seq_id
stringlengths
4
11
text
stringlengths
113
2.92M
repo_name
stringlengths
4
125
sub_path
stringlengths
3
214
file_name
stringlengths
3
160
file_ext
stringclasses
18 values
file_size_in_byte
int64
113
2.92M
program_lang
stringclasses
1 value
lang
stringclasses
93 values
doc_type
stringclasses
1 value
stars
int64
0
179k
dataset
stringclasses
3 values
pt
stringclasses
78 values
73931882429
#!python """ A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, ... , ak} is called a product-sum number: N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. For example, 6 = 1 + 2 + 3 = 1 × 2 × 3. For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, k = 2, 3, 4, 5, and 6 are as follows. k=2: 4 = 2 × 2 = 2 + 2 k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3 k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4 k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2 k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6 Hence for 2≤k≤6, the sum of all the minimal product-sum numbers is 4+6+8+12 = 30; note that 8 is only counted once in the sum. In fact, as the complete set of minimal product-sum numbers for 2≤k≤12 is {4, 6, 8, 12, 15, 16}, the sum is 61. What is the sum of all the minimal product-sum numbers for 2≤k≤12000? """ #the smallest possible k, is 1+1+...+1, i.e. k, however this will not be a product sum for k>1 #also notice that 2xkx1x1x1x...x1 (k-2 ones) == 2k = 2 + k + 1+...+1 (k-2 ones) #so out minimal product sum is k<=mps<=2k so we just need to look for product sums in this range from functools import reduce, lru_cache from operator import mul from pe import prime_factors def product(l): return reduce(mul, l) def is_ps(l): return sum(l) == product(l) @lru_cache(maxsize=None) def c_prime_factors(n): return prime_factors(n) @lru_cache(maxsize=None) def c_all_multiplicands(n): return list(all_multiplicands(n)) @lru_cache(maxsize=None) def all_multiplicands(n): factors = c_prime_factors(n) res = [] if len(factors)==1: return [[n]] ms = [] for i in range(len(factors)): f = factors[i] r = sorted(all_multiplicands(product(factors[:i]+factors[i+1:]))) if r not in res: res.append(r) for arr in r: farr = sorted([f]+arr) if farr not in ms: ms.append(farr) for j in range(len(arr)): farr = sorted(arr[:j]+[f*arr[j]]+arr[j+1:]) if farr not in ms: ms.append(farr) return ms def is_n_ps_for_k(n, k): for candidate in all_multiplicands(n): if len(candidate) > k: continue #this shouldn't really happen if(sum(candidate)+k-len(candidate))==n: return True return False limit = 12000 s = set([]) for i in range(2,limit+1): for j in range(i, 2*i+1): if is_n_ps_for_k(j, i): print([i, j]) s.add(j) break print(sum(s))
DanMayhem/project_euler
088.py
088.py
py
2,498
python
en
code
0
github-code
6
20521018910
"""! @brief Assert that are used for testing @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ import numpy class assertion: @staticmethod def eq(argument1, argument2): if isinstance(argument1, numpy.ndarray) or isinstance(argument2, numpy.ndarray): if not (argument1 == argument2).all(): raise AssertionError("Expected: '" + str(argument1) + "', Actual: '" + str(argument2) + "'") elif not (argument1 == argument2): raise AssertionError("Expected: '" + str(argument1) + "', Actual: '" + str(argument2) + "'") @staticmethod def eq_float(argument1, argument2, eps): if abs(argument1 - argument2) >= eps: raise AssertionError("Expected: '" + str(argument1) + "', Actual: '" + str(argument2) + "' (eps: '" + str(eps) + "')") @staticmethod def gt(argument1, argument2): if not (argument1 > argument2): raise AssertionError("Expected: '" + str(argument1) + "' > '" + str(argument2) + "', Actual: '" + str(argument1) + "' vs '" + str(argument2) + "'") @staticmethod def ge(argument1, argument2): if not (argument1 >= argument2): raise AssertionError("Expected: '" + str(argument1) + "' >= '" + str(argument2) + "', Actual: '" + str(argument1) + "' vs '" + str(argument2) + "'") @staticmethod def lt(argument1, argument2): if not (argument1 < argument2): raise AssertionError("Expected: '" + str(argument1) + "' < '" + str(argument2) + "', Actual: '" + str(argument1) + "' vs '" + str(argument2) + "'") @staticmethod def le(argument1, argument2): if not (argument1 <= argument2): raise AssertionError("Expected: '" + str(argument1) + "' <= '" + str(argument2) + "', Actual: '" + str(argument1) + "' vs '" + str(argument2) + "'") @staticmethod def true(argument1, **kwargs): message = kwargs.get('message', None) error_message = "Expected: 'True', Actual: '%s'" % str(argument1) if message: error_message = "%s, Info: '%s'" % (error_message, message) if not argument1: raise AssertionError(error_message) @staticmethod def false(argument1, **kwargs): message = kwargs.get('message', None) error_message = "Expected: 'False', Actual: '%s'" % str(argument1) if message: error_message = "%s, Info: '%s'" % (error_message, message) if argument1: raise AssertionError(error_message) @staticmethod def fail(message=None): if message is None: raise AssertionError("Failure") else: raise AssertionError("Failure: '" + message + "'") @staticmethod def exception(expected_exception, callable_object, *args, **kwargs): try: callable_object(*args, **kwargs) except expected_exception: return except Exception as actual_exception: raise AssertionError("Expected: '%s', Actual: '%s'" % (expected_exception.__name__, actual_exception.__class__.__name__)) raise AssertionError("Expected: '%s', Actual: 'None'" % expected_exception.__name__)
annoviko/pyclustering
pyclustering/tests/assertion.py
assertion.py
py
3,532
python
en
code
1,113
github-code
6
2870616186
import operator import struct from enum import Enum from collections import defaultdict, namedtuple, deque import simulatorOps.utils as utils from simulatorOps.abstractOp import AbstractOp, ExecutionException class HalfSignedMemOp(AbstractOp): saveStateKeys = frozenset(("condition", "imm", "pre", "sign", "byte", "writeback", "mode", "signed", "basereg", "rd", "offsetImm", "offsetReg")) def __init__(self): super().__init__() self._type = utils.InstrType.memop def decode(self): instrInt = self.instrInt if not (utils.checkMask(instrInt, (7, 4), (27, 26, 25))): raise ExecutionException("Le bytecode à cette adresse ne correspond à aucune instruction valide", internalError=False) # Retrieve the condition field self._decodeCondition() # This is the inverse of LDR/STR, if bit 22 is set, then offset IS an immediate value self.imm = bool(instrInt & (1 << 22)) self.pre = bool(instrInt & (1 << 24)) self.sign = 1 if instrInt & (1 << 23) else -1 self.byte = not bool(instrInt & (1 << 5)) self.signed = bool(instrInt & (1 << 6)) # See 4.9.1 (with post, writeback is redundant and always implicitely on) self.writeback = bool(instrInt & (1 << 21)) or not self.pre self.mode = "LDR" if instrInt & (1 << 20) else "STR" self.basereg = (instrInt >> 16) & 0xF self.rd = (instrInt >> 12) & 0xF if self.imm: # The immediate offset is divided in 2 nibbles: # the 4 LSB are at positions [3, 2, 1, 0] # the 4 MSB are at positions [11, 10, 9, 8] self.offsetImm = instrInt & 0xF + ((instrInt >> 4) & 0xF0) else: # No shift allowed with these instructions self.offsetReg = instrInt & 0xF def explain(self, simulatorContext): self.resetAccessStates() bank = simulatorContext.regs.mode simulatorContext.regs.deactivateBreakpoints() disassembly = self.mode description = "<ol>\n" disCond, descCond = self._explainCondition() description += descCond disassembly += disCond self._readregs = utils.registerWithCurrentBank(self.basereg, bank) addr = baseval = simulatorContext.regs[self.basereg] description += "<li>Utilise la valeur du registre {} comme adresse de base</li>\n".format(utils.regSuffixWithBank(self.basereg, bank)) descoffset = "" if self.imm: addr += self.sign * self.offsetImm if self.offsetImm > 0: if self.sign > 0: descoffset = "<li>Additionne la constante {} à l'adresse de base</li>\n".format(self.offsetImm) else: descoffset = "<li>Soustrait la constante {} à l'adresse de base</li>\n".format(self.offsetImm) else: regDesc = utils.regSuffixWithBank(self.offsetReg, bank) if self.sign > 0: descoffset = "<li>Additionne le registre {} à l'adresse de base</li>\n".format(regDesc) else: descoffset = "<li>Soustrait le registre {} à l'adresse de base</li>\n".format(regDesc) addr += self.sign * simulatorContext.regs[self.offsetReg] self._readregs |= utils.registerWithCurrentBank(self.offsetReg, bank) realAddr = addr if self.pre else baseval sizeaccess = 1 if self.byte else 2 sizedesc = "1 octet" if sizeaccess == 1 else "{} octets".format(sizeaccess) disassembly += "S" if self.signed else "" disassembly += "B" if sizeaccess == 1 else "H" if sizeaccess == 2 else "" disassembly += " R{}, [R{}".format(self.rd, self.basereg) if self.mode == 'LDR': if self.pre: description += descoffset description += "<li>Lit {} à partir de l'adresse obtenue (pré-incrément) et stocke le résultat dans {} (LDR)</li>\n".format(sizedesc, utils.regSuffixWithBank(self.rd, bank)) else: description += "<li>Lit {} à partir de l'adresse de base et stocke le résultat dans {} (LDR)</li>\n".format(sizedesc, utils.regSuffixWithBank(self.rd, bank)) description += descoffset if self.signed: description += "<li>Copie la valeur du bit {} sur les bits {} à 31 du registre de destination</li>\n".format(7 if self.byte else 15, 8 if self.byte else 16) self._readmem = set(range(realAddr, realAddr+sizeaccess)) self._writeregs |= utils.registerWithCurrentBank(self.rd, bank) if self.rd == simulatorContext.PC: try: m = simulatorContext.mem.get(realAddr, size=sizeaccess, mayTriggerBkpt=False) except ExecutionException as ex: # We do not want to handle user errors here; # If there is an issue with the memory access, we simply carry on pass else: if m is not None: res = struct.unpack("<B" if self.byte else "<H", m)[0] self._nextInstrAddr = res else: # STR descRange = " de l'octet le moins significatif" if self.byte else " des 2 octets les moins significatifs" if self.pre: description += descoffset description += "<li>Copie la valeur" + descRange + " registre {} dans la mémoire, à l'adresse obtenue à l'étape précédente (pré-incrément), sur {} (STR)</li>\n".format(utils.regSuffixWithBank(self.rd, bank), sizedesc) else: description += "<li>Copie la valeur" + descRange + " registre {} dans la mémoire, à l'adresse de base, sur {} (STR)</li>\n".format(utils.regSuffixWithBank(self.rd, bank), sizedesc) description += descoffset self._writemem = set(range(realAddr, realAddr+sizeaccess)) self._readregs |= utils.registerWithCurrentBank(self.rd, bank) if self.pre: if self.imm: if self.offsetImm == 0: disassembly += "]" else: disassembly += ", #{}]".format(hex(self.sign * self.offsetImm)) else: disassembly += ", R{}".format(self.offsetReg) + "]" else: # Post (a post-incrementation of 0 is useless) disassembly += "]" if self.imm and self.offsetImm != 0: disassembly += ", #{}".format(hex(self.sign * self.offsetImm)) elif not self.imm: disassembly += ", R{}".format(self.offsetReg) #else: # Weird case, would happen if we combine post-incrementation and immediate offset of 0 # disassembly += "]" if self.writeback: self._writeregs |= utils.registerWithCurrentBank(self.basereg, bank) description += "<li>Écrit l'adresse effective dans le registre de base {} (mode writeback)</li>\n".format(utils.regSuffixWithBank(self.basereg, bank)) if self.pre: disassembly += "!" description += "</ol>" simulatorContext.regs.reactivateBreakpoints() return disassembly, description def execute(self, simulatorContext): if not self._checkCondition(simulatorContext.regs): # Nothing to do, instruction not executed self.countExecConditionFalse += 1 return self.countExec += 1 addr = baseval = simulatorContext.regs[self.basereg] if self.imm: addr += self.sign * self.offsetImm else: addr += self.sign * simulatorContext.regs[self.offsetReg] realAddr = addr if self.pre else baseval s = 1 if self.byte else 2 if self.mode == 'LDR': m = simulatorContext.mem.get(realAddr, size=s) if m is None: # No such address in the mapped memory, we cannot continue raise ExecutionException("Tentative de lecture de {} octets à partir de l'adresse {} invalide : mémoire non initialisée".format(s, realAddr)) res = struct.unpack("<B" if self.byte else "<H", m)[0] simulatorContext.regs[self.rd] = res if self.signed: simulatorContext.regs[self.rd] |= 0xFFFFFF00 * ((res >> 7) & 1) if self.byte else 0xFFFF0000 * ((res >> 15) & 1) if self.rd == simulatorContext.PC: self.pcmodified = True else: # STR valWrite = simulatorContext.regs[self.rd] if self.rd == simulatorContext.PC and simulatorContext.PCSpecialBehavior: valWrite += 4 # Special case for PC (see ARM datasheet, 4.9.4) valWrite &= 0xFFFF simulatorContext.mem.set(realAddr, valWrite, size=1 if self.byte else 2) if self.writeback: simulatorContext.regs[self.basereg] = addr
mgard/epater
simulatorOps/halfSignedMemOp.py
halfSignedMemOp.py
py
9,179
python
en
code
35
github-code
6
28116032092
import numpy as np class LinearRegressionDemo: def __init__(self, learning_rate=1e-3, n_iters=1000): # init parameters self.lr = learning_rate self.n_iters = n_iters self.weights = None self.bias = None def _get_prediction(self, X): return np.dot(X, self.weights) + self.bias def _init_params(self): self.weights = np.zeros(self.n_features) self.bias = 0 def _update_params(self, dw, db): self.weights -= self.lr * dw self.bias -= self.lr * db def _get_gradients(self, X, y, y_pred): # get distance between y_pred and y_true error = y_pred - y # compute the gradients of weight & bias dw = (1 / self.n_samples) * np.dot(X.T, error) db = (1 / self.n_samples) * np.sum(error) return dw, db def fit(self, X, y, X_test): # get number of samples & features self.n_samples, self.n_features = X.shape # init weights & bias self._init_params() preds = [] test_preds = [] # perform gradient descent for n iterations for _ in range(self.n_iters): # get y_prediction y_pred = self._get_prediction(X) # compute gradients dw, db = self._get_gradients(X, y, y_pred) # update weights & bias with gradients self._update_params(dw, db) preds.append(self.predict(X)) test_preds.append(self.predict(X_test)) #test_rmses.append(mean_squared_error(self.predict(X), y, squared=False)) return preds, test_preds def predict(self, X): y_pred = self._get_prediction(X) return y_pred
Nishaa95/Intro_to_Machine_Learning_Student_Workbooks
linear_reg_demo_grad_desc.py
linear_reg_demo_grad_desc.py
py
1,736
python
en
code
0
github-code
6
6589861302
