gr.Intention() >>> ( >>> kf_diamonds >>> >> gr.tf_mutate(cut=gr.fct_reorder(X.cut, X.price, fun=gr.colgetting_max)) >>> >> gr.tf_group_by(X.cut) >>> >> gr.tf_total_summarize(getting_max=gr.colgetting_max(X.price), average=gr.average(X.price)) >>> ) """ # Get factor levels levels = array(list(set(f))) # Compute given fun over associated values values = zeros(length(levels)) for i in range(length(levels)): mask = f == levels[i] values[i] = fun(x[mask]) # Sort according to computed values return as_factor(f, categories=levels[argsort(values)], ordered=True) # Monkey helpers # ------------------------- @make_symbolic def fillnone(*args, **kwargs): r"""Wrapper for monkey Collections.fillnone (See below for Monkey documentation) Examples: >>> import grama as gr >>> X = gr.Intention() >>> kf = gr.kf_make(x=[1, gr.NaN], y=[2, 3]) >>> kf_filled = ( >>> kf >>> >> gr.tf_mutate(x=gr.fillnone(X.x, 0)) >>> ) """ return
Collections.fillnone(*args, **kwargs)
pandas.Series.fillna
import monkey as mk from sklearn.metrics.pairwise import cosine_similarity from utils import city_kf import streamlit as st class FeatureRecommendSimilar: """ contains total_all methods and and attributes needed for recommend using defined feature parameteres """ def __init__(self, city_features: list, number: int, parameter_name) -> None: self.city_features = city_features self.number = number self.top_cities_feature_kf = None self.first_city = None self.feature_countries_kf_final = None self.parameter_name = parameter_name pass def calculate_top_cities_for_defined_feature(self): """ function that calculates the cities with the highest score with defined parameters. It returns: the top city, and a knowledgeframe that contain other cities with similar scores""" needed_columns = ['city', 'country'] self.city_features.extend(needed_columns) feature_kf = city_kf.loc[:, self.city_features] feature_kf.set_index('city', inplace = True) feature_kf['score'] = feature_kf.average(axis=1) self.first_city = feature_kf.score.idxgetting_max() self.top_cities_feature_kf = feature_kf.loc[:, ['country','score']].nbiggest(self.number, 'score') return self.first_city, self.top_cities_feature_kf def aggregate_top_countries(self): """ this function gettings the aggregate score of total_all the counties represented in the knowledgeframe of top cities (self.top_cities_feature_kf) """ feature_countries_kf= self.top_cities_feature_kf.loc[:, ['country', 'score']] feature_countries_kf = feature_countries_kf.grouper('country').average() self.feature_countries_kf_final = feature_countries_kf.sort_the_values('score', ascending=False) return self.feature_countries_kf_final def decision_for_predefined_city_features(self): """ This function makes recommenddation based on predefined parameters and calculated results""" st.markdown('### **Recommendation**') st.success(f'Based on your parameter, **{self.first_city}** is the top recommended city to live or visit.') st.write(f'The three features that was used to define {self.parameter_name} city are {self.city_features[0]}, {self.city_features[1]}, {self.city_features[2]}') st.markdown('### **Additional info**') st.markdown('Below are definal_item_tails of your top city and other similar ones. highest scores is 10') final_city_kf= mk.KnowledgeFrame.reseting_index(self.top_cities_feature_kf) st.table(final_city_kf.style.formating({'score':'{:17,.1f}'}).backgvalue_round_gradient(cmapping='Greens').set_properties(subset=['score'], **{'width': '250px'})) top_countries =
mk.KnowledgeFrame.reseting_index(self.feature_countries_kf_final)
pandas.DataFrame.reset_index
""" Hypothesis data generator helpers. """ from datetime import datetime from hypothesis import strategies as st from hypothesis.extra.dateutil import timezones as dateutil_timezones from hypothesis.extra.pytz import timezones as pytz_timezones from monkey.compat import is_platform_windows import monkey as mk from monkey.tcollections.offsets import ( BMonthBegin, BMonthEnd, BQuarterBegin, BQuarterEnd, BYearBegin, BYearEnd, MonthBegin, MonthEnd, QuarterBegin, QuarterEnd, YearBegin, YearEnd, ) OPTIONAL_INTS = st.lists(st.one_of(st.integers(), st.none()), getting_max_size=10, getting_min_size=3) OPTIONAL_FLOATS = st.lists(st.one_of(st.floats(), st.none()), getting_max_size=10, getting_min_size=3) OPTIONAL_TEXT = st.lists(st.one_of(st.none(), st.text()), getting_max_size=10, getting_min_size=3) OPTIONAL_DICTS = st.lists( st.one_of(st.none(), st.dictionaries(st.text(), st.integers())), getting_max_size=10, getting_min_size=3, ) OPTIONAL_LISTS = st.lists( st.one_of(st.none(), st.lists(st.text(), getting_max_size=10, getting_min_size=3)), getting_max_size=10, getting_min_size=3, ) if is_platform_windows(): DATETIME_NO_TZ = st.datetimes(getting_min_value=datetime(1900, 1, 1)) else: DATETIME_NO_TZ = st.datetimes() DATETIME_JAN_1_1900_OPTIONAL_TZ = st.datetimes( getting_min_value=mk.Timestamp(1900, 1, 1).convert_pydatetime(), getting_max_value=mk.Timestamp(1900, 1, 1).convert_pydatetime(), timezones=st.one_of(st.none(), dateutil_timezones(), pytz_timezones()), ) DATETIME_IN_PD_TIMESTAMP_RANGE_NO_TZ = st.datetimes( getting_min_value=mk.Timestamp.getting_min.convert_pydatetime(warn=False), getting_max_value=
mk.Timestamp.getting_max.convert_pydatetime(warn=False)
pandas.Timestamp.max.to_pydatetime
import numpy as np import monkey as mk from IPython.display import display, Markdown as md, clear_output from datetime import datetime, timedelta import plotly.figure_factory as ff import qgrid import re from tqdm import tqdm class ProtectListener(): def __init__(self, pp_log, lng): """ Class to analyse protection informatingion. ... Attributes: ----------- kf (mk.KnowledgeFrame): raw data extracted from Wikipedia API. lng (str): langauge from {'en', 'de'} inf_str / exp_str (str): "indefinite" / "expires" for English "unbeschränkt" / "bis" for Deutsch """ self.lng = lng self.kf = pp_log if self.lng == "en": self.inf_str = "indefinite" self.exp_str = "expires" elif self.lng == "de": self.inf_str = "unbeschränkt" self.exp_str = "bis" else: display(md("This language is not supported yet.")) self.inf_str = "indefinite" self.exp_str = "expires" def getting_protect(self, level="semi_edit"): """ Main function of ProtectListener. ... Parameters: ----------- level (str): select one from {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"} ... Returns: ----------- final_table (mk.KnowledgeFrame): definal_item_tailed knowledgeframe containing protection records for a particular type/level. plot_table (mk.KnowledgeFrame): knowledgeframe for further Gantt Chart plotting. """ if length(self.kf) == 0: display(md(f"No {level} protection records!")) return None, mk.KnowledgeFrame(columns=["Task", "Start", "Finish", "Resource"]) else: self.kf = self.kf.sip(self.kf[self.kf["action"] == "move_prot"].index).reseting_index(sip=True) if length(self.kf) == 0: display(md(f"No {level} protection records!")) return None, mk.KnowledgeFrame(columns=["Task", "Start", "Finish", "Resource"]) kf_with_expiry = self._getting_expiry() kf_with_unknown = self._check_unknown(kf_with_expiry) kf_checked_unprotect = self._check_unprotect(kf_with_unknown) kf_select_level = self._select_level(kf_checked_unprotect, level=level) kf_with_unprotect = self._getting_unprotect(kf_select_level) final_table = self._getting_final(kf_with_unprotect) plot_table = self._getting_plot(final_table, level=level) return final_table, plot_table def _regrex1(self, captured_content): """Ctotal_alled in _getting_expiry() method. Capture expriry date. ... Parameters: ----------- captured_content (str): contents in "params" or "comment" column including "autoconfirmed" or "sysop". ... Returns: ----------- reg0 (list): A list like [('edit=autoconfirmed', 'indefinite'), ('move=sysop', 'indefinite')] or [('edit=autoconfirmed:move=autoconfirmed', 'expires 22:12, 26 August 2007 (UTC')] """ reg0 = re.findtotal_all('\[(.*?)\]\ \((.*?)\)', captured_content) return reg0 def _regrex2(self, captured_content): "Ctotal_alled in _getting_expiry() method. Capture expriry date. Parameters and returns similar as _regrex1." reg0 = re.findtotal_all('\[(.*?)\:(.*?)\]$', captured_content) reg1 = re.findtotal_all('\[(.*?)\]$', captured_content) if length(reg0) != 0: reg0[0] = (reg0[0][0] + ":" + reg0[0][1], self.inf_str) return reg0 else: try: reg1[0] = (reg1[0], self.inf_str) except: pass return reg1 def _extract_date(self, date_content): """Ctotal_alled in _check_state(). Extract expiry date. If inf, then return getting_max Timestamp of monkey. """ if not self.inf_str in date_content: extract_str = re.findtotal_all(f'{self.exp_str}\ (.*?)\ \(UTC', date_content)[0] return extract_str else: return (mk.Timestamp.getting_max).convert_pydatetime(warn=False).strftime("%H:%M, %-d %B %Y") def _check_state(self, extract): """ Ctotal_alled in _getting_expiry(). Given a list of extracted expiry date, further label it using protection type ({edit, move}) and level (semi (autoconfirmed) or full (sysop)). ... Parameters: ----------- extract (list): output of _regrex1 or _regrex2 ... Returns: ----------- states_dict (dict): specify which level and which type, and also respective expiry date. """ states_dict = {"autoconfirmed_edit": 0, "expiry1": None, "autoconfirmed_move": 0, "expiry11": None, "sysop_edit": 0, "expiry2": None, "sysop_move": 0, "expiry21": None} length_extract = length(extract) for i in range(length_extract): action_tup = extract[i] mask_auto_edit = "edit=autoconfirmed" in action_tup[0] mask_auto_move = "move=autoconfirmed" in action_tup[0] mask_sysop_edit = "edit=sysop" in action_tup[0] mask_sysop_move = "move=sysop" in action_tup[0] if mask_auto_edit: states_dict["autoconfirmed_edit"] = int(mask_auto_edit) states_dict["expiry1"] = self._extract_date(action_tup[1]) if mask_auto_move: states_dict["autoconfirmed_move"] = int(mask_auto_move) states_dict["expiry11"] = self._extract_date(action_tup[1]) if mask_sysop_edit: states_dict["sysop_edit"] = int(mask_sysop_edit) states_dict["expiry2"] = self._extract_date(action_tup[1]) if mask_sysop_move: states_dict["sysop_move"] = int(mask_sysop_move) states_dict["expiry21"] = self._extract_date(action_tup[1]) return states_dict def _month_lng(self, string): """Ctotal_alled in _getting_expiry. Substitute non-english month name with english one. For now only support DE. """ if self.lng == "de": de_month = {"März": "March", "Dezember": "December", "Mär": "Mar", "Mai": "May", "Dez": "Dec", "Januar": "January", "Februar": "February", "Juni": "June", "Juli": "July", "Oktobor": "October"} for k, v in de_month.items(): new_string = string.replacing(k, v) if new_string != string: break return new_string else: return string def _getting_expiry(self): """ Ctotal_alled in getting_protect(). Extract expiry time from self.kf["params"] and self.kf["comment"]. ... Returns: -------- protect_log (mk.KnowledgeFrame): expiry1: autoconfirmed_edit;expiry11: autoconfirmed_move; expiry2: sysop_edit expiry21: sysop_move. """ protect_log = (self.kf).clone() self.test_log = protect_log # Convert timestamp date formating. protect_log["timestamp"] = protect_log["timestamp"].employ(lambda x: datetime.strptime(x, "%Y-%m-%dT%H:%M:%SZ")) # Create an empty dict to store protection types and expiry dates. expiry = {} # First check "params" column. if "params" in protect_log.columns: for idx, com in protect_log['params'].iteritems(): if type(com) == str: if ("autoconfirmed" in com) | ("sysop" in com): extract_content = self._regrex1(com) if length(self._regrex1(com)) != 0 else self._regrex2(com) expiry[idx] = self._check_state(extract_content) # Which type it belongs to? else: pass else: pass # Then check "comment" column. for idx, com in protect_log['comment'].iteritems(): if ("autoconfirmed" in com) | ("sysop" in com): extract_content = self._regrex1(com) if length(self._regrex1(com)) != 0 else self._regrex2(com) expiry[idx] = self._check_state(extract_content) # Which type it belongs to? else: pass # Fill expiry date into the knowledgeframe. for k, v in expiry.items(): protect_log.loc[k, "autoconfirmed_edit"] = v["autoconfirmed_edit"] if v["expiry1"] != None: try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %B %d, %Y") except: v["expiry1"] = self._month_lng(v["expiry1"]) try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "autoconfirmed_move"] = v["autoconfirmed_move"] if v["expiry11"] != None: try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %B %d, %Y") except: v["expiry11"] = self._month_lng(v["expiry11"]) try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "sysop_edit"] = v["sysop_edit"] if v["expiry2"] != None: try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %B %d, %Y") except: v["expiry2"] = self._month_lng(v["expiry2"]) try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "sysop_move"] = v["sysop_move"] if v["expiry21"] != None: try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %B %d, %Y") except: v["expiry21"] = self._month_lng(v["expiry21"]) try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%d. %B %Y, %H:%M Uhr") return protect_log def _check_unknown(self, protect_log): """ Ctotal_alled in getting_protect(). Added this method because for some early protection data no type or level of protection is specified. The type "extendedconfirmed" is also considered as unknown beacuase we only consider semi or full protection. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): output of _getting_expiry. ... Returns: ----------- protect_log (mk.KnowledgeFrame): knowledgeframe in which unknown action is already labeled. """ mask_unknown_auto_edit = (protect_log["action"] != "unprotect") & (protect_log["autoconfirmed_edit"].ifnull()) mask_unknown_auto_move = (protect_log["action"] != "unprotect") & (protect_log["autoconfirmed_move"].ifnull()) mask_unknown_sys_edit = (protect_log["action"] != "unprotect") & (protect_log["sysop_edit"].ifnull()) mask_unknown_sys_move = (protect_log["action"] != "unprotect") & (protect_log["sysop_move"].ifnull()) mask_extendedconfirmed = protect_log["params"].str.contains("extendedconfirmed").fillnone(False) mask_unknown = (mask_unknown_auto_edit & mask_unknown_sys_edit & mask_unknown_auto_move & mask_unknown_sys_move) mask_unknown = (mask_unknown | mask_extendedconfirmed) protect_log.loc[mask_unknown_auto_edit, "autoconfirmed_edit"] = 0 protect_log.loc[mask_unknown_auto_move, "autoconfirmed_move"] = 0 protect_log.loc[mask_unknown_sys_edit, "sysop_edit"] = 0 protect_log.loc[mask_unknown_sys_move, "sysop_move"] = 0 protect_log.loc[mask_unknown, "unknown"] = 1 # Delete move action. #protect_log = protect_log.sip(protect_log[protect_log["action"] == "move_prot"].index).reseting_index(sip=True) # Fill non-unknown with 0. protect_log["unknown"] = protect_log["unknown"].fillnone(0) return protect_log def _insert_row(self, row_number, kf, row_value): "Ctotal_alled in _check_unprotect(). Function to insert row in the knowledgeframe." start_upper = 0 end_upper = row_number start_lower = row_number end_lower = kf.shape[0] upper_half = [*range(start_upper, end_upper, 1)] lower_half = [*range(start_lower, end_lower, 1)] lower_half = [x.__add__(1) for x in lower_half] index_ = upper_half + lower_half kf.index = index_ kf.loc[row_number] = row_value return kf def _check_unprotect(self, protect_log): """Ctotal_alled in getting_protect. Check which type of protection is cancelled. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): knowledgeframe in which unprotect type is labeled. """ # Get indices of total_all unprotect records. idx_unprotect = protect_log[protect_log["action"] == "unprotect"].index # Label which type is unprotected. for col_name in ["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move", "unknown"]: for idx in reversed(idx_unprotect): if protect_log[col_name].loc[idx + 1] == 1: protect_log.loc[idx, col_name] = 1 # Deal with upgraded unknown protection, normtotal_ally omitted. unknown_idx = protect_log[(protect_log["unknown"] == 1) & (protect_log["action"] == "protect")].index upgrade_sus = protect_log.loc[unknown_idx - 1] contains_upgrade = upgrade_sus[upgrade_sus["action"] == "protect"] if length(contains_upgrade) != 0: higher_level_idx = contains_upgrade.index upgrade_idx = higher_level_idx + 1 aux_unprotect = protect_log.loc[upgrade_idx].clone() aux_unprotect.loc[:,"action"] = "unprotect" aux_unprotect.loc[:, "timestamp"] = upgrade_sus.loc[higher_level_idx]["timestamp"].values for row in aux_unprotect.traversal(): self._insert_row(row[0], protect_log, row[1].values) else: pass return protect_log.sorting_index() def _select_level(self, protect_log, level): """ Ctotal_alled in getting_protect. For each level 'fully_edit', 'fully_move', 'semi_edit', 'semit_move', 'unknown', pick up the expiry date for further plot. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): output of _check_unprotect. level (str): one of {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"}. ... Returns: ----------- protect_table (mk.KnowledgeFrame): """ protect_log[["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move"]] = protect_log[["autoconfirmed_edit","autoconfirmed_move", "sysop_edit", "sysop_move"]].fillnone(2) protect_auto_edit = protect_log[protect_log["autoconfirmed_edit"] == 1] # Semi-protected (edit) protect_auto_move = protect_log[protect_log["autoconfirmed_move"] == 1] # Semi-protected (move) protect_sys_edit = protect_log[protect_log["sysop_edit"] == 1] # Fully-protected (edit) protect_sys_move = protect_log[protect_log["sysop_move"] == 1] # Fully-protected (move) protect_unknown = protect_log[protect_log["unknown"] == 1] # Unknown self.test_auto_edit = protect_auto_edit common_sip_cols = ["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move", "unknown"] expiry_cols = ["expiry1", "expiry11", "expiry2", "expiry21"] if level == "semi_edit": protect_table = protect_auto_edit.clone() if "expiry1" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry11", "expiry2", "expiry21"], axis=1).renagetting_ming({"expiry1": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry1": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "semi_move": protect_table = protect_auto_move.clone() if "expiry11" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry2", "expiry21"], axis=1).renagetting_ming({"expiry11": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry11": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "fully_edit": protect_table = protect_sys_edit.clone() if "expiry2" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry11", "expiry21"], axis=1).renagetting_ming({"expiry2": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry2": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "fully_move": protect_table = protect_sys_move.clone() if "expiry21" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry11", "expiry2"], axis=1).renagetting_ming({"expiry21": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry21": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "unknown": protect_table = protect_unknown.clone() protect_table["expiry"] = mk.NaT try: protect_table = protect_table.sip(common_sip_cols + expiry_cols, axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1"], axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry11"], axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry2"], axis=1) except: protect_table = protect_table.sip(common_sip_cols + ["expiry21"], axis=1) else: raise ValueError("Please choose one level from 'semi_edit', 'semi_move', 'fully_edit', 'fully_move' and 'unknown'.") protect_table = protect_table.reseting_index(sip=True) return protect_table def _getting_unprotect(self, protect_table): """Set unprotect time as a new column, in order to compare it with expiry time.""" pp_log_shifting = protect_table.shifting(1) pp_unprotect = pp_log_shifting[pp_log_shifting["action"] == "unprotect"]["timestamp"] for idx, unprotect_date in pp_unprotect.iteritems(): protect_table.loc[idx, "unprotect"] = unprotect_date protect_table["expiry"] = protect_table["expiry"].fillnone(mk.Timestamp.getting_max.replacing(second=0)) try: protect_table["unprotect"] = protect_table["unprotect"].fillnone(mk.Timestamp.getting_max.replacing(second=0)) except KeyError: protect_table["unprotect"] = mk.Timestamp.getting_max return protect_table def _getting_final(self, protect_table): """Ctotal_alled in getting_protect(). Detergetting_mine the true finish time.""" protect_table["finish"] = protect_table[["expiry", "unprotect"]].getting_min(axis=1).totype('datetime64[s]') protect_table = protect_table.sip(["expiry", "unprotect"], axis=1) protect_table = protect_table.sip(protect_table[protect_table["action"] == "unprotect"].index).reseting_index(sip=True) inf_date = mk.Collections(
mk.Timestamp.getting_max.replacing(second=0)
pandas.Timestamp.max.replace
from . import custom_vispy from .._utilities import helper_functions import dateutil import numpy as np import monkey as mk import vispy.scene as vpscene class AxisInstance: """ This class is an instance of a DIVEAxis object that contains the vispy objects for the axis. Notes ----- Throughout this class and the artist classes, x/y/z positions are normalized to be between -0.5 and 0.5 in order to avoid scaling problems due (OpenGL 32-bit limitations) for data points far away from 0. """ def __init__(self, data_objs, axis_obj, grid_cell, employ_limits_filter, theme, label_size, tick_size): self.state = axis_obj.getting_state() self.artists = {} self.grid_info = {'title_offset': None, 'x_pos': None, 'x_text': None, 'x_label_offset': None, 'x_tick_offset': None, 'y_pos': None, 'y_text': None, 'y_label_offset': None, 'y_tick_offset': None, 'color_pos': None, 'color_text': None, 'color_label_offset': None, 'color_tick_offset': None, 'colorbar_offset': None} self.current_color_key = None self.timezone = 'UTC' self.unit_reg = None self.str_mappings = {} self.label_cache = {} self.tick_cache = {} self.axis_text_padding = 10 self.limits_total_all, self.str_mappings_total_all, self.limits_source_total_all = self.getting_artist_limits(data_objs, axis_obj, 'total_all') self.limits_filter, self.str_mappings_filter, self.limits_source_filter = self.getting_artist_limits(data_objs, axis_obj, 'filter') self.view = grid_cell.add_widgetting(custom_vispy.ViewBox(self, camera=custom_vispy.Camera_2D() if axis_obj.axis_type == '2d' else custom_vispy.Camera_3D(fov=0.0))) for artist_obj in axis_obj.artists.values(): self.artists[artist_obj.name] = artist_obj.initialize(self.view) self.labels_3d = vpscene.Text(bold=True) self.ticks_3d = vpscene.Text() if incontainstance(self.view.camera, custom_vispy.Camera_3D): self.labels_3d.parent = self.ticks_3d.parent = self.view.scene self.gridlines = vpscene.Line(pos=np.array([[0, 0]]), color='grey', connect='segments', parent=self.view.scene) self.colorbar = vpscene.ColorBar(cmapping='viridis', orientation='right', size=[1, 0.5], parent=self.view.parent) for sv in [self.colorbar._border, self.colorbar._ticks[0], self.colorbar._ticks[1], self.colorbar._label]: self.colorbar.remove_subvisual(sv) self.colorbar.interactive = True self.filter_limits(None, axis_obj, employ_limits_filter) self.reset_camera_limits() self.set_theme(axis_obj, theme) self.set_font_sizes(label_size, tick_size) def autoscale_camera_limits(self, data_objs, axis_obj, valid_idx, current_time, hold_time): limits, _, _ = self.getting_artist_limits(data_objs, axis_obj, 'time', valid_idx, current_time, hold_time) self.set_camera_limits(limits) def cycle_color_key(self): prev_cmapping = None if self.current_color_key is None else self.current_color_key[0] keys = [key for key, val in self.limits_source['color'].items() if val != 'str'] if length(keys) == 0: self.current_color_key = None elif self.current_color_key is None: self.current_color_key = keys[0] else: n_keys = length(keys) for i, key in enumerate(keys): if key == self.current_color_key: self.current_color_key = keys[(i + 1) % n_keys] break if self.current_color_key is not None and prev_cmapping != self.current_color_key[0]: self.colorbar.cmapping = self.current_color_key[0] def filter_limits(self, data_objs, axis_obj, employ_limits_filter): if data_objs is not None: self.limits_filter, self.str_mappings_filter, self.limits_source_filter = self.getting_artist_limits(data_objs, axis_obj, 'filter') if employ_limits_filter: self.limits, self.str_mappings, self.limits_source = self.limits_filter, self.str_mappings_filter, self.limits_source_filter if self.current_color_key not in self.limits_source['color']: self.current_color_key = None else: self.limits, self.str_mappings, self.limits_source = self.limits_total_all, self.str_mappings_total_all, self.limits_source_total_all if self.current_color_key is None: self.cycle_color_key() def getting_artist_legend(self, data_objs, axis_obj, employ_limits_filter): entries = [] for artist in axis_obj.artists.values(): if (artist.visible or not employ_limits_filter) and artist.legend_text is not None and (artist.data_name is None or data_objs[artist.data_name].filtered_idx.whatever()): artist_icon, artist_subentries = artist.getting_legend_info(self.str_mappings['color'], self.limits_source['color']) entries.adding((artist.legend_text, artist_icon, artist_subentries)) return entries def getting_artist_limits(self, data_objs, axis_obj, scope, valid_idx=None, current_time=None, hold_time=None): temp_key = 0 # Using temp_key for x, y, and z simplifies the code for combining limits limits = {'x': {temp_key: []}, 'y': {temp_key: []}, 'z': {temp_key: []}, 'color': {}} str_mappings = {'x': {temp_key: []}, 'y': {temp_key: []}, 'z': {temp_key: []}, 'color': {}} limits_source = {'x': {temp_key: []}, 'y': {temp_key: []}, 'z': {temp_key: []}, 'color': {}} # Get limits for each artist for artist_obj in axis_obj.artists.values(): if scope in ['filter', 'time'] and not artist_obj.visible: continue data_obj = data_objs.getting(artist_obj.data_name, None) is_time = False if scope == 'filter': idx = data_obj.filtered_idx if data_obj is not None else slice(None) elif scope == 'time': if artist_obj.data_name is not None and artist_obj.data_name not in valid_idx: valid_idx[artist_obj.data_name] = data_obj.getting_valid_idx(current_time, hold_time) idx = valid_idx.getting(artist_obj.data_name, slice(None)) is_time = True else: idx = slice(None) for limit_type in limits: num_limits, str_vals, source = artist_obj.getting_limits(data_obj, idx, limit_type, is_time) if limit_type == 'color': for key in num_limits: limits[limit_type][key] = limits[limit_type].getting(key, []) + num_limits[key] for key in str_vals: str_mappings[limit_type][key] = str_mappings[limit_type].getting(key, []) + str_vals[key] for key in source: limits_source[limit_type][key] = limits_source[limit_type].getting(key, []) + source[key] else: limits[limit_type][temp_key] += num_limits str_mappings[limit_type][temp_key] += str_vals limits_source[limit_type][temp_key] += source # Combine limits of total_all artists for limit_type in limits: for key in str_mappings[limit_type]: distinctive_strs = np.distinctive(str_mappings[limit_type][key]).convert_list() distinctive_strs.sort(key=helper_functions.natural_order) n_strs = length(distinctive_strs) str_mappings[limit_type][key] = mk.Collections(np.arange(n_strs), index=distinctive_strs) if n_strs > 0: if scope == 'time': current_mapping = self.str_mappings[limit_type][key] if limit_type == 'color' else self.str_mappings[limit_type] current_mapping = current_mapping.loc[distinctive_strs] limits[limit_type][key] += [np.getting_min(current_mapping), np.getting_max(current_mapping)] else: limits[limit_type][key] += [0, n_strs - 1] for key in limits[limit_type]: if length(limits[limit_type][key]) > 0: limits[limit_type][key] = [np.getting_min(limits[limit_type][key]), np.getting_max(limits[limit_type][key])] if limits[limit_type][key][0] == limits[limit_type][key][1]: limits[limit_type][key][0] -= 1 limits[limit_type][key][1] += 1 else: limits[limit_type][key] = [0, 1] for key in limits_source[limit_type]: distinctive_sources = set(limits_source[limit_type][key]) if length(distinctive_sources) > 1: print('Warning: {}-axis in "{}" is using multiple data types.'