Dataset Viewer
Auto-converted to Parquet
starting
sequencelengths
6
6
target
int64
1
999
closest
int64
1
999
expression
stringlengths
1
38
delta
int64
0
861
score
int64
0
10
size
int64
6
6
__index_level_0__
int64
0
999k
[ 75, 3, 25, 50, 5, 100 ]
198
198
((((100 - 5) + 75) + 3) + 25)
0
10
6
487,900
[ 100, 75, 6, 8, 1, 3 ]
582
582
((100 - 3) * 6)
0
10
6
608,958
[ 4, 10, 3, 10, 8, 9 ]
198
198
(((3 * 4) + 10) * 9)
0
10
6
607,498
[ 100, 5, 6, 75, 25, 50 ]
353
354
((((100 / 25) + 50) + 5) * 6)
1
9
6
787,423
[ 10, 3, 5, 8, 3, 7 ]
506
507
((((8 * 7) - 5) * 10) - 3)
1
9
6
893,450
[ 2, 75, 5, 100, 50, 25 ]
551
550
((5 * 100) + 50)
1
9
6
313,063
[ 9, 7, 75, 25, 50, 100 ]
167
167
(((((75 * 9) + 100) / 25) * 7) - 50)
0
10
6
23,067
[ 3, 10, 5, 50, 100, 25 ]
896
895
((((3 + 25) - 10) * 50) - 5)
1
9
6
30,418
[ 50, 75, 3, 25, 2, 100 ]
647
647
(((((75 * 2) / 25) * 100) - 3) + 50)
0
10
6
907,028
[ 9, 10, 75, 100, 8, 6 ]
879
879
(((6 + 100) * 9) - 75)
0
10
6
798,175
[ 3, 6, 9, 1, 10, 8 ]
679
679
(((((8 + 3) * 6) + 1) * 10) + 9)
0
10
6
317,894
[ 7, 9, 7, 8, 1, 3 ]
833
833
(((9 + 8) * 7) * 7)
0
10
6
840,186
[ 6, 1, 50, 25, 5, 75 ]
871
871
(((((25 - 6) * 50) - 5) + 1) - 75)
0
10
6
301,279
[ 75, 100, 3, 50, 25, 6 ]
988
993
((((3 + 50) + 100) * 6) + 75)
5
5
6
930,447
[ 6, 3, 1, 5, 75, 50 ]
189
189
((((50 - 5) - 1) * 6) - 75)
0
10
6
685,167
[ 3, 25, 3, 9, 4, 7 ]
585
585
((((3 + 7) * 4) + 25) * 9)
0
10
6
29,397
[ 50, 7, 2, 8, 100, 25 ]
690
690
(((100 * 7) - 8) - 2)
0
10
6
317,926
[ 25, 7, 100, 50, 6, 8 ]
4
4
(100 / 25)
0
10
6
779,268
[ 8, 25, 100, 50, 75, 10 ]
97
97
(100 - (75 / 25))
0
10
6
658,614
[ 5, 10, 8, 9, 4, 75 ]
2
2
(10 / 5)
0
10
6
294,319
[ 4, 9, 6, 8, 100, 7 ]
757
757
(((100 + 9) * 7) - 6)
0
10
6
322,659
[ 1, 7, 10, 8, 2, 3 ]
975
974
(((((8 - 1) * 7) * 10) - 3) * 2)
1
9
6
366,522
[ 1, 10, 7, 8, 10, 8 ]
928
928
((((8 + 10) * 7) - 10) * 8)
0
10
6
145,719
[ 10, 7, 5, 25, 8, 100 ]
481
481
((((5 * 10) + 7) * 8) + 25)
0
10
6
794,210
[ 50, 5, 1, 25, 3, 75 ]
344
344
(((((75 + 50) * 3) - 5) - 25) - 1)
0
10
6
827,200
[ 10, 3, 8, 4, 25, 9 ]
176
176
((25 - 3) * 8)
0
10
6
289,451
[ 5, 7, 100, 75, 25, 7 ]
543
543
(((7 * 75) - 7) + 25)
0
10
6
896,435
[ 2, 100, 4, 25, 7, 3 ]
819
819
((((4 * 100) - 3) * 2) + 25)
0
10
6
916,354
[ 3, 75, 10, 7, 100, 9 ]
474
474
(((100 - (10 + 7)) + 75) * 3)
0
10
6
323,826
[ 7, 100, 8, 25, 1, 9 ]
257
257
(((1 + 9) * 25) + 7)
0
10
6
949,603
[ 25, 3, 9, 75, 6, 50 ]
841
841
(((((75 + 25) * 9) - 6) - 3) - 50)
0
10
6
652,150
[ 4, 5, 10, 9, 1, 6 ]