from elasticsearch import Elasticsearch import pandas as pd from contexttimer import Timer es = Elasticsearch( "http://rgai3.inf.u-szeged.hu:3427/", basic_auth=("elastic", "V7uek_ey6EdQbGBz_XHX"), verify_certs=False ) def get_highlights(csv, es, size): # adatok kinyerése pd-ből, a már tisztított kérdésekkel df = pd.read_csv(csv, names=['question', 'context'], header=1, encoding='utf-8') milqa_contexts_dict = dict() for index, record in df.iterrows(): clean_question = record['question'] context = record['context'] if clean_question not in milqa_contexts_dict: milqa_contexts_dict[clean_question] = context else: pass with Timer() as t: result_dict = dict() error_counter = 0 id = 0 match_len = 0 all_context = list() all_question = list() for key, value in milqa_contexts_dict.items(): question = key official_context = value.split("|||")[1] # query top 10 guesses body = { "size": size, "query": { "match": { "document": question } } } s = es.search(index='milqa_w_lemma_w_official_context', body=body) result_contexts = list() result_official_contexts = list() for hit in s['hits']['hits']: result_contexts.append(hit["_source"]["document"]) result_official_contexts.append(hit["_source"]["official_document"]) # error_dict = dict() result_official_contexts_set = set(single_context for single_context in result_official_contexts) if official_context in result_official_contexts_set: match_counter = 1 result_number = 0 for result_official_context in result_official_contexts: if result_official_context == official_context: result_number = match_counter break else: match_counter += 1 match_len += 1 all_context.append(value) all_question.append(key) else: error_counter += 1 result_number = 'Nincs benne' all_context.append(value) all_question.append(key) if isinstance(result_number, str): result_dict[id] = result_number else: result_dict[id] = (1 / int(result_number)) id += 1 summary = 0.0 error_counter_check = 0 summary_counter = 0 number: float for key, number in result_dict.items(): if isinstance(number, float): summary += number summary_counter += 1 if isinstance(number, str): error_counter_check += 1 print("összes eltalát eset " + str(size) + " size mérettel: " + str(summary_counter)) print("összes eset " + str(size) + " size mérettel: " + str(len(milqa_contexts_dict))) print("összes vizsgált számon kívüli eset " + str(size) + " size mérettel: " + str(error_counter_check)) print("összes eltalált/összes eset (Precision@k): " + str(summary_counter / len(milqa_contexts_dict))) print("MRR: " + str(summary / len(milqa_contexts_dict)) + " | error counter: " + str( error_counter)) # + "\n" + str(result_dict))# + "\n" + all_context[2] + "\n" + all_question[2]) print(f"Time spent: {t.elapsed:.2f} seconds") return 0 if __name__ == '__main__': csv = 'q_wPoS_wLemma_c_wLemma_c_wOfficial.csv' # csv = 'q_wLemma_c_wLemma_c_wOfficial.csv' print(get_highlights(csv, es, 300)) # posLemma: 12769 lemma: 12845 # 1 pos lemma: # összes eltalát eset 1 size mérettel: 8393 # összes eset 1 size mérettel: 12769 # összes vizsgált számon kívüli eset 1 size mérettel: 4376 # összes eltalált/összes eset (Precision@k): 0.657295011355627 # MRR: 0.657295011355627 | error counter: 4376 # Time spent: 75.06 seconds # # 300 pos lemma: # összes eltalát eset 300 size mérettel: 12559 # összes eset 300 size mérettel: 12769 # összes vizsgált számon kívüli eset 300 size mérettel: 210 # összes eltalált/összes eset (Precision@k): 0.9835539196491503 # MRR: 0.7494510958150116 | error counter: 210 # Time spent: 480.42 seconds # # 300 lemma: # összes eltalát eset 300 size mérettel: 12638 # összes eset 300 size mérettel: 12845 # összes vizsgált számon kívüli eset 300 size mérettel: 207 # összes eltalált/összes eset (Precision@k): 0.9838847800700662 # MRR: 0.7403596956400766 | error counter: 207 # Time spent: 599.05 seconds # # 1 lemma # összes eltalát eset 1 size mérettel: 8315 # összes eset 1 size mérettel: 12845 # összes vizsgált számon kívüli eset 1 size mérettel: 4530 # összes eltalált/összes eset (Precision@k): 0.64733359283768 # MRR: 0.64733359283768 | error counter: 4530 # Time spent: 80.92 seconds
szegedai/SHunQA
scripts/evals/highlights_score_test_w_preprocessed_questions.py
highlights_score_test_w_preprocessed_questions.py
py
5,241
python
hu
code
0
github-code
6
36060772305
# #!/usr/bin/env python3 import json import socket from utils.save_json import save_json def initSocket(ip, port, diretorio): dir = 'src/json/'+diretorio+'.json' dicionario = '' try: tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp.bind((ip, port)) tcp.listen(2) while True: con, cliente = tcp.accept() print ('Concetado por', cliente) while True: msg = con.recv(12288) msg = msg.decode() dicionario += msg # dicionario.append(msg) # json_distribuido = json.loads(dicionario) if not msg: save_json(dir, json.loads(dicionario)) dicionario = '' break except KeyboardInterrupt: sys.exit(0)
AntonioAldisio/FSE-2022-2-Trabalho-1
src/servidor/servidor.py
servidor.py
py
847
python
pt
code
0
github-code
6
6420520466
import time import datetime import math import logging class Logger(): def __init__(self): self. start_time = time.time() self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) print('Starting ' + str(datetime.datetime.now())) @staticmethod def printLog(*messages, no_time = False, logging_level='INFO'): message = Logger.unwrapMessage(messages) if no_time: print(message) else: print(str(datetime.datetime.now()) + '\t' + message) @staticmethod def unwrapMessage(*messages): message = '' for m in messages[0]: message += str(m) + ' ' return message def getElapsedTime(self): time_min, str_report = self.calculateElapsedTime() print(str_report) return time_min def calculateElapsedTime(self): totalSeconds = time.time() - self.start_time hours = math.floor(totalSeconds / 3600) minutes = math.floor(totalSeconds / 60 - hours * 60) seconds = totalSeconds - (hours * 3600 + minutes * 60) endDate = datetime.datetime.now() str_report = 'Time: ' + str(endDate) str_report += '\n' + "--- Total Time: %s hours: %s minutes %s seconds " % (str(hours), str(minutes), str(seconds)) time_min = int((hours * 60 + minutes + seconds /60)*100)/100 return time_min, str_report
Script-2020/autoclusteringFinReports
util/Logger.py
Logger.py
py
1,437
python
en
code
0
github-code
6
28326166820
""" OCR Pagination """ from past.utils import old_div from rest_framework.response import Response from rest_framework.pagination import PageNumberPagination from django.conf import settings from ocr.permission import get_permissions # ------------------------------------------------------------------------------- # pylint: disable=too-many-ancestors # pylint: disable=no-member # pylint: disable=too-many-return-statements # pylint: disable=too-many-locals # pylint: disable=arguments-differ # pylint: disable=unused-argument # pylint: disable=line-too-long # pylint: disable=too-many-statements # ------------------------------------------------------------------------------- class CustomOCRPagination(PageNumberPagination): """ OCR Pagination """ def __init__(self): self.query_set = None self.request = None self.view = None self.list_serializer = None def modified_get_paginate_response(self, page): """ Desc: """ try: page_number = int(self.request.query_params.get('page_number', settings.PAGENUMBER)) except ValueError: page_number = settings.PAGENUMBER try: page_size = int(self.request.query_params.get('page_size', settings.PAGESIZE)) except ValueError: page_size = settings.PAGESIZE pagination = self.get_page_count(page, page_number, page_size) permission_details = get_permissions(user=self.request.user, model=self.list_serializer.Meta.model.__name__.lower(), type='list') return Response({ 'data': pagination["current_data"], 'total_number_of_pages': pagination['count'], 'current_page': pagination['current_page'], 'current_page_size': pagination['current_page_size'], 'current_item_count': len(pagination["current_data"]), 'total_data_count': pagination['total_data_count'], 'permission_details': permission_details }) def get_page_count(self, page, page_number=1, page_size=10): """ Desc: """ if page_size < 1: page_size = 1 total_data_count = len(page) if total_data_count < 1: return { "count": 0, "current_page": 0, "current_page_size": 0, "total_data_count": total_data_count, "current_data": [] } total_number_of_pages = (old_div((total_data_count - 1), page_size)) + 1 if page_number > total_number_of_pages: page_number = 1 page_size = 10 initial_count = (page_number - 1) * page_size end_count = initial_count + page_size page_data = page[initial_count:end_count] serialized_page_data = self.list_serializer(page_data, many=True, context={"request": self.request}) data = [i for i in serialized_page_data.data if i] total_data_count = len(data) # pylint: disable= line-too-long return { "count": total_number_of_pages, "current_page": page_number, "current_page_size": page_size, "current_data": data, "total_data_count": total_data_count } def paginate_queryset(self, queryset, request, view=None, list_serializer=None): """ Desc: """ self.request = request self.view = view self.query_set = queryset self.list_serializer = list_serializer return self.query_set
Srinidhi-SA/temp_spark
SPARK_DOCKER/code/mAdvisor-api/ocr/pagination.py
pagination.py
py
3,723
python
en
code
0
github-code
6
35603813874
""" Duncan Rule, Sally Gao, Yi Hao """ class MDPState: """State class for a given space in gridworld, with directional attributes pointing to other squares. Each directional attribute is a tuple of coordinates (x, y). """ def __init__(self, up, down, left, right, reward=-1, value=0): self.up = up self.down = down self.left = left self.right = right self.reward = reward self.value = value def __str__(self): return str(self.value)
sally-gao/mazemdp
mdpstate.py
mdpstate.py
py
507
python
en
code
5
github-code
6
39222512159
# %% [markdown] # 複数ファイルの集計をしていく。 # # 複数のデータを,1つのDataFrame に要約する方法は,主に2通りあるので,両方紹介する。 # # 1. 1人分のデータをたくさん用意して,最後に複数の行を1つにまとめる # - concat メソッドを用いる # 2. 必要な統計量を人数分まとめた列を必要なだけ用意して,最後に複数の列をまとめる # - DataFrame を ディクショナリで生成する # %% [markdown] # ## 1人分のデータをたくさん用意して,最後に複数の行を1つにまとめる # %% # 複数人のデータを順番に読んで,同じ処理をすればよい。 # 複数のデータを順番にDataFrame として読むには, # 読む対象のファイル名を変えていけばよい。 # たとえば,以下の例については, # df = pd.read_csv('data/psysiological_00', index_col='time') # 00 の部分を順番に増やしていけばよいだろう。 # 文字列に変数を埋め込む,ということをする。つまり, # 'data/psysiological_{}' # の,{} の中を,適切に埋めればよい。 # f 文字列 というものを使う。 # 普通の文字列 '' に, f をつけるだけ。 # さらに {} の中に,埋め込みたい変数を記す。 id = 12 file_name = f'data/psysiological_{id}' file_name # %% # 1桁の場合はちょっと困る id = 3 file_name = f'data/psysiological_{id}' file_name # %% # 必要な桁数に達するまで 0埋めをする。 # zfill メソッドを用いる。 str(id).zfill(2) # %% # zfill をした場合のファイル名。 file_name = f'data/psysiological_{str(id).zfill(2)}' file_name # %% # ファイル名を変えて,データを順番に読み込んでみる # import import pandas as pd # consecutive reading for id in range(20): df = pd.read_csv(f'data/psysiological_{str(id).zfill(2)}') print(df.head(2)) # show only 2 rows # %% [markdown] # サマリを作成する操作は全てのデータに対して共通なので, # for ブロックの中で,サマリを作成するアルゴリズムを書けばよい。 # # 前回と同様に,正中線上における,90 ms から 110 ms の振幅の平均値を求めたいとしよう。 # さらに,正中線各部位の平均も求めたい。 # %% # 人数分のサマリを作成する。 centers = ['CPz', 'Pz', 'Oz', 'POz', 'Fz', 'FCz', 'Cz', 'AFz'] for id in range(20): df = pd.read_csv(f'data/psysiological_{str(id).zfill(2)}') summary = df.loc[90:110, centers].mean().to_frame().T summary.insert(0, 'average', [df.loc[90:110, centers].mean().mean()]) print(summary) # %% # 個別にできたサマリを,1つの DataFrame にまとめる。 summaries = [] for id in range(20): df = pd.read_csv(f'data/psysiological_{str(id).zfill(2)}') summary = df.loc[90:110, centers].mean().to_frame().T summary.insert(0, 'average', [df.loc[90:110, centers].mean().mean()]) summaries.append(summary) summary_all = pd.concat(summaries) summary_all # %% # インデックスをリセットしたい。 summary_all = pd.concat(summaries, ignore_index=True) summary_all # %% # 保存する。 # インデックスの列が今は無名なので,保存時に名前を指定する。 summary_all.round(4).to_csv('saves/summary_psysiological.csv', index_label='id') # %% # %% [markdown] # ## 必要な統計量を人数分まとめた列を必要なだけ用意して,最後に複数の列をまとめる # %% [markdown] # 必要な列は, # 'average', 'CPz', 'Pz', 'Oz', 'POz', 'Fz', 'FCz', 'Cz', 'AFz'。 # # 各列,人数分のデータを格納したうえで,最後に DataFrame にまとめる。 # %% # データ格納庫を定義する columns = ['average', 'CPz', 'Pz', 'Oz', 'POz', 'Fz', 'FCz', 'Cz', 'AFz'] psysiological_data = dict() for c in columns: psysiological_data[c] = [] # 上は,以下のコードと同値。 # psysiological_data = {col: [] for col in columns} # show psysiological_data # %%
KeiShimon/lecture
python-kisoc_day_3/05-01a-複数ファイルの集計.py
05-01a-複数ファイルの集計.py
py
4,108
python
ja
code
0
github-code
6
34690028943
from django.contrib import admin from .models import Service, Category, Feature, FeatureItem class FeatureItemInline(admin.StackedInline): model = FeatureItem @admin.register(Service) class ServiceAdmin(admin.ModelAdmin): list_display = ("name", "sub_title") prepopulated_fields = {"slug": ("name",)} search_fields = ("name", "title", "body") @admin.register(Category) class CategoryAdmin(admin.ModelAdmin): list_display = "name", search_fields = 'name', @admin.register(Feature) class FeatureAdmin(admin.ModelAdmin): list_display = ('name', 'header_subtitle', 'slug', 'features_list_title') list_editable = ('header_subtitle', 'slug', 'features_list_title') prepopulated_fields = {'slug': ('name', )} search_fields = 'name', 'header_subtitle', 'header_description', 'body' inlines = [FeatureItemInline]
samshultz/techbitsdata
services/admin.py
admin.py
py
855
python
en
code
0
github-code
6
31543778104
marks = [[0 for j in range(30)] for i in range(3)] max_stud = [0,0,0] for i in range(3): max_stud[i] = int(input(f"\n\tEnter Maximum students in class {i+1} : ")) print() if not 0 < max_stud[i] < 31: print("\tStudents in a class can only be between 1 to 30") exit(0) for j in range(max_stud[i]): marks[i][j] = int(input(f"\tEnter marks of student {j+1} of class {i+1} : ")) for i in range(3): for j in range(max_stud[i]): print(f"\tMarks of Student {j+1} of class {i+1} is : {marks[i][j]}")
Shobhit0109/programing
EveryOther/Practical File/python/P8.py
P8.py
py
554
python
en
code
0
github-code
6
1790565048
