Coins-of-Bengal / main.py
athoye's picture
Adding the live link
245057a verified
'''
Live version accessible at:
https://coins-of-bengal.streamlit.app
'''
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import os
import re
import warnings
from kaggle.api.kaggle_api_extended import KaggleApi
from PIL import Image
# Verbose Error Suppression
def configure_app():
st.set_page_config(page_title="Coins of Bengal", layout="wide")
st.set_option('client.showErrorDetails', False)
warnings.filterwarnings("ignore")
# Landing Page
def landing_page():
image_paths = [
"data/Muslim Conquerors/9.2 Giasuddin Bahadur Ghazi re .webp",
"data/Muslim Conquerors/29.5 Shamsuddin Firuz Shah re .webp",
"data/Muslim Conquerors/1.1 Ikhtiyar Khilji re .webp",
"data/Muslim Conquerors/2.1 Ali Mardan re .webp",
"data/Muslim Conquerors/22.6 Ruknuddin Barbak Shah .webp"
]
cols = st.columns(len(image_paths))
for i, path in enumerate(image_paths):
with cols[i]:
try:
# Optimize image loading with thumbnail and explicit format
img = Image.open(path)
img.thumbnail((500, 500)) # Resize for faster loading, adjust as needed
st.image(img, use_container_width=True)
except FileNotFoundError:
st.error(f"Image not found at: {path}")
except Exception as e:
st.error(f"Error loading image {path}: {e}")
st.markdown("<h2 style='text-align: center;'>Engineer Noorul Islam,<br>Proprietor of the actual museum and the private dataset</h2>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>Dr. Md. Ataur Rahman,<br>Researcher and Archaeologist</h2>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>Athoye Mahmud,<br>Developer and Data Science Undergrad, UIU</h2>", unsafe_allow_html=True)
st.markdown("""
<style>
.footer {
position: fixed;
bottom: 0;
left: 0;
width: 100%;
background: linear-gradient(90deg, #D4AF37, #FFD700); /* Metallic Gold */
text-align: center; /* Default: Centered */
padding: 5px;
font-size: 14px;
font-weight: 600;
color: black;
box-shadow: 0 -1px 3px rgba(0, 0, 0, 0.2);
}
.footer small {
font-size: 14px;
padding: 0;
margin: 0;
display: inline-block;
}
/* Responsive Design */
@media screen and (max-width: 720px) { /* Applies when screen width <= 720px */
.footer {
text-align: left;
padding-left: 10px;
}
}
</style>
<div class="footer">
<small>©️ Published January 2025. All rights reserved.</small>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
# Load and preprocess data (from Kaggle)
@st.cache_data
def load_data():
try:
# Initialize the Kaggle API and authenticate
api = KaggleApi()
api.authenticate()
# Specify dataset and file path
dataset_path = 'athoye/coins-of-bengal'
file_name = 'coins.csv'
download_path = 'data' # Local directory to store the file
# Download the file
api.dataset_download_file(dataset_path, file_name, path=download_path, force=False, quiet=False)
# Load the data into a pandas DataFrame
csv_path = os.path.join(download_path, file_name)
df = pd.read_csv(csv_path)
# Standardize column names
df.rename(columns=lambda x: x.strip(), inplace=True)
df.rename(columns={
"Coin No.": "Coin No.",
"Ruler": "Ruler (or Issuer)",
"Weight": "Weight (g)",
"Dimensions": "Dimension (mm)",
}, inplace=True)
df["Weight (g)"] = pd.to_numeric(df["Weight (g)"], errors="coerce")
df["Dimension (mm)"] = pd.to_numeric(df["Dimension (mm)"], errors="coerce")
for col in ["Ruler (or Issuer)", "Reign", "Metal", "Mint", "Date of Issue"]:
df[col].fillna("Unknown", inplace=True)
for col in ["Weight (g)", "Dimension (mm)"]:
df[col].fillna(0, inplace=True)
# Function to convert Arabic calendar years to Gregorian
def convert_to_gregorian(year):
try:
year = int(year) # Ensure year is an integer
if year < 1202:
return year + 622 # Approximate conversion
return year
except ValueError:
return "Unknown" # Handle cases where conversion is not possible
# Apply the conversion to the "Date of Issue" column
df['Date of Issue'] = df['Date of Issue'].apply(convert_to_gregorian)
return df
except Exception as e:
st.error(f"Error loading data from Kaggle: {e}")
st.info("Make sure you have a valid kaggle.json file in the correct location (~/.kaggle/kaggle.json).")