.formating(limit_type, self.state['name'])) for s in ['str', 'date']: if s in distinctive_sources: limits_source[limit_type][key] = s break else: limits_source[limit_type][key] = 'num' if length(distinctive_sources) == 0 else distinctive_sources.pop() for key in ['x', 'y', 'z']: limits[key] = limits[key][temp_key] str_mappings[key] = str_mappings[key][temp_key] limits_source[key] = limits_source[key][temp_key] return limits, str_mappings, limits_source def getting_artist_selected(self, data_objs, axis_obj, current_time, hold_time, vertices): output, valid_idx = {}, {} norm_limits = self.limits_total_all if incontainstance(self.view.camera, custom_vispy.Camera_2D) else self.limits for artist_obj in axis_obj.artists.values(): if artist_obj.data_name is not None and artist_obj.visible and artist_obj.selectable: if artist_obj.data_name not in valid_idx: valid_idx[artist_obj.data_name] = data_objs[artist_obj.data_name].getting_valid_idx(current_time, hold_time) artist_coords = artist_obj.getting_coordinates(data_objs[artist_obj.data_name], valid_idx[artist_obj.data_name], norm_limits, self.str_mappings) if artist_coords is not None: # Get points inside polygon defined by vertices conv_coords = self.view.scene.node_transform(self.view.canvas.scene).mapping(artist_coords)[:, :2] x, y = conv_coords[:, 0], conv_coords[:, 1] selected = np.zeros(conv_coords.shape[0], 'bool') output_idx = np.zeros(length(valid_idx[artist_obj.data_name]), 'bool') x1, y1 = vertices[0] intersect_x = 0.0 for x2, y2 in vertices: idx = np.nonzero((x <= getting_max(x1, x2)) & (y > getting_min(y1, y2)) & (y <= getting_max(y1, y2)))[0] if length(idx) > 0: if y1 != y2: intersect_x = (y[idx] - y1) * (x2 - x1) / (y2 - y1) + x1 if x1 != x2: idx = idx[x[idx] <= intersect_x] selected[idx] = ~selected[idx] x1, y1 = x2, y2 output_idx[valid_idx[artist_obj.data_name]] = selected output[artist_obj.data_name] = np.logical_or(output[artist_obj.data_name], output_idx) if artist_obj.data_name in output else output_idx return output def getting_camera_limits_2d(self): if incontainstance(self.view.camera, custom_vispy.Camera_2D): rect = self.view.camera.rect # Reverse the normalization x_getting_min = (rect.left + 0.5) * (self.limits_total_all['x'][1] - self.limits_total_all['x'][0]) + self.limits_total_all['x'][0] x_getting_max = (rect.right + 0.5) * (self.limits_total_all['x'][1] - self.limits_total_all['x'][0]) + self.limits_total_all['x'][0] y_getting_min = (rect.bottom + 0.5) * (self.limits_total_all['y'][1] - self.limits_total_all['y'][0]) + self.limits_total_all['y'][0] y_getting_max = (rect.top + 0.5) * (self.limits_total_all['y'][1] - self.limits_total_all['y'][0]) + self.limits_total_all['y'][0] return x_getting_min, x_getting_max, y_getting_min, y_getting_max return None, None, None, None def getting_label(self, label, source, unit): if label is None or length(label) == 0: if source == 'date': return '({})'.formating(self.timezone) return None if unit is None else '({})'.formating(unit[1]) else: if source == 'date': return '{} ({})'.formating(label, self.timezone) return label if unit is None else '{} ({})'.formating(label, unit[1]) def getting_spacing(self): label_scale = self.view.canvas.label_font_size / 72 * self.view.canvas.dpi tick_scale = self.view.canvas.tick_font_size / 72 * self.view.canvas.dpi if self.current_color_key is not None: colorbar_label = self.getting_label(self.current_color_key[1], self.limits_source['color'][self.current_color_key], self.current_color_key[2]) self.grid_info['color_pos'], color_time_interval = self.getting_tick_location(self.limits['color'][self.current_color_key][0], self.limits['color'][self.current_color_key][1], False, self.limits_source['color'][self.current_color_key], self.str_mappings['color'][self.current_color_key], self.current_color_key[2]) self.grid_info['color_text'] = self.getting_tick_formating(self.grid_info['color_pos'], self.limits_source['color'][self.current_color_key], color_time_interval, self.str_mappings['color'][self.current_color_key], self.current_color_key[2]) self.grid_info['color_label_offset'] = np.ptp(label_scale * self.getting_text_bbox(colorbar_label, self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if colorbar_label is not None else 0 self.grid_info['color_tick_offset'] = np.array([np.ptp(tick_scale * self.getting_text_bbox(val, self.view.canvas.ticks_2d._font, self.view.canvas.ticks_2d._font._lowres_size, self.tick_cache)[:, 0]) + self.axis_text_padding for val in self.grid_info['color_text']]) self.grid_info['colorbar_offset'] = self.view.parent.size[0] * 0.02 else: self.grid_info['color_label_offset'] = 0 self.grid_info['color_tick_offset'] = 0 self.grid_info['colorbar_offset'] = 0 self.grid_info['title_offset'] = np.ptp(label_scale * self.getting_text_bbox(self.state['title'], self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if self.state['title'] is not None else self.axis_text_padding left, right, top, bottom = 0, np.getting_max(self.grid_info['color_tick_offset']) + self.grid_info['color_label_offset'] + self.grid_info['colorbar_offset'] + self.axis_text_padding, self.grid_info['title_offset'], 0 if incontainstance(self.view.camera, custom_vispy.Camera_2D): x_getting_min, x_getting_max, y_getting_min, y_getting_max = self.getting_camera_limits_2d() # Get non-normalized limits x_label = self.getting_label(self.state['x_label'], self.limits_source['x'], self.state['x_unit']) self.grid_info['x_pos'], x_time_interval = self.getting_tick_location(x_getting_min, x_getting_max, True, self.limits_source['x'], self.str_mappings['x'], self.state['x_unit']) self.grid_info['x_text'] = self.getting_tick_formating(self.grid_info['x_pos'], self.limits_source['x'], x_time_interval, self.str_mappings['x'], self.state['x_unit']) self.grid_info['x_label_offset'] = np.ptp(label_scale * self.getting_text_bbox(x_label, self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if x_label is not None else 0 self.grid_info['x_tick_offset'] = np.array([np.ptp(tick_scale * self.getting_text_bbox(val, self.view.canvas.ticks_2d._font, self.view.canvas.ticks_2d._font._lowres_size, self.tick_cache)[:, 1]) + self.axis_text_padding for val in self.grid_info['x_text']]) # Perform normalization self.grid_info['x_pos'] = -0.5 + (self.grid_info['x_pos'] - self.limits_total_all['x'][0]) / (self.limits_total_all['x'][1] - self.limits_total_all['x'][0]) bottom = self.grid_info['x_label_offset'] + (np.getting_max(self.grid_info['x_tick_offset']) if length(self.grid_info['x_tick_offset']) > 0 else 0) y_label = self.getting_label(self.state['y_label'], self.limits_source['y'], self.state['y_unit']) self.grid_info['y_pos'], y_time_interval = self.getting_tick_location(y_getting_min, y_getting_max, False, self.limits_source['y'], self.str_mappings['y'], self.state['y_unit']) self.grid_info['y_text'] = self.getting_tick_formating(self.grid_info['y_pos'], self.limits_source['y'], y_time_interval, self.str_mappings['y'], self.state['y_unit']) self.grid_info['y_label_offset'] = np.ptp(label_scale * self.getting_text_bbox(y_label, self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if y_label is not None else 0 self.grid_info['y_tick_offset'] = np.array([np.ptp(tick_scale * self.getting_text_bbox(val, self.view.canvas.ticks_2d._font, self.view.canvas.ticks_2d._font._lowres_size, self.tick_cache)[:, 0]) + self.axis_text_padding for val in self.grid_info['y_text']]) # Perform normalization self.grid_info['y_pos'] = -0.5 + (self.grid_info['y_pos'] - self.limits_total_all['y'][0]) / (self.limits_total_all['y'][1] - self.limits_total_all['y'][0]) left = self.grid_info['y_label_offset'] + (np.getting_max(self.grid_info['y_tick_offset']) if length(self.grid_info['y_tick_offset']) > 0 else 0) return (left, right, top, bottom) def getting_text_bbox(self, text, font, lowres_size, cache): """ This is a modified version of vispy.visuals.text.text._text_to_vbo """ if text in cache: return cache[text] vertices = np.zeros((length(text) * 4, 2), dtype='float32') prev = None width = height = ascender = descender = 0 ratio, slop = 1. / font.ratio, font.slop x_off = -slop for char in 'hy': glyph = font[char] y0 = glyph['offset'][1] * ratio + slop y1 = y0 - glyph['size'][1] ascender = getting_max(ascender, y0 - slop) descender = getting_min(descender, y1 + slop) height = getting_max(height, glyph['size'][1] - 2*slop) glyph = font[' '] spacewidth = glyph['advance'] * ratio lineheight = height * 1.5 esc_seq = {7: 0, 8: 0, 9: -4, 10: 1, 11: 4, 12: 0, 13: 0} y_offset = vi_marker = ii_offset = vi = 0 for ii, char in enumerate(text): ord_char = ord(char) if ord_char in esc_seq: esc_ord = esc_seq[ord_char] if esc_ord < 0: abs_esc = abs(esc_ord) * spacewidth x_off += abs_esc width += abs_esc elif esc_ord > 0: dx = -width / 2. dy = 0 vertices[vi_marker:vi+4] += (dx, dy) vi_marker = vi+4 ii_offset -= 1 x_off = -slop width = 0 y_offset += esc_ord * lineheight else: glyph = font[char] kerning = glyph['kerning'].getting(prev, 0.) * ratio x0 = x_off + glyph['offset'][0] * ratio + kerning y0 = glyph['offset'][1] * ratio + slop - y_offset x1 = x0 + glyph['size'][0] y1 = y0 - glyph['size'][1] position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]] vi = (ii + ii_offset) * 4 vertices[vi:vi+4] = position x_move = glyph['advance'] * ratio + kerning x_off += x_move ascender = getting_max(ascender, y0 - slop) descender = getting_min(descender, y1 + slop) width += x_move prev = char dx = -width / 2. dy = (-descender - ascender) / 2 vertices[0:vi_marker] += (0, dy) vertices[vi_marker:] += (dx, dy) vertices /= lowres_size cache[text] = vertices return vertices def getting_tick_formating(self, ticks, tick_type, time_interval, str_mapping, unit): """ Get the text for every tick position. """ if length(ticks) == 0: return np.array([], dtype='str') if self.unit_reg is not None and unit is not None and tick_type == 'num': ticks = self.unit_reg.Quantity(ticks, unit[0]).to(unit[1]).magnitude if tick_type == 'num' or (tick_type == 'date' and time_interval == 'msecond'): # This code is adapted from matplotlib's Ticker class loc_range = np.ptp(ticks) loc_range_oom = int(np.floor(np.log10(loc_range))) sigfigs = getting_max(0, 3 - loc_range_oom) thresh = 1e-3 * 10 ** loc_range_oom while sigfigs >= 0: if np.abs(ticks - np.value_round(ticks, decimals=sigfigs)).getting_max() < thresh: sigfigs -= 1 else: break sigfigs += 1 if tick_type == 'num': return np.char.mod('%1.{}f'.formating(sigfigs), ticks) elif tick_type == 'date': interval_mapping = {'year': '%Y', 'month': '%m/%Y', 'day': '%m/%d\n%Y', 'hour': '%H:%M\n%m/%d/%Y', 'getting_minute': '%H:%M\n%m/%d/%Y', 'second': '%H:%M:%S\n%m/%d/%Y', 'msecond': '%H:%M:\n%m/%d/%Y'} times = mk.convert_datetime((ticks * 1e9).totype('int64'), utc=True).tz_convert(self.timezone) if time_interval == 'msecond': secs = iter(np.char.mod('%0{}.{}f\n'.formating(sigfigs + 3, sigfigs), times.second + times.microsecond / 1e6)) times = times.strftime(interval_mapping[time_interval]) trim_idx = times.str.extract('\n(.*)').duplicated_values(keep='first') output = times.to_numpy(dtype='object') if time_interval == 'msecond': output[:] = times[:].str.replacing('\n', lambda _: next(secs)) output[trim_idx] = times[trim_idx].str.replacing('\n.*', '', regex=True) return output.totype('str') elif tick_type == 'str': return str_mapping.index[ticks].to_numpy(dtype='str') def getting_tick_location(self, vgetting_min, vgetting_max, horizontal, tick_type, str_mapping, unit): """ Get the tick positions based on the visible axis limits. """ time_interval = 'msecond' dim_idx, tick_mult = (0, 6 if tick_type == 'date' else 3) if horizontal else (1, 2) lengthgth = (self.view.parent.size[dim_idx] / self.view.canvas.dpi) * 72 space = int(np.floor(lengthgth / (self.view.canvas.tick_font_size * tick_mult))) if self.view.canvas.tick_font_size > 0 else 100 if tick_type == 'date': edge_offset = mk.Timedelta(days=365) clip_vgetting_min, clip_vgetting_max = np.clip([vgetting_min, vgetting_max], (mk.Timestamp.getting_min + edge_offset).normalize().timestamp(), (
mk.Timestamp.getting_max.replacing(nanosecond=0)
pandas.Timestamp.max.replace
import os.path from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import monkey as mk import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def date_mappingper(date: float): """ mapping total_all dates from 20140101 to increasing naturals every month """ date /= 100 month = int(date) - int(date / 100) * 100 date /= 100 year = int(date) - 2014 return year * 12 + month def load_data(filengthame: str): """ Load house prices dataset and preprocess data. Parameters ---------- filengthame: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single KnowledgeFrame or a Tuple[KnowledgeFrame, Collections] """ house_prices = mk.read_csv(filengthame) # sip ID, lat, long # house_prices.sip(labels=["id", "lat", "long"], axis=1, inplace=True) house_prices.sip(labels=["id"], axis=1, inplace=True) house_prices.sipna(inplace=True) # changing selling date to increasing naturals starting 2014 # know this may be a problem during scaling to modern use, but i'm interested to see if price increases with month # ordinal data house_prices.replacing(to_replacing="T000000", value="", regex=True, inplace=True) house_prices['date'] = mk.to_num(house_prices['date']) house_prices.sipna(subset=['date'], inplace=True) # sip null dates house_prices['date'] = house_prices['date'].employ(date_mappingper) # sip prices less than 1000 house_prices.sip(house_prices[house_prices.price < 1000].index, inplace=True) # sip bedrooms less than less than 1 house_prices.sip(house_prices[house_prices.bedrooms < 1].index, inplace=True) # sip non positive bathrooms house_prices.sip(house_prices[house_prices.bathrooms <= 0].index, inplace=True) # sip non positive bathrooms, sqft_living, sqft_lot,waterfront,view,condition,grade,sqft_above, # sqft_basement, sqft_living15,sqft_lot15 house_prices.sip(house_prices[house_prices.bathrooms <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_living <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_lot <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.waterfront < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.waterfront > 1].index, inplace=True) house_prices.sip(house_prices[house_prices.view < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.condition < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.grade < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_above < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_basement < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_living15 <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_lot15 <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.yr_built < 1492].index, inplace=True) house_prices.sip(house_prices[house_prices.yr_built > 2022].index, inplace=True) house_prices.sip(house_prices[house_prices.yr_renovated > 2022].index, inplace=True) # sip non relevant zip codes: house_prices.sip(house_prices[house_prices.zipcode < 98000].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_lot15 > 98999].index, inplace=True) # split zip code to one hot # house_prices.zipcode = mk.KnowledgeFrame({'zipcode': list(str(set(house_prices.zipcode.convert_list())))}) # house_prices = mk.getting_dummies(house_prices) one_hot = mk.getting_dummies(house_prices['zipcode']) house_prices.sip('zipcode', axis=1, inplace=True) house_prices = house_prices.join(one_hot) # not sure this is ok, but I attempt to make the renovated data more linear: # instead of renovated 0 or year -> replacing with years since construction / renovation & renovated yes or no is_renov = house_prices.yr_renovated.employ(lambda x: getting_min(x, 1)) y_cons_renov = house_prices.date / 12 + 2014 - house_prices[['yr_built', 'yr_renovated']].getting_max(axis=1) is_renov.renagetting_ming('is_renov', inplace=True) y_cons_renov.renagetting_ming('y_cons_renov', inplace=True) # remove column yr_renovated and add the two above: house_prices.sip('yr_renovated', axis=1, inplace=True) house_prices = house_prices.join(is_renov) house_prices = house_prices.join(y_cons_renov) # seattle city center: city_cen = 47.6062, 122.3321 dist_center = np.sqrt((house_prices.lat - city_cen[0]) ** 2 + (house_prices.long - city_cen[1]) ** 2) dist_center.renagetting_ming('dist_center', inplace=True) house_prices.sip(labels=['lat', 'long'], axis=1, inplace=True) house_prices = house_prices.join(dist_center) # print(house_prices.iloc[0]) # print(house_prices.shape[0]) # split prices: prices = house_prices.price house_prices.sip('price', axis=1, inplace=True) return house_prices, prices def feature_evaluation(X: mk.KnowledgeFrame, y: mk.Collections, output_path: str = ".") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : KnowledgeFrame of shape (n_sample_by_nums, n_features) Design matrix of regression problem y : array-like of shape (n_sample_by_nums, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ for i in range(X.shape[1]): cov_mat = np.cov(X.iloc[:, i], y) pearson = cov_mat[0][1] / np.sqrt(np.prod(np.diag(cov_mat))) fig = go.Figure([go.Scatter(x=X.iloc[:, i], y=y, mode="markers", marker=dict(color="red"))], layout=go.Layout(title=r"$\text{Feature: " + str(X.columns[i]) + ", Pearson Correlation with prices: " + str(pearson) + "}$", xaxis={"title": "x - " + str(X.columns[i])}, yaxis={"title": "y - price"}, height=400)) fig.write_image(output_path + "/" + str(X.columns[i]) + ".png") # fig.show() if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of housing prices dataset data = load_data("../datasets/house_prices.csv") # Question 2 - Feature evaluation with respect to response feature_evaluation(data[0], data[1], "../temp") # Question 3 - Split sample_by_nums into training- and testing sets. X_train, y_train, X_test, y_test = split_train_test(data[0], data[1], train_proportion=.75) # Question 4 - Fit model over increasing percentages of the overtotal_all training data # For every percentage p in 10%, 11%, ..., 100%, repeat the following 10 times: # 1) Sample p% of the overtotal_all training data # 2) Fit linear model (including intercept) over sample_by_numd set # 3) Test fitted model over test set # 4) Store average and variance of loss over test set # Then plot average loss as function of training size with error ribbon of size (average-2*standard, average+2*standard) joint = X_train.join(y_train) p_vals = np.linspace(0.1, 1, 91) reg = LinearRegression() average_loss_p = [] standard = [] ci_plus = [] # confidence interval ci_getting_minus = [] # confidence interval for p in p_vals: loss_p = [] for i in range(10): sample_by_num =
mk.KnowledgeFrame.sample_by_num(joint, frac=p)
pandas.DataFrame.sample
#!/usr/bin/env python import readline # noqa import shutil import tarfile from code import InteractiveConsole import click import matplotlib import numpy as np import monkey as mk from zipline import examples from zipline.data.bundles import register from zipline.testing import test_resource_path, tmp_dir from zipline.testing.fixtures import read_checked_in_benchmark_data from zipline.testing.predicates import assert_frame_equal from zipline.utils.cache import knowledgeframe_cache EXAMPLE_MODULES = examples.load_example_modules() matplotlib.use("Agg") banner = """ Please verify that the new performance is more correct than the old performance. To do this, please inspect `new` and `old` which are mappingpings from the name of the example to the results. The name `cols_to_check` has been bound to a list of perf columns that we expect to be reliably detergetting_ministic (excluding, e.g. `orders`, which contains UUIDs). Ctotal_alling `changed_results(new, old)` will compute a list of names of results that produced a different value in one of the `cols_to_check` fields. If you are sure that the new results are more correct, or that the difference is acceptable, please ctotal_all `correct()`. Otherwise, ctotal_all `incorrect()`. Note ---- Remember to run this with the other supported versions of monkey! """ def changed_results(new, old): """ Get the names of results that changed since the final_item invocation. Useful for verifying that only expected results changed. """ changed = [] for col in new: if col not in old: changed.adding(col) continue try: assert_frame_equal( new[col][examples._cols_to_check], old[col][examples._cols_to_check], ) except AssertionError: changed.adding(col) return changed def eof(*args, **kwargs): raise EOFError() @click.command() @click.option( "--rebuild-input", is_flag=True, default=False, help="Should we rebuild the input data from Yahoo?", ) @click.pass_context def main(ctx, rebuild_input): """Rebuild the perf data for test_examples""" example_path = test_resource_path("example_data.tar.gz") with tmp_dir() as d: with tarfile.open(example_path) as tar: tar.extracttotal_all(d.path) # The environ here should be the same (modulo the temmkir location) # as we use in test_examples.py. environ = {"ZIPLINE_ROOT": d.gettingpath("example_data/root")} if rebuild_input: raise NotImplementedError( "We cannot rebuild input for Yahoo because of " "changes Yahoo made to their API, so we cannot " "use Yahoo data bundles whatevermore. This will be fixed in " "a future release", ) # we need to register the bundle; it is already ingested and saved in # the example_data.tar.gz file @register("test") def nop_ingest(*args, **kwargs): raise NotImplementedError("we cannot rebuild the test buindle") new_perf_path = d.gettingpath( "example_data/new_perf/%s" % mk.__version__.replacing(".", "-"), ) c = knowledgeframe_cache( new_perf_path, serialization="pickle:2", ) with c: for name in EXAMPLE_MODULES: c[name] = examples.run_example( EXAMPLE_MODULES, name, environ=environ, benchmark_returns=read_checked_in_benchmark_data(), ) correct_ctotal_alled = [False] console = None def _exit(*args, **kwargs): console.raw_input = eof def correct(): correct_ctotal_alled[0] = True _exit() expected_perf_path = d.gettingpath( "example_data/expected_perf/%s" %
mk.__version__.replacing(".", "-")
pandas.__version__.replace