import pdfplumber import pandas as pd from babel.numbers import format_currency def extrair_tabelas(pdf_path): with pdfplumber.open(pdf_path) as pdf: # Inicialize uma lista para armazenar todas as tabelas todas_tabelas = [] # Itera sobre todas as páginas do PDF for pagina in pdf.pages: # Extraindo as tabelas da página atual tabelas_pagina = pagina.extract_tables() # Adiciona as tabelas à lista todas_tabelas.extend(tabelas_pagina) # Retorna a lista de tabelas return todas_tabelas # Substitua 'caminho_para_seu_pdf.pdf' pelo caminho real do seu arquivo PDF caminho_pdf = 'fatura-pdf/xp3.pdf' tabelas = extrair_tabelas(caminho_pdf) gastos = [] # Imprime as tabelas for i, tabela in enumerate(tabelas): # Verifica se a tabela foi extraída corretamente e se contém a string "Data" if tabela and any("Data" in row for row in tabela): df = pd.DataFrame(tabela[1:], columns=tabela[0]) # Imprime o DataFrame linha a linha, coluna a coluna for indice, linha in df.iterrows(): # Verifica se a primeira coluna está no formato de data (22/10/23) if pd.to_datetime(linha.iloc[0], errors='coerce', dayfirst=True, format='%d/%m/%y') and pd.notna(pd.to_datetime(linha.iloc[0], errors='coerce', dayfirst=True, format='%d/%m/%y')): gastos.append([linha.iloc[0], linha.iloc[1], linha.iloc[2]]) # Imprime a lista de gastos de forma mais legível total = 0.0 for i, gasto in enumerate(gastos): if "Pagamentos Validos Normais" not in gasto[1]: print(f"{gasto[0]} {gasto[1]} {gasto[2]}") valor = gasto[2].replace('.', '').replace(',', '.') total += float(valor) # Formata o total da fatura em reais (R$) usando babel total_formatado = format_currency(total, 'BRL', locale='pt_BR') print("Total da fatura:", total_formatado)
regis-amaral/python-scripts
fatura-pdf/reader-fatura.py
reader-fatura.py
py
1,927
python
pt
code
0
github-code
6
18797455208
# -*- coding:utf-8 -*- import urllib.request import urllib.parse # get取网页数据 def geturl(url, data={}, headers={}): try: params = urllib.parse.urlencode(data) req = urllib.request.Request("%s?%s" % (url, params)) # 设置headers for i in headers: req.add_header(i, headers[i]) r = urllib.request.urlopen(req) html = r.read() return html.decode("utf8") except urllib.error.HTTPError as e: print(e.code) print(e.read().decode("utf8")) def posturl(url, data={}, headers={}): try: params = urllib.parse.urlencode(data).encode("utf8") req = urllib.request.Request(url, params, headers) r = urllib.request.urlopen(req) html = r.read() return html.decode("utf8") except urllib.error.HTTPError as e: print(e.code) print(e.read().decode("utf8"))
yunmenzhe/HttpInterfaceAutoTest
utils/httputil.py
httputil.py
py
906
python
en
code
0
github-code
6
7227006625
import tqdm import argparse import os def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--src-set', '-src-set', type=str, default=r'/home/v-jiaya/RetrieveNMT/data/MD/en-de/iwslt14-en-de/train/train.en',help='source file') parser.add_argument('--new-src-set', '-new-tgt-set', type=str, default=r'/home/v-jiaya/fast_align/data/test.en-de',help='source file') args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() with open(args.src_set,"r", encoding="utf-8") as src_r: with open(args.new_src_set, "w", encoding="utf-8") as new_src_w: print("reading source data file: {}".format(args.src_set)) src_lines = src_r.readlines() for line_id, src_line in tqdm.tqdm(enumerate(src_lines)): src_line=src_line.strip() concat_lines = src_line.split(" [APPEND] ")[1].split(" [SRC] ") for item in concat_lines: src, tgt = item.split(" [TGT] ") new_src_w.write("{} ||| {}\n".format(src, tgt)) new_src_w.flush()
CSJianYang/RetrieveNMT
RetrieveNMT/SMT/generate_align_data.py
generate_align_data.py
py
1,178
python
en
code
3
github-code
6
32069589714
# Задание выполнил, но "обходным путем" - через выпрямление списка в ините # понимаю, что нужно реализовать задание через рекурсию, но не получается выполнить # В первой реализации развил логику из задания 1, но из-за return возвращается # только первый элемент вложенного списка # Вторая реализация - облегченный, с упором на рекурсию, класс, но не получается выполнить # по той же причине # подскажите, как обойти return в этих функциях? чтобы цикл не прекращался на этом первом # return class FlatIterator: def __init__(self, list_of_list): self.list_of_list = self.zart_flatten(list_of_list) self.n = len(self.list_of_list) def zart_flatten(self, a): """ Non recursive algorithm Based on pop from old and append elements to new list """ queue, out = [a], [] while queue: elem = queue.pop(-1) if isinstance(elem, list): queue.extend(elem) else: out.append(elem) return out[::-1] def __iter__(self): self.cursor = -1 return self def __next__(self): self.cursor += 1 if self.cursor >= self.n: raise StopIteration if isinstance(self.list_of_list[self.cursor], list): с = FlatIterator(self.list_of_list[self.cursor]) for el in с: return el else: return self.list_of_list[self.cursor] # class FlatIterator: # def __init__(self, list_of_list): # self.list_of_list = list_of_list # self.n = len(self.list_of_list) # def __iter__(self): # self.cursor_outer = 0 # self.cursor_inner = -1 # return self # def __next__(self): # self.cursor_inner += 1 # if self.cursor_inner >= len(self.list_of_list[self.cursor_outer]) or self.list_of_list[self.cursor_outer][self.cursor_inner] == []: # self.cursor_outer += 1 # self.cursor_inner = 0 # if self.cursor_outer >= self.n: # raise StopIteration # if isinstance(self.list_of_list[self.cursor_outer][self.cursor_inner], list) and self.list_of_list[self.cursor_outer][self.cursor_inner]: # for el in FlatIterator(self.list_of_list[self.cursor_outer][self.cursor_inner]): # return el # else: # return self.list_of_list[self.cursor_outer][self.cursor_inner] # class FlatIterator: # def __init__(self, list_of_list): # self.list_of_list = list_of_list # self.n = len(self.list_of_list) # def __iter__(self): # self.cursor = -1 # return self # def __next__(self): # self.cursor += 1 # if self.cursor >= self.n: # raise StopIteration # if isinstance(self.list_of_list[self.cursor], list): # с = FlatIterator(self.list_of_list[self.cursor]) # for el in с: # return el # else: # return self.list_of_list[self.cursor] def test_3(): list_of_lists_2 = [ [['a'], ['b', 'c']], ['d', 'e', [['f'], 'h'], False], [1, 2, None, [[[[['!']]]]], []] ] for flat_iterator_item, check_item in zip( FlatIterator(list_of_lists_2), ['a', 'b', 'c', 'd', 'e', 'f', 'h', False, 1, 2, None, '!'] ): assert flat_iterator_item == check_item assert list(FlatIterator(list_of_lists_2)) == ['a', 'b', 'c', 'd', 'e', 'f', 'h', False, 1, 2, None, '!'] if __name__ == '__main__': test_3() # list_of_lists_2 = [ # [['a'], ['b', 'c']], # ['d', 'e', [['f'], 'h'], False], # [1, 2, None, [[[[['!']]]]], []] # ] # for el in FlatIterator(list_of_lists_2): # print(el)
sokkos1995/PYDA
module5_adanced_python/hw4/task3.py
task3.py
py
4,187
python
ru
code
0
github-code
6
17689672862
import torch from torch.nn import Module, Conv2d, LeakyReLU, PReLU, BatchNorm2d, Sequential, PixelShuffle, AdaptiveAvgPool2d, Flatten, Linear, Dropout2d, Dropout class ResidualUnit(Module): def __init__(self): super(ResidualUnit, self).__init__() self.conv1 = Sequential(Conv2d(64, 64, 3, 1, "same"), BatchNorm2d(64), PReLU(64)) self.conv2 = Sequential(Conv2d(64, 64, 3, 1, "same"), BatchNorm2d(64)) def forward(self, input): out = self.conv1(input) out = self.conv2(out) return input + out class UpsampleUnit(Module): def __init__(self): super(UpsampleUnit, self).__init__() self.conv = Conv2d(64, 256, 3, 1, "same") self.shuffle = PixelShuffle(2) self.activation = PReLU(64) def forward(self, X): return self.activation(self.shuffle(self.conv(X))) class Generator(Module): def __init__(self, no_resBlocks): super(Generator, self).__init__() self.residuals = Sequential(*[ResidualUnit()] * no_resBlocks) self.upsample = Sequential(UpsampleUnit(), UpsampleUnit()) self.initialConv = Sequential(Conv2d(3, 64, 9, 1, "same"), PReLU(64)) self.midConv = Sequential(Conv2d(64, 64, 3, 1, "same"), BatchNorm2d(64)) self.finalConv = Conv2d(64, 3, 9, 1, "same") def forward(self, input): input = self.initialConv(input) out = self.residuals(input) out = self.midConv(out) out = out + input out = self.upsample(out) out = self.finalConv(out) return torch.tanh(out) class DiscConvBlock(Module): def __init__(self, in_channels, out_channels, stride): super(DiscConvBlock, self).__init__() self.conv = Conv2d(in_channels, out_channels, 3, stride, 1) self.bn = BatchNorm2d(out_channels) self.activation = LeakyReLU(0.2) self.dropout = Dropout2d(p=0.50) def forward(self, X): return self.dropout(self.activation(self.bn(self.conv(X)))) class Discriminator(Module): def __init__(self): super(Discriminator, self).__init__() self.initial_conv = Sequential( Conv2d(3, 64, 3, 1, "same"), LeakyReLU(0.2), Dropout2d(p=0.5) ) self.conv_seq = Sequential( DiscConvBlock(64, 64, 2), DiscConvBlock(64, 128, 1), DiscConvBlock(128, 128, 2), DiscConvBlock(128, 256, 1), DiscConvBlock(256, 256, 2), DiscConvBlock(256, 512, 1), DiscConvBlock(512, 512, 2), AdaptiveAvgPool2d(1), Flatten() ) self.fc = Sequential( Linear(512, 1024), LeakyReLU(0.2), Dropout(0.50), Linear(1024, 1) ) def forward(self, X): return self.fc(self.conv_seq(self.initial_conv(X)))
abed11326/Training-a-Super-Resolution-GAN-for-4x-image-upscaling
models.py
models.py
py
2,878
python
en
code
0
github-code
6
35007925134
from src.main.python.Solution import Solution # Follow up for "Remove Duplicates": # What if duplicates are allowed at most twice? # # For example, # Given sorted array nums = [1,1,1,2,2,3], # # Your function should return length = 5, with the first five elements of nums being 1, 1, 2, 2 and 3. # It doesn't matter what you leave beyond the new length. class Q080(Solution): def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ len, cnt = 0, 0 if nums: for i, item in enumerate(nums): if not i or item != nums[i-1]: nums[len] = item len += 1 cnt = 1 else: cnt += 1 if cnt <= 2: nums[len] = item len += 1 return len
renkeji/leetcode
python/src/main/python/Q080.py
Q080.py
py
904
python
en
code
0
github-code
6
12100194486
import unittest import itertools from functools import partial from bst import BST def _factory(l): _b = BST(l[0]) for item in l[1:]: _b.insert(item) return _b class TestBST(unittest.TestCase): def _check_node(self, node, item, left_child, right_child): self.assertEqual(item, node.item) if left_child is None: self.assertIsNone(node.left) else: self.assertEqual(left_child, node.left.item) if right_child is None: self.assertIsNone(node.right) else: self.assertEqual(right_child, node.right.item) def test_sanity(self): # Act b = BST(1) # Assert self.assertEqual(1, b.item) self.assertEqual(None, b.left) self.assertEqual(None, b.right) def test_insert_1(self): # Arrange + Act b = BST(1) b.insert(2) b.insert(3) # Assert self._check_node(b, 1, None, 2) self._check_node(b.right, 2, None, 3) self._check_node(b.right.right, 3, None, None) def test_insert_2(self): # Arrange + Act b = BST(1) b.insert(3) b.insert(2) # Assert self._check_node(b, 1, None, 3) self._check_node(b.right, 3, 2, None) self._check_node(b.right.left, 2, None, None) def test_insert_3(self): # Arrange + Act b = BST(2) b.insert(1) b.insert(3) # Assert self._check_node(b, 2, 1, 3) self._check_node(b.left, 1, None, None) self._check_node(b.right, 3, None, None) def test_insert_4(self): # Arrange + Act b = BST(2) b.insert(3) b.insert(1) # Assert self._check_node(b, 2, 1, 3) self._check_node(b.left, 1, None, None) self._check_node(b.right, 3, None, None) def test_insert_5(self): # Arrange + Act b = BST(3) b.insert(1) b.insert(2) # Assert self._check_node(b, 3, 1, None) self._check_node(b.left, 1, None, 2) self._check_node(b.left.right, 2, None, None) def test_insert_6(self): # Arrange + Act b = BST(3) b.insert(2) b.insert(1) # Assert self._check_node(b, 3, 2, None) self._check_node(b.left, 2, 1, None) self._check_node(b.left.left, 1, None, None) # Now that we tested insert(), we can use _factory! def test__eq__when_equal(self): # Arrange b1 = _factory([2,3,1]) b2 = _factory([2,1,3]) #Assert self.assertEqual(b1, b2) def test__eq__when_not_equal(self): # Arrange l1 = _factory([1,2,3]) l2 = _factory([1,3,2]) #Assert self.assertFalse(l1 == l2) def test_search_contains_return_list(self): # Arrange b = _factory([1,3,2,4]) expected = _factory([3,4,2]) # Act actual = b.search(3) # Assert self.assertEqual(expected, actual) def test_search_not_contains_return_None(self): # Arrange b = _factory([1,2,3,4,5]) # Act + Assert self.assertIsNone(b.search(6)) def test_min_max(self): for perm in itertools.permutations(range(5)): self.assertEqual(0, _factory(perm).min().item) self.assertEqual(4, _factory(perm).max().item) def test_inorder(self): b = _factory([2,1,3]) self.assertEqual([1,2,3], b.inorder()) def test_preorder(self): b = _factory([2,1,3]) self.assertEqual([2,1,3], b.preorder()) def test_posorder(self): b = _factory([2,1,3]) self.assertEqual([1,3,2], b.postorder()) def test_search_parent(self): b = _factory([2,1,7,8,4,3,6,5]) self.assertEqual(_factory([4,3,6,5]), b._search_parent(6)) self.assertEqual(_factory([4,3,6,5]), b._search_parent(3)) def test_delete_delete_childess_node(self): b = _factory([2,1,7,8,4,3,6,5]) self.assertEqual(_factory([2,1,7,8,4,6,5]), b.delete(3)) def test_delete_delete_node_with_one_child_left(self): b = _factory([2,1,7,8,4,3,6,5]) self.assertEqual(_factory([2,1,7,8,4,3,5]), b.delete(6)) def test_delete_delete_node_with_one_child_right(self): b = _factory([2,1,7,8,4,3,6,5,9]) self.assertEqual(_factory([2,1,7,4,3,6,5,9]), b.delete(8)) def test_delete_delete_node_with_two_children(self): b = _factory([2,1,7,8,4,3,6,5]) self.assertEqual(_factory([2,1,7,8,5,3,6]), b.delete(4)) def test_delete_delete_node_with_two_children_min_with_right_subtree(self): b = _factory([2,1,7,8,4,3,6,5,5.8,5.7,5.9]) self.assertEqual(_factory([2,1,7,8,5,3,6,5.8,5.7,5.9]), b.delete(4)) def test__repr__(self): # Arrange b = _factory([1,3,2]) # Act + Assert self.assertEqual('BST(item=1, left=None, right=BST(item=3, left=BST(item=2, left=None, right=None), right=None))', b.__repr__()) if __name__ == '__main__': unittest.main()
Shaywei/MyDevTools
Python/BasicDataStructures/bst_tests.py
bst_tests.py
py
5,123
python
en
code
0
github-code
6
38949670839
class Solution: # @param {string} s A string # @return {boolean} whether the string is a valid parentheses def isValidParentheses(self, s): stack = [] dict = {')':'(', '}':'{', ']':'['} for ch in s: if ch in dict.values(): stack.append(ch) elif ch in dict.keys(): if stack == [] or dict[ch] != stack.pop(): return False else: return False return stack == []
sublingbling/coding-everyday
10_26_2016_valid-parentheses/chang.py
chang.py
py
523
python
en
code
1
github-code
6
36822122944