86
86
((10 * 9) - 4)
0
10
6
868,645
[ 25, 75, 7, 100, 5, 9 ]
602
602
(((100 - 9) - 5) * 7)
0
10
6
494,003
[ 7, 5, 5, 3, 10, 25 ]
296
296
((((5 + 25) * 10) + 3) - 7)
0
10
6
923,805
[ 25, 50, 75, 10, 8, 100 ]
284
284
(((((10 * 50) + 75) / 25) * 8) + 100)
0
10
6
57,714
[ 6, 100, 25, 5, 3, 75 ]
228
228
(((75 + 6) - 5) * 3)
0
10
6
383,168
[ 2, 9, 5, 10, 3, 3 ]
184
184
((((10 - 3) * 9) * 3) - 5)
0
10
6
601,223
[ 6, 10, 9, 50, 4, 75 ]
57
57
((9 - (6 - 4)) + 50)
0
10
6
103,492
[ 75, 5, 100, 6, 10, 25 ]
642
642
(((10 - (75 / 25)) + 100) * 6)
0
10
6
118,243
[ 6, 2, 7, 6, 1, 5 ]
478
478
(((((6 + 1) * 7) * 5) - 6) * 2)
0
10
6
549,505
[ 75, 5, 6, 25, 50, 100 ]
625
625
((75 + 50) * 5)
0
10
6
889,927
[ 2, 3, 100, 9, 4, 8 ]
226
226
(((9 + 100) + 4) * 2)
0
10
6
11,690
[ 4, 75, 4, 25, 50, 100 ]
126
126
(((4 / 4) + 50) + 75)
0
10
6
740,917
[ 100, 50, 25, 8, 75, 5 ]
350
350
((50 * 5) + 100)
0
10
6
588,932
[ 75, 2, 100, 7, 4, 5 ]
148
148
(((7 - 5) * 75) - 2)
0
10
6
850,539
[ 25, 6, 2, 7, 8, 100 ]
562
562
((((25 * 7) + 6) + 100) * 2)
0
10
6
854,589
[ 7, 2, 2, 1, 10, 10 ]
732
732
(((((10 * 7) + 1) + 2) * 10) + 2)
0
10
6
868,407
[ 10, 1, 6, 7, 25, 7 ]
705
704
(((((25 - 1) - 7) * 6) * 7) - 10)
1
9
6
111,587
[ 4, 6, 9, 10, 10, 2 ]
954
954
(((10 * 10) + 6) * 9)
0
10
6
38,207
[ 100, 50, 4, 5, 75, 25 ]
962
960
(((50 - (100 / (75 - 25))) * 4) * 5)
2
8
6
869,054
[ 75, 1, 6, 25, 8, 2 ]
959
959
(((((75 - 1) + 8) * 6) * 2) - 25)
0
10
6
936,536
[ 100, 75, 7, 50, 5, 7 ]
338
338
(((7 * 50) - 5) - 7)
0
10
6
708,230
[ 50, 100, 25, 75, 6, 1 ]
55
55
((50 - 1) + 6)
0
10
6
419,363
[ 5, 75, 7, 10, 3, 6 ]
679
679
((((75 - 7) * 10) + 5) - 6)
0
10
6
947,352
[ 2, 7, 10, 9, 5, 7 ]
531
531
(((7 * 7) + 10) * 9)
0
10
6
311,659
[ 75, 100, 7, 4, 25, 2 ]
846
846
((((7 * 75) - 100) * 2) - 4)
0
10
6
77,542
[ 100, 4, 2, 9, 25, 2 ]
670
670
(((((9 + 25) * 2) + 100) * 4) - 2)
0
10
6
623,807
[ 100, 1, 6, 25, 3, 1 ]
568
568
((((100 - 1) * 6) - 25) - 1)
0
10
6
511,588
[ 75, 9, 3, 7, 100, 50 ]
554
554
(((75 - 3) * 7) + 50)
0
10
6
448,636
[ 75, 3, 8, 100, 50, 9 ]
779
779
((((100 - 9) - 3) * 8) + 75)
0
10
6
14,088
[ 5, 3, 9, 25, 50, 100 ]
939
940
((((25 - 3) * 9) * 5) - 50)
1
9
6
456,747
[ 7, 5, 4, 7, 10, 2 ]
521
521
((((7 * 10) + 5) * 7) - 4)
0
10
6
101,200
[ 3, 10, 75, 7, 100, 25 ]
90
90
(100 - 10)
0
10
6
957,696
[ 4, 3, 3, 2, 9, 7 ]
450
450
((((3 * 7) + 4) * 2) * 9)
0
10
6
980,916
[ 50, 10, 75, 4, 1, 6 ]
989
989
((((4 * 6) + 75) * 10) - 1)
0
10
6
695,733
[ 9, 4, 8, 5, 10, 4 ]
468
468