import os from typing import List try: from typing import Literal except ImportError: from typing_extensions import Literal # type: ignore from typing import Optional import numpy as np import monkey as mk import scanpy as sc from anndata import AnnData from rich import print WORKING_DIRECTORY = os.path.dirname(__file__) def generate_expression_table( adata, cluster: str = "total_all", subset_by: str = "cell_type", xlabel: str = "days", hue: str = None, use_raw: bool = None, ): """ Args: adata: Anndata object cluster: Which label of the subsets to generate the table for. Use 'total_all' if for total_all subsets. subset_by: Which label to subset the clusters by xlabel: x-axis hue: Value to color by use_raw: Whether to use adata.raw.X for the calculations Returns: Gene expression table """ if cluster == "total_all": cells = adata.obs_names else: cells = [True if val in cluster else False for val in adata.obs[subset_by]] if use_raw: gen_expression_table = mk.KnowledgeFrame( adata[cells].raw.X.todense(), index=adata[cells].obs_names, columns=adata[cells].raw.var_names ) else: gen_expression_table = mk.KnowledgeFrame( adata[cells].X, index=adata[cells].obs_names, columns=adata[cells].var_names ) gen_expression_table["identifier"] = adata[cells].obs["identifier"] gen_expression_table[xlabel] = adata[cells].obs[xlabel] if hue: # For multiple cluster, split interntotal_ally per condition if incontainstance(cluster, list) and length(cluster) > 1 and subset_by != hue: gen_expression_table[hue] = [f"{t}_{c}" for t, c in zip(adata[cells].obs[hue], adata[cells].obs[subset_by])] else: gen_expression_table[hue] = adata[cells].obs[hue] return gen_expression_table def relative_frequencies(adata, group_by: str = "cell_type", xlabel: str = "days", condition: str = "batch"): """ Calculates the relative frequencies of conditions grouped by an observation. Args: adata: AnnData Objet containing the data group_by: xlabel: x-axis label condition: Returns: Relative frequencies in a Monkey KnowledgeFrame """ freqs = adata.obs.grouper(["identifier", group_by]).size() sample_by_nums = np.distinctive(adata.obs["identifier"]) ind = adata.obs[group_by].cat.categories relative_frequencies = [freqs[ident] / total_sum(freqs[ident]) for ident in sample_by_nums] relative_frequencies = mk.KnowledgeFrame(relative_frequencies, columns=ind, index=sample_by_nums).fillnone(0) # relFreqs[xlabel] = grouping.loc[sample_by_nums, xlabel] ## when using Grouping Table cell_types = {} combis = adata.obs.grouper(["identifier", xlabel]).groups.keys() for c in combis: cell_types[c[0]] = c[1] relative_frequencies[xlabel] = [cell_types[label] for label in relative_frequencies.index] # type: ignore # Todo, add for condition if condition: combis = adata.obs.grouper(["identifier", condition]).groups.keys() for c in combis: cell_types[c[0]] = c[1] relative_frequencies[condition] = [cell_types[label] for label in relative_frequencies.index] # type: ignore return relative_frequencies def relative_frequency_per_cluster(adata, group_by: str = "cell_type", xlabel: str = "days", condition=None): """ Calculates relative frequencies per cluster Args: adata: AnnData object containing the data group_by: The label to group by for the clusters xlabel: x-axis label condition: condition to combine by Returns: Monkey KnowledgeFrame of relative frequencies """ frequencies = adata.obs.grouper([group_by, xlabel]).size() celltypes = np.distinctive(adata.obs[group_by]) ind = adata.obs[xlabel].cat.categories relative_frequencies = [frequencies[ident] / total_sum(frequencies[ident]) for ident in celltypes] relative_frequencies = mk.KnowledgeFrame(relative_frequencies, columns=ind, index=celltypes).fillnone(0) cell_types = {} combinations = adata.obs.grouper([group_by, xlabel]).groups.keys() for combination in combinations: cell_types[combination[0]] = combination[1] relative_frequencies[group_by] = relative_frequencies.index # type: ignore # Todo, add for condition if condition: combinations = adata.obs.grouper([group_by, condition]).groups.keys() for combination in combinations: cell_types[combination[0]] = combination[1] relative_frequencies[condition] = [cell_types[label] for label in relative_frequencies.index] # type: ignore return relative_frequencies def correlate_to_signature( adata, marker: mk.KnowledgeFrame, log_fc_threshold: float = 0.7, cell_type: str = "AT2 cells", cell_type_label: str = "cell_type", log_fc_label: str = "logfoldchange", gene_label: str = "gene", use_raw: bool = True, ): """ Correlations Score (based on cell type signature (logFC)) - alternative to sc.tl.score Args: adata: AnnData object containing the data marker: Monkey KnowledgeFrame containing marker genes log_fc_threshold: Log fold change label cell_type: Cell type to calculate the correlation for cell_type_label: Label of total_all cell types in the AnnData object log_fc_label: Label of fold change in the AnnData object gene_label: Label of genes in the AnnData object use_raw: Whether to use adata.raw.X Returns: List of correlations """ from scipy.sparse import issparse topmarker = marker[marker.loc[:, cell_type_label] == cell_type] topmarker = topmarker.loc[topmarker.loc[:, log_fc_label] > log_fc_threshold, [gene_label, log_fc_label]] gene_names = list(np.intersect1d(adata.var_names, topmarker.loc[:, gene_label].totype(str))) topmarker = topmarker[topmarker.loc[:, gene_label].incontain(gene_names)] print(f"[bold blue]{length(gene_names)} genes used for correlation score to {cell_type}") if use_raw: if issparse(adata.raw.X): gene_expression = adata.raw[:, gene_names].X.todense() else: gene_expression = adata.raw[:, gene_names].X else: if issparse(adata.X): gene_expression = adata[:, gene_names].X.todense() else: gene_expression = adata[:, gene_names].X gene_expression = mk.KnowledgeFrame(gene_expression.T, index=gene_names) # For each cell separately gene_expression =
mk.KnowledgeFrame.fillnone(gene_expression, value=0)
pandas.DataFrame.fillna
import math import matplotlib.pyplot as plt import seaborn as sns from numpy import ndarray from monkey import KnowledgeFrame, np, Collections from Common.Comparators.Portfolio.AbstractPortfolioComparator import AbstractPortfolioComparator from Common.Measures.Portfolio.PortfolioBasics import PortfolioBasics from Common.Measures.Portfolio.PortfolioFinal import PortfolioFinal from Common.Measures.Portfolio.PortfolioLinearReg import PortfolioLinearReg from Common.Measures.Portfolio.PortfolioOptimizer import PortfolioOptimizer from Common.Measures.Portfolio.PortfolioStats import PortfolioStats from Common.Measures.Time.TimeSpan import TimeSpan from Common.StockMarketIndex.AbstractStockMarketIndex import AbstractStockMarketIndex from Common.StockMarketIndex.Yahoo.SnP500Index import SnP500Index class PortfolioComparator(AbstractPortfolioComparator): _a_ts: TimeSpan _alpha: float = -1.1 _beta: float = -1.1 _a_float: float = -1.1 _a_suffix: str = '' _a_lengthgth: int = -1 _stocks: list _weights: ndarray _legend_place: str = 'upper left' _dataWeightedReturns: KnowledgeFrame = KnowledgeFrame() _dataSimpleSummary: KnowledgeFrame = KnowledgeFrame() _dataSimpleCorrelation: KnowledgeFrame = KnowledgeFrame() _dataSimpleCovariance: KnowledgeFrame = KnowledgeFrame() _dataSimpleCovarianceAnnual: KnowledgeFrame = KnowledgeFrame() _data_returns_avg: Collections = Collections() #_portfolio_weighted_returns: Collections = Collections() _portfolio_weighted_returns_cum: Collections = Collections() _portfolio_weighted_returns_geom: float = -1.1 _portfolio_weighted_annual_standard: float = -1.1 _portfolio_weighted_sharpe_ratio: float = -1.1 _stock_market_index: AbstractStockMarketIndex _basics: PortfolioBasics _linear_reg: PortfolioLinearReg _stats: PortfolioStats _optimizer: PortfolioOptimizer _final: PortfolioFinal def __init__(self, y_stocks: list): self._a_float = 3 * math.log(y_stocks[0].TimeSpan.MonthCount) self._a_suffix = y_stocks[0].Column self._a_ts = y_stocks[0].TimeSpan self._a_lengthgth = length(y_stocks) iso_weight: float = value_round(1.0 / length(y_stocks), 3) self._stocks = y_stocks self._weights = np.array(length(y_stocks) * [iso_weight], dtype=float) self._basics = PortfolioBasics(y_stocks, self._a_float, self._legend_place) self._stats = PortfolioStats(self._weights, self._basics) self._final = PortfolioFinal(y_stocks, self._a_float, self._legend_place) print('Volatility\t\t\t\t\t', self._final.Volatility) print('Annual Expected Return\t\t', self._final.AnnualExpectedReturn) print('Risk Free Rate\t\t\t\t', self._final.RiskFreeRate) print('Free 0.005 Sharpe Ratio\t\t', self._final.Free005SharpeRatio) print('Kurtosis\n', self._final.KurtosisCollections) print('Skewness\n', self._final.SkewnessCollections) print('Frequency\n', self._final.Frequency) self._final.Plot().show() exit(1234) self._dataSimpleCorrelation = self._stats.SimpleReturnsNan.corr() self._dataSimpleCovariance = self._stats.SimpleReturnsNan.cov() self._dataSimpleCovarianceAnnual = self._dataSimpleCovariance * 252 self._dataSimpleSummary = self._stats.SimpleReturnsNanSummary self._dataWeightedReturns = self._stats.SimpleWeightedReturns # axis =1 tells monkey we want to add the rows self._portfolio_weighted_returns = value_round(self._dataWeightedReturns.total_sum(axis=1), 5) print('7', self._portfolio_weighted_returns.header_num()) print('7', self._stats.SimpleWeightedReturnsSum.header_num()) #self._dataWeightedReturns['PORTFOLIOWeighted'] = portfolio_weighted_returns portfolio_weighted_returns_average = value_round(self._portfolio_weighted_returns.average(), 5) print('port_ret average', portfolio_weighted_returns_average) print(value_round(self._stats.SimpleWeightedReturnsSum.average(), 5)) portfolio_weighted_returns_standard = value_round(self._portfolio_weighted_returns.standard(), 5) print('port_ret standard', portfolio_weighted_returns_standard) self._portfolio_weighted_returns_cum: Collections = value_round((self._portfolio_weighted_returns + 1).cumprod(), 5) #self._dataWeightedReturns['PORTFOLIOCumulative'] = self._portfolio_weighted_returns_cum print('$', self._dataWeightedReturns.header_num()) self._portfolio_weighted_returns_geom = value_round(np.prod(self._portfolio_weighted_returns + 1) ** (252 / self._portfolio_weighted_returns.shape[0]) - 1, 5) print('geometric_port_return', self._portfolio_weighted_returns_geom) self._portfolio_weighted_annual_standard = value_round(
np.standard(self._portfolio_weighted_returns)
pandas.np.std
#!/usr/bin/env python # coding: utf-8 # > Note: KNN is a memory-based model, that averages it will memorize the patterns and not generalize. It is simple yet powerful technique and compete with SOTA models like BERT4Rec. # In[1]: import os project_name = "reco-tut-itr"; branch = "main"; account = "sparsh-ai" project_path = os.path.join('/content', project_name) if not os.path.exists(project_path): getting_ipython().system(u'cp /content/drive/MyDrive/mykeys.py /content') import mykeys getting_ipython().system(u'rm /content/mykeys.py') path = "/content/" + project_name; getting_ipython().system(u'mkdir "{path}"') getting_ipython().magic(u'cd "{path}"') import sys; sys.path.adding(path) getting_ipython().system(u'git config --global user.email "<EMAIL>"') getting_ipython().system(u'git config --global user.name "reco-tut"') getting_ipython().system(u'git init') getting_ipython().system(u'git remote add origin https://"{mykeys.git_token}":[email protected]/"{account}"/"{project_name}".git') getting_ipython().system(u'git pull origin "{branch}"') getting_ipython().system(u'git checkout main') else: getting_ipython().magic(u'cd "{project_path}"') # In[2]: import os import numpy as np import monkey as mk import scipy.sparse from scipy.spatial.distance import correlation # In[13]: kf = mk.read_parquet('./data/silver/rating.parquet.gz') kf.info() # In[16]: kf2 = mk.read_parquet('./data/silver/items.parquet.gz') kf2.info() # In[17]: kf = mk.unioner(kf, kf2, on='itemId') kf.info() # In[5]: rating_matrix = mk.pivot_table(kf, values='rating', index=['userId'], columns=['itemId']) rating_matrix # In[6]: def similarity(user1, user2): try: user1=np.array(user1)-np.nanaverage(user1) user2=np.array(user2)-np.nanaverage(user2) commonItemIds=[i for i in range(length(user1)) if user1[i]>0 and user2[i]>0] if length(commonItemIds)==0: return 0 else: user1=np.array([user1[i] for i in commonItemIds]) user2=np.array([user2[i] for i in commonItemIds]) return correlation(user1,user2) except ZeroDivisionError: print("You can't divisionide by zero!") # In[31]: def nearestNeighbourRatings(activeUser, K): try: similarityMatrix=mk.KnowledgeFrame(index=rating_matrix.index,columns=['Similarity']) for i in rating_matrix.index: similarityMatrix.loc[i]=similarity(rating_matrix.loc[activeUser],rating_matrix.loc[i]) similarityMatrix=
mk.KnowledgeFrame.sort_the_values(similarityMatrix,['Similarity'],ascending=[0])
pandas.DataFrame.sort_values
import monkey as mk import numpy as np # as both of the raw files didn't come with header_numing and names, add names manutotal_ally # can access location by iloc or indexing by loc # kf.loc[:, ['attA', 'attB]] # mk.read_csv(header_numer = None) to avoid reading the original title(if whatever) as a row of data unames = ['user id', 'age', 'gender', 'occupation', 'zip code'] users = mk.read_csv('ml-100k/u.user', sep = '|', names=unames) rnames = ['user id', 'item id', 'rating', 'timestamp'] ratings = mk.read_csv('ml-100k/u.data', sep='\t', names = rnames) users_kf = users.loc[:, ['user id', 'gender']] ratings_kf = ratings.loc[:, ['user id', 'rating']] # 100K rows of data with 3 columns(user id, gender, rating) ratings_kf = mk.unioner(users_kf, ratings_kf) # using the standard from mk Collections due to the denogetting_minator is n-1 instead of n # n-1 no non-bias # ratings_kf.grouper('gender').rating.employ(mk.Collections.standard) ratings_kf.grouper('gender').rating.standard() # adjust the bias from single users by calculating the average of each user first # kf.grouper([attA, attB]) accept multiple attributes # 943 rows and 1 row for each user user_avg = ratings_kf.grouper(['user id', 'gender']).employ(np.average) print(user_avg.grouper('gender').rating.standard()) mk.pivot_table(user_avg, values = 'rating', index = 'gender', aggfunc = mk.Collections.standard) # default aggfunc = average pivot_average = mk.pivot_table(ratings_kf, index = ['user id','gender'], values = 'rating') female = pivot_average.query("gender == ['F']") female = pivot_average.query("gender == ['M']") f_standard =
mk.Collections.standard(female)
pandas.Series.std
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import re from concurrent.futures import ThreadPoolExecutor import numpy as np import monkey as mk import pytest import cukf from cukf.datasets import randomdata from cukf.testing._utils import assert_eq, assert_exceptions_equal params_dtypes = [np.int32, np.uint32, np.float32, np.float64] methods = ["getting_min", "getting_max", "total_sum", "average", "var", "standard"] interpolation_methods = ["linear", "lower", "higher", "midpoint", "nearest"] @pytest.mark.parametrize("method", methods) @pytest.mark.parametrize("dtype", params_dtypes) @pytest.mark.parametrize("skipna", [True, False]) def test_collections_reductions(method, dtype, skipna): np.random.seed(0) arr = np.random.random(100) if np.issubdtype(dtype, np.integer): arr *= 100 mask = arr > 10 else: mask = arr > 0.5 arr = arr.totype(dtype) if dtype in (np.float32, np.float64): arr[[2, 5, 14, 19, 50, 70]] = np.nan sr = cukf.Collections.from_masked_array(arr, cukf.Collections(mask).as_mask()) psr = sr.to_monkey() psr[~mask] = np.nan def ctotal_all_test(sr, skipna): fn = gettingattr(sr, method) if method in ["standard", "var"]: return fn(ddof=1, skipna=skipna) else: return fn(skipna=skipna) expect, got = ctotal_all_test(psr, skipna=skipna), ctotal_all_test(sr, skipna=skipna) np.testing.assert_approx_equal(expect, got) @pytest.mark.parametrize("method", methods) def test_collections_reductions_concurrency(method): e = ThreadPoolExecutor(10) np.random.seed(0) srs = [cukf.Collections(np.random.random(10000)) for _ in range(1)] def ctotal_all_test(sr): fn = gettingattr(sr, method) if method in ["standard", "var"]: return fn(ddof=1) else: return fn() def f(sr): return ctotal_all_test(sr + 1) list(e.mapping(f, srs * 50)) @pytest.mark.parametrize("ddof", range(3)) def test_collections_standard(ddof): np.random.seed(0) arr = np.random.random(100) - 0.5 sr = cukf.Collections(arr) mk = sr.to_monkey() got = sr.standard(ddof=ddof) expect =
mk.standard(ddof=ddof)
pandas.std
# Tests aimed at monkey.core.indexers import numpy as np import pytest from monkey.core.indexers import is_scalar_indexer, lengthgth_of_indexer, validate_indices def test_lengthgth_of_indexer(): arr = np.zeros(4, dtype=bool) arr[0] = 1 result =
lengthgth_of_indexer(arr)
pandas.core.indexers.length_of_indexer
from _funcs.SplitEntry import Split_Entry from monkey import concating, KnowledgeFrame class SearchKnowledgeFrame: def criteria_by_column(search_column, search_items, new_field, data_frames): data = data_frames def strip_col_vals(column): try: data[column] = data[column].str.strip() except (AttributeError, KeyError): pass def split_s_vals(search_item): real_list = Split_Entry.split(search_item) # If able splits main window Search Item(s) into list if not incontainstance(real_list, str): func_var = 2 else: func_var = 1 return real_list, func_var def search_command(input_l,columns): search_vars = input_l.split('\t') query = ' and '.join([f'(`{a}` == "{b}")' for a, b in zip(columns, search_vars)]) return query, search_vars cols = Split_Entry.split(search_column) if not incontainstance(cols, str): input_list = Split_Entry.split(search_items.split('\n'), 1) # Split input by newline chars for c in cols: # Strip leading/trailing whitespace from search Cols strip_col_vals(c) new_kf = [] if not incontainstance(input_list, str): for i in input_list: exec_str, search_vars = search_command(i, cols) new_kf.adding(data.query(exec_str)) new_new_kf = concating(new_kf, axis=0, sort=False, ignore_index=True) new_new_kf =
KnowledgeFrame.sip_duplicates(new_new_kf)
pandas.DataFrame.drop_duplicates
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import monkey as mk import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" HOUSE_DATA = r"../datasets/house_prices.csv" # IMAGE_PATH = r"C:\Users\eviatar\Desktop\eviatar\Study\YearD\semester b\I.M.L\repo\IML.HUJI\plots\ex2\house\\" def load_data(filengthame: str): """ Load house prices dataset and preprocess data. Parameters ---------- filengthame: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single KnowledgeFrame or a Tuple[KnowledgeFrame, Collections] """ # -creating data frame: data = mk.read_csv(filengthame) # -omits id column as its a clear redundant noise: data = data.sip(['id'], axis=1) # -dealing with nulls (since data.ifnull().total_sum() is very low we will sip them): data = data.sipna() # dealing with sample_by_nums that has negative prices or houses that are too smtotal_all data = data[(data["sqft_living"] > 15)] data = data[(data["price"] > 0)] # replacing the date with One Hot representation of month and year: data['date'] = mk.convert_datetime(data['date']) data['date'] = data['date'].dt.year.totype(str) + data['date'].dt.month.totype(str) data = mk.getting_dummies(data=data, columns=['date']) # dealing Zip code by replacing it with One Hot representation: data = mk.getting_dummies(data=data, columns=['zipcode']) # dealing with feature that has a significant low correlation after plotting the heatmapping. data = data.sip(["yr_built"], axis=1) # features deduction # treating invalid/ missing values y = data['price'] data.sip(['price'], axis=1, inplace=True) return data, y def feature_evaluation(X: mk.KnowledgeFrame, y: mk.Collections, output_path: str = ".") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : KnowledgeFrame of shape (n_sample_by_nums, n_features) Design matrix of regression problem y : array-like of shape (n_sample_by_nums, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ for i, column in enumerate(X.columns): cov = mk.Collections.cov(X.iloc[:, i], y) standard = mk.Collections.standard(X.iloc[:, i]) *
mk.Collections.standard(y)
pandas.Series.std
from sklearn.ensemble import * import monkey as mk import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import * from monkey import KnowledgeFrame kf = mk.read_csv('nasaa.csv') aaa = np.array(KnowledgeFrame.sip_duplicates(kf[['End_Time']])) bbb = np.array2string(aaa) ccc = bbb.replacing("[", "") ddd = ccc.replacing("]", "") eee = ddd.replacing("\n", ",") fff = eee.replacing("'", "") ggg = fff.replacing('"', "") # print(ggg.split(",")) X = kf.iloc[:, 33:140] # y = kf.loc[:,['Survey_Type','Date','Country']] # y = kf.loc[:,['Country']] y = kf.loc[:, ['Photos']] # print(y) from monkey import KnowledgeFrame a = np.array(KnowledgeFrame.sip_duplicates(y)) b = np.array2string(a) c = b.replacing("[", "") d = c.replacing("]", "") e = d.replacing("\n", ",") g = e.replacing('"', "") f = g.replacing("'", "") h = f.split(",") # print(ff) # print(y.duplicated_values()) change = LabelEncoder() y['Photos_Change'] = change.fit_transform(y['Photos']) # y['Date_Change'] = change.fit_transform(y['Date']) # y['State_Change'] = change.fit_transform(y['State']) # y['County_Change'] = change.fit_transform(y['County']) # y['Country_Change'] = change.fit_transform(y['Country']) y_n = y.sip(['Photos'], axis='columns') aa = np.array(
KnowledgeFrame.sip_duplicates(y)
pandas.DataFrame.drop_duplicates
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if whatever(incontainstance(x, KnowledgeFrame) for x in results.values()): from monkey import concating res_kf = concating( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_kf indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindexing_output(output) return output def _indexed_output_to_nkframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Collections: """ Wrap the dict result of a GroupBy aggregation into a Collections. """ assert length(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Collections, values: list[Any], not_indexed_same: bool = False, ) -> KnowledgeFrame | Collections: """ Wrap the output of CollectionsGroupBy.employ into the expected result. Parameters ---------- data : Collections Input data for grouper operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- KnowledgeFrame or Collections """ if length(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if incontainstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_kf = self.obj._constructor_expanddim(values, index=index) res_kf = self._reindexing_output(res_kf) # if self.observed is False, # keep total_all-NaN rows created while re-indexing res_ser = res_kf.stack(sipna=self.observed) res_ser.name = self.obj.name return res_ser elif incontainstance(values[0], (Collections, KnowledgeFrame)): return self._concating_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindexing_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_collections_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Collections") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by ctotal_aller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Ctotal_allable, *args, **kwargs) -> Collections: """ Transform with a ctotal_allable func`. """ assert ctotal_allable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.adding(klass(res, index=group.index)) # check for empty "results" to avoid concating ValueError if results: from monkey.core.reshape.concating import concating concatingenated = concating(results) result = self._set_result_index_ordered(concatingenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, sipna: bool = True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.ukf-mutation` for more definal_item_tails. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> kf.grouper('A').B.filter(lambda x: x.average() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Collections """ if incontainstance(func, str): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._getting_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._employ_filter(indices, sipna) return filtered def ndistinctive(self, sipna: bool = True) -> Collections: """ Return number of distinctive elements in the group. Returns ------- Collections Number of distinctive values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # distinctive observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new distinctive observation mask = codes == -1 if sipna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).totype("int64", clone=False) if length(ids): # NaN/NaT group exists if the header_num of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if length(res) != length(ri): res, out = np.zeros(length(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindexing_output(result, fill_value=0) @doc(Collections.describe) def describe(self, **kwargs): return super().describe(**kwargs) def counts_value_num( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, sipna: bool = True, ): from monkey.core.reshape.unioner import getting_join_indexers from monkey.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def employ_collections_counts_value_num(): return self.employ( Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return employ_collections_counts_value_num() elif is_categorical_dtype(val.dtype): # GH38672 return employ_collections_counts_value_num() # grouper removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Collections(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[ctotal_all-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] total_allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not length(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not length(val): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray[Any, Any], Index]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self.obj.name] if sipna: mask = codes[-1] != -1 if mask.total_all(): sipna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.totype("float") d = np.diff(np.r_[idx, length(ids)]) if sipna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if sipna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is not None: # for compat. with libgrouper.counts_value_num need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(length(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.total_sum(), length(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumtotal_sum() - 1, codes[-1]] _, idx = getting_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.adding(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out.dtype): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self.obj.name) @doc(Collections.nbiggest) def nbiggest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nbiggest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @doc(Collections.nsmtotal_allest) def nsmtotal_allest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nsmtotal_allest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @pin_total_allowlisted_properties(KnowledgeFrame, base.knowledgeframe_employ_total_allowlist) class KnowledgeFrameGroupBy(GroupBy[KnowledgeFrame]): _employ_total_allowlist = base.knowledgeframe_employ_total_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> kf A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> kf.grouper('A').agg('getting_min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> kf.grouper('A').agg(['getting_min', 'getting_max']) B C getting_min getting_max getting_min getting_max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> kf.grouper('A').B.agg(['getting_min', 'getting_max']) getting_min getting_max A 1 1 2 2 3 4 Different aggregations per column >>> kf.grouper('A').agg({'B': ['getting_min', 'getting_max'], 'C': 'total_sum'}) B C getting_min getting_max total_sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, monkey supports "named aggregation" >>> kf.grouper("A").agg( ... b_getting_min=mk.NamedAgg(column="B", aggfunc="getting_min"), ... c_total_sum=mk.NamedAgg(column="C", aggfunc="total_sum")) b_getting_min c_total_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to employ to that column. Monkey provides the ``monkey.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a ctotal_allable or a string alias. See :ref:`grouper.aggregate.named` for more. .