import random from turtle import Turtle, Screen class Blocks(Turtle): def __init__(self): super().__init__() self.penup() self.shape("square") self.turtlesize(stretch_len=3, stretch_wid=1) self.goto(x=-450, y=0) self.row_num = {1: 0, 2: 25, 3: 50, 4: 75, 5: 100, 6: 125, 7: 150, 8: 175, 9: 200, 10: 225} self.row_colors = {1: "#FF0000", 2: "#FF3EC0", 3: "#00FF00", 4: "#FFFF33", 5: "#FF8000", 6: "#00FFFF", 7: "#CC0000", 8: "#0000CC", 9: "#990099", 10: "#CCFFFF"} self.all_blocks = [] def create_row(self, row): last_block_x = [-550] for block in range(10): block = Blocks() block.penup() block.color(self.row_colors[row]) block.sety(self.row_num[row]) block.setx(last_block_x[-1] + 99) last_block_x.append(block.xcor()) self.all_blocks.append(block) def destroy_block(self, block): self.all_blocks.pop(self.all_blocks.index(block)) block.color("black") block.speed("fastest") block.goto(x=1000, y=1000) def create_level(self, level): for row in range(level): rand_row = random.randint(1, 10) self.create_row(rand_row)
guitarkeegan/breakout-game
blocks.py
blocks.py
py
1,302
python
en
code
0
github-code
6
69895141309
# -*- encoding: utf-8 -*- """ lunaport.domain.line ~~~~~~~~~~~~~~~~~~~~ Line related business logic """ import string import pprint pp = pprint.PrettyPrinter(indent=4).pprint from base import BaseFactory, BaseAdaptor, BaseEntrie class Line(BaseEntrie): """ Line(power line or queue) - district of datacenter. """ attr_required = [ 'id', 'name', 'dc', ] attr_optional = [] #'dc', #] class LineAdaptor(BaseAdaptor): __just_inherit = True class LineBuilder(BaseFactory): """ Line instance static fabric. """ target_struct = Line req_attr_allowed = [ 'id', 'name', ] req_attr_allowed_set = set(req_attr_allowed) @classmethod def from_Flask_req(cls, r, session): """ Creates class instance from Flask request object. Args: r: Flask request object. session: Flask session object. Returns: Ammo class instance. """ strip_dc = lambda name: ''.join( [el for el in name if el in string.ascii_lowercase]) msg_rvd = cls.parse_flask_req(r, session) msg_rvd.update({ 'dc': {'name': strip_dc(msg_rvd['name'])} }) return Line(**msg_rvd) @classmethod def from_row(cls, **row): """Creates class instance from RDBMS returned row. Args: row: dict with table columns as keys. Returns: *Line* class instance. """ if row.get('dc_id'): row.setdefault('dc', {}) row['dc']['id'] = row.get('dc_id') del row['dc_id'] if row.get('dc_name'): row.setdefault('dc', {}) row['dc']['name'] = row.get('dc_name') del row['dc_name'] return Line(**row)
greggyNapalm/lunaport_server
lunaport_server/domain/line.py
line.py
py
1,844
python
en
code
0
github-code
6
33262623475
""" 1) Создайте текстовое поле. 2) Попросите пользователя ввести в консоли произвольную строку. 3) Выведите эту строку в текстовом поле окна. Примечание: запрос строки и её вывод в текстовом поле должны происходить до mainloop(). """ from tkinter import * def setWindow(root): root.title("Окно программы") # Задаем название окна root.resizable(False, False) # Запрещаем изменение размеров окна по горизонтали и вертикали w = 800 # Задаем ширину окна h = 600 # Задаем высоту окна ws = root.winfo_screenwidth() # определяем разрешение экрана по ширине wh = root.winfo_screenheight() # определяем разрешение экрана по высоте x = int(ws / 2 - w / 2) # Вычисляем x для вывода окна в средине экрана y = int(wh / 2 - h / 2) # Вычисляем y для вывода окна в средине экрана root.geometry("{0}x{1}+{2}+{3}".format(w, h, x, y)) # Выводим окно в центре экрана root = Tk() # Создаем класс окна setWindow(root) str = input("Введите строку: ") entry = Entry(root, font="Tahoma 18", bg="#ABFF99", fg="Red", bd=4) # Создание текстового поля 1 entry.insert(END, str) entry.pack() root.mainloop() # Цикл вызова окна
kuzbassghost/Course
BaseRus/GUI/Homework_4.py
Homework_4.py
py
1,674
python
ru
code
0
github-code
6
20855466611
import requests from requests.exceptions import ConnectionError, Timeout, TooManyRedirects import json import os from decouple import config from prettyprinter import pprint import GUI # For the API documentation go to # https://coinmarketcap.com/api/documentation/v1/#section/Quick-Start-Guide API_KEY = config("API_KEY") url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest' parameters = { 'start': '1', 'limit': '50', 'convert': 'USD', "CMC_PRO_API_KEY": API_KEY, } my_portfolio = [ { "symbol": "BTC", "amount_owned": 2000, "price_payed_per_unit": 20.0 }, { "symbol": "ETH", "amount_owned": 500, "price_payed_per_unit": 2.0 }, { "symbol": "XPR", "amount_owned": 1500, "price_payed_per_unit": 0.1 }, { "symbol": "XLM", "amount_owned": 2000, "price_payed_per_unit": 0.2 }, { "symbol": "EOS", "amount_owned": 1000, "price_payed_per_unit": 2.0 }, ] def get_api_info(): api_request = requests.get(url=url, params=parameters) data = json.loads(api_request.content) return data["data"] def add_coin_msg_to_gui(coin_msg): coin_frame = GUI.Frame(GUI.second_frame, relief='ridge', borderwidth=2, bg='#F2F2F2') coin_frame.pack( anchor='center', pady=(10, 0), padx=(50, 50), fill='x' ) display_coin_msg = GUI.Label(coin_frame, text=coin_msg, anchor='w', font=('Time New Roman', '13', 'bold underline'), bg='#F2F2F2') display_coin_msg.pack(fill='x', padx=10) def show_portfolio_profit_loss_on_gui(profit_loos): # view client version on bottom left corner if profit_loos > 0: color = "green" else: color = "red" portfolio_profit_loos_label = GUI.Label(GUI.root, text="Portfolio Total Profit/Loos: ${0:.2f}".format(profit_loos), font=('Time New Roman', '9', 'bold'), bg="white", fg=color) portfolio_profit_loos_label.pack(pady=(5, 0), anchor='e') def format_data(): try: coins = get_api_info() portfolio_profit_loos = 0 for coin in coins: for sym in my_portfolio: if sym["symbol"] == coin["symbol"]: total_paid = sym["price_payed_per_unit"] * sym["amount_owned"] total_current_value = sym["amount_owned"] * float(coin["quote"]["USD"]["price"]) profit = total_current_value - total_paid profit_percentage = profit / total_paid * 100 profit_per_coin = float(coin["quote"]["USD"]["price"]) - sym["price_payed_per_unit"] my_coin_msg = f'Name: {coin["name"]} \n' \ f'Symbol: {coin["symbol"]} \n' \ f'Rank: {coin["cmc_rank"]} \n' \ f'Current Price: ${float(coin["quote"]["USD"]["price"]):.2f} \n' \ f'24 Hour Change: {float(coin["quote"]["USD"]["percent_change_24h"]):.2f}% \n' \ f'Paid per coin: ${sym["price_payed_per_unit"]:.2f} \n' \ f'Amount Owned: {sym["amount_owned"]} units \n' \ f'Total current value: ${total_current_value:.2f} \n' \ f'Total Paid: ${total_paid:.2f} \n' \ f'Profit/Loss per coin:${profit_per_coin:.2f} \n' \ f'Profit/Loss: ${profit:.2f} \n' \ f'Profit/Loss percentage: {profit_percentage:.2f}%' portfolio_profit_loos += profit add_coin_msg_to_gui(my_coin_msg) show_portfolio_profit_loss_on_gui(portfolio_profit_loos) except (ConnectionError, Timeout, TooManyRedirects) as e: pprint(e) if __name__ == "__main__": # Clear command line window os.system('cls') format_data() GUI.root.mainloop()
edumarg/cyrpto_currency_portfolio
main.py
main.py
py
4,492
python
en
code
0
github-code
6
27773506390
import os import asyncio from telepyrobot.setclient import TelePyroBot from pyrogram import filters from pyrogram.types import Message, ChatPermissions from telepyrobot import COMMAND_HAND_LER from telepyrobot.utils.admin_check import admin_check __PLUGIN__ = os.path.basename(__file__.replace(".py", "")) __help__ = f""" Commands to help you manage a chat. `{COMMAND_HAND_LER}leavechat`: Exit from the Group. Usage: {COMMAND_HAND_LER}leavechat `{COMMAND_HAND_LER}invitelink`: Gives the invitelink of the Group. Usage: {COMMAND_HAND_LER}invitelink `{COMMAND_HAND_LER}setchatpic`: Changes the Picture of Group. Usage: {COMMAND_HAND_LER}setchatpic (as a reply to the message) `{COMMAND_HAND_LER}delchatpic`: Removes the Picture of Group. Usage: {COMMAND_HAND_LER}delchatpic (as a reply to the message) `{COMMAND_HAND_LER}setchatname`: Renames the Group. Usage: {COMMAND_HAND_LER}setchatname (chatname or as a reply to the message) `{COMMAND_HAND_LER}setchatdesc`: Sets the Description of the Group. Usage: {COMMAND_HAND_LER}setchatdesc (chatdesc or as a reply to the message) """ @TelePyroBot.on_message(filters.command("leavechat", COMMAND_HAND_LER) & filters.me) async def leavechat(c: TelePyroBot, m: Message): if m.chat.type in ["group", "supergroup"]: chat_id = m.chat.id is_admin = await admin_check(c, m) if not is_admin: return await c.leave_chat(chat_id, delete=True) return @TelePyroBot.on_message(filters.command("invitelink", COMMAND_HAND_LER) & filters.me) async def invitelink(c: TelePyroBot, m: Message): is_admin = await admin_check(c, m) if not is_admin: return chat_id = m.chat.id link = await c.export_chat_invite_link(chat_id) await m.edit_text(f"**Link for Chat:**\n`{link}`") return @TelePyroBot.on_message(filters.command("setchatpic", COMMAND_HAND_LER) & filters.me) async def set_picture(c: TelePyroBot, m: Message): if m.chat.type in ["group", "supergroup"]: is_admin = await admin_check(c, m) if not is_admin: return await m.edit_text("`Tring to Change Group Picture....`") chat_id = m.chat.id try: if m.reply_to_message and m.reply_to_message.media: file_id = m.reply_to_message.photo.file_id file_ref = m.reply_to_message.photo.file_ref await c.set_chat_photo(chat_id, file_id, file_ref=file_ref) await m.edit_text(f"`{m.chat.type.title()} picture has been set.`") else: await m.edit_text("`Reply to an image to set that as group pic`") except Exception as ef: await m.edit_text(f"**Could not Change Chat Pic due to:**\n`{ef}`") return @TelePyroBot.on_message(filters.command("delchatpic", COMMAND_HAND_LER) & filters.me) async def delchatpic(c: TelePyroBot, m: Message): is_admin = await admin_check(c, m) if not is_admin: return chat_id = m.chat.id try: await c.delete_chat_photo(chat_id) await m.edit_text(f"`Deleted Chat Picture for {m.chat.title}`") except Exception as ef: await m.edit_text(f"Error deleting Chat Pic due to:\n`{ef}`") @TelePyroBot.on_message(filters.command("setchatname", COMMAND_HAND_LER) & filters.me) async def setchatname(c: TelePyroBot, m: Message): await m.edit_text("__Trying to Change Chat Name!__") is_admin = await admin_check(c, m) if not is_admin: return chat_id = m.chat.id chat_title = m.text.split(None, 1) if m.reply_to_message: chat_title = m.reply_to_message.text else: chat_title = chat_title[1] try: await c.set_chat_title(chat_id, chat_title) await m.edit_text(f"<b>Changed Chat Name to:</b> <code>{chat_title}</code>") except Exception as ef: await m.edit_text(f"**Could not Change Chat Title due to:**\n`{ef}`") @TelePyroBot.on_message(filters.command("setchatdesc", COMMAND_HAND_LER) & filters.me) async def setchatdesc(c: TelePyroBot, m: Message): await m.edit_text("__Trying to Change Chat Desciption!__") is_admin = await admin_check(c, m) if not is_admin: return chat_id = m.chat.id chat_desc = m.text.split(None, 1) if m.reply_to_message: chat_desc = m.reply_to_message.text else: chat_desc = chat_desc[1] try: await c.set_chat_description(chat_id, chat_desc) await m.edit_text( f"<b>Changed Chat Description to:</b> <code>{chat_desc}</code>" ) except Exception as ef: await m.edit_text(f"**Could not Change Chat Desciption due to:**\n`{ef}`")
Divkix/TelePyroBot
telepyrobot/plugins/chat.py
chat.py
py
4,652
python
en
code
40
github-code
6
34351667294
import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('CCLhora2.csv') data1 = pd.read_csv('CCLdia2.csv') data2 = pd.read_csv('CCLsemana2.csv') data3 = pd.read_csv('CCLmes2.csv') data4 = pd.read_csv('CCLaño2.csv') data["date"] = pd.to_datetime(data["date"], unit='ms') data1["date"] = pd.to_datetime(data1["date"], unit='ms') data2["date"] = pd.to_datetime(data2["date"], unit='ms') data3["date"] = pd.to_datetime(data3["date"], unit='ms') data4["date"] = pd.to_datetime(data4["date"], unit='ms') plt.rcParams["figure.figsize"] = (12,12) plt.plot(data['date'], data['tamaño']) plt.plot(data1['date'], data1['tamaño']) plt.plot(data2['date'], data2['tamaño']) plt.plot(data3['date'], data3['tamaño']) plt.plot(data4['date'], data4['tamaño']) plt.ylabel('Weight of the LCC-') plt.xlabel('Time') plt.savefig('fgtodosc2.png')
pedrolf8/MastodonTFG
paso.py
paso.py
py
869
python
en
code
0
github-code
6
74087520829
# -*- coding: utf-8 -*- import re import datetime import bs4 import scrapy from scrapy_wssc.Item.BookContentItem import BookContentItem from scrapy_wssc.Item.BookItem import BookItem class mobile_spider(scrapy.Spider): name = 'mobile_spider' def __init__(self, bid=None): """初始化起始页面和游戏bid """ super(mobile_spider, self).__init__() self.bid = bid # 参数bid由此传入 self.start_urls = ['https://m.qu.la/wapsort/4_1.html'] #历史小说 1 #'https://www.qu.la/xuanhuanxiaoshuo/',#玄幻小说 2 # 'https://www.qu.la/dushixiaoshuo/'] #都市小说 3 self.allowed_domain = 'm.qu.la' #self.driver = webdriver.Chrome( # executable_path="C:/Program Files (x86)/Google/Chrome/Application/chromedriver.exe") #self.driver.set_page_load_timeout(10) # throw a TimeoutException when thepage load time is more than 5 seconds. #self.bookService = BookServiceImpl() def parse(self, response): pattern = re.compile(r'\d+') book_list = response.xpath('//div[@class="recommend"]/div[@id="main"]/div') for li in book_list: bookItem = BookItem(); bookItem['id'] = pattern.search(li.xpath('a/@href').extract()[0]).group() bookItem['cateId'] = 1 bookItem['name'] = li.xpath('a/p[@class="title"]/text()').extract()[0].strip() bookItem['author'] = li.xpath('a/p[@class="author"]/text()').extract()[0].split(u':')[1] bookItem['isHot'] = True bookItem['isSerial'] = True bookItem['status'] = 1 bookItem['lastUpdate'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') bookItem['describe'] = li.xpath('p[@class="review"]/text()').extract()[1].split(u':')[1].strip() bookItem['bookUrl'] = 'https://m.qu.la'+li.xpath('a/@href').extract()[0] bookItem['create_date'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') yield bookItem #爬取章节 yield scrapy.Request(url='https://m.qu.la/booklist/'+bookItem['id']+'.html',callback=self.get_book_chapter_list, meta={"cateId":1}) def get_book_chapter_list(self,response): soup = bs4.BeautifulSoup(response.text, 'lxml') chapterList = soup.find('div',id="chapterlist").p for chapter in chapterList: pass def get_book_info(self, response): pattern = re.compile(r'\d+') soup = bs4.BeautifulSoup(response.text, 'lxml') bookItem = BookItem(); bookItem['id'] = pattern.search(soup.find('div',id="info").find('a',{"style":"color:red;"}).attrs['href']).group() bookItem['cateId'] = response.meta['cateId'] bookItem['name'] = soup.find('div',id="info").h1.get_text() bookItem['author'] = soup.find('div',id="info").p.get_text().split(u':' )[1] bookItem['isHot'] = True bookItem['isSerial'] = True bookItem['status'] = 1 bookItem['lastUpdate'] = soup.find('div',id="info").find_all('p')[2].get_text().split(u':' )[1] bookItem['describe'] = soup.find('div',id="intro").get_text().replace(" ", "") bookItem['bookUrl'] = response.request.url bookItem['create_date'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') yield bookItem book_content_list = response.xpath('//div[@id="list"]/dl/dd') for con_li in book_content_list: con_url = con_li.xpath('a/attribute::href').extract()[0] if con_url.startswith('/book/'): yield scrapy.Request(url='https://www.qu.la' + con_url, callback=self.get_book_content, meta={'url': 'https://www.qu.la' + con_url, "bookId": bookItem["id"]}) def get_book_content(self,response): pattern = re.compile(r'^(https://www.qu.la/.*?)(\d+)(.html)$') soup = bs4.BeautifulSoup(response.text, 'lxml') bookContentItem = BookContentItem(); bookContentItem['id'] = pattern.search(response.meta['url']).group(2) bookContentItem['bookId'] = response.meta['bookId'] bookContentItem['title'] = soup.find('div',attrs={"class":"bookname"}).h1.get_text() bookContentItem['content'] = soup.find('div',id="content").get_text() bookContentItem['linkUrl'] = response.meta['url'] bookContentItem['createDate'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') yield bookContentItem
chenrunhu/wssc_scrapy