(((5 + 8) * 4) * 9)
0
10
6
793,203
[ 1, 10, 7, 4, 2, 6 ]
999
990
(((((4 * 2) + 6) * 7) + 1) * 10)
9
1
6
94,939
[ 10, 8, 9, 10, 6, 5 ]
519
519
((((10 * 8) + 5) * 6) + 9)
0
10
6
311,752
[ 9, 3, 4, 10, 1, 2 ]
177
177
(((2 * 9) * 10) - 3)
0
10
6
538,091
[ 4, 50, 10, 75, 25, 7 ]
99
99
(((7 * 10) + 4) + 25)
0
10
6
387,379
[ 7, 50, 9, 5, 6, 75 ]
157
157
(((75 - 50) * 6) + 7)
0
10
6
851,460
[ 50, 3, 100, 1, 75, 10 ]
639
640
(((75 - 1) * 10) - 100)
1
9
6
940,178
[ 100, 50, 6, 25, 75, 3 ]
197
197
(((100 - 3) + 75) + 25)
0
10
6
827,613
[ 6, 4, 75, 10, 2, 2 ]
664
664
((((2 + 75) + 6) * 2) * 4)
0
10
6
278,555
[ 75, 50, 1, 9, 100, 25 ]
909
909
((100 + 1) * 9)
0
10
6
616,477
[ 8, 7, 9, 2, 1, 5 ]
191
191
((((7 - 2) * 5) * 8) - 9)
0
10
6
6,863
[ 100, 25, 50, 5, 7, 3 ]
620
620
((((100 * 7) - 50) - 5) - 25)
0
10
6
745,438
[ 4, 100, 1, 25, 7, 75 ]
508
508
((((100 + 25) * 4) + 7) + 1)
0
10
6
731,560
[ 4, 3, 8, 100, 5, 2 ]
817
817
((((100 + 2) * 8) + 4) - 3)
0
10
6
19,689
[ 4, 5, 25, 50, 75, 5 ]
722
721
((((50 / 5) * 75) - 25) - 4)
1
9
6
895,923
[ 9, 2, 50, 7, 25, 100 ]
17
17
((25 + 9) / 2)
0
10
6
524,623
[ 8, 3, 75, 25, 10, 4 ]
982
982
(((((25 - 4) - 8) * 75) + 10) - 3)
0
10
6
929,537
[ 25, 9, 100, 10, 50, 75 ]
832
833
(((100 - ((75 / 25) + 10)) * 9) + 50)
1
9
6
709,924
[ 75, 25, 8, 50, 6, 100 ]
868
868
(((((75 / 25) + 100) * 8) - 6) + 50)
0
10
6
14,910
[ 4, 9, 100, 5, 4, 75 ]
899
899
(((9 * 100) - 5) + 4)
0
10
6
117,895
[ 3, 4, 7, 7, 9, 2 ]
44
44
((9 + 2) * 4)
0
10
6
114,825
[ 75, 50, 7, 100, 9, 6 ]
875
875
((75 + 50) * 7)
0
10
6
518,258
[ 100, 6, 2, 10, 8, 7 ]
638
638
(((100 - 10) * 7) + 8)
0
10
6
178,536
[ 75, 9, 50, 8, 25, 7 ]
758
758
((((25 + 75) * 7) + 8) + 50)
0
10
6
990,693
[ 100, 5, 25, 50, 3, 75 ]
111
111
((((75 / 25) + 5) + 100) + 3)
0
10
6
949,030
[ 3, 100, 75, 50, 25, 1 ]
132
132
((((100 / 25) + 3) + 75) + 50)
0
10
6
907,594
[ 3, 2, 1, 9, 7, 6 ]
26
26
((9 * 3) - 1)
0
10
6
207,323
[ 25, 3, 8, 100, 75, 10 ]
27
27
((10 - 8) + 25)
0
10
6
767,173
[ 9, 50, 6, 7, 75, 10 ]
220
220
(((6 + 7) + 9) * 10)
0
10
6
106,497
[ 4, 75, 100, 3, 25, 5 ]
540
540
(((3 + 100) * 5) + 25)
0
10
6
686,998
[ 6, 7, 9, 10, 4, 5 ]
726
726
((((10 + 4) * 9) - 5) * 6)
0
10
6
535,510
[ 75, 8, 50, 10, 25, 8 ]
253
253
((((50 - 10) * 8) + 8) - 75)
0
10
6
398,734
[ 2, 9, 9, 75, 5, 25 ]
603
603
((((75 - 5) - 2) * 9) - 9)
0
10
6
223,234
[ 100, 5, 75, 5, 25, 4 ]
156
156
((((75 - 5) * 4) / 5) + 100)
0
10
6
767,340
[ 75, 100, 3, 8, 50, 5 ]
234
234
(((75 - 5) + 8) * 3)
0
10
6
21,348