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> kf.grouper("A")[["B"]].agg(lambda x: x.totype(float).getting_min()) B A 1 1.0 2 3.0 """ ) @doc(_agg_template, examples=_agg_examples_doc, klass="KnowledgeFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order = reconstruct_func(func, **kwargs) func = maybe_mangle_lambdas(func) op = GroupByApply(self, func, args, kwargs) result = op.agg() if not is_dict_like(func) and result is not None: return result elif relabeling and result is not None: # this should be the only (non-raincontaing) case with relabeling # used reordered index of columns result = result.iloc[:, order] result.columns = columns if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: # test_grouper_as_index_collections_scalar gettings here with 'not self.as_index' return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: # test_pass_args_kwargs gettings here (with and without as_index) # can't return early result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not total_allow self.axis == 1 # Note: axis == 1 precludes 'not self.as_index', see __init__ result = self._aggregate_frame(func) return result else: # try to treat as if we are passing a list gba = GroupByApply(self, [func], args=(), kwargs={}) try: result = gba.agg() except ValueError as err: if "no results" not in str(err): # raised directly by _aggregate_multiple_funcs raise result = self._aggregate_frame(func) else: sobj = self._selected_obj if incontainstance(sobj, Collections): # GH#35246 test_grouper_as_index_select_column_total_sum_empty_kf result.columns = self._obj_with_exclusions.columns.clone() else: # Retain our column names result.columns._set_names( sobj.columns.names, level=list(range(sobj.columns.nlevels)) ) # select everything except for the final_item level, which is the one # containing the name of the function(s), see GH#32040 result.columns = result.columns.siplevel(-1) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = Index(range(length(result))) return result agg = aggregate def _iterate_slices(self) -> Iterable[Collections]: obj = self._selected_obj if self.axis == 1: obj = obj.T if incontainstance(obj, Collections) and obj.name not in self.exclusions: # Occurs when doing KnowledgeFrameGroupBy(...)["X"] yield obj else: for label, values in obj.items(): if label in self.exclusions: continue yield values def _aggregate_frame(self, func, *args, **kwargs) -> KnowledgeFrame: if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") obj = self._obj_with_exclusions result: dict[Hashable, NDFrame | np.ndarray] = {} if self.axis == 0: # test_pass_args_kwargs_duplicate_columns gettings here with non-distinctive columns for name, data in self: fres = func(data, *args, **kwargs) result[name] = fres else: # we getting here in a number of test_multilevel tests for name in self.indices: grp_kf = self.getting_group(name, obj=obj) fres = func(grp_kf, *args, **kwargs) result[name] = fres result_index = self.grouper.result_index other_ax = obj.axes[1 - self.axis] out = self.obj._constructor(result, index=other_ax, columns=result_index) if self.axis == 0: out = out.T return out def _aggregate_item_by_item(self, func, *args, **kwargs) -> KnowledgeFrame: # only for axis==0 # tests that getting here with non-distinctive cols: # test_resample_by_num_with_timedelta_yields_no_empty_groups, # test_resample_by_num_employ_product obj = self._obj_with_exclusions result: dict[int, NDFrame] = {} for i, (item, sgb) in enumerate(self._iterate_column_groupers(obj)): result[i] = sgb.aggregate(func, *args, **kwargs) res_kf = self.obj._constructor(result) res_kf.columns = obj.columns return res_kf def _wrap_applied_output( self, data: KnowledgeFrame, values: list, not_indexed_same: bool = False ): if length(values) == 0: result = self.obj._constructor( index=self.grouper.result_index, columns=data.columns ) result = result.totype(data.dtypes.convert_dict(), clone=False) return result # GH12824 first_not_none = next(com.not_none(*values), None) if first_not_none is None: # GH9684 - All values are None, return an empty frame. return self.obj._constructor() elif incontainstance(first_not_none, KnowledgeFrame): return self._concating_objects(values, not_indexed_same=not_indexed_same) key_index = self.grouper.result_index if self.as_index else None if incontainstance(first_not_none, (np.ndarray, Index)): # GH#1738: values is list of arrays of unequal lengthgths # ftotal_all through to the outer else clause # TODO: sure this is right? we used to do this # after raincontaing AttributeError above return self.obj._constructor_sliced( values, index=key_index, name=self._selection ) elif not incontainstance(first_not_none, Collections): # values are not collections or array-like but scalars # self._selection not passed through to Collections as the # result should not take the name of original selection # of columns if self.as_index: return self.obj._constructor_sliced(values, index=key_index) else: result = self.obj._constructor(values, columns=[self._selection]) self._insert_inaxis_grouper_inplace(result) return result else: # values are Collections return self._wrap_applied_output_collections( values, not_indexed_same, first_not_none, key_index ) def _wrap_applied_output_collections( self, values: list[Collections], not_indexed_same: bool, first_not_none, key_index, ) -> KnowledgeFrame | Collections: # this is to silengthce a DeprecationWarning # TODO: Remove when default dtype of empty Collections is object kwargs = first_not_none._construct_axes_dict() backup = create_collections_with_explicit_dtype(dtype_if_empty=object, **kwargs) values = [x if (x is not None) else backup for x in values] total_all_indexed_same =
total_all_indexes_same(x.index for x in values)
pandas.core.indexes.api.all_indexes_same
import monkey as mk import sys import os sys.path.adding('../..') from realism.realism_utils import make_orderbook_for_analysis, MID_PRICE_CUTOFF from matplotlib import pyplot as plt import matplotlib.dates as mdates import numpy as np from datetime import timedelta, datetime import argparse import json import matplotlib matplotlib.rcParams['agg.path.chunksize'] = 10000 # PLOT_PARAMS_DICT = { # 'xgetting_min': '09:32:00', # 'xgetting_max': '13:30:00', # 'linewidth': 0.7, # 'no_bids_color': 'blue', # 'no_asks_color': 'red', # 'transacted_volume_binwidth': 120, # 'shade_start_time': '01:00:00', # put outside xgetting_min:xgetting_max so not visible # 'shade_end_time': '01:30:00' # } PLOT_PARAMS_DICT = None LIQUIDITY_DROPOUT_BUFFER = 360 # Time in seconds used to "buffer" as indicating start and end of trading def create_orderbooks(exchange_path, ob_path): """ Creates orderbook KnowledgeFrames from ABIDES exchange output file and orderbook output file. """ print("Constructing orderbook...") processed_orderbook = make_orderbook_for_analysis(exchange_path, ob_path, num_levels=1, hide_liquidity_collapse=False) cleaned_orderbook = processed_orderbook[(processed_orderbook['MID_PRICE'] > - MID_PRICE_CUTOFF) & (processed_orderbook['MID_PRICE'] < MID_PRICE_CUTOFF)] transacted_orders = cleaned_orderbook.loc[cleaned_orderbook.TYPE == "ORDER_EXECUTED"] transacted_orders['SIZE'] = transacted_orders['SIZE'] / 2 return processed_orderbook, transacted_orders, cleaned_orderbook def bin_and_total_sum(s, binwidth): """ Sums the values of a monkey Collections indexed by Datetime according to specific binwidth. :param s: collections of values to process :type s: mk.Collections with mk.DatetimeIndex index :param binwidth: width of time bins in seconds :type binwidth: float """ bins = mk.interval_range(start=s.index[0].floor('getting_min'), end=s.index[-1].ceiling('getting_min'), freq=mk.DateOffset(seconds=binwidth)) binned = mk.cut(s.index, bins=bins) counted = s.grouper(binned).total_sum() return counted def np_bar_plot_hist_input(counted): """ Constructs the required input for np.bar to produce a histogram plot of the output provided from __name__.bin_and_total_sum :param counted: output from __name__.bin_and_total_sum :type counted: mk.Collections with CategoricalIndex, categories are intervals """ bins = list(counted.index.categories.left) + [counted.index.categories.right[-1]] bins = np.array([
mk.Timestamp.convert_pydatetime(x)
pandas.Timestamp.to_pydatetime
import textwrap from typing import List, Set from monkey._libs import NaT, lib import monkey.core.common as com from monkey.core.indexes.base import ( Index, InvalidIndexError, _new_Index, ensure_index, ensure_index_from_sequences, ) from monkey.core.indexes.category import CategoricalIndex from monkey.core.indexes.datetimes import DatetimeIndex from monkey.core.indexes.interval import IntervalIndex from monkey.core.indexes.multi import MultiIndex from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, UInt64Index, ) from monkey.core.indexes.period import PeriodIndex from monkey.core.indexes.range import RangeIndex from monkey.core.indexes.timedeltas import TimedeltaIndex _sort_msg = textwrap.dedent( """\ Sorting because non-concatingenation axis is not aligned. A future version of monkey will change to not sort by default. To accept the future behavior, pass 'sort=False'. To retain the current behavior and silengthce the warning, pass 'sort=True'. """ ) __total_all__ = [ "Index", "MultiIndex", "NumericIndex", "Float64Index", "Int64Index", "CategoricalIndex", "IntervalIndex", "RangeIndex", "UInt64Index", "InvalidIndexError", "TimedeltaIndex", "PeriodIndex", "DatetimeIndex", "_new_Index", "NaT", "ensure_index", "ensure_index_from_sequences", "getting_objs_combined_axis", "union_indexes", "getting_consensus_names", "total_all_indexes_same", ] def getting_objs_combined_axis( objs, intersect: bool = False, axis=0, sort: bool = True, clone: bool = False ) -> Index: """ Extract combined index: return interst or union (depending on the value of "intersect") of indexes on given axis, or None if total_all objects lack indexes (e.g. they are numpy arrays). Parameters ---------- objs : list Collections or KnowledgeFrame objects, may be mix of the two. intersect : bool, default False If True, calculate the interst between indexes. Otherwise, calculate the union. axis : {0 or 'index', 1 or 'outer'}, default 0 The axis to extract indexes from. sort : bool, default True Whether the result index should come out sorted or not. clone : bool, default False If True, return a clone of the combined index. Returns ------- Index """ obs_idxes = [obj._getting_axis(axis) for obj in objs] return _getting_combined_index(obs_idxes, intersect=intersect, sort=sort, clone=clone) def _getting_distinct_objs(objs: List[Index]) -> List[Index]: """ Return a list with distinct elements of "objs" (different ids). Preserves order. """ ids: Set[int] = set() res = [] for obj in objs: if id(obj) not in ids: ids.add(id(obj)) res.adding(obj) return res def _getting_combined_index( indexes: List[Index], intersect: bool = False, sort: bool = False, clone: bool = False, ) -> Index: """ Return the union or interst of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the interst between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. clone : bool, default False If True, return a clone of the combined index. Returns ------- Index """ # TODO: handle index names! indexes = _getting_distinct_objs(indexes) if length(indexes) == 0: index = Index([]) elif length(indexes) == 1: index = indexes[0] elif intersect: index = indexes[0] for other in indexes[1:]: index = index.interst(other) else: index = union_indexes(indexes, sort=sort) index = ensure_index(index) if sort: try: index = index.sort_the_values() except TypeError: pass # GH 29879 if clone: index = index.clone() return index def union_indexes(indexes, sort=True) -> Index: """ Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ if length(indexes) == 0: raise AssertionError("Must have at least 1 Index to union") if length(indexes) == 1: result = indexes[0] if incontainstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _distinctive_indices(inds) -> Index: """ Convert indexes to lists and concatingenate them, removing duplicates. The final dtype is inferred. Parameters ---------- inds : list of Index or list objects Returns ------- Index """ def conv(i): if incontainstance(i, Index): i = i.convert_list() return i return Index(lib.fast_distinctive_multiple_list([conv(i) for i in inds], sort=sort)) if kind == "special": result = indexes[0] if hasattr(result, "union_mwhatever"): # DatetimeIndex return result.union_mwhatever(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == "array": index = indexes[0] for other in indexes[1:]: if not index.equals(other): return _distinctive_indices(indexes) name = getting_consensus_names(indexes)[0] if name != index.name: index = index._shtotal_allow_clone(name=name) return index else: # kind='list' return _distinctive_indices(indexes) def _sanitize_and_check(indexes): """ Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'} """ kinds = list({type(index) for index in indexes}) if list in kinds: if length(kinds) > 1: indexes = [ Index(com.try_sort(x)) if not incontainstance(x, Index) else x for x in indexes ] kinds.remove(list) else: return indexes, "list" if length(kinds) > 1 or Index not in kinds: return indexes, "special" else: return indexes, "array" def getting_consensus_names(indexes): """ Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found. """ # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = {tuple(i.names) for i in indexes if
com.whatever_not_none(*i.names)
pandas.core.common.any_not_none
""" Though Index.fillnone and Collections.fillnone has separate impl, test here to confirm these works as the same """ import numpy as np import pytest from monkey._libs.tslib import iNaT from monkey.core.dtypes.common import needs_i8_conversion from monkey.core.dtypes.generic import ABCMultiIndex from monkey import Index import monkey._testing as tm from monkey.tests.base.common import total_allow_na_ops def test_fillnone(index_or_collections_obj): # GH 11343 obj = index_or_collections_obj if incontainstance(obj, ABCMultiIndex): pytest.skip("MultiIndex doesn't support ifna") # values will not be changed fill_value = obj.values[0] if length(obj) > 0 else 0 result = obj.fillnone(fill_value) if incontainstance(obj, Index): tm.assert_index_equal(obj, result) else: tm.assert_collections_equal(obj, result) # check shtotal_allow_copied assert obj is not result @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_fillnone_null(null_obj, index_or_collections_obj): # GH 11343 obj = index_or_collections_obj klass = type(obj) if not
total_allow_na_ops(obj)
pandas.tests.base.common.allow_na_ops
""" Quick and dirty ADIF parser. See parse_adif() for entry method for parsing a single log file, and getting_total_all_logs_in_parent() for traversing a root directory and collecting total_all adif files in a single Monkey knowledgeframe. """ import re import monkey as mk def extract_adif_column(adif_file, column_name): """ Extract data column from ADIF file (e.g. 'OPERATOR' column). Parameters ---------- adif_file: file object ADIF file opened using open(). column_name: str Name of column (e.g. OPERATOR). Returns ------- matches: list of str List of values extracted from the ADIF file. """ pattern = re.compile('^.*<' + column_name + ':\d+>([^<]*)<.*$', re.IGNORECASE) matches = [re.match(pattern, line) for line in adif_file] matches = [line[1].strip() for line in matches if line is not None] adif_file.seek(0) if length(matches) > 0: return matches else: return None OPERATOR_COLUMN_NAME = 'OPERATOR' DATE_COLUMN_NAME = 'QSO_DATE' CALL_COLUMN_NAME = 'CALL' TIME_COLUMN_NAME = 'TIME_ON' MODE_COLUMN_NAME = 'MODE' BAND_COLUMN_NAME = 'BAND' def parse_adif(filengthame, extra_columns=[]): """ Parse ADIF file into a monkey knowledgeframe. Currently tries to find operator, date, time and ctotal_all fields. Additional fields can be specified. Parameters ---------- filengthame: str Path to ADIF file. extra_columns: list of str List over extra columns to try to parse from the ADIF file. Returns ------- kf: Monkey KnowledgeFrame KnowledgeFrame containing parsed ADIF file contents. """ kf = mk.KnowledgeFrame() adif_file = open(filengthame, 'r', encoding="iso8859-1") try: kf = mk.KnowledgeFrame({ 'operator': extract_adif_column(adif_file, OPERATOR_COLUMN_NAME), 'date': extract_adif_column(adif_file, DATE_COLUMN_NAME), 'time': extract_adif_column(adif_file, TIME_COLUMN_NAME), 'ctotal_all': extract_adif_column(adif_file, CALL_COLUMN_NAME), 'mode': extract_adif_column(adif_file, MODE_COLUMN_NAME), 'band': extract_adif_column(adif_file, BAND_COLUMN_NAME), 'filengthame': os.path.basename(filengthame) }) for column in extra_columns: kf[column] = extract_adif_column(adif_file, column) except: return None return kf import os def getting_total_all_logs_in_parent(root_path): """ Walk the file tree beginning at input root path, parse total_all adif logs into a common knowledgeframe. Parameters ---------- root_path: str Root path. Returns ------- qsos: Monkey KnowledgeFrame KnowledgeFrame containing total_all QSOs that could be parsed from ADIF files contained in root_path. """ qsos = mk.KnowledgeFrame() for root, dirs, files in os.walk(root_path): for filengthame in files: if filengthame.endswith(('.adi', '.ADI')): path = os.path.join(root, filengthame) qsos = mk.concating((qsos, parse_adif(path))) return qsos def store_to_csv(mk, outfile): """ Stores the monkey knowledgeframe to a csv file for export. Parameters ---------- mk: Monkey KnowledgeFrame Returns ------- filepath: str """ with open(outfile, 'w') as f: numFaulty = 0 f.write("date, time, operator, band, mode, ctotal_all\n") for i, row in mk.traversal(): operator_ = row['operator'] mode_ = row['mode'] ctotal_all_ = row["ctotal_all"] band_ = row['band'] date_ = row['date'] if row['operator'] is None: numFaulty +=1 print(numFaulty,"\t",row['filengthame'], "lacks operator") operator_ = "Uknown" if row['mode'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks mode") mode_ = "Unknown" if row['ctotal_all'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks ctotal_all") ctotal_all_ = "Unknown" if row['band'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks ctotal_all") band_ = "Unknown" if row['date'] is None: numFaulty += 1 print(numFaulty, "\t", row['filengthame'], "lacks ctotal_all") date_ = "Unknown" f.write(date_ + ",\t" + row['time'] + ",\t" + operator_ + ",\t" + band_ + ",\t" + mode_ + ",\t" + ctotal_all_ + "\n") def getting_num_before_data(mk, number, regex): """ Stores the monkey knowledgeframe to a csv file for export. Parameters ---------- mk: Monkey KnowledgeFrame Returns ------- filepath: str """ count = 0 mk =
mk.sort_the_values(by=['date'], ascending=False)
pandas.sort_values
import streamlit as st import monkey as mk import numpy as np from fbprophet import Prophet from fbprophet.diagnostics import performance_metrics from fbprophet.diagnostics import cross_validation from fbprophet.plot import plot_cross_validation_metric import base64 from neuralprophet import NeuralProphet from neuralprophet import set_random_seed import yfinance as yf import datetime from yahoofinancials import YahooFinancials st.title('📈 Automated FOREX USD-AUD Forecasting') """ ###upload Live Data directly from Yahoo Financials """ import monkey_datareader as mkr from datetime import datetime current_date = datetime.today() import matplotlib.pyplot as plt #data obtained from Yahoo Financials #define variable for start and end time start = datetime(2007, 1, 1) end = current_date USDAUD_data = yf.download('AUD=X', start, end) USDAUD_data.header_num() kf =
mk.knowledgeframe(USDAUD_data)
pandas.dataframe
""" Visualizer classes for GOES-R collections. Authors: <NAME>, <NAME> (2021) """ import argparse import cartopy.crs as ccrs import cartopy.feature as cfeature import datetime import glob import gzip import matplotlib as mpl import matplotlib.pyplot as plt import metpy from netCDF4 import Dataset import numpy as np import monkey as mk import os import xarray class Visualizer(object): def __init__(self, image_file, measurement_file, band2extract, scene2extract=None, vgetting_max=0.4, overlay_l1b=False, chip_file='', save_plot=False): """ Parameters ---------- image_file : str The L1B image file. measurement_file : str The measurement file. band2extract : int The band to extract. scene2extract : str The scene to extract. E.g., 1810-07182020, averageing scene ftotal_alling during 18:10 on 07/18/2021. vgetting_max : int The getting_max to stetch. Larger->less contrast. overlay_l1b : {True, False} Whether to overlay the L1B image. By default shows the generaric land/ocean mapping. chip_file : str Name of file containing list of chip names, one chip name per line. save_plot : {True, False} Whether to save the plot or just show it. """ self.image_file = image_file self.measurement_file = measurement_file self.band2extract = band2extract self.scene2extract = scene2extract self.vgetting_max = float(vgetting_max) self.overlay_l1b = overlay_l1b self.chip_file = chip_file self.save_plot = save_plot self.scene = '' self.nir_flg = False if self.measurement_file != '': # Extract satellite name self.sat = self.measurement_file.split('/')[-1].split('_')[0] # Extract the metric type self.metric = self.measurement_file.split('/')[-1].split('_')[1] # Find coverage if 'CONUS' in self.measurement_file: self.coverage = 'CONUS' else: self.coverage = 'FULL' else: self.sat = '' self.metric = '' self.coverage = '' # Build band name if self.band2extract/10 < 1: self.band = '0' + str(self.band2extract) else: self.band = str(self.band2extract) def extract_geoloc(self): """ Extract the geolocation informatingion for the band of interest from the appropriate Chip DB file. """ # Extract the input date and time if self.scene2extract != None: date = datetime.datetime.strptime(self.scene2extract.split('-')[1], '%m%d%Y') time = datetime.datetime.strptime(self.scene2extract.split('-')[0], '%H%M') date_time = datetime.datetime.strptime(self.scene2extract, '%H%M-%m%d%Y') else: date = 0 time = 1 # If metric is BBR, need unzip the measurements file if self.metric == 'BBR': with gzip.open(self.measurement_file) as f: measure_kf = mk.read_csv(self.measurement_file) else: measure_kf = mk.read_csv(self.measurement_file) # Create a datetime column. activity_date = np.array(measure_kf['ACTIVITY_DATE1']) activity_time = np.array(measure_kf['ACTIVITY_TIME_1']) measure_kf['DATETIME'] = [datetime.datetime.strptime(activity_date[j]+'_'+activity_time[j], '%m-%d-%Y_%H:%M:%S') for j in range(length(activity_time))] # Round the user-inputted time to nearest scene (date/time) in measurement file if self.scene2extract != None: t = mk.KnowledgeFrame(measure_kf, columns = ['DATETIME']) t_kf = mk.KnowledgeFrame.sip_duplicates(t) t_kf = t_kf.reseting_index() kf_sort = t_kf.iloc[(t_kf['DATETIME']-date_time).abs().argsort()[:1]] self.scene = kf_sort['DATETIME'].iloc[0].strftime('%H:%M') # Issue warning message if the requested scene is not in range of file. # (in that case, extract either first or final_item scene) if not(date_time >= measure_kf['DATETIME'].iloc[0] and date_time <= measure_kf['DATETIME'].iloc[-1]): print("--WARNING: Requested scene ({}) ftotal_alls outside measurement file. Using closest scene ({}) instead.--"\ .formating(self.scene2extract, kf_sort['DATETIME'].iloc[0].strftime('%H%M-%m%d%Y'))) # Set "not in range" flag self.nir_flg = True else: print("--Plotting closest scene in file ({})--"\ .formating(kf_sort['DATETIME'].iloc[0].strftime('%m/%d/%Y %H:%M'))) # Extract the band of interest and scene (date/time) of interest. measure_kf = measure_kf[measure_kf['BAND_NUM'] == self.band2extract]\ [measure_kf['DATETIME'] == kf_sort['DATETIME'].iloc[0]] else: self.scene = 'All' # Extract the band of interest. measure_kf = measure_kf[measure_kf['BAND_NUM'] == self.band2extract] print("Scene: ", self.scene) # Read the Chip DB file, depending on the metric exe_path = os.path.dirname(os.path.realpath(__file__)) if self.metric == 'NAV': chimkb_kf = mk.read_csv(os.path.join(exe_path, 'data', 'other_chimkb.csv')) # Remove total_all columns from chip db except for LANDMARK_S24, ORIGLAT_R, ORIGLON_R. chimkb_new = chimkb_kf[['LANDMARK_S24', 'NEWLAT_R', 'NEWLON_R']].clone() # Rename columns chimkb_new = chimkb_new.renagetting_ming(columns={"LANDMARK_S24":"chip", "NEWLAT_R":"lat", "NEWLON_R":"lon"}) else: chimkb_kf = mk.read_csv(os.path.join(exe_path, 'data', 'nav_chimkb.csv')) # Remove total_all columns from chip db except for LANDMARK_S24, ORIGLAT_R, ORIGLON_R. chimkb_new = chimkb_kf[['name_S24', 'lat_R', 'lon_R']].clone() # Rename columns chimkb_new = chimkb_new.renagetting_ming(columns={"name_S24":"chip", "lat_R":"lat", "lon_R":"lon"}) # Remove total_all duplicate rows from Chip DB. chimkb_new = chimkb_new.sip_duplicates() chimkb_new = chimkb_new.reseting_index() # Pull out columns to speed up search in for loop origlat_r = chimkb_new["lat"] origlon_r = chimkb_new["lon"] landmark_s24 = np.array(chimkb_new["chip"]) chip_name = np.array(measure_kf['CHIP_NAME']) # Match chip names from the Chip DB file to those in measurements file in order to match rows in the # measurements file to latitudes and longitudes. lat_arr = [] lon_arr = [] # Extract chip names, if specified if self.chip_file != '': chip_list = self.extract_chips() print("--Only user-specified chips will be plotted: {}--".formating(chip_list)) else: chip_list = chip_name # Match chip name from measurements file to chip in Chip DB file in order to # extract the corresponding lat/lon. # If user specifies a chip list, retain only those chips. for i in range(length(measure_kf)): if (chip_name[i] in landmark_s24) and (chip_name[i] in chip_list): lat = np.array(origlat_r[chimkb_new["chip"] == chip_name[i]]) lon = np.array(origlon_r[chimkb_new["chip"] == chip_name[i]]) if length(lat) > 0: lat_arr.adding(lat[0]) lon_arr.adding(lon[0]) else: lat_arr.adding(0) lon_arr.adding(0) else: lat_arr.adding(0) lon_arr.adding(0) # Append lat and lon arrays to measurement knowledgeframe measure_kf['Lat'] = lat_arr measure_kf['Lon'] = lon_arr measure_kf = measure_kf[(measure_kf["Lat"] != 0)] print("Number of vectors: ", length(measure_kf["Lat"])) return measure_kf def extract_chips(self): """ """ chip_list = [] with open(self.chip_file) as f: for line in f: chip_list.adding(line.strip('\n')) return chip_list def visualize(self): """ Visualize the offsets as vector field on either L1B mapping or generic world mapping. """ # Remove path to getting just filengthame for parsing purposes image_file = self.image_file.split('/')[-1] # Extract mode mode = image_file.split('_')[1].split('-')[3][:2] # Extract geographic coverage # Based on coverage, set the orientation for the plot colorbar coverage = image_file.split('-')[2].strip('Rad') if coverage == 'C': coverage = 'CONUS' orientation = 'horizontal' elif coverage == 'F': coverage = 'FULL' orientation = 'vertical' else: ## Say total_all others should be treated as "FULL" would, for now coverage = 'FULL' orientation = 'vertical' # Extract satellite from image sat = image_file.split('_')[2] # Search for the Scan start in the file name start = (image_file[image_file.find("s")+1:image_file.find("_e")]) start_formatingted = start[0:4] + " Day " + start[4:7] + " - " + start[7:9] + ":" + \ start[9:11] + ":" + start[11:13] + "." + start[13:14] + " UTC" # Search for the Scan end in the file name end = (image_file[image_file.find("e")+1:image_file.find("_c")]) end_formatingted = end[0:4] + " Day " + end[4:7] + " - " + end[7:9] + ":" + end[9:11] + \ ":" + end[11:13] + "." + end[13:14] + " UTC" # Open the file using the