scrapy_wssc/spiders/mobile_spider.py
mobile_spider.py
py
4,566
python
en
code
0
github-code
6
19412768499
def get_serialized_rows_by_id(cls, validated_params, rqst_errors): rqst_staff_id = validated_params['id'] if rqst_staff_id != 'all': list_of_ids = validated_params['id_list'] else: list_of_ids = None navigator_qset = filter_navigator_qset_by_id(cls.objects.all(), rqst_staff_id, list_of_ids) navigator_qset = filter_db_objects_by_secondary_params(navigator_qset, validated_params) response_list = create_response_list_from_db_objects(navigator_qset) def check_response_data_for_requested_data(): if not response_list: rqst_errors.append("No navigator instances in db for given ids") else: if list_of_ids: for db_id in list_of_ids: tuple_of_bools_if_id_in_data = (instance_data['id'] == db_id for instance_data in response_list) if not any(tuple_of_bools_if_id_in_data): rqst_errors.append('Navigator instance with id: {} not found in database'.format(db_id)) check_response_data_for_requested_data() return response_list def get_serialized_rows_by_f_and_l_name(cls, validated_params, rqst_errors): rqst_first_name = validated_params['first_name'] rqst_last_name = validated_params['last_name'] navigator_qset = filter_navigator_objs_by_f_and_l_name(cls.objects.all(), rqst_first_name, rqst_last_name) navigator_qset = filter_db_objects_by_secondary_params(navigator_qset, validated_params) response_list = create_response_list_from_db_objects(navigator_qset) def check_response_data_for_requested_data(): if not response_list: rqst_errors.append("No navigator instances in db for given first and last name") check_response_data_for_requested_data() response_list = [response_list] return response_list def get_serialized_rows_by_email(cls, validated_params, rqst_errors): list_of_emails = validated_params['email_list'] response_list = [] for email in list_of_emails: filtered_navigator_qset = filter_navigator_objs_by_email(cls.objects.all(), email) filtered_navigator_qset = filter_db_objects_by_secondary_params(filtered_navigator_qset, validated_params) response_list_component = create_response_list_from_db_objects(filtered_navigator_qset) def check_response_component_for_requested_data(): if not response_list_component: rqst_errors.append('Navigator instance with email: {} not found in database'.format(email)) check_response_component_for_requested_data() def add_response_component_to_response_data(): if response_list_component: response_list.append(response_list_component) add_response_component_to_response_data() return response_list def get_serialized_rows_by_first_name(cls, validated_params, rqst_errors): list_of_first_names = validated_params['first_name_list'] response_list = [] for first_name in list_of_first_names: filtered_navigator_qset = filter_navigator_objs_by_first_name(cls.objects.all(), first_name) filtered_navigator_qset = filter_db_objects_by_secondary_params(filtered_navigator_qset, validated_params) response_list_component = create_response_list_from_db_objects(filtered_navigator_qset) def check_response_component_for_requested_data(): if not response_list_component: rqst_errors.append('Navigator instance with first name: {} not found in database'.format(first_name)) check_response_component_for_requested_data() def add_response_component_to_response_data(): if response_list_component: response_list.append(response_list_component) add_response_component_to_response_data() return response_list def get_serialized_rows_by_last_name(cls, validated_params, rqst_errors): list_of_last_names = validated_params['last_name_list'] response_list = [] for last_name in list_of_last_names: filtered_navigator_qset = filter_navigator_objs_by_last_name(cls.objects.all(), last_name) filtered_navigator_qset = filter_db_objects_by_secondary_params(filtered_navigator_qset, validated_params) response_list_component = create_response_list_from_db_objects(filtered_navigator_qset) def check_response_component_for_requested_data(): if not response_list_component: rqst_errors.append('Navigator instance with last name: {} not found in database'.format(last_name)) check_response_component_for_requested_data() def add_response_component_to_response_data(): if response_list_component: response_list.append(response_list_component) add_response_component_to_response_data() return response_list def get_serialized_rows_by_county(cls, validated_params, rqst_errors): list_of_counties = validated_params['county_list'] response_list = [] for county in list_of_counties: filtered_navigator_qset = filter_navigator_objs_by_county(cls.objects.all(), county) filtered_navigator_qset = filter_db_objects_by_secondary_params(filtered_navigator_qset, validated_params) response_list_component = create_response_list_from_db_objects(filtered_navigator_qset) def check_response_component_for_requested_data(): if not response_list_component: rqst_errors.append('Navigator instances with a default county of: {} not found in database'.format(county)) check_response_component_for_requested_data() def add_response_component_to_response_data(): if response_list_component: response_list.append(response_list_component) add_response_component_to_response_data() return response_list def get_serialized_rows_by_region(cls, validated_params, rqst_errors): list_of_regions = validated_params['region_list'] response_list = [] counties_mapped_to_regions = cls.REGIONS for region in list_of_regions: if region not in counties_mapped_to_regions: rqst_errors.append("{} is not a valid region stored in the db.".format(region)) else: counties_in_this_region = counties_mapped_to_regions[region] response_list_component = [] for county in counties_in_this_region: def add_staff_data_from_county_to_response_component(): filtered_navigator_qset = filter_navigator_objs_by_county(cls.objects.all(), county) filtered_navigator_qset = filter_db_objects_by_secondary_params(filtered_navigator_qset, validated_params) staff_data_for_this_county = create_response_list_from_db_objects(filtered_navigator_qset) for staff_data in staff_data_for_this_county: response_list_component.append(staff_data) add_staff_data_from_county_to_response_component() def check_response_component_for_requested_data(): if not response_list_component: rqst_errors.append('Navigator instances with a default county in region: {} not found in database'.format(region)) check_response_component_for_requested_data() def add_response_component_to_response_data(): if response_list_component: response_list.append(response_list_component) add_response_component_to_response_data() return response_list def get_serialized_rows_by_mpn(cls, validated_params, rqst_errors): list_of_mpns = validated_params['mpn_list'] response_list = [] for mpn in list_of_mpns: filtered_navigator_qset = filter_navigator_objs_by_mpn(cls.objects.all(), mpn) filtered_navigator_qset = filter_db_objects_by_secondary_params(filtered_navigator_qset, validated_params) response_list_component = create_response_list_from_db_objects(filtered_navigator_qset) def check_response_component_for_requested_data(): if not response_list_component: rqst_errors.append('Navigator instance with MPN: {} not found in database'.format(mpn)) check_response_component_for_requested_data() def add_response_component_to_response_data(): if response_list_component: response_list.append(response_list_component) add_response_component_to_response_data() return response_list def create_response_list_from_db_objects(db_objects): return_list = [] for db_instance in db_objects: return_list.append(db_instance.return_values_dict()) return return_list def filter_db_objects_by_secondary_params(db_objects, validated_get_params): if 'approved_cm_client_id_list' in validated_get_params: list_of_cm_client_ids = validated_get_params['approved_cm_client_id_list'] db_objects = db_objects.filter(approved_cm_clients__in=list_of_cm_client_ids) return db_objects def prefetch_related_rows(db_queryset): db_queryset = db_queryset.select_related( 'address', 'address__country', ) db_queryset = db_queryset.prefetch_related( "approved_clients_for_case_management", 'picconsumer_set', 'base_locations', 'base_locations__address', 'base_locations__address__country', 'credentialsmodel_set', "healthcare_locations_worked", "healthcare_service_expertises", "insurance_carrier_specialties", "resume_set", "resume_set__education_set", "resume_set__job_set", ) return db_queryset def filter_navigator_qset_by_id(db_queryset, rqst_id, list_of_ids): db_queryset = prefetch_related_rows(db_queryset) if isinstance(rqst_id, str) and rqst_id.lower() == "all": db_queryset = db_queryset.order_by("id") else: db_queryset = db_queryset.filter(id__in=list_of_ids).order_by("id") return db_queryset def filter_navigator_objs_by_f_and_l_name(db_queryset, rqst_first_name, rqst_last_name): db_queryset = prefetch_related_rows(db_queryset) db_queryset = db_queryset.filter(first_name__iexact=rqst_first_name, last_name__iexact=rqst_last_name).order_by( "last_name", "first_name") return db_queryset def filter_navigator_objs_by_first_name(db_queryset, rqst_first_name): db_queryset = prefetch_related_rows(db_queryset) db_queryset = db_queryset.filter(first_name__iexact=rqst_first_name).order_by("first_name") return db_queryset def filter_navigator_objs_by_last_name(db_queryset, rqst_last_name): db_queryset = prefetch_related_rows(db_queryset) db_queryset = db_queryset.filter(last_name__iexact=rqst_last_name).order_by("last_name") return db_queryset def filter_navigator_objs_by_email(db_queryset, rqst_email): db_queryset = prefetch_related_rows(db_queryset) db_queryset = db_queryset.filter(email__iexact=rqst_email).order_by("email") return db_queryset def filter_navigator_objs_by_county(db_queryset, rqst_county): db_queryset = prefetch_related_rows(db_queryset) db_queryset = db_queryset.filter(county__iexact=rqst_county).order_by("county") return db_queryset def filter_navigator_objs_by_mpn(db_queryset, rqst_mpn): db_queryset = prefetch_related_rows(db_queryset) db_queryset = db_queryset.filter(mpn__iexact=rqst_mpn).order_by("mpn") return db_queryset
bbcawodu/careadvisors-backend
picmodels/models/care_advisors/navigator_models/services/read.py
read.py
py
11,586
python
en
code
0
github-code
6
44730303411
import os import discord from discord.utils import get from discord.ext import commands, tasks from dotenv import load_dotenv import random import re import time import requests load_dotenv() OMDB_KEY = os.getenv('OMDB_KEY') STREAMING_KEY = os.getenv('STREAMING_KEY') TOKEN = os.getenv('DISCORD_TOKEN') GUILD = os.getenv('DISCORD_GUILD') image_types = ["png", "jpeg", "gif", "jpg", "mp4", "mov"] client = discord.Client(command_prefix = 'sponge', intents = discord.Intents.all()) intents = discord.Intents.default() intents.message_content = True bot = commands.Bot(command_prefix = '!', intents = intents) @bot.event async def on_ready(): print(f'logged in as {bot.user.name}') @bot.command(name='shit') async def random_image(ctx, source_channel_id = 815464674404990988, source_server_id = 735280881664655410, target_server_id = 718995069847470141, target_channel_id = 718995070316970046): try: source_server = discord.utils.get(bot.guilds, id = source_server_id) target_server = discord.utils.get(bot.guilds, id = target_server_id) source_channel = discord.utils.get(source_server.channels, id = source_channel_id) target_channel = discord.utils.get(target_server.channels, id = target_channel_id) messages = [] async for message in source_channel.history(limit = 500): messages.append(message) image_messages = [message for message in messages if message.attachments] if image_messages: random_message = random.choice(image_messages) attachment = random_message.attachments[0] image_url = attachment.url sender = random_message.author await target_channel.send(image_url) await target_channel.send(f'courtesy of {sender}') else: await ctx.send('no image found') except discord.NotFound: await ctx.send('source image not found') @bot.command(name = 'problem') async def ask(ctx): await ctx.send('https://tenor.com/view/whattheproblemis-martin-lawrence-nationalsecurity-gif-27064298') @bot.command(name = 'movie') async def ask(ctx): await ctx.send('What movie would you like to watch?') def check(message): return message.author == ctx.author and message.channel == ctx.channel try: user_response = await bot.wait_for('message', check=check, timeout=10.0) await ctx.send(f'you want to watch: {user_response.content}') response = requests.get(f'http://www.omdbapi.com/?t={user_response.content}&apikey={OMDB_KEY}') imdb_id = response.json()['imdbID'] imdb_title = response.json()['Title'] imdb_plot = response.json()['Plot'] url = "https://streaming-availability.p.rapidapi.com/v2/get/basic" querystring = {"country":"us",f"imdb_id":f"{imdb_id}","output_language":"en"} headers = { "X-RapidAPI-Key": "e145409a39mshf509ba14a206131p1acb3ejsnaeb0f27c7eb9", "X-RapidAPI-Host": "streaming-availability.p.rapidapi.com" } response = requests.get(url, headers=headers, params=querystring) example_json = response.json() streaming_info = example_json['result']['streamingInfo']['us'] for i in streaming_info: quality = streaming_info[i][0]['quality'] type_of_stream = streaming_info[i][0]['type'] link = streaming_info[i][0]['link'] await ctx.send(f'you can {type_of_stream} {imdb_title} on {i} in {quality} \n here is your link: {link}' ) await ctx.send(f' \n \n the plot is: {imdb_plot}') except asyncio.TimeoutError: await ctx.send('timeout. you did not send a response quick enough') bot.run(TOKEN) # @client.event # async def on_ready(): # guild = discord.utils.get(client.guilds, name=GUILD) # print(f'{client.user} has connected to the following guild:\n' # f'{guild.name}(id: {guild.id})') # @client.event # async def on_message(message): # # if the message is by the bot break the function - this stops endless loops # if message.author == client.user: # return # # sends spongebob-text message # if len(message.content) > 35: # response = [x for x in message.content] # for i in range(len(message.content)): # upper_lower = random.randint(0,1) # if upper_lower == 1: # response[i] = message.content[i] # elif upper_lower == 0: # response[i] = message.content[i].upper() # await message.channel.send(''.join(response)) # # looks for /d and number to roll random number generator # if '/d' in message.content: # num = re.search('(?<=\/d).[0-9]+', message.content) # if num.group(0).isnumeric(): # string = f'{str(random.randrange(1,int(num.group(0))+1))}' # await message.channel.send(string) # else: # await message.channel.send('thats not a number, try again') # # responds with emoji # if 'wz' in message.content.lower() or 'warzone' in message.content.lower() or 'cod' in message.content.lower() or 'call of duty' in message.content.lower(): # emoji = client.get_emoji(955552719379251300) # await message.add_reaction(emoji) # elif 'shot' in message.content.lower(): # emoji = client.get_emoji(951262317482479667) # await message.add_reaction(emoji) # for attachment in message.attachments: # if any(attachment.filename.lower().endswith(image) for image in image_types): # await attachment.save(f'attachments/{attachment.filename}') # client.run(TOKEN)