return pd.DataFrame() # Return empty dataframe to prevent later errors
# Image matching (using Kaggle dataset)
@st.cache_data
def load_images():
try:
api = KaggleApi()
api.authenticate()
dataset_path = 'athoye/coins-of-bengal'
download_path = 'data'
api.dataset_download_files(dataset_path, path=download_path, unzip=True, force=False, quiet=False)
images_folder = os.path.join(download_path, "Muslim Conquerors")
return match_images(images_folder)
except Exception as e:
st.error(f"Error downloading or unzipping image dataset: {e}")
return {}
def match_images(images_folder):
images_dict = {}
if not os.path.exists(images_folder):
st.error(f"Error: Image folder not found at: {images_folder}")
return images_dict
pattern = re.compile(r"(\d+\.\d+)[_\s-]*.*\.webp$", re.IGNORECASE)
for filename in os.listdir(images_folder):
match = pattern.match(filename)
if match:
coin_no = match.group(1)
if coin_no not in images_dict:
images_dict[coin_no] = {"front": None, "back": None}
lower_name = filename.lower()
if " re " in lower_name or lower_name.endswith(" re.webp") or " re." in lower_name:
images_dict[coin_no]["back"] = os.path.join(images_folder, filename)
else:
images_dict[coin_no]["front"] = os.path.join(images_folder, filename)
return images_dict
def sidebar_filters(df):
st.sidebar.header("🔍 Filter Coins")
if df is not None and not df.empty:
# Ruler filter with a dropdown
selected_ruler = st.sidebar.selectbox("Select Ruler", ["All"] + sorted(df["Ruler (or Issuer)"].unique()))
# Metal filter with multiselect
selected_metals = st.sidebar.multiselect("Select Metal", options=["All"] + sorted(df["Metal"].unique()), default=["All"])
# Improved Reign filter with a range slider
reigns = sorted(df["Reign"].unique())
if reigns:
# Extract years from reign strings
years = [int(y.split('–')[0]) for y in reigns if '–' in y]
if years:
min_year = min(years)
max_year = max(years)
selected_years = st.sidebar.slider(
"Select Reign Years",
min_value=min_year,
max_value=max_year,
value=(min_year, max_year)
)
# Weight filter with a slider
weight_range = st.sidebar.slider(
"Select Weight Range (g)",
min_value=float(df["Weight (g)"].min()),
max_value=float(df["Weight (g)"].max()),
value=(0.0, float(df["Weight (g)"].max()))
)
# Apply filters
filtered_df = df.copy()
if selected_ruler != "All":
filtered_df = filtered_df[filtered_df["Ruler (or Issuer)"] == selected_ruler]
if "All" not in selected_metals:
filtered_df = filtered_df[filtered_df["Metal"].isin(selected_metals)]
# Apply reign filter
if reigns and years:
filtered_df = filtered_df[
filtered_df["Reign"].apply(
lambda x: selected_years[0] <= int(x.split('–')[0]) <= selected_years[1]
)
]
filtered_df = filtered_df[(filtered_df["Weight (g)"] >= weight_range[0]) & (filtered_df["Weight (g)"] <= weight_range[1])]
return filtered_df
return pd.DataFrame() # Return empty dataframe if input df is empty
# Display data
def display_data(df):
st.subheader("📜 Coin Database")
if df is not None and not df.empty: # Check for empty DataFrame
st.dataframe(df, use_container_width=True)
else:
st.warning("No data available to display.") # Display a warning
st.markdown("---")
# Visualizations
def display_visualizations(df):
st.subheader("📊 Coin Data Insights")
if df is not None and not df.empty:
# Filter out rows where "Weight (g)" is zero or NaN
df_filtered = df[df["Weight (g)"].notna() & (df["Weight (g)"] != 0)]
fig1 = px.histogram(df_filtered, x="Weight (g)", nbins=20, title="Distribution of Coin Weights", marginal="rug")
# Make titles and axis labels bolder
fig1.update_layout(
title_font=dict(size=24),
xaxis_title="Weight (g)",
yaxis_title="Count",
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18)
)
st.plotly_chart(fig1, use_container_width=True)
fig2 = px.scatter(
df, x="Weight (g)", y="Dimension (mm)", color="Metal",
size="Weight (g)", hover_data=["Ruler (or Issuer)"], title="Coin Weight vs. Dimension"
)
# Make titles and axis labels bolder
fig2.update_layout(
title_font=dict(size=24),
xaxis_title="Weight (g)",
yaxis_title="Dimension (mm)",
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18)
)
st.plotly_chart(fig2, use_container_width=True)
alt_chart = alt.Chart(df).mark_bar().encode(
x=alt.X("Metal:N", title="Metal Type"),
y=alt.Y("count()", title="Count"),
color="Metal"
).properties(title="Metal Type Distribution")
# Make titles and axis labels bolder
alt_chart = alt_chart.configure_title(
fontSize=24,
font="Arial",
color="black"
).configure_axis(
labelFontSize=18,
titleFontSize=18,
titleFont="Arial",
titleColor="black"
)
st.altair_chart(alt_chart, use_container_width=True)
# Count number of coins per ruler
ruler_counts = df["Ruler (or Issuer)"].value_counts().reset_index()
ruler_counts.columns = ["Ruler (or Issuer)", "Coin Count"]
# Plot using Plotly
fig3 = px.bar(
ruler_counts,
x="Coin Count",
y="Ruler (or Issuer)",
orientation="h",
title="🏛 Number of Coins Issued per Ruler",
labels={"Coin Count": "Number of Coins", "Ruler (or Issuer)": "Ruler"},
text_auto=True
)
# Improve appearance
fig3.update_layout(
title_font=dict(size=24),
xaxis_title="Number of Coins",
yaxis_title="Ruler",
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18)
)
fig3.update_layout(yaxis=dict(categoryorder="total ascending"), xaxis=dict(showgrid=True))
# Show plot in Streamlit
st.plotly_chart(fig3) # Use Streamlit to display the plot
else:
st.warning("No data to create visualizations")
# Display coins with images
def display_coins_with_images(df, images_dict):
st.subheader("🖼️ Coin Details with Images")
if df is not None and not df.empty:
for idx, row in df.iterrows():
coin_no = str(row["Coin No."])