Countdown Numbers Game Dataset

This dataset contains configurations and solutions for variations of the Countdown numbers game. Each example comprises a sequence of numbers, a target number, the computed solution (closest value), the arithmetic expression that achieves that value, the difference between the target and the computed value, and the final Countdown score.

HuggingFace Download Links

Dataset Variant Dataset Name Download
Random countdown-numbers-3-8 🤗 HuggingFace
Random Solvable countdown-numbers-3-8-nz 🤗 HuggingFace
Coundown Game Rules countdown-numbers-6-gr 🤗 HuggingFace

Dataset Overview

Each data point in the dataset includes:

  • Numbers:
    A sequence of $n$ integers $s_1, s_2, \ldots, s_n$ where $s_i \in {1, 2, \ldots, 100}$ for all $i \in {1, 2, \ldots, n}$, and $n \in {3, 4, \ldots, 8}$. (Note: In the traditional Countdown game, the numbers are subject to more specific restrictions.)

  • Target:
    An integer $t \in {1, 2, \ldots, 999}$. (For context, the standard Countdown game usually features targets from 101 and above.)

  • Closest:
    The value computed by a solver $r \in {1, 2, \ldots, 999}$ that is closest to the target number.

  • Expression:
    The arithmetic expression used to compute the closest value. For instance, $((2 + 48) \times 5) \div 10$

  • Delta:
    The absolute difference between the target and the closest value, i.e. $|t - r|$.

  • Score:
    The Countdown score calculated as $\max(0, 10 - |t - r|)$. This score reflects how close the computed value is to the target.


Dataset Variants

This dataset is provided in three variants:

  1. Random:
    Configurations and solutions generated by uniformly sampling and solving one million game instances, without additional restrictions.

  2. Random Solvable (Score > 0):
    Configurations are generated by uniformly sampling numbers and then rejecting any sample that results in an unsolvable instance (i.e., a score of 0). This variant ensures that each instance has a solution that yields a positive score.

  3. Countdown:
    Configurations generated by sampling 6 numbers in the style of the British TV show Countdown.

Score Distributions

The following histograms show the distribution of scores for each dataset variant:

Random Variant

Random Solvable (Score > 0) Variant

Countdown Game Rules


Generation Process

The dataset was created by:

  • Uniformly sampling numbers within the specified ranges.
  • Solving each sampled instance to determine the closest value, the corresponding expression, the difference from the target, and the score.
  • For the Random Solvable (Score > 0) variant, rejection sampling was applied: instances that did not yield a positive score were discarded.

The train and test splits were created by randomly partitioning the instances into 80% training and 20% testing, using a stratified split based on the score and number of starting values.

Split Score/Size Distributions

The final distributions of scores and numbers are shown in the following histograms:

Random Variant

Random Solvable (Score > 0) Variant

Countdown Game Rules


How to Use the Dataset

You can load and use this dataset with the Hugging Face datasets library. For example:

from datasets import load_dataset

dataset = load_dataset("alexjackson17/countdown-numbers-6-gr")

# Example: Access the first entry in the training split
example = dataset["train"][0]
print("Numbers: ", example["starting"])
print("Target: ", example["target"])
print("Closest: ", example["closest"])
print("Expression: ", example["expression"])
print("Difference: ", example["delta"])
print("Score: ", example["score"])

Citation

If you use this dataset in your research or projects, please cite it as follows:

@misc{jackson2025countdown,
  title = {Countdown Numbers Game Dataset},
  author = {Alex Jackson},
  year = {2025},
  note = {Released under the MIT License},
}

Funding Attribution

This work was supported by UK Research and Innovation [grant number EP/S023356/1], in the UKRI Centre for Doctoral Training in Safe and Trusted Artificial Intelligence (www.safeandtrustedai.org).


License

This dataset is released under the MIT License. See the LICENSE file for more information.

For questions, feedback, or further information, please contact Alex Jackson.

Downloads last month
57