aburpee/spongebob-text
app.py
app.py
py
5,748
python
en
code
0
github-code
6
3281849942
import torch import wandb from torch import nn import torchvision.utils as vutils def get_time_emb(dim, time): pos = torch.arange(0, time, dtype=torch.float) omega = torch.arange(dim // 2, dtype=torch.float) omega /= dim / 2.0 omega = 1.0 / 10000 ** omega out = torch.einsum("m,d->md", pos, omega) emb_sin = torch.sin(out) emb_cos = torch.cos(out) emb = torch.concatenate([emb_sin, emb_cos], dim=1) return emb class SlotBert(nn.Module): def __init__(self, slate, num_actions, time, n_heads=4, dim_feedforward=512, num_layers=4, detach=False, *args, **kwargs): super().__init__(*args, **kwargs) self.detach = detach self.slate = slate self.action_emb = nn.Embedding(num_actions, slate.slot_size) self.rew_emb = nn.Linear(1, slate.slot_size) self.modality_mask_emb = nn.Embedding(4, slate.slot_size) self.time_emb = get_time_emb(slate.slot_size, time) bert_layer = nn.TransformerEncoderLayer(slate.slot_size, n_heads, dim_feedforward, batch_first=True) self.bert = nn.TransformerEncoder(bert_layer, num_layers) self.act_ff = nn.Sequential(nn.Linear(slate.slot_size, slate.slot_size*2), nn.GELU(), nn.Linear(slate.slot_size*2, num_actions), ) self.act_loss = torch.nn.CrossEntropyLoss() @property def device(self): return next(self.parameters()).device def embed_sep(self, obses, actions, rew, return_add=False): target_sizes = list(obses.shape)[:2] obses = torch.flatten(obses, 0, 1) recon, ce, mse, attns, obses = self.slate(obses) if self.detach: obses = obses.detach() obses_ret = torch.unflatten(obses, 0, target_sizes) if return_add: return obses_ret, self.action_emb(actions), self.rew_emb(rew.unsqueeze(-1)), mse, ce,\ torch.unflatten(recon, 0, target_sizes), torch.unflatten(attns, 0, target_sizes) return obses_ret, self.action_emb(actions), self.rew_emb(rew.unsqueeze(-1)), mse, ce def mask_sep(self, obses, actions, rew): # 0 prob - 0 out # 0 - mask (all masked) gamma = torch.rand((obses.shape[0]), device=self.device) gamma = gamma.unsqueeze(-1) mask_probs_obses = torch.ones(obses.shape[:-1], device=self.device) * gamma.unsqueeze(-1) mask_probs_actions_rew = torch.ones(actions.shape[:-1], device=self.device) * gamma mask_obses = torch.bernoulli(mask_probs_obses).long() mask_actions = torch.bernoulli(mask_probs_actions_rew).long() mask_rew = torch.bernoulli(mask_probs_actions_rew).long() return ( (obses * mask_obses.unsqueeze(-1)) + (1 - mask_obses.unsqueeze(-1)) * self.modality_mask_emb( mask_obses), (actions * mask_actions.unsqueeze(-1)) + (1 - mask_actions.unsqueeze(-1)) * self.modality_mask_emb( mask_actions), (rew * mask_rew.unsqueeze(-1)) + (1 - mask_rew.unsqueeze(-1)) * self.modality_mask_emb(mask_rew), ), (mask_obses, mask_actions, mask_rew) def add_modality_sep(self, obses, actions, rew): mod_obses = self.modality_mask_emb(torch.ones(obses.shape[:-1], dtype=torch.long, device=self.device)) mod_actions = self.modality_mask_emb(torch.ones(actions.shape[:-1], dtype=torch.long, device=self.device) * 2) mod_rew = self.modality_mask_emb(torch.ones(rew.shape[:-1], dtype=torch.long, device=self.device) * 3) return obses + mod_obses, actions + mod_actions, rew + mod_rew def add_time_sep(self, obses, actions, rew): actions_rew_time = self.time_emb.unsqueeze(0).to(self.device) obses_time = actions_rew_time.unsqueeze(-2) return obses + obses_time, actions + actions_rew_time, rew + actions_rew_time def concat_all(self, obses, actions, rew): actions_new = actions.unsqueeze(2) rew_new = rew.unsqueeze(2) stack = torch.cat([obses, actions_new, rew_new], dim=2) stack = torch.flatten(stack, start_dim=1, end_dim=2) return stack def sep_to_seq(self, obses, actions, rewards): obses, actions, rewards = self.add_modality_sep(obses, actions, rewards) obses, actions, rewards = self.add_time_sep(obses, actions, rewards) return self.concat_all(obses, actions, rewards) def pass_to_bert(self, seq): return self.bert(seq) def forward(self, obses, actions, rewards): t_obses, t_actions, t_rewards, mse, ce = self.embed_sep(obses, actions, rewards) (m_obses, m_actions, m_rewards), (bm_o, bm_a, bm_r) = self.mask_sep(t_obses, t_actions, t_rewards) masked_tokens = self.sep_to_seq(m_obses, m_actions, m_rewards) masks = 1 - self.concat_all(bm_o, bm_a, bm_r) # mask = 0 should be included in loss new_tokens = self.pass_to_bert(masked_tokens) bert_mse = torch.mean((new_tokens - masked_tokens) ** 2 * masks.unsqueeze(-1)) # if self.detach: # new_tokens = new_tokens.detach() # TODO: check loss is correct new_ttokens = new_tokens[:, self.slate.num_slots::self.slate.num_slots + 2] actions_time = self.time_emb.unsqueeze(0).to(self.device) mod_actions = self.modality_mask_emb(torch.ones(new_ttokens.shape[:-1], dtype=torch.long, device=self.device) * 2) new_ttokens = new_ttokens - actions_time - mod_actions if self.detach: new_ttokens = new_ttokens.detach() new_actions = self.act_ff(new_ttokens) loss = self.act_loss(new_actions.flatten(0, 1), actions.flatten(0, 1)) # END OF TD return new_tokens, (mse, ce, bert_mse, loss) @torch.no_grad() def inv_din_inference(self, obses, actions, rewards): losses = {} # we should mask all rew # we should mask last 2 actions # we should not mask obses # meaningful actions: last 2 obses are different meaningful = torch.abs(obses[:, -1] - obses[:, -2]) meaningful = torch.max(torch.flatten(meaningful, 1), 1).values meaningful = torch.eq(meaningful, torch.zeros_like(meaningful)) t_obses, t_actions, t_rewards, _, _, = self.embed_sep(obses, actions, rewards) mask_obses = torch.ones(t_obses.shape[:-1], device=self.device).long() mask_rew = torch.zeros(t_rewards.shape[:-1], device=self.device).long() mask_actions = torch.ones(t_actions.shape[:-1], device=self.device).long() mask_actions[:, -1] = 0 mask_actions[:, -2] = 0 m_obses, m_actions, m_rewards = ( (t_obses * mask_obses.unsqueeze(-1)) + (1 - mask_obses.unsqueeze(-1)) * self.modality_mask_emb( mask_obses), (t_actions * mask_actions.unsqueeze(-1)) + (1 - mask_actions.unsqueeze(-1)) * self.modality_mask_emb( mask_actions), (t_rewards * mask_rew.unsqueeze(-1)) + (1 - mask_rew.unsqueeze(-1)) * self.modality_mask_emb(mask_rew), ) masked_tokens = self.sep_to_seq(m_obses, m_actions, m_rewards) new_tokens = self.pass_to_bert(masked_tokens) new_ttokens = new_tokens[:, self.slate.num_slots::self.slate.num_slots + 2] actions_time = self.time_emb.unsqueeze(0).to(self.device) mod_actions = self.modality_mask_emb(torch.ones(new_ttokens.shape[:-1], dtype=torch.long, device=self.device) * 2) new_ttokens = new_ttokens - actions_time - mod_actions old_ttokens = masked_tokens[:, self.slate.num_slots::self.slate.num_slots + 2] old_ttokens = old_ttokens - actions_time - mod_actions new_actions = self.act_ff(new_ttokens) new_action_emb = new_ttokens[:, -2] old_action_emb = old_ttokens[:, -2] losses['mse'] = torch.mean((new_action_emb - old_action_emb) ** 2) losses['meaningful mse'] = torch.mean(((new_action_emb - old_action_emb)[meaningful]) ** 2) distance = torch.norm(new_action_emb.unsqueeze(1) - self.action_emb.weight.data.unsqueeze(0), dim=2) nearest = torch.argmin(distance, dim=1) new_action = new_actions[:, -2] old_action = actions[:, -2] losses['cross entropy'] = self.act_loss(new_action, old_action) losses['meanigful cross entropy'] = self.act_loss(new_action[meaningful], old_action[meaningful]) new_action_max = torch.max(new_action, dim=1).indices losses['accuracy'] = torch.sum(torch.eq(old_action, new_action_max)) / (old_action.shape[0]) losses['meanigful accuracy'] = torch.sum(torch.eq(old_action[meaningful], new_action_max[meaningful])) / ( old_action[meaningful].shape[0]) losses['nearest accuracy'] = torch.sum(torch.eq(old_action, nearest)) / (old_action.shape[0]) losses['nearest meanigful accuracy'] = torch.sum(torch.eq(old_action[meaningful], nearest[meaningful])) / ( old_action[meaningful].shape[0]) return losses @torch.no_grad() def forw_din_inference(self, obses, actions, rewards): # we should mask all rew # we should not mask actions # we should mask last obs losses = {} t_obses, t_actions, t_rewards, _, _, recon, attns = self.embed_sep(obses, actions, rewards, return_add=True) mask_obses = torch.ones(t_obses.shape[:-1], device=self.device).long() mask_rew = torch.zeros(t_rewards.shape[:-1], device=self.device).long() mask_actions = torch.ones(t_actions.shape[:-1], device=self.device).long() mask_obses[:, -1] = 0 m_obses, m_actions, m_rewards = ( (t_obses * mask_obses.unsqueeze(-1)) + (1 - mask_obses.unsqueeze(-1)) * self.modality_mask_emb( mask_obses), (t_actions * mask_actions.unsqueeze(-1)) + (1 - mask_actions.unsqueeze(-1)) * self.modality_mask_emb( mask_actions), (t_rewards * mask_rew.unsqueeze(-1)) + (1 - mask_rew.unsqueeze(-1)) * self.modality_mask_emb(mask_rew), ) masked_tokens = self.sep_to_seq(m_obses, m_actions, m_rewards) new_tokens = self.pass_to_bert(masked_tokens) new_tokens = new_tokens.unflatten(1, (-1, self.slate.num_slots + 2)) old_tokens = masked_tokens.unflatten(1, (-1, self.slate.num_slots + 2)) new_slots = new_tokens[:, -1, :-2] old_slots = old_tokens[:, -1, :-2] losses['mse slots'] = torch.mean((new_slots - old_slots) ** 2) new_slots_deemb = new_slots - self.modality_mask_emb(torch.ones(new_slots.shape[:-1], dtype=torch.long, device=self.device)) new_slots_deemb = new_slots_deemb - self.time_emb.to(self.device).unsqueeze(-2)[-1:] old_slots_deemb = old_slots - self.modality_mask_emb(torch.ones(old_slots.shape[:-1], dtype=torch.long, device=self.device)) old_slots_deemb = old_slots_deemb - self.time_emb.to(self.device).unsqueeze(-2)[-1:] reconstruct = self.slate.reconstruct_slots(new_slots_deemb) reconstruct_old = self.slate.reconstruct_slots(old_slots_deemb) losses['mse images slate-bert'] = torch.mean((reconstruct - reconstruct_old) ** 2) losses['mse images gt-slate'] = torch.mean((obses[:, -1] - reconstruct_old) ** 2) losses['mse images gt-bert'] = torch.mean((reconstruct - obses[:, -1]) ** 2) reconstruct = torch.cat([obses[:16, -1], recon[:16, -1], reconstruct[:16], reconstruct_old[:16]], dim=0) grid = vutils.make_grid(reconstruct, nrow=16, pad_value=0.2)[:, 2:-2, 2:-2] attns_grid = vutils.make_grid(torch.flatten(attns[:16, -1], 0, 1), nrow=16, pad_value=0.2)[:, 2:-2, 2:-2] losses['visualisation'] = wandb.Image(grid) losses['attns'] = wandb.Image(attns_grid) return losses
Shimanogov/bert-slots
model.py
model.py
py
12,552
python
en
code
0
github-code
6
12864757051
import streamlit as st import pandas as pd import numpy as np import re import json from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import math import warnings warnings.filterwarnings('ignore') from PIL import Image # Page setup st.set_page_config(page_title = "Python Tweets Search Engine", page_icon = "🐍", layout = "wide") st.title("Python Tweets Search Engine") df = pd.read_csv('preprocessed_data.csv').fillna('') inverted_index = json.load(open("inverted_index.json")) # Define a function to tokenize and clean the text def clean_text(text): text = re.sub(r"http\S+", "", text) # Remove URLs text = re.sub(r'[^\w\s]', '', text) # Remove punctuation text = text.lower() # Convert text to lowercase return text.split() # ------------------------------------------------------------------------------------------------------------ # Define the Boolean model function def boolean_model(query): #corpus = pd.read_csv('preprocessed_data.csv')['content'].tolist() corpus_raw = pd.read_csv('raw_data.csv') # Pre-process the query query = clean_text(query) # Split query into terms if not query: return [] terms = query # Find matching documents for each term results = [] #univ_set = set([x for x in range(len(corpus_raw))]) for i, term in enumerate(terms): if term in inverted_index: if terms[i-1] != 'not': results.append(inverted_index[term]) else: #results.append(univ_set.difference(set(inverted_index[term]))) pass else: results.append(set()) #print(results) # Combine the sets using Boolean operators combined_results = set() for i, term_result in enumerate(results): term_result = set(term_result) # convert list to set if i == 0: combined_results = term_result else: if terms[i-1] == 'and': combined_results = combined_results.intersection(term_result) elif terms[i-1] == 'or': combined_results = combined_results.union(term_result) # Get the documents matching all terms # matching_docs = [corpus[i] for i in combined_results] df = corpus_raw return df[df.index.isin(combined_results)] # ------------------------------------------------------------------------------------------------------------ # Define a function to handle wildcard queries def handle_wildcard_query(query): pattern = query.replace('*', '.