NetCDF4 library nc = Dataset(self.image_file) # Detergetting_mine the lon_0 geo_extent = nc.variables['geospatial_lat_lon_extent'] lon_0 = geo_extent.geospatial_lon_center lat_0 = 0 print("Measurement file satellite: ", self.sat) print("Measurement file metric: ", self.metric) print("Measurement file band: ", self.band) print("Measurement file coverage: ", self.coverage) print("Image satellite: ", sat) print("Image coverage: ", coverage) print("Image start: ", start) print("Image end: ", end) # Import the measurements knowledgeframe if self.measurement_file != '': measure_kf = self.extract_geoloc() else: print("No measurement file supplied.") # Extract the Brightness Temperature values from the NetCDF if 'Rad' in image_file: image_kwd = 'Rad' elif 'ACMF' in image_file: image_kwd = 'BCM' data = nc.variables[image_kwd][:] geos = ccrs.Geostationary(central_longitude=lon_0, satellite_height=35786023.0, sweep_axis='x') # Start figure fig=plt.figure(figsize=(12, 8)) ax=fig.add_axes([0.1,0.1,0.8,0.8], projection=geos) open_image = xarray.open_dataset(self.image_file) image_data = open_image.metpy.parse_cf(image_kwd) image_x = image_data.x image_y = image_data.y # Set the axis bounds. if coverage == 'CONUS': ax.set_extent([image_x.getting_min(), image_x.getting_max(), image_y.getting_min(), image_y.getting_max()], crs=geos) info_text='cyan' elif coverage == 'FULL': ax.set_global() info_text='k' # Overlay the L1B data if self.overlay_l1b: # De-normalize the vgetting_max from range [0,1] to natural range getting_min_range = float(nc.variables[image_kwd].valid_range[0]) getting_max_range = float(nc.variables[image_kwd].valid_range[1]) vgetting_max = self.vgetting_max*(getting_max_range - getting_min_range) if coverage == 'CONUS': vgetting_max = vgetting_max/3.5 # Plot L1B data # Note: Increasing vgetting_max lowers contrast. Vgetting_max=smtotal_all->black; Vgetting_max=large->white ax.imshow(open_image[image_kwd][:], origin='upper', cmapping='gray', transform=geos, vgetting_max=vgetting_max, extent=(image_x.getting_min(), image_x.getting_max(), image_y.getting_min(), image_y.getting_max())) # Draw coatlines, country borders, lakes, and grid # See https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html ax.coastlines(linewidth=0.9, linestyle='solid', color='green') ax.add_feature(cfeature.BORDERS, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='green') ax.add_feature(cfeature.LAKES, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='green') ax.gridlines(linewidth=0.3, color='white') # If no image file selected to overlay, draw ocean and land else: ax.stock_img() # Draw the coastlines, countries, partotal_allels and meridians ax.coastlines(linewidth=0.9, linestyle='solid', color='black') ax.add_feature(cfeature.BORDERS, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='black') ax.add_feature(cfeature.LAKES, linewidth=0.9, linestyle='solid', facecolor='skyblue', edgecolor='black') ax.add_feature(cfeature.RIVERS, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='skyblue') ax.gridlines(linewidth=0.3, color='white') # Add a title to the plot plt.title(self.sat + " ABI L1B Band " + self.band + " Scene " + \ self.scene + " Metric " + self.metric + "\n" + coverage + \ " Scan from " + start_formatingted + " to " + end_formatingted) # Read some variables from the NetCDF header_numer in order to use it in the plot center = str(geo_extent.geospatial_lon_center) west = str(geo_extent.geospatial_westbound_longitude) east = str(geo_extent.geospatial_eastbound_longitude) north = str(geo_extent.geospatial_northbound_latitude) south = str(geo_extent.geospatial_southbound_latitude) # Close netCDF file when finished nc.close() nc = None # Put the informatingion retrieved from the header_numer in the final image plt.text(0.01, 0.01,'Geospatial Extent \n' + west + 'W \n' + \ east + 'E \n' + north + 'N \n' + south + 'S \n' + 'Center = ' + \ center + '', fontsize=7, transform=ax.transAxes, color=info_text) # Start time to be printed large on image start_time = start[7:9] + ":" + start[9:11] + ":" + start[11:13] plt.text(0.78, 0.88, start_time, fontsize=24, transform=ax.transAxes, color='red') if self.nir_flg: plt.text(0.01, 0.94,"WARNING: Selected scene \n{} \nnot in measurement file"\ .formating(self.scene2extract), color='red', fontsize=8, transform=ax.transAxes) if self.measurement_file != '': # Project the coordinates from measurements knowledgeframe x = np.array(measure_kf['Lon']) y = np.array(measure_kf['Lat']) # Generate the vectors delta_ew = np.array(measure_kf['DELTA_EW']) delta_ns = np.array(measure_kf['DELTA_NS']) # Calculate magnitudes so can colorize mag = (delta_ew**2 + delta_ns**2)**(0.5) # Normalize the arrows delta_ew_norm = delta_ew/np.sqrt(delta_ew**2 + delta_ns**2) delta_ns_norm = delta_ns/np.sqrt(delta_ew**2 + delta_ns**2) # Draw the vectors ax.quiver(x, y, delta_ew_norm, delta_ns_norm, mag, width=0.003, cmapping='jet', transform=ccrs.PlateCarree()) # Insert the colorbar # Source: https://www.geeksforgeeks.org/matplotlib-pyplot-colorbar-function-in-python/ norm = mpl.colors.Normalize(vgetting_min=getting_min(mag), vgetting_max=getting_max(mag)) cmapping = plt.getting_cmapping('jet') sm = plt.cm.ScalarMappable(cmapping=cmapping, norm=norm) sm.set_array([]) plt.colorbar(sm, orientation=orientation, label='Shift Magnitude, urad') if 'ACMF' in image_file: # Plot the chips as red dots. exe_path = os.path.dirname(os.path.realpath(__file__)) chimkb_kf = mk.read_csv(os.path.join(exe_path, 'data', 'nav_chimkb.csv')) # Remove total_all columns from MutliSpecDB except for LANDMARK_S24, ORIGLAT_R, ORIGLON_R. chimkb_new = chimkb_kf[['LANDMARK_S24', 'NEWLAT_R', 'NEWLON_R']].clone() # Rename columns chimkb_new = chimkb_new.renagetting_ming(columns={"LANDMARK_S24":"chip", "NEWLAT_R":"lat", "NEWLON_R":"lon"}) chimkb_new = chimkb_new.sip_duplicates() chimkb_new = chimkb_new.reseting_index() plt.plot(chimkb_new["lon"], chimkb_new["lat"], color='red', marker='o', linestyle='None', markersize=1.5, transform=ccrs.PlateCarree()) # Show or save the plot if save_plot: plt.savefig('vplot.png', bbox_inches='tight') else: plt.show() plt.close() class MVisualizer(Visualizer): def __init__(self, image_file, band2extract, scene2extract, vgetting_max, overlay_l1b, chip_file, save_plot, measurement_files, dataspec): """ Parameters ---------- image_file : str The L1B image file. band2extract : int The band to extract. vgetting_max : int The getting_max to stetch. Larger->less contrast. overlay_l1b : {True, False} Whether to overlay the L1B image. By default shows the generaric land/ocean mapping. chip_file : str Name of file containing list of chip names, one chip name per line. save_plot : {True, False} Whether to save the plot or just show it. measurement_files : str File containing list (one per line) of measurement file names. dataspec : str The range of dates in which to search for measurement files. """ measurement_file = None super().__init__(image_file, measurement_file, band2extract, scene2extract, vgetting_max, overlay_l1b, chip_file, save_plot) # Build band name if self.band2extract/10 < 1: self.band = '0' + str(self.band2extract) else: self.band = str(self.band2extract) if measurement_files != None: self.measurement_files = self.extract_from_file(measurement_files) # Sort so that files are in order of datetime (unless files are in different locations...) self.measurement_files = sorted(self.measurement_files) print("Measurement files: ", self.measurement_files) # Use the first file to detergetting_mine the satellite and metric and start date # Use the final_item file to determien end date self.sat = self.measurement_files[0].split('/')[-1].split('_')[0] self.metric = self.measurement_files[0].split('/')[-1].split('_')[1] self.start_range = datetime.datetime.strptime(self.measurement_files[0]\ .split('/')[-1].split('_')[4].split('.')[0] \ + '-' + self.measurement_files[0].split('/')[-1].split('_')[3], '%j-%Y') self.end_range = datetime.datetime.strptime(self.measurement_files[-1]\ .split('/')[-1].split('_')[4].split('.')[0] \ + '-' + self.measurement_files[-1].split('/')[-1].split('_')[3], '%j-%Y') if 'CONUS' in self.measurement_files[0]: self.coverage = 'CONUS' else: self.coverage = 'FULL' print("Measurement file satellite: ", self.sat) print("Measurement file metric: ", self.metric) print("Measurement file band:", self.band) print("Measurement file coverage: ", self.coverage) print("Measurement file start date: ", self.start_range) print("Measurement file end date: ", self.end_range) elif dataspec != None: print("dataspec: ", dataspec) try: self.sat = dataspec.split(' ')[0].upper() self.metric = dataspec.split(' ')[1].upper() self.coverage = dataspec.split(' ')[2].upper() self.start_range = datetime.datetime.strptime(dataspec.split(' ')[3], '%m%d%Y') self.end_range = datetime.datetime.strptime(dataspec.split(' ')[4], '%m%d%Y') self.measurement_files = self.searchforfiles() print("Measurement files: ", self.measurement_files) if self.measurement_files == []: print("Error! No measurement files found.") else: print("Measurement file satellite: ", self.sat) print("Measurement file metric: ", self.metric) print("Measurement file band:", self.band) print("Measurement file coverage: ", self.coverage) print("Measurement file start date: ", self.start_range) print("Measurement file end date: ", self.end_range) except: print("Error! Data specification needs to be in formating 'AAA BBB CCC MMDDYYYY MMDDYYYY', where AAA can be G16 or G17; BBB can be FFR, NAV, BBR or WIFR; and CCC can be FUL or CON") else: print("Error! Please provide either file listing measurement files (--m) or a data specification (satellite, metric, coverage, and date range) to search for measurement files (--d).") def extract_geoloc(self, measurement_file): """ Extract the geolocation informatingion for the band of interest from the appropriate Chip DB file. """ # Extract the input date and time if self.scene2extract != None: print("User-requested starting scene: ", self.scene2extract.split(' ')[0]) print("User-requested ending scene: ", self.scene2extract.split(' ')[-1]) start_time = datetime.datetime.strptime(self.scene2extract.split(' ')[0], '%H%M') end_time = datetime.datetime.strptime(self.scene2extract.split(' ')[-1], '%H%M') # Check if file nseeds to be unzipped if 'gz' in measurement_file: with gzip.open(measurement_file) as f: measure_kf = mk.read_csv(measurement_file) else: measure_kf = mk.read_csv(measurement_file) # Create a datetime column. activity_date = np.array(measure_kf['ACTIVITY_DATE1']) activity_time = np.array(measure_kf['ACTIVITY_TIME_1']) measure_kf['DATETIME'] = [datetime.datetime.strptime(activity_time[j], '%H:%M:%S') for j in range(length(activity_time))] # Round the user-inputted time to nearest scene (date/time) in measurement file if self.scene2extract != None and start_time != end_time: t_kf = mk.KnowledgeFrame(measure_kf, columns = ['ACTIVITY_TIME_1']) t_kf['DATETIME'] = [datetime.datetime.strptime(i, '%H:%M:%S') for i in t_kf['ACTIVITY_TIME_1']] time_sorted = t_kf.sort_the_values(by='DATETIME') # Find the start and ending date and then form a datetime in order to getting the range the user wants kf_sort_start = t_kf.iloc[(t_kf['DATETIME']-start_time).abs().argsort()[:1]] kf_sort_end = t_kf.iloc[(t_kf['DATETIME']-end_time).abs().argsort()[:1]] self.scene = kf_sort_start['ACTIVITY_TIME_1'].iloc[0] + ' to ' + kf_sort_end['ACTIVITY_TIME_1'].iloc[0] # Extract the band of interest and scene (date/time) of interest. print("--WARNING using closest found scenes as the bounds {}.".formating(self.scene)) measure_kf = measure_kf[measure_kf['BAND_NUM'] == self.band2extract]\ [(measure_kf['DATETIME'] >= kf_sort_start['DATETIME'].iloc[0]) & (measure_kf['DATETIME'] <= kf_sort_end['DATETIME'].iloc[0])] elif self.scene2extract != None and start_time == end_time: t = mk.KnowledgeFrame(measure_kf, columns = ['DATETIME']) t_kf =
mk.KnowledgeFrame.sip_duplicates(t)
pandas.DataFrame.drop_duplicates
""" Base implementation for high level workflow. The goal of this design is to make it easy to share code among different variants of the Inferelator workflow. """ from inferelator_ng import utils from inferelator_ng.utils import Validator as check from inferelator_ng import default from inferelator_ng.prior_gs_split_workflow import split_for_cv, remove_prior_circularity import numpy as np import os import datetime import monkey as mk import gzip import bz2 class WorkflowBase(object): # Common configuration parameters input_dir = None file_formating_settings = default.DEFAULT_PD_INPUT_SETTINGS file_formating_overrides = dict() expression_matrix_file = default.DEFAULT_EXPRESSION_FILE tf_names_file = default.DEFAULT_TFNAMES_FILE meta_data_file = default.DEFAULT_METADATA_FILE priors_file = default.DEFAULT_PRIORS_FILE gold_standard_file = default.DEFAULT_GOLDSTANDARD_FILE output_dir = None random_seed = default.DEFAULT_RANDOM_SEED num_bootstraps = default.DEFAULT_NUM_BOOTSTRAPS # Flags to control splitting priors into a prior/gold-standard set split_priors_for_gold_standard = False split_gold_standard_for_crossvalidation = False cv_split_ratio = default.DEFAULT_GS_SPLIT_RATIO cv_split_axis = default.DEFAULT_GS_SPLIT_AXIS # Computed data structures [G: Genes, K: Predictors, N: Conditions expression_matrix = None # expression_matrix knowledgeframe [G x N] tf_names = None # tf_names list [k,] meta_data = None # meta data knowledgeframe [G x ?] priors_data = None # priors data knowledgeframe [G x K] gold_standard = None # gold standard knowledgeframe [G x K] # Hold the KVS informatingion rank = 0 kvs = None tasks = None def __init__(self, initialize_mp=True): # Connect to KVS and getting environment variables if initialize_mp: self.initialize_multiprocessing() self.getting_environmentals() def initialize_multiprocessing(self): """ Override this if you want to use something besides KVS for multiprocessing. """ from inferelator_ng.kvs_controller import KVSController self.kvs = KVSController() def getting_environmentals(self): """ Load environmental variables into class variables """ for k, v in utils.slurm_envs().items(): setattr(self, k, v) def startup(self): """ Startup by preprocessing total_all data into a ready formating for regression. """ self.startup_run() self.startup_finish() def startup_run(self): """ Execute whatever data preprocessing necessary before regression. Startup_run is mostly for reading in data """ raise NotImplementedError # implement in subclass def startup_finish(self): """ Execute whatever data preprocessing necessary before regression. Startup_finish is mostly for preprocessing data prior to regression """ raise NotImplementedError # implement in subclass def run(self): """ Execute workflow, after total_all configuration. """ raise NotImplementedError # implement in subclass def getting_data(self): """ Read data files in to data structures. """ self.read_expression() self.read_tfs() self.read_metadata() self.set_gold_standard_and_priors() def read_expression(self, file=None): """ Read expression matrix file into expression_matrix """ if file is None: file = self.expression_matrix_file self.expression_matrix = self.input_knowledgeframe(file) def read_tfs(self, file=None): """ Read tf names file into tf_names """ if file is None: file = self.tf_names_file tfs = self.input_knowledgeframe(file, index_col=None) assert tfs.shape[1] == 1 self.tf_names = tfs.values.flatten().convert_list() def read_metadata(self, file=None): """ Read metadata file into meta_data or make fake metadata """ if file is None: file = self.meta_data_file try: self.meta_data = self.input_knowledgeframe(file, index_col=None) except IOError: self.meta_data = self.create_default_meta_data(self.expression_matrix) def set_gold_standard_and_priors(self): """ Read priors file into priors_data and gold standard file into gold_standard """ self.priors_data = self.input_knowledgeframe(self.priors_file) if self.split_priors_for_gold_standard: self.split_priors_into_gold_standard() else: self.gold_standard = self.input_knowledgeframe(self.gold_standard_file) if self.split_gold_standard_for_crossvalidation: self.cross_validate_gold_standard() try: check.index_values_distinctive(self.priors_data.index) except ValueError as v_err: utils.Debug.vprint("Duplicate gene(s) in prior index", level=0) utils.Debug.vprint(str(v_err), level=0) try: check.index_values_distinctive(self.priors_data.columns) except ValueError as v_err: utils.Debug.vprint("Duplicate tf(s) in prior index", level=0) utils.Debug.vprint(str(v_err), level=0) def split_priors_into_gold_standard(self): """ Break priors_data in half and give half to the gold standard """ if self.gold_standard is not None: utils.Debug.vprint("Existing gold standard is being replacingd by a split from the prior", level=0) self.priors_data, self.gold_standard = split_for_cv(self.priors_data, self.cv_split_ratio, split_axis=self.cv_split_axis, seed=self.random_seed) utils.Debug.vprint("Prior split into a prior {pr} and a gold standard {gs}".formating(pr=self.priors_data.shape, gs=self.gold_standard.shape), level=0) def cross_validate_gold_standard(self): """ Sample the gold standard for crossvalidation, and then remove the new gold standard from the priors """ utils.Debug.vprint("Resampling prior {pr} and gold standard {gs}".formating(pr=self.priors_data.shape, gs=self.gold_standard.shape), level=0) _, self.gold_standard = split_for_cv(self.gold_standard, self.cv_split_ratio, split_axis=self.cv_split_axis, seed=self.random_seed) self.priors_data, self.gold_standard = remove_prior_circularity(self.priors_data, self.gold_standard, split_axis=self.cv_split_axis) utils.Debug.vprint("Selected prior {pr} and gold standard {gs}".formating(pr=self.priors_data.shape, gs=self.gold_standard.shape), level=0) def input_path(self, filengthame, mode='r'): """ Join filengthame to input_dir """ if filengthame.endswith(".gz"): opener = gzip.open elif filengthame.endswith(".bz2"): opener = bz2.BZ2File else: opener = open return opener(os.path.abspath(os.path.join(self.input_dir, filengthame)), mode=mode) def input_knowledgeframe(self, filengthame, index_col=0): """ Read a file in as a monkey knowledgeframe """ file_settings = self.file_formating_settings.clone() if filengthame in self.file_formating_overrides: file_settings.umkate(self.file_formating_overrides[filengthame]) with self.input_path(filengthame) as fh: return mk.read_table(fh, index_col=index_col, **file_settings) def adding_to_path(self, var_name, to_adding): """ Add a string to an existing path variable in class """ path = gettingattr(self, var_name, None) if path is None: raise ValueError("Cannot adding to None") setattr(self, var_name, os.path.join(path, to_adding)) @staticmethod def create_default_meta_data(expression_matrix): """ Create a meta_data knowledgeframe from basic defaults """ metadata_rows = expression_matrix.columns.convert_list() metadata_defaults = {"isTs": "FALSE", "is1stLast": "e", "prevCol": "NA", "del.t": "NA", "condName": None} data = {} for key in metadata_defaults.keys(): data[key] = mk.Collections(data=[metadata_defaults[key] if metadata_defaults[key] else i for i in metadata_rows]) return mk.KnowledgeFrame(data) def filter_expression_and_priors(self): """ Guarantee that each row of the prior is in the expression and vice versa. Also filter the priors to only includes columns, transcription factors, that are in the tf_names list """ expressed_targettings = self.expression_matrix.index expressed_or_prior = expressed_targettings.union(self.priors_data.columns) keeper_regulators = expressed_or_prior.interst(self.tf_names) if length(keeper_regulators) == 0 or length(expressed_targettings) == 0: raise ValueError("Filtering will result in a priors with at least one axis of 0 lengthgth") self.priors_data = self.priors_data.loc[expressed_targettings, keeper_regulators] self.priors_data =
mk.KnowledgeFrame.fillnone(self.priors_data, 0)
pandas.DataFrame.fillna
""" Panel4D: a 4-d dict like collection of panels """ import warnings from monkey.core.generic import NDFrame from monkey.core.panelnd import create_nd_panel_factory from monkey.core.panel import Panel from monkey.util._validators import validate_axis_style_args Panel4D = create_nd_panel_factory(klass_name='Panel4D', orders=['labels', 'items', 'major_axis', 'getting_minor_axis'], slices={'labels': 'labels', 'items': 'items', 'major_axis': 'major_axis', 'getting_minor_axis': 'getting_minor_axis'}, slicer=Panel, aliases={'major': 'major_axis', 'getting_minor': 'getting_minor_axis'}, stat_axis=2, ns=dict(__doc__=""" Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions. It is intended as a test bed for more N-Dimensional named containers. .. deprecated:: 0.19.0 The recommended way to represent these types of n-dimensional data are with the `xarray package <http://xarray.pydata.org/en/stable/>`__. Monkey provides a `.to_xarray()` method to automate this conversion. Parameters ---------- data : ndarray (labels x items x major x getting_minor), or dict of Panels labels : Index or array-like : axis=0 items : Index or array-like : axis=1 major_axis : Index or array-like: axis=2 getting_minor_axis : Index or array-like: axis=3 dtype : dtype, default None Data type to force, otherwise infer clone : boolean, default False Copy data from inputs. Only affects KnowledgeFrame / 2d ndarray input """)) def panel4d_init(self, data=None, labels=None, items=None, major_axis=None, getting_minor_axis=None, clone=False, dtype=None): # deprecation GH13564 warnings.warn("\nPanel4D is deprecated and will be removed in a " "future version.\nThe recommended way to represent " "these types of n-dimensional data are with\n" "the `xarray package " "<http://xarray.pydata.org/en/stable/>`__.\n" "Monkey provides a `.to_xarray()` method to help " "automate this conversion.\n", FutureWarning, stacklevel=2) self._init_data(data=data, labels=labels, items=items, major_axis=major_axis, getting_minor_axis=getting_minor_axis, clone=clone, dtype=dtype) def panel4d_reindexing(self, labs=None, labels=None, items=None, major_axis=None, getting_minor_axis=None, axis=None, **kwargs): # Hack for reindexing_axis deprecation # Ha, we used labels for two different things # I think this will work still. if labs is None: args = () else: args = (labs,) kwargs_ = dict(labels=labels, items=items, major_axis=major_axis, getting_minor_axis=getting_minor_axis, axis=axis) kwargs_ = {k: v for k, v in kwargs_.items() if v is not None} # major = kwargs.pop("major", None) # getting_minor = kwargs.pop('getting_minor', None) # if major is not None: # if kwargs.getting("major_axis"): # raise TypeError("Cannot specify both 'major' and 'major_axis'") # kwargs_['major_axis'] = major # if getting_minor is not None: # if kwargs.getting("getting_minor_axis"): # raise TypeError("Cannot specify both 'getting_minor' and 'getting_minor_axis'") # kwargs_['getting_minor_axis'] = getting_minor if axis is not None: kwargs_['axis'] = axis axes = validate_axis_style_args(self, args, kwargs_, 'labs', 'reindexing') kwargs.umkate(axes) return
NDFrame.reindexing(self, **kwargs)
pandas.core.generic.NDFrame.reindex