st.markdown(f"### Coin No. {coin_no}")
st.markdown(f"<h2 style='font-size:24px; font-weight:bold;'>Ruler: {row['Ruler (or Issuer)']}</h2>", unsafe_allow_html=True)
st.write(f"**Reign:** {row['Reign']}")
st.write(f"**Metal:** {row['Metal']}")
st.write(f"**Weight (g):** {row['Weight (g)']}")
st.write(f"**Dimension (mm):** {row['Dimension (mm)']}")
st.write(f"**Mint:** {row['Mint']}")
st.write(f"**Date of Issue:** {row['Date of Issue']}")
front_path = images_dict.get(coin_no, {}).get("front")
back_path = images_dict.get(coin_no, {}).get("back")
col1, col2 = st.columns(2)
# Image loading and display with error handling and optimization
with col1:
if front_path:
try:
img = Image.open(front_path)
img.thumbnail((500, 500)) # Resize for faster loading
st.image(img, caption=f"{coin_no} (Front)", use_container_width=True)
except Exception as e:
st.error(f"Error loading front image: {e}")
else:
st.warning("Front image not found.")
with col2:
if back_path:
try:
img = Image.open(back_path)
img.thumbnail((400, 400)) # Resize for faster loading
st.image(img, caption=f"{coin_no} (Back)", use_container_width=True)
except Exception as e:
st.error(f"Error loading back image: {e}")
else:
st.warning("Back image not found.")
st.markdown("---")
else:
st.warning("No coins to display.")
def test_kaggle_connection():
st.title("🔌 Kaggle Connection Test")
try:
# Initialize the Kaggle API
api = KaggleApi()
api.authenticate()
# Test connection by listing competitions
competitions = api.competitions_list()
st.success("✅ Successfully connected to Kaggle!")
# Display some data to verify
st.write("### Recent Kaggle Competitions:")
for comp in competitions[:5]: # Show first 5 competitions
st.write(f"- {comp.title}")
except Exception as e:
st.error(f"❌ Failed to connect to Kaggle: {str(e)}")
st.info("Make sure you have kaggle.json in ~/.kaggle/ directory")
# Main function
def main():
configure_app()
st.title("🪙 Coins of Bengal, A Digital Coin Museum", anchor="center")
# Navigation
pages = {
"Home": landing_page,
"Data": display_data,
"Visualizations": display_visualizations,
"Coin Catalog": display_coins_with_images,
"Kaggle Connection Test": test_kaggle_connection
}
st.sidebar.title("🧭 Navigation")
selection = st.sidebar.radio("⤵️ Go to", list(pages.keys()))
# Load data and images (using Kaggle)
coins_df = load_data()
images_dict = load_images()
filtered_df = sidebar_filters(coins_df)
# Display selected page, handling potential None/empty DataFrame
if selection == "Home":
pages[selection]() # Landing page doesn't need data
elif selection in ["Data", "Visualizations", "Coin Catalog"]:
if not filtered_df.empty: # Only pass data if it's not empty
pages[selection](filtered_df, images_dict)
else:
st.warning("No data available based on current filter selection.")
if selection == "Coin Catalog": #Need to account for empty dict too
st.warning("Ensure image directory has been downloaded.")
elif selection == "Kaggle Connection Test":
test_kaggle_connection()
if __name__ == "__main__":
main()