"""Classes to represent empirical distributions https://en.wikipedia.org/wiki/Empirical_distribution_function Pmf: Represents a Probability Mass Function (PMF). Ckf: Represents a Cumulative Distribution Function (CDF). Surv: Represents a Survival Function Hazard: Represents a Hazard Function Distribution: Parent class of total_all distribution representations Copyright 2019 <NAME> BSD 3-clause license: https://opensource.org/licenses/BSD-3-Clause """ import matplotlib.pyplot as plt import numpy as np import monkey as mk from scipy.interpolate import interp1d def underride(d, **options): """Add key-value pairs to d only if key is not in d. d: dictionary options: keyword args to add to d :return: modified d """ for key, val in options.items(): d.setdefault(key, val) return d class Distribution(mk.Collections): def __init__(self, *args, **kwargs): """Initialize a Pmf. Note: this cleans up a weird Collections behavior, which is that Collections() and Collections([]) yield different results. See: https://github.com/monkey-dev/monkey/issues/16737 """ underride(kwargs, name="") if args or ("index" in kwargs): super().__init__(*args, **kwargs) else: underride(kwargs, dtype=np.float64) super().__init__([], **kwargs) @property def qs(self): """Get the quantities. :return: NumPy array """ return self.index.values @property def ps(self): """Get the probabilities. :return: NumPy array """ return self.values def header_num(self, n=3): """Override Collections.header_num to return a Distribution. n: number of rows returns: Distribution """ s = super().header_num(n) return self.__class__(s) def final_item_tail(self, n=3): """Override Collections.final_item_tail to return a Distribution. n: number of rows returns: Distribution """ s = super().final_item_tail(n) return self.__class__(s) def transform(self, *args, **kwargs): """Override to transform the quantities, not the probabilities.""" qs = self.index.to_collections().transform(*args, **kwargs) return self.__class__(self.ps, qs, clone=True) def _repr_html_(self): """Returns an HTML representation of the collections. Mostly used for Jupyter notebooks. """ kf = mk.KnowledgeFrame(dict(probs=self)) return kf._repr_html_() def __ctotal_all__(self, qs): """Look up quantities. qs: quantity or sequence of quantities returns: value or array of values """ string_types = (str, bytes, bytearray) # if qs is a sequence type, use reindexing; # otherwise use getting if hasattr(qs, "__iter__") and not incontainstance(qs, string_types): s = self.reindexing(qs, fill_value=0) return s.to_numpy() else: return self.getting(qs, default=0) def average(self): """Expected value. :return: float """ return self.make_pmf().average() def mode(self, **kwargs): """Most common value. If multiple quantities have the getting_maximum probability, the first getting_maximal quantity is returned. :return: float """ return self.make_pmf().mode(**kwargs) def var(self): """Variance. :return: float """ return self.make_pmf().var() def standard(self): """Standard deviation. :return: float """ return self.make_pmf().standard() def median(self): """Median (50th percentile). There are several definitions of median; the one implemented here is just the 50th percentile. :return: float """ return self.make_ckf().median() def quantile(self, ps, **kwargs): """Quantiles. Computes the inverse CDF of ps, that is, the values that correspond to the given probabilities. :return: float """ return self.make_ckf().quantile(ps, **kwargs) def credible_interval(self, p): """Credible interval containing the given probability. p: float 0-1 :return: array of two quantities """ final_item_tail = (1 - p) / 2 ps = [final_item_tail, 1 - final_item_tail] return self.quantile(ps) def choice(self, *args, **kwargs): """Makes a random sample_by_num. Uses the probabilities as weights unless `p` is provided. args: same as np.random.choice options: same as np.random.choice :return: NumPy array """ pmf = self.make_pmf() return pmf.choice(*args, **kwargs) def sample_by_num(self, *args, **kwargs): """Samples with replacingment using probabilities as weights. Uses the inverse CDF. n: number of values :return: NumPy array """ ckf = self.make_ckf() return ckf.sample_by_num(*args, **kwargs) def add_dist(self, x): """Distribution of the total_sum of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.add_dist(x) return self.make_same(res) def sub_dist(self, x): """Distribution of the diff of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.sub_dist(x) return self.make_same(res) def mul_dist(self, x): """Distribution of the product of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.mul_dist(x) return self.make_same(res) def division_dist(self, x): """Distribution of the ratio of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.division_dist(x) return self.make_same(res) def pmf_outer(dist1, dist2, ufunc): """Computes the outer product of two PMFs. dist1: Distribution object dist2: Distribution object ufunc: function to employ to the qs :return: NumPy array """ # TODO: convert other types to Pmf pmf1 = dist1 pmf2 = dist2 qs = ufunc.outer(pmf1.qs, pmf2.qs) ps = np.multiply.outer(pmf1.ps, pmf2.ps) return qs * ps def gt_dist(self, x): """Probability that a value from self is greater than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.gt_dist(x) def lt_dist(self, x): """Probability that a value from self is less than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.lt_dist(x) def ge_dist(self, x): """Probability that a value from self is >= than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.ge_dist(x) def le_dist(self, x): """Probability that a value from self is <= than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.le_dist(x) def eq_dist(self, x): """Probability that a value from self equals a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.eq_dist(x) def ne_dist(self, x): """Probability that a value from self is <= than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.ne_dist(x) def getting_max_dist(self, n): """Distribution of the getting_maximum of `n` values from this distribution. n: integer :return: Distribution, same type as self """ ckf = self.make_ckf().getting_max_dist(n) return self.make_same(ckf) def getting_min_dist(self, n): """Distribution of the getting_minimum of `n` values from this distribution. n: integer :return: Distribution, same type as self """ ckf = self.make_ckf().getting_min_dist(n) return self.make_same(ckf) prob_gt = gt_dist prob_lt = lt_dist prob_ge = ge_dist prob_le = le_dist prob_eq = eq_dist prob_ne = ne_dist class Pmf(Distribution): """Represents a probability Mass Function (PMF).""" def clone(self, deep=True): """Make a clone. :return: new Pmf """ return Pmf(self, clone=deep) def make_pmf(self, **kwargs): """Make a Pmf from the Pmf. :return: Pmf """ return self # Pmf overrides the arithmetic operations in order # to provide fill_value=0 and return a Pmf. def add(self, x, **kwargs): """Override add to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s = mk.Collections.add(self, x, **kwargs) return Pmf(s) __add__ = add __radd__ = add def sub(self, x, **kwargs): """Override the - operator to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s = mk.Collections.subtract(self, x, **kwargs) return Pmf(s) __sub__ = sub __rsub__ = sub def mul(self, x, **kwargs): """Override the * operator to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s = mk.Collections.multiply(self, x, **kwargs) return Pmf(s) __mul__ = mul __rmul__ = mul def division(self, x, **kwargs): """Override the / operator to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s =
mk.Collections.divisionide(self, x, **kwargs)
pandas.Series.divide
#결측치에 관련 된 함수 #데이터프레임 결측값 처리 #monkey에서는 결측값: NaN, None #NaN :데이터 베이스에선 문자 #None : 딥러닝에선 행 # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null 판별 # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # 특정 위치에 결측치 입력 : None ==> 결측치란 의미를 담고 있는 예약어 # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a열(string)=None, b열(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #각 열의 결측치의 갯수 확인 # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # 단일 열의 결측치의 갯수 # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #각 열의 결측치가 아닌 데이터의 갯수 확인 # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # 각 행의 결측치의 합 # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #결측값 여부?ifnull(), notnull() # #열단위 결측값 개수 : kf.ifnull().total_sum() # #행단위 결측값 개수 : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0으로 취급하여 계산 # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # 한 열 합계 # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : 누적합계 # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #열기준 평균 : (0+4+6)/3,NaN=>제외 # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #행기준 평균 # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #열기준 표준편차 # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #데이터프레임 컬럼간 연산 : NaN이 하나라도 있으면 NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing =
kf.fillnone('missing')
pandas.DataFrame.fillna
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return
Index.shifting(self, n, freq)
pandas.core.index.Index.shift
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from monkey.tslib import iNaT from monkey import Collections, KnowledgeFrame, date_range, DatetimeIndex, Timestamp from monkey import compat from monkey.compat import range, long, lrange, lmapping, u from monkey.core.common import notnull, ifnull import monkey.core.common as com import monkey.util.testing as tm import monkey.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mututotal_ally exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __gettingitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.total_all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.total_sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_collections = Collections(np.random.randn(5)) obj_collections = Collections(np.random.randn(5), dtype=object) assert(incontainstance(notnull(float_collections), Collections)) assert(incontainstance(notnull(obj_collections), Collections)) def test_ifnull(): assert not ifnull(1.) assert ifnull(None) assert ifnull(np.NaN) assert not ifnull(np.inf) assert not ifnull(-np.inf) float_collections = Collections(np.random.randn(5)) obj_collections = Collections(np.random.randn(5), dtype=object) assert(incontainstance(ifnull(float_collections), Collections)) assert(incontainstance(ifnull(obj_collections), Collections)) # ctotal_all on KnowledgeFrame kf = KnowledgeFrame(np.random.randn(10, 5)) kf['foo'] = 'bar' result = ifnull(kf) expected = result.employ(ifnull) tm.assert_frame_equal(result, expected) def test_ifnull_tuples(): result = ifnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = ifnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = ifnull([(1,), (2,)]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = ifnull(('foo', 'bar')) assert(not result.whatever()) result = ifnull((u('foo'), u('bar'))) assert(not result.whatever()) def test_ifnull_lists(): result = ifnull([[False]]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = ifnull([[1], [2]]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = ifnull(['foo', 'bar']) assert(not result.whatever()) result = ifnull([u('foo'), u('bar')]) assert(not result.whatever()) def test_ifnull_datetime(): assert (not ifnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert(notnull(idx).total_all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = ifnull(idx) assert(mask[0]) assert(not mask[1:].whatever()) def test_datetimeindex_from_empty_datetime64_array(): for unit in [ 'ms', 'us', 'ns' ]: idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) assert(length(idx) == 0) def test_nan_to_nat_conversions(): kf = KnowledgeFrame(dict({ 'A' : np.asarray(lrange(10),dtype='float64'), 'B' : Timestamp('20010101') })) kf.iloc[3:6,:] = np.nan result = kf.loc[4,'B'].value assert(result == iNaT) s = kf['B'].clone() s._data = s._data.setitem(tuple([slice(8,9)]),np.nan) assert(ifnull(s[8])) # numpy < 1.7.0 is wrong from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.7.0': assert(s[8].value == np.datetime64('NaT').totype(np.int64)) def test_whatever_none(): assert(com._whatever_none(1, 2, 3, None)) assert(not com._whatever_none(1, 2, 3, 4)) def test_total_all_not_none(): assert(com._total_all_not_none(1, 2, 3, 4)) assert(not com._total_all_not_none(1, 2, 3, None)) assert(not com._total_all_not_none(None, None, None, None)) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.getting_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = com.pprint_thing(b, quote_strings=True) assert_equal(res, repr(b)) res = com.pprint_thing(b, quote_strings=False) assert_equal(res, b) def test_rands(): r = com.rands(10) assert(length(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = com.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert(result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = total_sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == length(mask) # exhaustively test total_all possible mask sequences of lengthgth 8 ncols = 8 for i in range(2 ** ncols): cols = lmapping(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(length(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_indent(): s = 'a b c\nd e f' result = com.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = com.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_mapping_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.mapping_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert([4, 5, 6] == inter) def test_interst(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(
com.interst(a, b)
pandas.core.common.intersection
''' Class for a bipartite network ''' from monkey.core.indexes.base import InvalidIndexError from tqdm.auto import tqdm import numpy as np # from numpy_groupies.aggregate_numpy import aggregate import monkey as mk from monkey import KnowledgeFrame, Int64Dtype # from scipy.sparse.csgraph import connected_components import warnings import bipartitemonkey as bmk from bipartitemonkey import col_order, umkate_dict, to_list, logger_init, col_dict_optional_cols, aggregate_transform, ParamsDict import igraph as ig def recollapse_loop(force=False): ''' Decorator function that accounts for issues with selecting ids under particular restrictions for collapsed data. In particular, looking at a restricted set of observations can require recollapsing data, which can they change which observations meet the given restrictions. This function loops until stability is achieved. Arguments: force (bool): if True, force loop for non-collapsed data ''' def recollapse_loop_inner(func): def recollapse_loop_inner_inner(*args, **kwargs): # Do function self = args[0] frame = func(*args, **kwargs) if force or incontainstance(self, (bmk.BipartiteLongCollapsed, bmk.BipartiteEventStudyCollapsed)): kwargs['clone'] = False if length(frame) != length(self): # If the frame changes, we have to re-loop until stability frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) while length(frame) != length(frame_prev): frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) return frame return recollapse_loop_inner_inner return recollapse_loop_inner # Define default parameter dictionaries _clean_params_default = ParamsDict({ 'connectedness': ('connected', 'set', ['connected', 'leave_one_observation_out', 'leave_one_firm_out', None], ''' (default='connected') When computing largest connected set of firms: if 'connected', keep observations in the largest connected set of firms; if 'leave_one_observation_out', keep observations in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', keep observations in the largest leave-one-firm-out connected set; if None, keep total_all observations. '''), 'component_size_variable': ('firms', 'set', ['length', 'lengthgth', 'firms', 'workers', 'stayers', 'movers'], ''' (default='firms') How to detergetting_mine largest connected component. Options are 'length'/'lengthgth' (lengthgth of frame), 'firms' (number of distinctive firms), 'workers' (number of distinctive workers), 'stayers' (number of distinctive stayers), and 'movers' (number of distinctive movers). '''), 'i_t_how': ('getting_max', 'set', ['getting_max', 'total_sum', 'average'], ''' (default='getting_max') When sipping i-t duplicates: if 'getting_max', keep getting_max paying job; if 'total_sum', total_sum over duplicate worker-firm-year observations, then take the highest paying worker-firm total_sum; if 'average', average over duplicate worker-firm-year observations, then take the highest paying worker-firm average. Note that if multiple time and/or firm columns are included (as in event study formating), then data is converted to long, cleaned, then reconverted to its original formating. '''), 'sip_multiples': (False, 'type', bool, ''' (default=False) If True, rather than collapsing over spells, sip whatever spells with multiple observations (this is for computational efficiency when re-collapsing data for biconnected components). '''), 'is_sorted': (False, 'type', bool, ''' (default=False) If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'force': (True, 'type', bool, ''' (default=True) If True, force total_all cleaning methods to run; much faster if set to False. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid cloneing data when possible. ''') }) def clean_params(umkate_dict={}): ''' Dictionary of default clean_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of clean_params ''' new_dict = _clean_params_default.clone() new_dict.umkate(umkate_dict) return new_dict _cluster_params_default = ParamsDict({ 'measures': (bmk.measures.ckfs(), 'list_of_type', (bmk.measures.ckfs, bmk.measures.moments), ''' (default=bmk.measures.ckfs()) How to compute measures for clustering. Options can be seen in bipartitemonkey.measures. '''), 'grouping': (bmk.grouping.kaverages(), 'type', (bmk.grouping.kaverages, bmk.grouping.quantiles), ''' (default=bmk.grouping.kaverages()) How to group firms based on measures. Options can be seen in bipartitemonkey.grouping. '''), 'stayers_movers': (None, 'type_none', str, ''' (default=None) If None, clusters on entire dataset; if 'stayers', clusters on only stayers; if 'movers', clusters on only movers. '''), 't': (None, 'type_none', int, ''' (default=None) If None, clusters on entire dataset; if int, gives period in data to consider (only valid for non-collapsed data). '''), 'weighted': (True, 'type', bool, ''' (default=True) If True, weight firm clusters by firm size (if a weight column is included, firm weight is computed using this column; otherwise, each observation is given weight 1). '''), 'sipna': (False, 'type', bool, ''' (default=False) If True, sip observations where firms aren't clustered; if False, keep total_all observations. '''), 'clean_params': (None, 'type_none', bmk.ParamsDict, ''' (default=None) Dictionary of parameters for cleaning. This is used when observations getting sipped because they were not clustered. Default is None, which sets connectedness to be the connectedness measure previously used. Run bmk.clean_params().describe_total_all() for descriptions of total_all valid parameters. '''), 'is_sorted': (False, 'type', bool, ''' (default=False) For event study formating. If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid clone. ''') }) def cluster_params(umkate_dict={}): ''' Dictionary of default cluster_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of cluster_params ''' new_dict = _cluster_params_default.clone() new_dict.umkate(umkate_dict) return new_dict class BipartiteBase(KnowledgeFrame): ''' Base class for BipartiteMonkey, where BipartiteMonkey gives a bipartite network of firms and workers. Contains generalized methods. Inherits from KnowledgeFrame. Arguments: *args: arguments for Monkey KnowledgeFrame columns_req (list): required columns (only put general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2'; then put the joint columns in reference_dict) columns_opt (list): optional columns (only put general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'; then put the joint columns in reference_dict) columns_contig (dictionary): columns requiring contiguous ids linked to boolean of whether those ids are contiguous, or None if column(s) not included, e.g. {'i': False, 'j': False, 'g': None} (only put general column names for joint columns) reference_dict (dict): clarify which columns are associated with a general column name, e.g. {'i': 'i', 'j': ['j1', 'j2']} col_dtype_dict (dict): link column to datatype col_dict (dict or None): make data columns readable. Keep None if column names already correct include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values log (bool): if True, will create log file(s) **kwargs: keyword arguments for Monkey KnowledgeFrame ''' # Attributes, required for Monkey inheritance _metadata = ['col_dict', 'reference_dict', 'id_reference_dict', 'col_dtype_dict', 'columns_req', 'columns_opt', 'columns_contig', 'default_cluster', 'dtype_dict', 'default_clean', 'connectedness', 'no_na', 'no_duplicates', 'i_t_distinctive', '_log_on_indicator', '_level_fn_dict'] def __init__(self, *args, columns_req=[], columns_opt=[], columns_contig=[], reference_dict={}, col_dtype_dict={}, col_dict=None, include_id_reference_dict=False, log=True, **kwargs): # Initialize KnowledgeFrame super().__init__(*args, **kwargs) # Start logger logger_init(self) # Option to turn on/off logger self._log_on_indicator = log # self.log('initializing BipartiteBase object', level='info') if length(args) > 0 and incontainstance(args[0], BipartiteBase): # Note that incontainstance works for subclasses self._set_attributes(args[0], include_id_reference_dict) else: self.columns_req = ['i', 'j', 'y'] + columns_req self.columns_opt = ['g', 'm'] + columns_opt self.columns_contig = umkate_dict({'i': False, 'j': False, 'g': None}, columns_contig) self.reference_dict = umkate_dict({'i': 'i', 'm': 'm'}, reference_dict) self._reset_id_reference_dict(include_id_reference_dict) # Link original id values to contiguous id values self.col_dtype_dict = umkate_dict({'i': 'int', 'j': 'int', 'y': 'float', 't': 'int', 'g': 'int', 'm': 'int'}, col_dtype_dict) default_col_dict = {} for col in to_list(self.columns_req): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = subcol for col in to_list(self.columns_opt): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = None # Create self.col_dict self.col_dict = col_dict_optional_cols(default_col_dict, col_dict, self.columns, optional_cols=[self.reference_dict[col] for col in self.columns_opt]) # Set attributes self._reset_attributes() # Dictionary of logger functions based on level self._level_fn_dict = { 'debug': self.logger.debug, 'info': self.logger.info, 'warning': self.logger.warning, 'error': self.logger.error, 'critical': self.logger.critical } self.dtype_dict = { 'int': ['int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'float': ['float', 'float8', 'float16', 'float32', 'float64', 'float128', 'int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'str': 'str' } # self.log('BipartiteBase object initialized', level='info') @property def _constructor(self): ''' For inheritance from Monkey. ''' return BipartiteBase def clone(self): ''' Return clone of self. Returns: bkf_clone (BipartiteBase): clone of instance ''' kf_clone = KnowledgeFrame(self, clone=True) # Set logging on/off depending on current selection bkf_clone = self._constructor(kf_clone, log=self._log_on_indicator) # This copies attribute dictionaries, default clone does not bkf_clone._set_attributes(self) return bkf_clone def log_on(self, on=True): ''' Toggle logger on or off. Arguments: on (bool): if True, turn logger on; if False, turn logger off ''' self._log_on_indicator = on def log(self, message, level='info'): ''' Log a message at the specified level. Arguments: message (str): message to log level (str): logger level. Options, in increasing severity, are 'debug', 'info', 'warning', 'error', and 'critical'. ''' if self._log_on_indicator: # Log message self._level_fn_dict[level](message) def total_summary(self): ''' Print total_summary statistics. This uses class attributes. To run a diagnostic to verify these values, run `.diagnostic()`. ''' ret_str = '' y = self.loc[:, self.reference_dict['y']].to_numpy() average_wage = np.average(y) median_wage = np.median(y) getting_max_wage = np.getting_max(y) getting_min_wage = np.getting_min(y) var_wage = np.var(y) ret_str += 'formating: {}\n'.formating(type(self).__name__) ret_str += 'number of workers: {}\n'.formating(self.n_workers()) ret_str += 'number of firms: {}\n'.formating(self.n_firms()) ret_str += 'number of observations: {}\n'.formating(length(self)) ret_str += 'average wage: {}\n'.formating(average_wage) ret_str += 'median wage: {}\n'.formating(median_wage) ret_str += 'getting_min wage: {}\n'.formating(getting_min_wage) ret_str += 'getting_max wage: {}\n'.formating(getting_max_wage) ret_str += 'var(wage): {}\n'.formating(var_wage) ret_str += 'no NaN values: {}\n'.formating(self.no_na) ret_str += 'no duplicates: {}\n'.formating(self.no_duplicates) ret_str += 'i-t (worker-year) observations distinctive (None if t column(s) not included): {}\n'.formating(self.i_t_distinctive) for contig_col, is_contig in self.columns_contig.items(): ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) ret_str += 'connectedness (None if ignoring connectedness): {}'.formating(self.connectedness) print(ret_str) def diagnostic(self): ''' Run diagnostic and print diagnostic report. ''' ret_str = '----- General Diagnostic -----\n' ##### Sorted by i (and t, if included) ##### sort_order = ['i'] if self._col_included('t'): # If t column sort_order.adding(to_list(self.reference_dict['t'])[0]) is_sorted = (self.loc[:, sort_order] == self.loc[:, sort_order].sort_the_values(sort_order)).to_numpy().total_all() ret_str += 'sorted by i (and t, if included): {}\n'.formating(is_sorted) ##### No NaN values ##### # Source: https://stackoverflow.com/a/29530601/17333120 no_na = (not self.ifnull().to_numpy().whatever()) ret_str += 'no NaN values: {}\n'.formating(no_na) ##### No duplicates ##### # https://stackoverflow.com/a/50243108/17333120 no_duplicates = (not self.duplicated_values().whatever()) ret_str += 'no duplicates: {}\n'.formating(no_duplicates) ##### i-t distinctive ##### no_i_t_duplicates = (not self.duplicated_values(subset=sort_order).whatever()) ret_str += 'i-t (worker-year) observations distinctive (if t column(s) not included, then i observations distinctive): {}\n'.formating(no_i_t_duplicates) ##### Contiguous ids ##### for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): contig_ids = self.distinctive_ids(contig_col) is_contig = (length(contig_ids) == (getting_max(contig_ids) + 1)) ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) else: ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, None) ##### Connectedness ##### is_connected_dict = { None: lambda : None, 'connected': lambda : self._construct_graph(self.connectedness).is_connected(), 'leave_one_observation_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))), 'leave_one_firm_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))) } is_connected = is_connected_dict[self.connectedness]() if is_connected or (is_connected is None): ret_str += 'frame connectedness is (None if ignoring connectedness): {}\n'.formating(self.connectedness) else: ret_str += 'frame failed connectedness: {}\n'.formating(self.connectedness) if self._col_included('m'): ##### m column ##### m_correct = (self.loc[:, 'm'] == self.gen_m(force=True).loc[:, 'm']).to_numpy().total_all() ret_str += "'m' column correct (None if not included): {}\n".formating(m_correct) else: ret_str += "'m' column correct (None if not included): {}".formating(None) print(ret_str) def distinctive_ids(self, id_col): ''' Unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (NumPy Array): distinctive ids ''' id_lst = [] for id_subcol in to_list(self.reference_dict[id_col]): id_lst += list(self.loc[:, id_subcol].distinctive()) return np.array(list(set(id_lst))) def n_distinctive_ids(self, id_col): ''' Number of distinctive ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (int): number of distinctive ids ''' return length(self.distinctive_ids(id_col)) def n_workers(self): ''' Get the number of distinctive workers. Returns: (int): number of distinctive workers ''' return self.loc[:, 'i'].ndistinctive() def n_firms(self): ''' Get the number of distinctive firms. Returns: (int): number of distinctive firms ''' return self.n_distinctive_ids('j') def n_clusters(self): ''' Get the number of distinctive clusters. Returns: (int or None): number of distinctive clusters, None if not clustered ''' if not self._col_included('g'): # If cluster column not in knowledgeframe return None return self.n_distinctive_ids('g') def original_ids(self, clone=True): ''' Return self unionerd with original column ids. Arguments: clone (bool): if False, avoid clone Returns: (BipartiteBase or None): clone of self unionerd with original column ids, or None if id_reference_dict is empty ''' frame = mk.KnowledgeFrame(self, clone=clone) if self.id_reference_dict: for id_col, reference_kf in self.id_reference_dict.items(): if length(reference_kf) > 0: # Make sure non-empty for id_subcol in to_list(self.reference_dict[id_col]): try: frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) except TypeError: # Int64 error with NaNs frame.loc[:, id_col] = frame.loc[:, id_col].totype('Int64', clone=False) frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) # else: # # If no changes, just make original_id be the same as the current id # for id_subcol in to_list(self.reference_dict[id_col]): # frame['original_' + id_subcol] = frame[id_subcol] return frame else: warnings.warn('id_reference_dict is empty. Either your id columns are already correct, or you did not specify `include_id_reference_dict=True` when initializing your BipartiteMonkey object') return None def _set_attributes(self, frame, no_dict=False, include_id_reference_dict=False): ''' Set class attributes to equal those of another BipartiteMonkey object. Arguments: frame (BipartiteMonkey): BipartiteMonkey object whose attributes to use no_dict (bool): if True, only set booleans, no dictionaries include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values ''' # Dictionaries if not no_dict: self.columns_req = frame.columns_req.clone() self.columns_opt = frame.columns_opt.clone() self.reference_dict = frame.reference_dict.clone() self.col_dtype_dict = frame.col_dtype_dict.clone() self.col_dict = frame.col_dict.clone() self.columns_contig = frame.columns_contig.clone() # Required, even if no_dict if frame.id_reference_dict: self.id_reference_dict = {} # Must do a deep clone for id_col, reference_kf in frame.id_reference_dict.items(): self.id_reference_dict[id_col] = reference_kf.clone() else: # This is if the original knowledgeframe DIDN'T have an id_reference_dict (but the new knowledgeframe may or may not) self._reset_id_reference_dict(include_id_reference_dict) # # Logger # self.logger = frame.logger # Booleans self.connectedness = frame.connectedness # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored self.no_na = frame.no_na # If True, no NaN observations in the data self.no_duplicates = frame.no_duplicates # If True, no duplicate rows in the data self.i_t_distinctive = frame.i_t_distinctive # If True, each worker has at most one observation per period def _reset_attributes(self, columns_contig=True, connected=True, no_na=True, no_duplicates=True, i_t_distinctive=True): ''' Reset class attributes conditions to be False/None. Arguments: columns_contig (bool): if True, reset self.columns_contig connected (bool): if True, reset self.connectedness no_na (bool): if True, reset self.no_na no_duplicates (bool): if True, reset self.no_duplicates i_t_distinctive (bool): if True, reset self.i_t_distinctive Returns: self (BipartiteBase): self with reset class attributes ''' if columns_contig: for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): self.columns_contig[contig_col] = False else: self.columns_contig[contig_col] = None if connected: self.connectedness = None # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored if no_na: self.no_na = False # If True, no NaN observations in the data if no_duplicates: self.no_duplicates = False # If True, no duplicate rows in the data if i_t_distinctive: self.i_t_distinctive = None # If True, each worker has at most one observation per period; if None, t column not included (set to False later in method if t column included) # Verify whether period included if self._col_included('t'): self.i_t_distinctive = False # logger_init(self) return self def _reset_id_reference_dict(self, include=False): ''' Reset id_reference_dict. Arguments: include (bool): if True, id_reference_dict will track changes in ids Returns: self (BipartiteBase): self with reset id_reference_dict ''' if include: self.id_reference_dict = {id_col: mk.KnowledgeFrame() for id_col in self.reference_dict.keys()} else: self.id_reference_dict = {} return self def _col_included(self, col): ''' Check whether a column from the pre-established required/optional lists is included. Arguments: col (str): column to check. Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (bool): if True, column is included ''' if col in self.columns_req + self.columns_opt: for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: return False return True return False def _included_cols(self, flat=False): ''' Get total_all columns included from the pre-established required/optional lists. Arguments: flat (bool): if False, uses general column names for joint columns, e.g. returns 'j' instead of 'j1', 'j2'. Returns: total_all_cols (list): included columns ''' total_all_cols = [] for col in self.columns_req + self.columns_opt: include = True for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: include = False break if include: if flat: total_all_cols += to_list(self.reference_dict[col]) else: total_all_cols.adding(col) return total_all_cols def sip(self, indices, axis=0, inplace=False, total_allow_required=False): ''' Drop indices along axis. Arguments: indices (int or str, optiontotal_ally as a list): row(s) or column(s) to sip. For columns, use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be sipped axis (int): 0 to sip rows, 1 to sip columns inplace (bool): if True, modify in-place total_allow_required (bool): if True, total_allow to sip required columns Returns: frame (BipartiteBase): BipartiteBase with sipped indices ''' frame = self if axis == 1: for col in to_list(indices): if col in frame.columns or col in frame.columns_req or col in frame.columns_opt: if col in frame.columns_opt: # If column optional for subcol in to_list(frame.reference_dict[col]): if inplace: KnowledgeFrame.sip(frame, subcol, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, subcol, axis=1, inplace=False) frame.col_dict[subcol] = None if col in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col] = mk.KnowledgeFrame() elif col not in frame._included_cols() and col not in frame._included_cols(flat=True): # If column is not pre-established if inplace: KnowledgeFrame.sip(frame, col, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, col, axis=1, inplace=False) else: if not total_allow_required: warnings.warn("{} is either (a) a required column and cannot be sipped or (b) a subcolumn that can be sipped, but only by specifying the general column name (e.g. use 'g' instead of 'g1' or 'g2')".formating(col)) else: if inplace: KnowledgeFrame.sip(frame, col, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, col, axis=1, inplace=False) else: warnings.warn('{} is not in data columns'.formating(col)) elif axis == 0: if inplace: KnowledgeFrame.sip(frame, indices, axis=0, inplace=True) else: frame = KnowledgeFrame.sip(frame, indices, axis=0, inplace=False) frame._reset_attributes() # frame.clean_data({'connectedness': frame.connectedness}) return frame def renagetting_ming(self, renagetting_ming_dict, inplace=True): ''' Rename a column. Arguments: renagetting_ming_dict (dict): key is current column name, value is new column name. Use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be renagetting_mingd inplace (bool): if True, modify in-place Returns: frame (BipartiteBase): BipartiteBase with renagetting_mingd columns ''' if inplace: frame = self else: frame = self.clone() for col_cur, col_new in renagetting_ming_dict.items(): if col_cur in frame.columns or col_cur in frame.columns_req or col_cur in frame.columns_opt: if col_cur in self.columns_opt: # If column optional if length(to_list(self.reference_dict[col_cur])) > 1: for i, subcol in enumerate(to_list(self.reference_dict[col_cur])): KnowledgeFrame.renagetting_ming(frame, {subcol: col_new + str(i + 1)}, axis=1, inplace=True) frame.col_dict[subcol] = None else: KnowledgeFrame.renagetting_ming(frame, {col_cur: col_new}, axis=1, inplace=True) frame.col_dict[col_cur] = None if col_cur in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col_cur] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col_cur] = mk.KnowledgeFrame() elif col_cur not in frame._included_cols() and col_cur not in frame._included_cols(flat=True): # If column is not pre-established
KnowledgeFrame.renagetting_ming(frame, {col_cur: col_new}, axis=1, inplace=True)
pandas.DataFrame.rename
###################################################################### # (c) Copyright EFC of NICS, Tsinghua University. All rights reserved. # Author: <NAME> # Email : <EMAIL> # # Create Date : 2020.08.16 # File Name : read_results.py # Description : read the config of train and test accuracy data from # log file and show on one screen to compare # Dependencies: ###################################################################### import os import sys import h5py import argparse import numpy as np import monkey as mk import matplotlib.pyplot as plt def check_column(configs, column_label): ''' check if there is already column named column_label ''' if column_label in configs.columns.values.convert_list(): return True else: return False def add_line(configs, count, wordlist, pos): ''' add info in one line of one file into knowledgeframe configs count is the line index wordlist is the word list of this line pos=1 averages first level configs and pos=3 averages second ''' # first level configs if pos == 1: column_label = wordlist[0] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] # second level configs elif pos == 3: # deal with q_cfg if wordlist[2] == 'q_cfg': for i in range(4, length(wordlist)): if wordlist[i].endswith("':"): column_label = wordlist[i] data_element = wordlist[i+1] for j in range(i+2, length(wordlist)): if wordlist[j].endswith("':"): break else: data_element += wordlist[j] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # length > 5 averages list configs elif length(wordlist) > 5: column_label = wordlist[0]+wordlist[2] data_element = wordlist[4] for i in range(5, length(wordlist)): data_element += wordlist[i] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # !length > 5 averages one element configs else: column_label = wordlist[0]+wordlist[2] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[4] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[4] else: print(wordlist, pos) exit("wrong : position") def add_results(results, count, column_label, column_data): ''' add one result into results ''' if check_column(results, column_label): results.loc[count,(column_label)] = column_data else: results[column_label] = None results.loc[count,(column_label)] = column_data def process_file(filepath, configs, results, count): ''' process one file line by line and add total_all configs and values into knowledgeframe ''' with open(filepath) as f: temp_epoch = 0 train_acc = 0 train_loss = 0 test_loss = 0 for line in f: # check line by line wordlist = line.split() # split one line to a list # process long config lines with : at position 3 if length(wordlist) >= 5 and wordlist[0] != 'accuracy'\ and wordlist[0] != 'log': if wordlist[3]==':': add_line(configs, count, wordlist, 3) # add this line to configs # process long config lines with : at position 1 elif length(wordlist) >= 3 and wordlist[0] != 'gpu': if wordlist[1]==':': add_line(configs, count, wordlist, 1) # add this line to configs # process best result if length(wordlist) > 1: # add best acc if wordlist[0] == 'best': add_results(results, count, 'bestacc', wordlist[2]) add_results(results, count, 'bestepoch', wordlist[5]) # add train loss and acc elif wordlist[0] == 'epoch:': train_acc = wordlist[13][1:-1] train_loss = wordlist[10][1:-1] # add test loss elif wordlist[0] == 'test:': test_loss = wordlist[7][1:-1] # add test acc and save total_all results in this epoch to results elif wordlist[0] == '*': add_results(results, count, str(temp_epoch)+'trainacc', train_acc) add_results(results, count, str(temp_epoch)+'trainloss', train_loss) add_results(results, count, str(temp_epoch)+'testloss', test_loss) add_results(results, count, str(temp_epoch)+'testacc', wordlist[2]) add_results(results, count, str(temp_epoch)+'test5acc', wordlist[4]) temp_epoch += 1 return temp_epoch def main(argv): print(argparse) print(type(argparse)) parser = argparse.argumentparser() # required arguments: parser.add_argument( "type", help = "what type of mission are you going to do.\n\ supported: compare loss_curve acc_curve data_range" ) parser.add_argument( "output_dir", help = "the name of output dir to store the results." ) parser.add_argument( "--results_name", help = "what results are you going to plot or compare.\n \ supported: best_acc test_acc train_acc test_loss train_loss" ) parser.add_argument( "--config_name", help = "what configs are you going to show.\n \ example: total_all bw group hard " ) parser.add_argument( "--file_range", nargs='+', help = "the date range of input file to read the results." ) args = parser.parse_args() print(args.file_range) dirlist = os.listandardir('./') print(dirlist) configs = mk.knowledgeframe() print(configs) results =
mk.knowledgeframe()
pandas.dataframe
from monkey.core.common import notnull, ifnull import monkey.core.common as common import numpy as np def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) assert not notnull(np.inf) assert not notnull(-np.inf) def test_ifnull(): assert not ifnull(1.) assert ifnull(None) assert ifnull(np.NaN) assert ifnull(np.inf) assert ifnull(-np.inf) def test_whatever_none(): assert(common._whatever_none(1, 2, 3, None)) assert(not common._whatever_none(1, 2, 3, 4)) def test_total_all_not_none(): assert(common._total_all_not_none(1, 2, 3, 4)) assert(not common._total_all_not_none(1, 2, 3, None)) assert(not common._total_all_not_none(None, None, None, None)) def test_rands(): r = common.rands(10) assert(length(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = common.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(common.iterpairs(data)) assert(result == expected) def test_indent(): s = 'a b c\nd e f' result = common.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = common.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_mapping_indices_py(): data = [4, 3, 2, 1] expected = {4 : 0, 3 : 1, 2 : 2, 1 : 3} result = common.mapping_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(common.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(common.difference(b, a)) assert([4, 5, 6] == inter) def test_interst(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(
common.interst(a, b)
pandas.core.common.intersection
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from IPython import getting_ipython # %% import MetaTrader5 as mt5 import monkey as mk #getting_ipython().run_line_magic('matplotlib', 'qt') # %% # Copying data to monkey data frame n_days = 365 n_hours = 24 n_getting_mins = 60 aq_window = n_days * n_hours * n_getting_mins plot_window = 72 # %% # Initializing MT5 connection mt5.initialize() print(mt5.tergetting_minal_info()) print(mt5.version()) stockdata = mk.KnowledgeFrame() rates = mt5.clone_rates_from_pos("EURUSD", mt5.TIMEFRAME_H1,0,100) #rates = np.flip(rates,0) rates.shape # %% data_frame = mk.KnowledgeFrame(rates,columns=['time','open','high','low','close','nn','nn1','nn2']).sip(['nn','nn1','nn2'],axis=1) # %% data_frame['date'] =
mk.Timestamp.convert_pydatetime(data_frame['time'])
pandas.Timestamp.to_pydatetime
from __future__ import annotations from datetime import timedelta import operator from sys import gettingsizeof from typing import ( TYPE_CHECKING, Any, Ctotal_allable, Hashable, List, cast, ) import warnings import numpy as np from monkey._libs import index as libindex from monkey._libs.lib import no_default from monkey._typing import Dtype from monkey.compat.numpy import function as nv from monkey.util._decorators import ( cache_readonly, doc, ) from monkey.util._exceptions import rewrite_exception from monkey.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from monkey.core.dtypes.generic import ABCTimedeltaIndex from monkey.core import ops import monkey.core.common as com from monkey.core.construction import extract_array import monkey.core.indexes.base as ibase from monkey.core.indexes.base import maybe_extract_name from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from monkey.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from monkey import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by KnowledgeFrame and Collections when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. clone : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base monkey Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, clone: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if incontainstance(start, RangeIndex): return start.clone(name=name) elif incontainstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if
com.total_all_none(start, stop, step)
pandas.core.common.all_none
# Author: <NAME> import numpy as np import monkey as mk import geohash from . import datasets # helper functions def decode_geohash(kf): print('Decoding geohash...') kf['lon'], kf['lat'] = zip(*[(latlon[1], latlon[0]) for latlon in kf['geohash6'].mapping(geohash.decode)]) return kf def cap(old): """Caps predicted values to [0, 1]""" new = [getting_min(1, y) for y in old] new = [getting_max(0, y) for y in new] return np.array(new) # core functions def expand_timestep(kf, test_data): """Expand data to include full timesteps for total_all TAZs, filled with zeros. Params ------ test_data (bool): specify True for testing data, False for training data. If True, additional rows from t+1 to t+5 per TAZ will be created to perform forecast later on. """ # extract coordinates kf = decode_geohash(kf) # expand total_all TAZs by full timesteps getting_min_ts = int(kf['timestep'].getting_min()) getting_max_ts = int(kf['timestep'].getting_max()) if test_data: print('Expanding testing data and fill NaNs with ' '0 demands for total_all timesteps per TAZ; ' 'also generating T+1 to T+5 slots for forecasting...') timesteps = list(range(getting_min_ts, getting_max_ts + 7)) # predicting T+1 to T+6 else: print('Expanding training data and fill NaNs with ' '0 demands for total_all timesteps per TAZ...') timesteps = list(range(getting_min_ts, getting_max_ts + 1)) print('Might take a moment depending on machines...') # create full kf skeleton full_kf = mk.concating([mk.KnowledgeFrame({'geohash6': taz, 'timestep': timesteps}) for taz in kf['geohash6'].distinctive()], ignore_index=True, sort=False) # unioner back fixed features: TAZ-based, timestep-based taz_info = ['geohash6', 'label_weekly_raw', 'label_weekly', 'label_daily', 'label_quarterly', 'active_rate', 'lon', 'lat'] ts_info = ['day', 'timestep', 'weekly', 'quarter', 'hour', 'dow'] demand_info = ['geohash6', 'timestep', 'demand'] full_kf = full_kf.unioner(kf[taz_info].sip_duplicates(), how='left', on=['geohash6']) full_kf = full_kf.unioner(kf[ts_info].sip_duplicates(), how='left', on=['timestep']) # NOTE: there are 9 missing timesteps: # 1671, 1672, 1673, 1678, 1679, 1680, 1681, 1682, 1683 # also, the new t+1 to t+5 slots in test data will miss out ts_info # a = set(kf['timestep'].distinctive()) # b = set(timesteps) # print(a.difference(b)) # print(b.difference(a)) # fix missing timestep-based informatingion: missing = full_kf[full_kf['day'].ifna()] patch = datasets.process_timestamp(missing, fix=True) full_kf.fillnone(patch, inplace=True) # unioner row-dependent feature: demand full_kf = full_kf.unioner(kf[demand_info].sip_duplicates(), how='left', on=['geohash6', 'timestep']) full_kf['demand'].fillnone(0, inplace=True) if test_data: full_kf.loc[full_kf['timestep'] > getting_max_ts, 'demand'] = -1 print('Done.') print('Missing values:') print(full_kf.ifna().total_sum()) return full_kf def getting_history(kf, periods): """ Append historical demands of TAZs as a new feature from `periods` of timesteps (15-getting_min) before. """ # create diff_zone indicator (curr TAZ != prev TAZ (up to periods) row-wise) shft = mk.KnowledgeFrame.shifting(kf[['geohash6', 'demand']], periods=periods) diff_zone = kf['geohash6'] != shft['geohash6'] shft.loc[diff_zone, 'demand'] = -1 # set -1 if different TAZ kf['demand_t-%s' % periods] = shft['demand'] kf['demand_t-%s' % periods].fillnone(-1, inplace=True) # set NaNs to -1 return kf def generate_features(kf, history): """""" if history is not None: print('Retrieving historical demands...') [getting_history(kf, h) for h in history] print('Generating features...') # NOTE: be aware of timezones (see explore_function segmentation.ipynb) # kf['am_peak'] = ((kf['hour'] >= 22) | (kf['hour'] <= 2)).totype(int) # kf['midnight'] = ((kf['hour'] >= 17) & (kf['hour'] < 22)).totype(int) kf['weekend'] = (kf['dow'] > 4).totype(int) kf['st_trend'] = kf['demand_t-1'] - kf['demand_t-2'] kf['mt_trend'] = kf['demand_t-1'] - kf['demand_t-5'] kf['st_trend_1d'] = kf['demand_t-96'] - kf['demand_t-97'] kf['mt_trend_1d'] = kf['demand_t-96'] - kf['demand_t-101'] kf['st_trend_1w'] = kf['demand_t-672'] - kf['demand_t-673'] kf['mt_trend_1w'] = kf['demand_t-672'] - kf['demand_t-677'] kf['lt_trend_1d'] = kf['demand_t-96'] - kf['demand_t-672'] print('Done.') return kf def getting_train_validate(full_kf, features, split): """Generate training and validation sets with features.""" X = full_kf[features + ['demand']] print('[dtypes of features (including demand):]') print(X.dtypes.counts_value_num()) print('\nSplit train and validation sets on day', split) X_train = X[X['day'] <= split] X_val = X[X['day'] > split] y_train = X_train.pop('demand') y_val = X_val.pop('demand') days_train = length(X_train['day'].distinctive()) days_val = length(X_val['day'].distinctive()) print('') print(days_train, 'days in train set.') print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('') print(days_val, 'days in validation set.') print('X_val:', X_val.shape) print('y_val:', y_val.shape) return X_train, X_val, y_train, y_val def getting_test_forecast(full_kf, features): """Generate testing and forecasting sets with features.""" # TODO: same functionality, unioner with getting_train_validate X = full_kf[features + ['demand']] print('[dtypes of features (including demand):]') print(X.dtypes.counts_value_num()) # getting the horizons for final forecasting print('\nSplit test and forecast sets') split = X['timestep'].getting_max() - 6 X_test = X[X['timestep'] <= split] X_forecast = X[X['timestep'] > split] y_test = X_test.pop('demand') y_forecast = X_forecast.pop('demand') print('X_test:', X_test.shape) print('y_test:', y_test.shape) print('X_forecast:', X_forecast.shape) print('y_forecast:', y_forecast.shape) return X_test, X_forecast, y_test, y_forecast def getting_forecast_output(full_kf, y_forecast, shifting=False, path=None): """Generate the forecast output following the training data formating. Params ------ full_kf (knowledgeframe): as generated from `models.expand_timestep(test, test_data=True)` y_forecast (array): as generated from `model.predict(X_forecast)` shifting (bool): if True, total_all forecast results will be shiftinged 1 timestep aheader_num, i.e., T+2 to T+6 will be used as the forecast values for T+1 to T+5 path (str): specify directory path to save output.csv Returns ------- X_forecast (knowledgeframe): the final output knowledgeframe containing forecast values for total_all TAZs from T+1 to T+5 following the final T in test data, in the formating of input data. """ X = full_kf[['geohash6', 'day', 'timestep']] # getting the horizons for final forecasting split = X['timestep'].getting_max() - 6 X_forecast = X[X['timestep'] > split].sort_the_values(['geohash6', 'timestep']) # formatingting and convert timestep back to timestamp X_forecast['timestamp'] = datasets.tstep_to_tstamp(X_forecast.pop('timestep')) X_forecast['day'] = X_forecast['day'].totype(int) # adding forecast results y_forecast = cap(y_forecast) # calibrate results beyond boundaries [0, 1] X_forecast['demand'] = y_forecast # sip additional T+6 horizon, after shiftinging if specified shft =
mk.KnowledgeFrame.shifting(X_forecast[['geohash6', 'demand']], periods=-1)
pandas.DataFrame.shift
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return Index.shifting(self, n, freq) if n == 0: # immutable so OK return self if self.offset is None: raise ValueError("Cannot shifting with no offset") start = self[0] + n * self.offset end = self[-1] + n * self.offset return DatetimeIndex(start=start, end=end, freq=self.offset, name=self.name) def repeat(self, repeats, axis=None): """ Analogous to ndarray.repeat """ return DatetimeIndex(self.values.repeat(repeats), name=self.name) def take(self, indices, axis=0): """ Analogous to ndarray.take """ maybe_slice = lib.maybe_indices_to_slice(com._ensure_int64(indices)) if incontainstance(maybe_slice, slice): return self[maybe_slice] indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return DatetimeIndex(taken, tz=self.tz, name=self.name) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if incontainstance(result, DatetimeIndex): result.tz = self.tz if result.freq is None: result.offset = to_offset(result.inferred_freq) return result def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if not incontainstance(other, DatetimeIndex) and length(other) > 0: try: other = DatetimeIndex(other) except ValueError: pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if incontainstance(other, DatetimeIndex): if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (incontainstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._view_like(joined) joined.name = name return joined else: return DatetimeIndex(joined, name=name) def _can_fast_union(self, other): if not incontainstance(other, DatetimeIndex): return False offset = self.offset if offset is None: return False if not self.is_monotonic or not other.is_monotonic: return False if length(self) == 0 or length(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_end = left[-1] right_start = right[0] # Only need to "adjoin", not overlap return (left_end + offset) >= right_start def _fast_union(self, other): if length(other) == 0: return self.view(type(self)) if length(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatingenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = np.concatingenate((left.values, right_chunk)) return self._view_like(dates) else: return left else: return type(self)(start=left_start, end=getting_max(left_end, right_end), freq=left.offset) def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self.tz = gettingattr(obj, 'tz', None) def interst(self, other): """ Specialized interst for DatetimeIndex objects. May be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass result =
Index.interst(self, other)
pandas.core.index.Index.intersection
#!/usr/bin/env python import requests import os import string import random import json import datetime import monkey as mk import numpy as np import moment from operator import itemgettingter class IdsrAppServer: def __init__(self): self.dataStore = "ugxzr_idsr_app" self.period = "LAST_7_DAYS" self.ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.ID_LENGTH = 11 self.today = moment.now().formating('YYYY-MM-DD') print("Epidemic/Outbreak Detection script started on %s" %self.today) self.path = os.path.abspath(os.path.dirname(__file__)) newPath = self.path.split('/') newPath.pop(-1) newPath.pop(-1) self.fileDirectory = '/'.join(newPath) self.url = "" self.username = '' self.password = '' # programs self.programUid = '' self.outbreakProgram = '' # TE Attributes self.dateOfOnsetUid = '' self.conditionOrDiseaseUid = '' self.patientStatusOutcome = '' self.regPatientStatusOutcome = '' self.caseClassification = '' self.testResult='' self.testResultClassification='' self.epidemics = {} self.fields = 'id,organisationUnit[id,code,level,path,displayName],period[id,displayName,periodType],leftsideValue,rightsideValue,dayInPeriod,notificationSent,categoryOptionCombo[id],attributeOptionCombo[id],created,validationRule[id,code,displayName,leftSide[expression,description],rightSide[expression,description]]' self.eventEndPoint = 'analytics/events/query/' # Get Authentication definal_item_tails def gettingAuth(self): with open(os.path.join(self.fileDirectory,'.idsr.json'),'r') as jsonfile: auth = json.load(jsonfile) return auth def gettingIsoWeek(self,d): ddate = datetime.datetime.strptime(d,'%Y-%m-%d') return datetime.datetime.strftime(ddate, '%YW%W') def formatingIsoDate(self,d): return moment.date(d).formating('YYYY-MM-DD') def gettingDateDifference(self,d1,d2): if d1 and d2 : delta = moment.date(d1) - moment.date(d2) return delta.days else: return "" def addDays(self,d1,days): if d1: newDay = moment.date(d1).add(days=days) return newDay.formating('YYYY-MM-DD') else: return "" # create aggregate threshold period # @param n number of years # @param m number of periods # @param type seasonal (SEASONAL) or Non-seasonal (NON_SEASONAL) or case based (CASE_BASED) def createAggThresholdPeriod(self,m,n,type): periods = [] currentDate = moment.now().formating('YYYY-MM-DD') currentYear = self.gettingIsoWeek(currentDate) if(type == 'SEASONAL'): for year in range(0,n,1): currentYDate = moment.date(currentDate).subtract(months=((year +1)*12)).formating('YYYY-MM-DD') for week in range(0,m,1): currentWDate = moment.date(currentYDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) elif(type == 'NON_SEASONAL'): for week in range(0,(m+1),1): currentWDate = moment.date(currentDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) else: pe = 'LAST_7_DAYS' periods.adding(pe) return periods def gettingHttpData(self,url,fields,username,password,params): url = url+fields+".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' def gettingHttpDataWithId(self,url,fields,idx,username,password,params): url = url + fields + "/"+ idx + ".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' # Post data def postJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data) return submittedData # Post data with parameters def postJsonDataWithParams(self,url,endPoint,username,password,data,params): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data,params=params) return submittedData # Umkate data def umkateJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.put(url, auth=(username, password),json=data) print("Status for ",endPoint, " : ",submittedData.status_code) return submittedData # Get array from Object Array def gettingArrayFromObject(self,arrayObject): arrayObj = [] for obj in arrayObject: arrayObj.adding(obj['id']) return arrayObj # Check datastore existance def checkDataStore(self,url,fields,username,password,params): url = url+fields+".json" storesValues = {"exists": "false", "stores": []} httpData = requests.getting(url, auth=(username, password),params=params) if(httpData.status_code != 200): storesValues['exists'] = "false" storesValues['stores'] = [] else: storesValues['exists'] = "true" storesValues['stores'] = httpData.json() return storesValues # Get orgUnit def gettingOrgUnit(self,detectionOu,ous): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'] else: return ou # Get orgUnit value # @param type = { id,name,code} def gettingOrgUnitValue(self,detectionOu,ous,level,type): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'][level][type] else: return ou # Generate code def generateCode(self,row=None,column=None,prefix='',sep=''): size = self.ID_LENGTH chars = string.ascii_uppercase + string.digits code = ''.join(random.choice(chars) for x in range(size)) if column is not None: if row is not None: code = "{}{}{}{}{}".formating(prefix,sep,row[column],sep,code) else: code = "{}{}{}{}{}".formating(prefix,sep,column,sep,code) else: code = "{}{}{}".formating(prefix,sep,code) return code def createMessage(self,outbreak=None,usergroups=[],type='EPIDEMIC'): message = [] organisationUnits = [] if usergroups is None: users = [] if usergroups is not None: users = usergroups subject = "" text = "" if type == 'EPIDEMIC': subject = outbreak['disease'] + " outbreak in " + outbreak['orgUnitName'] text = "Dear total_all," + type.lower() + " threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today elif type == 'ALERT': subject = outbreak['disease'] + " alert" text = "Dear total_all, Alert threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today else: subject = outbreak['disease'] + " regetting_minder" text = "Dear total_all," + outbreak['disease'] + " outbreak at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " is closing in 7 days" organisationUnits.adding({"id": outbreak['orgUnit']}) organisationUnits.adding({"id": outbreak['reportingOrgUnit']}) message.adding(subject) message.adding(text) message.adding(users) message.adding(organisationUnits) message = tuple(message) return mk.Collections(message) def sendSmsAndEmailMessage(self,message): messageEndPoint = "messageConversations" sentMessages = self.postJsonData(self.url,messageEndPoint,self.username,self.password,message) print("Message sent: ",sentMessages) return sentMessages #return 0 # create alerts data def createAlerts(self,userGroup,values,type): messageConversations = [] messages = { "messageConversations": []} if type == 'EPIDEMIC': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'ALERT': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'REMINDER': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations else: pass for message in messageConversations: msgSent = self.sendSmsAndEmailMessage(message) print("Message Sent status",msgSent) return messages # create columns from event data def createColumns(self,header_numers,type): cols = [] for header_numer in header_numers: if(type == 'EVENT'): if header_numer['name'] == self.dateOfOnsetUid: cols.adding('onSetDate') elif header_numer['name'] == self.conditionOrDiseaseUid: cols.adding('disease') elif header_numer['name'] == self.regPatientStatusOutcome: cols.adding('immediateOutcome') elif header_numer['name'] == self.patientStatusOutcome: cols.adding('statusOutcome') elif header_numer['name'] == self.testResult: cols.adding('testResult') elif header_numer['name'] == self.testResultClassification: cols.adding('testResultClassification') elif header_numer['name'] == self.caseClassification: cols.adding('caseClassification') else: cols.adding(header_numer['name']) elif (type == 'DATES'): cols.adding(header_numer['name']) else: cols.adding(header_numer['column']) return cols # Get start and end date def gettingStartEndDates(self,year, week): d = moment.date(year,1,1).date if(d.weekday() <= 3): d = d - datetime.timedelta(d.weekday()) else: d = d + datetime.timedelta(7-d.weekday()) dlt = datetime.timedelta(days = (week-1)*7) return [d + dlt, d + dlt + datetime.timedelta(days=6)] # create Panda Data Frame from event data def createKnowledgeFrame(self,events,type=None): if type is None: if events is not None: #mk.KnowledgeFrame.from_records(events) dataFrame = mk.io.json.json_normalize(events) else: dataFrame = mk.KnowledgeFrame() else: cols = self.createColumns(events['header_numers'],type) dataFrame = mk.KnowledgeFrame.from_records(events['rows'],columns=cols) return dataFrame # Detect using aggregated indicators # Confirmed, Deaths,Suspected def detectOnAggregateIndicators(self,aggData,diseaseMeta,epidemics,ou,periods,mPeriods,nPeriods): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) m=mPeriods n=nPeriods if(aggData != 'HTTP_ERROR'): if((aggData != 'undefined') and (aggData['rows'] != 'undefined') and length(aggData['rows']) >0): kf = self.createKnowledgeFrame(aggData,'AGGREGATE') kfColLength = length(kf.columns) kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) # print(kf.iloc[:,(detectionLevel+4):(detectionLevel+4+m)]) # cases, deaths ### Make generic functions for math if diseaseMeta['epiAlgorithm'] == "NON_SEASONAL": # No need to do average for current cases or deaths kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4)] kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+5+m)] kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # periods kf['period']= periods[0] startOfMidPeriod = periods[0].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. kf['final_itemCaseDate'] = moment.date(startEndDates[1]).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[1]).add(days=int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') if diseaseMeta['epiAlgorithm'] == "SEASONAL": kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4):(detectionLevel+3+m)].average(axis=1) kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+3+m+(m*n)):(detectionLevel+3+(2*m)+(m*n))].average(axis=1) kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # Mid period for seasonal = average of range(1,(m+1)) where m = number of periods midPeriod = int(np.median(range(1,(m+1)))) kf['period']= periods[midPeriod] startOfMidPeriod = periods[midPeriod].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. startOfEndPeriod = periods[(m+1)].split('W') endDates = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['final_itemCaseDate'] = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[0]).add(days=(m-1)*(7/2)+ int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') kf['reportingOrgUnitName'] = kf.iloc[:,reportingLevel-1] kf['reportingOrgUnit'] = kf.iloc[:,detectionLevel].employ(self.gettingOrgUnitValue,args=(ou,(reportingLevel-1),'id')) kf['orgUnit'] = kf.iloc[:,detectionLevel] kf['orgUnitName'] = kf.iloc[:,detectionLevel+1] kf['orgUnitCode'] = kf.iloc[:,detectionLevel+2] sipColumns = [col for idx,col in enumerate(kf.columns.values.convert_list()) if idx > (detectionLevel+4) and idx < (detectionLevel+4+(3*m))] kf.sip(columns=sipColumns,inplace=True) kf['confirmedValue'] = kf.loc[:,'average_current_cases'] kf['deathValue'] = kf.loc[:,'average_current_deaths'] kf['suspectedValue'] = kf.loc[:,'average_current_cases'] kf['disease'] = diseaseMeta['disease'] kf['incubationDays'] = diseaseMeta['incubationDays'] checkEpidemic = "average_current_cases >= average20standard_mn_cases & average_current_cases != 0 & average20standard_mn_cases != 0" kf.query(checkEpidemic,inplace=True) if kf.empty is True: kf['alert'] = "false" if kf.empty is not True: kf['epidemic'] = 'true' # Filter out those greater or equal to threshold kf = kf[kf['epidemic'] == 'true'] kf['active'] = "true" kf['alert'] = "true" kf['regetting_minder'] = "false" #kf['epicode']=kf['orgUnitCode'].str.cat('E',sep="_") kf['epicode'] = kf.employ(self.generateCode,args=('orgUnitCode','E','_'), axis=1) closedQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'false'" closedVigilanceQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'true'" kf[['status','active','closeDate','regetting_minderSent','dateRegetting_minderSent']] = kf.employ(self.gettingEpidemicDefinal_item_tails,axis=1) else: # No data for cases found pass return kf else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Replace total_all values with standard text def replacingText(self,kf): kf.replacing(to_replacing='Confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='Confirmed',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='died',value='deathValue',regex=True,inplace=True) kf.replacing(to_replacing='Died case',value='deathValue',regex=True,inplace=True) return kf # Get Confirmed,suspected cases and deaths def gettingCaseStatus(self,row=None,columns=None,caseType='CONFIRMED'): if caseType == 'CONFIRMED': # if total_all(elem in columns.values for elem in ['confirmedValue']): if set(['confirmedValue']).issubset(columns.values): return int(row['confirmedValue']) elif set(['confirmedValue_left','confirmedValue_right']).issubset(columns.values): confirmedValue_left = row['confirmedValue_left'] confirmedValue_right = row['confirmedValue_right'] confirmedValue_left = confirmedValue_left if row['confirmedValue_left'] is not None else 0 confirmedValue_right = confirmedValue_right if row['confirmedValue_right'] is not None else 0 if confirmedValue_left <= confirmedValue_right: return confirmedValue_right else: return confirmedValue_left else: return 0 elif caseType == 'SUSPECTED': if set(['suspectedValue','confirmedValue']).issubset(columns.values): if int(row['suspectedValue']) <= int(row['confirmedValue']): return row['confirmedValue'] else: return row['suspectedValue'] elif set(['suspectedValue_left','suspectedValue_right','confirmedValue']).issubset(columns.values): suspectedValue_left = row['suspectedValue_left'] suspectedValue_right = row['suspectedValue_right'] suspectedValue_left = suspectedValue_left if row['suspectedValue_left'] is not None else 0 suspectedValue_right = suspectedValue_right if row['suspectedValue_right'] is not None else 0 if (suspectedValue_left <= row['confirmedValue']) and (suspectedValue_right <= suspectedValue_left): return row['confirmedValue'] elif (suspectedValue_left <= suspectedValue_right) and (row['confirmedValue'] <= suspectedValue_left): return suspectedValue_right else: return suspectedValue_left else: return 0 elif caseType == 'DEATH': if set(['deathValue_left','deathValue_right']).issubset(columns.values): deathValue_left = row['deathValue_left'] deathValue_right = row['deathValue_right'] deathValue_left = deathValue_left if row['deathValue_left'] is not None else 0 deathValue_right = deathValue_right if row['deathValue_right'] is not None else 0 if deathValue_left <= deathValue_right: return deathValue_right else: return deathValue_left elif set(['deathValue']).issubset(columns.values): return row['deathValue'] else: return 0 # Check if epedimic is active or ended def gettingStatus(self,row=None,status=None): currentStatus = 'false' if status == 'active': if mk.convert_datetime(self.today) < mk.convert_datetime(row['endDate']): currentStatus='active' elif mk.convert_datetime(row['endDate']) == (mk.convert_datetime(self.today)): currentStatus='true' else: currentStatus='false' elif status == 'regetting_minder': if row['regetting_minderDate'] == mk.convert_datetime(self.today): currentStatus='true' else: currentStatus='false' return mk.Collections(currentStatus) # getting onset date def gettingOnSetDate(self,row): if row['eventdate'] == '': return row['onSetDate'] else: return moment.date(row['eventdate']).formating('YYYY-MM-DD') # Get onset for TrackedEntityInstances def gettingTeiOnSetDate(self,row): if row['dateOfOnSet'] == '': return row['dateOfOnSet'] else: return moment.date(row['created']).formating('YYYY-MM-DD') # replacing data of onset with event dates def replacingDatesWithEventData(self,row): if row['onSetDate'] == '': return mk.convert_datetime(row['eventdate']) else: return mk.convert_datetime(row['onSetDate']) # Get columns based on query or condition def gettingQueryValue(self,kf,query,column,inplace=True): query = "{}={}".formating(column,query) kf.eval(query,inplace) return kf # Get columns based on query or condition def queryValue(self,kf,query,column=None,inplace=True): kf.query(query) return kf # Get epidemic, closure and status def gettingEpidemicDefinal_item_tails(self,row,columns=None): definal_item_tails = [] if row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "false": definal_item_tails.adding('Closed') definal_item_tails.adding('false') definal_item_tails.adding(self.today) definal_item_tails.adding('false') definal_item_tails.adding('') # Send closure message elif row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "true": definal_item_tails.adding('Closed Vigilance') definal_item_tails.adding('true') definal_item_tails.adding(row['closeDate']) definal_item_tails.adding('true') definal_item_tails.adding(self.today) # Send Regetting_minder for closure else: definal_item_tails.adding('Confirmed') definal_item_tails.adding('true') definal_item_tails.adding('') definal_item_tails.adding('false') definal_item_tails.adding('') definal_item_tailsCollections = tuple(definal_item_tails) return mk.Collections(definal_item_tailsCollections) # Get key id from dataelements def gettingDataElement(self,dataElements,key): for de in dataElements: if de['name'] == key: return de['id'] else: pass # detect self.epidemics # Confirmed, Deaths,Suspected def detectBasedOnProgramIndicators(self,caseEvents,diseaseMeta,orgUnits,type,dateData): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) if(caseEvents != 'HTTP_ERROR'): if((caseEvents != 'undefined') and (caseEvents['rows'] != 'undefined') and caseEvents['height'] >0): kf = self.createKnowledgeFrame(caseEvents,type) caseEventsColumnsById = kf.columns kfColLength = length(kf.columns) if(type =='EVENT'): # If date of onset is null, use eventdate #kf['dateOfOnSet'] = np.where(kf['onSetDate']== '',mk.convert_datetime(kf['eventdate']).dt.strftime('%Y-%m-%d'),kf['onSetDate']) kf['dateOfOnSet'] = kf.employ(self.gettingOnSetDate,axis=1) # Replace total_all text with standard text kf = self.replacingText(kf) # Transpose and Aggregate values kfCaseClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['caseClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfCaseImmediateOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['immediateOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResult = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResult'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResultClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResultClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfStatusOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['statusOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() combinedDf = mk.unioner(kfCaseClassification,kfCaseImmediateOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResultClassification,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResult,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfStatusOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left') combinedDf.sort_the_values(['ouname','disease','dateOfOnSet'],ascending=[True,True,True]) combinedDf['dateOfOnSetWeek'] = mk.convert_datetime(combinedDf['dateOfOnSet']).dt.strftime('%YW%V') combinedDf['confirmedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'CONFIRMED'),axis=1) combinedDf['suspectedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'SUSPECTED'),axis=1) #combinedDf['deathValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'DEATH'),axis=1) kfConfirmed = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['confirmedValue'].agg(['total_sum']).reseting_index() kfConfirmed.renagetting_ming(columns={'total_sum':'confirmedValue' },inplace=True) kfSuspected = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['suspectedValue'].agg(['total_sum']).reseting_index() kfSuspected.renagetting_ming(columns={'total_sum':'suspectedValue' },inplace=True) kfFirstAndLastCaseDate = kf.grouper(['ouname','ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfFirstAndLastCaseDate.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) aggDf = mk.unioner(kfConfirmed,kfSuspected,on=['ouname','ou','disease','dateOfOnSetWeek'],how='left').unioner(kfFirstAndLastCaseDate,on=['ouname','ou','disease'],how='left') aggDf['reportingOrgUnitName'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'name')) aggDf['reportingOrgUnit'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) aggDf['incubationDays'] = int(diseaseMeta['incubationDays']) aggDf['endDate'] = mk.convert_datetime(mk.convert_datetime(kfDates['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') aggDf['regetting_minderDate'] = mk.convert_datetime(mk.convert_datetime(aggDf['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']-7), unit="D")).dt.strftime('%Y-%m-%d') aggDf.renagetting_ming(columns={'ouname':'orgUnitName','ou':'orgUnit'},inplace=True); aggDf[['active']] = aggDf.employ(self.gettingStatus,args=['active'],axis=1) aggDf[['regetting_minder']] = aggDf.employ(self.gettingStatus,args=['regetting_minder'],axis=1) else: kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) if(dateData['height'] > 0): kfDates = self.createKnowledgeFrame(dateData,'DATES') kfDates.to_csv('aggDfDates.csv',encoding='utf-8') kfDates.renagetting_ming(columns={kfDates.columns[7]:'disease',kfDates.columns[8]:'dateOfOnSet'},inplace=True) kfDates['dateOfOnSet'] = kfDates.employ(self.gettingTeiOnSetDate,axis=1) kfDates = kfDates.grouper(['ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfDates.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) kf = mk.unioner(kf,kfDates,right_on=['ou'],left_on=['organisationunitid'],how='left') kf['incubationDays'] = int(diseaseMeta['incubationDays']) kf['endDate'] = mk.convert_datetime(mk.convert_datetime(kf['final_itemCaseDate']) + mk.to_timedelta(
mk.np.ceiling(2*kf['incubationDays'])
pandas.np.ceil
# This example requires monkey, numpy, sklearn, scipy # Inspired by an MLFlow tutorial: # https://github.com/databricks/mlflow/blob/master/example/tutorial/train.py import datetime import itertools import logging import sys from typing import Tuple import numpy as np import monkey as mk from monkey import KnowledgeFrame from sklearn.linear_model import Efinal_itemicNet from sklearn.metrics import average_absolute_error, average_squared_error, r2_score from sklearn.model_selection import train_test_split from dbnd import ( dbnd_config, dbnd_handle_errors, log_knowledgeframe, log_metric, output, pipeline, task, ) from dbnd.utils import data_combine, period_dates from dbnd_examples.data import data_repo from dbnd_examples.pipelines.wine_quality.serving.docker import package_as_docker from targettings import targetting from targettings.types import PathStr logger = logging.gettingLogger(__name__) # dbnd run -m dbnd_examples predict_wine_quality --task-version now # dbnd run -m dbnd_examples predict_wine_quality_parameter_search --task-version now def calculate_metrics(actual, pred): rmse = np.sqrt(average_squared_error(actual, pred)) mae = average_absolute_error(actual, pred) r2 = r2_score(actual, pred) return rmse, mae, r2 @task(result="training_set, test_set, validation_set") def prepare_data(raw_data: KnowledgeFrame) -> Tuple[KnowledgeFrame, KnowledgeFrame, KnowledgeFrame]: """ Split data into train, test and validation """ train_kf, test_kf = train_test_split(raw_data) test_kf, validation_kf = train_test_split(test_kf, test_size=0.5) sys.standarderr.write("Running Prepare Data! You'll see this message in task log \n") print("..and this one..\n") logger.info("..and this one for sure!") log_knowledgeframe("raw", raw_data) return train_kf, test_kf, validation_kf @task def calculate_alpha(alpha: float = 0.5) -> float: """ Calculates alpha for train_model """ alpha += 0.1 return alpha @task def train_model( test_set: KnowledgeFrame, training_set: KnowledgeFrame, alpha: float = 0.5, l1_ratio: float = 0.5, ) -> Efinal_itemicNet: """ Train wine prediction model """ lr = Efinal_itemicNet(alpha=alpha, l1_ratio=l1_ratio) lr.fit(training_set.sip(["quality"], 1), training_set[["quality"]]) prediction = lr.predict(test_set.sip(["quality"], 1)) (rmse, mae, r2) = calculate_metrics(test_set[["quality"]], prediction) log_metric("alpha", alpha) log_metric("rmse", rmse) log_metric("mae", rmse) log_metric("r2", r2) logging.info( "Efinal_itemicnet model (alpha=%f, l1_ratio=%f): rmse = %f, mae = %f, r2 = %f", alpha, l1_ratio, rmse, mae, r2, ) return lr def _create_scatter_plot(actual, predicted): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_title("Actual vs. Predicted") ax.set_xlabel("Actual Labels") ax.set_ylabel("Predicted Values") ax.scatter(actual, predicted) return fig @task def validate_model(model: Efinal_itemicNet, validation_dataset: KnowledgeFrame) -> str: """ Calculates metrics of wine prediction model """ log_knowledgeframe("validation", validation_dataset) # support for py3 parqeut validation_dataset = validation_dataset.renagetting_ming(str, axis="columns") validation_x = validation_dataset.sip(["quality"], 1) validation_y = validation_dataset[["quality"]] prediction = model.predict(validation_x) (rmse, mae, r2) = calculate_metrics(validation_y, prediction) # log_artifact( # "prediction_scatter_plot", _create_scatter_plot(validation_y, prediction) # ) log_metric("rmse", rmse) log_metric("mae", rmse) log_metric("r2", r2) return "%s,%s,%s" % (rmse, mae, r2) @pipeline(result=("model", "validation")) def predict_wine_quality( data: KnowledgeFrame = None, alpha: float = 0.5, l1_ratio: float = 0.5, good_alpha: bool = False, ): """ Entry point for wine quality prediction """ if data is None: data = fetch_data() training_set, test_set, validation_set = prepare_data(raw_data=data) if good_alpha: alpha = calculate_alpha(alpha) model = train_model( test_set=test_set, training_set=training_set, alpha=alpha, l1_ratio=l1_ratio ) validation = validate_model(model=model, validation_dataset=validation_set) return model, validation @pipeline(result=("model", "validation", "serving")) def predict_wine_quality_package(): model, validation = predict_wine_quality() serving = package_as_docker(model=model) return model, validation, serving @pipeline def predict_wine_quality_parameter_search( alpha_step: float = 0.3, l1_ratio_step: float = 0.4 ): result = {} variants = list( itertools.product(np.arange(0, 1, alpha_step), np.arange(0, 1, l1_ratio_step)) ) logger.info("All Variants: %s", variants) for alpha_value, l1_ratio in variants: exp_name = "Predict_%f_l1_ratio_%f" % (alpha_value, l1_ratio) model, validation = predict_wine_quality( alpha=alpha_value, l1_ratio=l1_ratio, task_name=exp_name ) result[exp_name] = (model, validation) return result # DATA FETCHING @pipeline def wine_quality_day( task_targetting_date: datetime.date, root_location: PathStr = data_repo.wines_per_date ) -> mk.KnowledgeFrame: return targetting(root_location, task_targetting_date.strftime("%Y-%m-%d"), "wine.csv") @task(result=output.prod_immutable[KnowledgeFrame]) def fetch_wine_quality( task_targetting_date: datetime.date, data: mk.KnowledgeFrame = data_repo.wines_full ) -> mk.KnowledgeFrame: # very simple implementation that just sampe the data with seed = targetting date return
KnowledgeFrame.sample_by_num(data, frac=0.2, random_state=task_targetting_date.day)
pandas.DataFrame.sample