*') regex = re.compile(pattern) matching_terms = [term for term in inverted_index.keys() if regex.match(term)] doc_ids = set([doc_id for term in matching_terms for doc_id in inverted_index[term]]) return doc_ids # ------------------------------------------------------------------------------------------------------------ # Define a function to handle phrase queries def handle_phrase_query(query): query = re.sub(r"http\S+", "", query) # Remove URLs query = re.sub(r'[^\w\s]', '', query) # Remove punctuation query_terms = query.lower().split() phrase_docs = [] for i in range(len(df)): doc = df.iloc[i] doc_text = doc['content'] for pos in range(len(doc_text.split())): if doc_text.split()[pos] == query_terms[0]: match = True for j in range(1, len(query_terms)): if pos+j >= len(doc_text.split()): match = False break next_term = doc_text.split()[pos+j] if not next_term == query_terms[j]: match = False break if match: phrase_docs.append(i) break return phrase_docs # ------------------------------------------------------------------------------------------------------------ # Define a function to calculate precision and recall def calc_precision_recall(relevant_docs, retrieved_docs): tp = len(set(relevant_docs) & set(retrieved_docs)) fp = len(retrieved_docs) - tp fn = len(relevant_docs) - tp precision = tp / (tp + fp) if tp + fp > 0 else 0 recall = tp / (tp + fn) if tp + fn > 0 else 0 return precision, recall # ------------------------------------------------------------------------------------------------------------ # Example usage def query_app(wq, pq): wildcard_query = wq phrase_query = pq wildcard_doc_ids = handle_wildcard_query(wildcard_query) phrase_doc_ids = handle_phrase_query(phrase_query) print(f'Wild card query: {wildcard_query}, matching doc ids: {wildcard_doc_ids}') print(f'Phrase query: {phrase_query}, matching doc ids: {phrase_doc_ids}') # ------------------------------------------------------------------------------------------------------------ def query_pr_app(wq, pq, relevant_docs): wildcard_query = wq phrase_query = pq wildcard_doc_ids = handle_wildcard_query(wildcard_query) phrase_doc_ids = handle_phrase_query(phrase_query) print(f'Wild card query: {wildcard_query}, matching doc ids: {wildcard_doc_ids}') print(f'Phrase query: {phrase_query}, matching doc ids: {phrase_doc_ids}') print('---') print('Evaluation:') print(f'Number of relevant documents: {len(relevant_docs)}') wildcard_precision, wildcard_recall = calc_precision_recall(relevant_docs, wildcard_doc_ids) print(f'Wild card query precision: {wildcard_precision}, recall: {wildcard_recall}') phrase_precision, phrase_recall = calc_precision_recall(relevant_docs, phrase_doc_ids) print(f'Phrase query precision: {phrase_precision}, recall: {phrase_recall}') # ------------------------------------------------------------------------------------------------------------ def retrieve_using_cosine_similarity(query, num_docs = 5): # Tokenize and clean the query query_tokens = clean_text(query) corpus = df['content'].tolist() corpus_raw = pd.read_csv('raw_data.csv')['content'].tolist() # Retrieve documents containing at least one query term candidate_doc_ids = set() for query_token in query_tokens: if query_token in inverted_index: candidate_doc_ids.update(inverted_index[query_token]) # Calculate the cosine similarity between the query and candidate documents candidate_docs = [corpus[doc_id] for doc_id in candidate_doc_ids] vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(candidate_docs) query_vector = vectorizer.transform([query]) cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() # Sort the candidate documents by cosine similarity in descending order and get the top documents document_indices = cosine_similarities.argsort()[::-1][:num_docs] return [corpus.index(candidate_docs[index]) for index in document_indices] # ------------------------------------------------------------------------------------------------------------ def log_likelihood(query, num_docs): corpus = df['content'].tolist() query = re.sub(r"http\S+", "", query) # Remove URLs query = re.sub(r'[^\w\s]', '', query) # Remove punctuation query_tokens = query.lower().split() query_likelihood = {} for token in query_tokens: if token in query_likelihood: query_likelihood[token] += 1 else: query_likelihood[token] = 1 query_length = sum(query_likelihood.values()) for token in query_likelihood: query_likelihood[token] = query_likelihood[token] / query_length # Retrieve the documents that contain any of the query tokens retrieved_docs = set() for token in query_tokens: if token in inverted_index: retrieved_docs.update(inverted_index[token]) # Compute the likelihood of each retrieved document doc_likelihoods = {} for doc_id in retrieved_docs: doc_tokens = corpus[doc_id].lower().split() doc_length = len(doc_tokens) likelihood = 0 for token in query_likelihood: count = doc_tokens.count(token) token_likelihood = count / doc_length if count > 0 else 1 / (doc_length + 1) likelihood += math.log(token_likelihood) * query_likelihood[token] doc_likelihoods[doc_id] = likelihood # Rank the retrieved documents by their likelihood sorted_docs = sorted(doc_likelihoods.items(), key=lambda x: x[1], reverse=True) # Get the top N documents document_indices = [index for index, (doc_id, likelihood) in enumerate(sorted_docs[:num_docs]) if doc_id in retrieved_docs] # Return the indices of the top N documents return [corpus.index(sorted_docs[index][0]) for index in document_indices] # ------------------------------------------------------------------------------------------------------------ # Define a function to retrieve documents using cosine similarity with relevance feedback def retrieve_using_cosine_similarity_with_feedback(query, rel_list, num_docs = 5, alpha = 1, beta = 0.75, gamma = 0.15): # Transform the query using the vectorizer corpus = df['content'].tolist() corpus_raw = pd.read_csv('raw_data.csv')['content'].tolist() # Create a TF-IDF vectorizer and transform the corpus vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(corpus) query_vector = vectorizer.transform([query]) # Calculate the cosine similarity between the query and all documents in the corpus cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() # Sort the documents by cosine similarity in descending order and get the top documents document_indices = cosine_similarities.argsort()[::-1][:num_docs] top_documents = [(corpus_raw[index], cosine_similarities[index]) for index in document_indices] # Print the top documents print(document_indices) print(f"Showing top {num_docs} documents that are most similar to the query '{query}':\n") for i, (text, cosine_sim) in enumerate(top_documents): print(f"Rank {i+1} (Cosine Similarity: {cosine_sim:.4f}):") print(text) print("Reason: The document has a high cosine similarity score with the query.\n") # Get feedback from the user on the relevance of the search results relevant_doc_indices = [] non_relevant_doc_indices = [] print(rel_list, type(rel_list)) for i in range(len(top_documents)): if(str(i) in rel_list): relevant_doc_indices.append(document_indices[i]) else: non_relevant_doc_indices.append(document_indices[i]) # Calculate the new query vector using the Rocchio algorithm relevant_doc_vectors = tfidf_matrix[relevant_doc_indices] non_relevant_doc_vectors = tfidf_matrix[non_relevant_doc_indices] new_query_vector = alpha * query_vector + beta * relevant_doc_vectors.mean(axis=0) - gamma * non_relevant_doc_vectors.mean(axis=0) # Calculate the cosine similarity between the new query vector and all documents in the corpus cosine_similarities = cosine_similarity(np.asarray(new_query_vector), tfidf_matrix).flatten() # Sort the documents by cosine similarity in descending order and get the top documents document_indices = cosine_similarities.argsort()[::-1][:num_docs] top_documents = [(corpus_raw[index], cosine_similarities[index]) for index in document_indices] print(document_indices, top_documents) print(type(document_indices), type(top_documents)) # Print the reranked top documents print(f"\nShowing top {num_docs} reranked documents that are most similar to the query '{query}':\n") for i, (text, cosine_sim) in enumerate(top_documents): print(f"Rank {i+1} (Cosine Similarity: {cosine_sim:.4f}):") print(text) print("Reason: The document has a high cosine similarity score with the reranked query.\n") return list(document_indices) # ------------------------------------------------------------------------------------------------------------ # Test the Boolean model option = st.selectbox( 'Type of query :', ('Boolean', 'Phrase', 'Wildcard', 'Cosine Similarity' , 'Relevance')) N_cards_per_row = 3 max_results = 24 image = Image.open("icon.png") resized_image = image.resize((300, 300)) st.sidebar.image(resized_image, width = 250) for _ in range(5): st.sidebar.text("\n") st.sidebar.text("This app is to serve as a front-end \nfor the tweets dataset search \nengine system implemented for\nAIRIW Assignment 1 in Python.") df1 = pd.read_csv('raw_data.csv') st.info("Search tweets by Boolean, Phrase, Wildcard, Cosine , Likelihood or Relevant") text_search = st.text_input("Enter your query :") if st.button('Go'): st.success("Searching... Your query is being processed !!!") if(option == 'Boolean'): df_search = boolean_model(text_search) elif(option == 'Phrase'): df_search = df1[df1.index.isin(handle_phrase_query(text_search))] elif(option == 'Wildcard'): df_search = df1[df1.index.isin(handle_wildcard_query(text_search))] elif(option == 'Cosine Similarity'): df_search = df1[df1.index.isin(retrieve_using_cosine_similarity(text_search, max_results))] # elif(option == 'Log Likelihood'): # df_search = df1[df1.index.isin(log_likelihood(text_search, max_results))] elif(option == 'Relevance'): rel_lis = st.text_input("Enter relevant docs as a list") if rel_lis: st.write('Feedback submitted! New results are: ') df_search = df1[df1.index.isin(retrieve_using_cosine_similarity_with_feedback(text_search, rel_lis.split(','), max_results))] else: df_search = df1[df1.index.isin(retrieve_using_cosine_similarity(text_search, max_results))] df_search = df_search[:max_results] if text_search: with st.expander("Click to see dataframe view"): st.write(df_search) for n_row, row in df_search.reset_index().iterrows(): i = n_row % N_cards_per_row if i == 0: st.write("---") cols = st.columns(N_cards_per_row, gap = "large") # draw the card with cols[n_row % N_cards_per_row]: st.caption(f"(Result No.: {n_row}) Tweet:") st.markdown(f"**{row['content'].strip()}**") st.markdown(f"*{row['publish_date'].strip()}*")
smsraj2001/MINI-SEARCH-ENGINE
app.py
app.py
py
14,858
python
en
code
2
github-code
6
17195304707
#threading better due to network I/O hinderances #from threading import Thread #multiprocessing used for cpu intensive processes (no networking hinderances) from multiprocessing import Process, Queue from time import time def check_value_in_list(x, j, num_of_processes, queue): max_num_to_check = 10**8 lower_bnd = int((j * max_num_to_check)/num_of_processes) upper_bnd = int(((j + 1) * max_num_to_check)/num_of_processes) num_of_hits = 0 for i in range(lower_bnd, upper_bnd): if i in x: num_of_hits += 1 queue.put((lower_bnd, upper_bnd, num_of_hits)) #num_threads = 4 def run(): comparison_list = [1,2,3] num_processes = 4 queue = Queue() processes = [] for i in range(num_processes): t = Process(target=check_value_in_list, args=(comparison_list, i, num_processes, queue)) processes.append(t) for t in processes: t.start() for t in processes: t.join() queue.put("DONE") while True: v = queue.get() if v == "DONE": break lower, upper, num_of_hits = v print("Between", lower, "and", upper, "we have", num_of_hits, "values in the list") if __name__ == "__main__": start_time = time() run() print("Script time:", time() - start_time, " seconds")
ganton000/Concurrency
multiprocessing-tutorial/main.py
main.py
py
1,200
python
en
code
0
github-code
6
43633237973
from __future__ import absolute_import #typing import numpy #overrides import torch from torch.nn.modules.linear import Linear import torch.nn.functional as F from allennlp.common.checks import check_dimensions_match from allennlp.data import Vocabulary from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.models.model import Model from allennlp.nn import InitializerApplicator, RegularizerApplicator from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits from allennlp.training.metrics import CategoricalAccuracy class SimpleTagger(Model): u""" This ``SimpleTagger`` simply encodes a sequence of text with a stacked ``Seq2SeqEncoder``, then predicts a tag for each token in the sequence. Parameters ---------- vocab : ``Vocabulary``, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : ``TextFieldEmbedder``, required Used to embed the ``tokens`` ``TextField`` we get as input to the model. encoder : ``Seq2SeqEncoder`` The encoder (with its own internal stacking) that we will use in between embedding tokens and predicting output tags. initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the model parameters. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training. """ def __init__(self, vocab , text_field_embedder , encoder , initializer = InitializerApplicator(), regularizer = None) : super(SimpleTagger, self).__init__(vocab, regularizer) self.text_field_embedder = text_field_embedder self.num_classes = self.vocab.get_vocab_size(u"labels") self.encoder = encoder self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(), self.num_classes)) check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(), u"text field embedding dim", u"encoder input dim") self.metrics = { u"accuracy": CategoricalAccuracy(), u"accuracy3": CategoricalAccuracy(top_k=3) } initializer(self) #overrides def forward(self, # type: ignore tokens , tags = None, metadata = None) : # pylint: disable=arguments-differ u""" Parameters ---------- tokens : Dict[str, torch.LongTensor], required The output of ``TextField.as_array()``, which should typically be passed directly to a ``TextFieldEmbedder``. This output is a dictionary mapping keys to ``TokenIndexer`` tensors. At its most basic, using a ``SingleIdTokenIndexer`` this is: ``{"tokens": Tensor(batch_size, num_tokens)}``. This dictionary will have the same keys as were used for the ``TokenIndexers`` when you created the ``TextField`` representing your sequence. The dictionary is designed to be passed directly to a ``TextFieldEmbedder``, which knows how to combine different word representations into a single vector per token in your input. tags : torch.LongTensor, optional (default = None) A torch tensor representing the sequence of integer gold class labels of shape ``(batch_size, num_tokens)``. metadata : ``List[Dict[str, Any]]``, optional, (default = None) metadata containg the original words in the sentence to be tagged under a 'words' key. Returns ------- An output dictionary consisting of: logits : torch.FloatTensor A tensor of shape ``(batch_size, num_tokens, tag_vocab_size)`` representing unnormalised log probabilities of the tag classes. class_probabilities : torch.FloatTensor A tensor of shape ``(batch_size, num_tokens, tag_vocab_size)`` representing a distribution of the tag classes per word. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ embedded_text_input = self.text_field_embedder(tokens) batch_size, sequence_length, _ = embedded_text_input.size() mask = get_text_field_mask(tokens) encoded_text = self.encoder(embedded_text_input, mask) logits = self.tag_projection_layer(encoded_text) reshaped_log_probs = logits.view(-1, self.num_classes) class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view([batch_size, sequence_length, self.num_classes]) output_dict = {u"logits": logits, u"class_probabilities": class_probabilities} if tags is not None: loss = sequence_cross_entropy_with_logits(logits, tags, mask) for metric in list(self.metrics.values()): metric(logits, tags, mask.float()) output_dict[u"loss"] = loss if metadata is not None: output_dict[u"words"] = [x[u"words"] for x in metadata] return output_dict #overrides def decode(self, output_dict ) : u""" Does a simple position-wise argmax over each token, converts indices to string labels, and adds a ``"tags"`` key to the dictionary with the result. """ all_predictions = output_dict[u'class_probabilities'] all_predictions = all_predictions.cpu().data.numpy() if all_predictions.ndim == 3: predictions_list = [all_predictions[i] for i in range(all_predictions.shape[0])] else: predictions_list = [all_predictions] all_tags = [] for predictions in predictions_list: argmax_indices = numpy.argmax(predictions, axis=-1) tags = [self.vocab.get_token_from_index(x, namespace=u"labels") for x in argmax_indices] all_tags.append(tags) output_dict[u'tags'] = all_tags return output_dict #overrides def get_metrics(self, reset = False) : return dict((metric_name, metric.get_metric(reset)) for metric_name, metric in list(self.metrics.items())) SimpleTagger = Model.register(u"simple_tagger")(SimpleTagger)
plasticityai/magnitude
pymagnitude/third_party/allennlp/models/simple_tagger.py
simple_tagger.py
py
6,916
python
en
code
1,607
github-code
6
40201462407
import cv2 import numpy as np import pandas as pd import json from scipy.spatial.distance import cdist import os # Get fps of given video def getFps(path): vidObj = cv2.VideoCapture(path) fps = vidObj.get(cv2.CAP_PROP_FPS) print("Frames per second using video.get(cv2.CAP_PROP_FPS) : {0}".format(fps)) vidObj.release() return int(fps) # Given the path to video, the fps and the second of needed frame, it returns the frame in jpg format ( needed for testing and trials ) def saveFrame(path, fps, frame_no): # Path to video file vidObj = cv2.VideoCapture(path) # Used as counter variable count = 0 success = 1 frame_count = 0 while success: success, img = vidObj.read() if frame_count == frame_no: cv2.imwrite("frame"+str(frame_count)+".jpg",img) break # Catch the frames per second if count % fps == 0: frame_count = frame_count + 1 count += 1 # Path: Path to the video to capture descriptors # Fps: Fps of the video # Interval: Array with two elements that indicate the start and end time of video to capture ([0,420] for first 7 min) # No_of_descriptors: SIFT captures many descriptors most of which are unnecessary. This parameter determines the number of descriptors to capture with biggest blobs. # Can be reduced to some extent with efficiency concerns. # Folder_to_save: Descriptors are saved to a subfolder under ./descriptors. Name of the subfolder should be given. # Function saves 3 files: # * address.json: Mapping of descriptors to frames ({"352":2} means descriptor in 352. row is the first descriptor of frame 2) # * descriptors.npy: A 2d numpy array where each row is a descriptor (which is a 128 byte array). Each frame has no_of_descriptors rows in this array. # * angles.npy: A 2d array that keeps principle angle of each keypoint in a frame in each row. # (Each row has no_of_descriptors elements since there are no_of_descriptors keypoints for each frame. And there are as many rows as the number of frames captured.) # Ex. interval = [20,40] and no_of_descriptors = 150 # Then the frames between 20. and 40. seconds of the given video are analyzed. # descriptors.npy will have the shape (150*20, 128) since each row is a descriptor and total number of descriptors is 150*20 # angles.npy will have the shape (20,150) since each row is a frame and each descriptor is a column def captureDescriptors(path, fps, interval, folder_to_save, no_of_descriptors=150): # Path to video file vidObj = cv2.VideoCapture(path) # Used as counter variable count = 0 success = 1 start = interval[0] end = interval[1] detect = cv2.xfeatures2d.SIFT_create(no_of_descriptors) all_desc = None all_angles =[] for i in range(start): all_angles.append([]) first = True rowcount = 0 frame_address = {} # the mapping from row of decriptors to the frame number frame_count = start # we catch the frame by second while success: if (count / fps) >= end: break success, img = vidObj.read() if (count / fps) < start: count += 1 continue # Catch the frames per second if count % fps == 0: img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) keypoints, descriptors = detect.detectAndCompute(img,None) angles = [int(key.angle) for key in keypoints] all_angles.append(angles) if first: all_desc = descriptors first = False else: all_desc = np.concatenate((all_desc, descriptors)) frame_address[rowcount] = frame_count rowcount = rowcount + len(descriptors) frame_count = frame_count + 1 count += 1 if not os.path.exists("./descriptors/"+folder_to_save): os.mkdir("./descriptors/"+folder_to_save) np.save("./descriptors/"+folder_to_save+"/angles", all_angles) np.save("./descriptors/"+folder_to_save+"/descriptors", all_desc) with open('./descriptors/'+folder_to_save+'/address.json', 'w') as fp: json.dump(frame_address, fp) print("Features saved") # Path: Path to the video to analyze # Fps: Fps of the video # Interval: Array with two elements that indicate the start and end time of video to analyze ([420,840] between 7. and 14. mins) # No_of_descriptors: SIFT captures many descriptors most of which are unnecessary. This parameter determines the number of descriptors to capture with biggest blobs # Desc: descriptors.npy which is obtained by captureDescriptors() # Sq: address.json which is obtained by captureDescriptors() # Ang: angles.npy which is obtained by captureDescriptors() # Ratio: When a descriptor is compared to a set of descriptors, we call the most similar pair a "match". # To call it a "good match", we need that the distance of the match must me smaller than a ratio of the second best match. # If ratio = 0.7, distances of first two matches are d1 and d2, the match with distance of d1 is a good match if d1 < 0.7*d2. # We only count the good matches, thus ratio is an important parameter. # Dumpfile: The file to write the matching results. (need to be a .csv) # Function reads the given interval of the video, extracts the SIFT features of each frame, then compares the features with the ones in database. # For our case, the database is given with desc, sq, ang. This can be changed. With the comparison, match results are written to a .csv file. def analyzeFrames(path, interval, desc, sq, ang, no_of_descriptors, fps, dumpfile, ratio = 0.75): # Path to video file vidObj = cv2.VideoCapture(path) # Used as counter variable count = 0 success = 1 start = interval[0] end = interval[1] detect = cv2.xfeatures2d.SIFT_create(no_of_descriptors) first = True while success: if (count / fps) >= end: break success, img = vidObj.read() if (count / fps) < start: count += 1 continue # Catch the frames per second if count % fps == 0: frame_no = int(count/fps) print(frame_no) img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) new_keypoints, new_descriptors = detect.detectAndCompute(img,None) angles = [int(key.angle) for key in new_keypoints] d = np.array(cdist(new_descriptors, desc)) matches, matched, glob_match = getMatchFromDistance(sq, d, ratio) startidx = 0 for key, value in sq.items(): if value == matched: startidx = int(key) break matched_ang1 = [] matched_ang2 = [] for m in glob_match: new_idx = m[0] old_idx = m[1] if old_idx>=startidx and old_idx <startidx + no_of_descriptors: idx = old_idx - startidx angle1 = angles[new_idx] angle2 = ang[matched][idx] matched_ang1.append(angle1) matched_ang2.append(angle2) angle, _ = detectAngle(matched_ang1, matched_ang2) writeMatches(frame_no, len(sq), matches, matched, angle, first, dumpfile) if first: first = False count += 1 # d: The distance matrix between descriptors of a frame and the set of descriptors in the database. # Shape of d is (n,m) if current frame has n descriptors and there are m descriptors in database. # d_ij = Distance between the ith descriptor of the frame and jth descriptor in the database. # Function returns 3 things: # * matches: An array that counts the number of matches between the current frame and each of the frames in database. # * matched: argmax(matches) , the frame that is the best match of the current frame (test frame) # * glob_match: An array of tuples where each element (i,j) is a pair of indices of matched descriptors. # (i,j) means that ith descriptor of test frame is matched with jth descriptor in database. We get this to find relative angles. def getMatchFromDistance(sq, d, ratio): rows, _ = d.shape matches = [0 for _ in range(len(sq))] indices = [] glob_match = [] for i in range(rows): row = d[i] min1, min2 = np.partition(row, 1)[0:2] if min1 < ratio*min2: # means this is a good match idx = np.where(row == min1)[0][0] indices.append(idx) glob_match.append((i,idx)) for idx in indices: last = '0' for k in sq: if idx > int(k): last = k continue else: matched_square = sq[last] matches[matched_square] += 1 break matched = np.argmax(matches) return matches, matched, glob_match # http://amroamroamro.github.io/mexopencv/matlab/cv.SIFT.detectAndCompute.html # Gets two arrays of angles to compare. Arrays have one to one correspondence. That is, ith elements of both arrays belong to matched keypoints. # Difference between each corresponding pair of angles is calculated. # The most common difference is inferred to be the relative angle between test frame and matched database frame. def detectAngle(angles1, angles2): counter = np.array([0 for i in range(360) ]) for i in range(len(angles1)): diff = angles1[i] - angles2[i] if diff < 0: diff += 360 counter[diff] += 1 return np.argmax(counter), np.max(counter) # Matching results are written to a csv file. def writeMatches(frame_no, no_of_frames, matches, matched, angle, first, dumpfile): if not os.path.exists("./matches"): os.mkdir("./matches") total_matches = sum(matches) max_match = matches[matched] if not first: df = pd.read_pickle(dumpfile) else: columns = ["Frame no","Matched Frame", "Angle" ,"Total Matches", "Max Match"] for i in range(no_of_frames): columns.append(i) df = pd.DataFrame(columns=columns) dic = {"Frame no": [frame_no], "Matched Frame": [matched], "Angle":[angle], "Total Matches":[total_matches], "Max Match":[max_match]} for i in range(no_of_frames): dic[i] = [matches[i]] df2 = pd.DataFrame(dic, index=[0]) df = pd.concat([df, df2], sort=False) df.to_pickle(dumpfile) # folder name of the run, will appear under matches directory folder = "whitesquares" # parameters of captureDescriptors() train_video = "./videos/karolar_2.mov" train_fps = 30 train_interval = [0,430] train_descriptors = 150 # parameters of analyzeFrames() query_video = "./videos/karolar_2.mov" query_fps = 30 query_interval = [430,1320] query_descriptors = 150 ratio = 0.75 # make it false if the descriptors in the database are being used train = True test = False if train: captureDescriptors(path = train_video,fps = train_fps, interval = train_interval, folder_to_save = folder, no_of_descriptors = train_descriptors) if test: with open('./descriptors/'+folder+'/address.json', 'r') as fp: sq = json.load(fp) with open('./descriptors/'+folder+'/descriptors.npy', 'rb') as f: desc = np.load(f) with open('./descriptors/'+folder+'/angles.npy', 'rb') as f: ang = np.load(f,allow_pickle=True) analyzeFrames(path = query_video, interval = query_interval, desc = desc, sq = sq, ang = ang, no_of_descriptors = query_descriptors, fps = query_fps, folder = './matches/'+folder+'.csv', ratio = ratio) df = pd.read_pickle("./matches/"+folder+".csv") df.to_csv("./matches/"+folder+".csv")
orhungorkem/SIFTDetector
main.py
main.py
py
11,935
python
en
code
0
github-code
6
17944337782
import json from django.views.generic import DetailView, ListView, View, CreateView from django.core.exceptions import ImproperlyConfigured from django.http import ( HttpResponse, HttpResponseBadRequest, HttpResponseRedirect ) from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.shortcuts import get_object_or_404 from django.core.urlresolvers import reverse from django.contrib import messages from django.utils.translation import ugettext_lazy as _ from .models import Suggestion, SuggestionCopy from .forms import AddSuggestionForm class IndexView(DetailView): """ The landing page for the site """ model = Suggestion template_name = 'suggestions/index.html' def get_context_data(self, **kw): ctx = super(IndexView, self).get_context_data(**kw) ctx['recent_suggestions'] = SuggestionCopy.objects.all()[:5] return ctx def get_object(self, queryset=None): if queryset is None: queryset = self.get_queryset() try: return queryset.order_by('?')[0] except IndexError: raise ImproperlyConfigured('No suggestions are installed') def render_to_response(self, ctx, **kw): if 'format' in self.request.GET: if self.request.GET['format'] == 'json': return HttpResponse( json.dumps( { 'id': ctx['object'].id, 'suggestion': str(ctx['object']), 'url': ctx['object'].get_absolute_url(), 'split_text': ctx['object'].split() } ), content_type='application/json' ) return HttpResponseBadRequest('Format not supported') return super(IndexView, self).render_to_response(ctx, **kw) class SuggestionView(DetailView): """ A view for a single Suggestion """ model = Suggestion class LoginRequiredMixin(object): """ Mixin to ensure a user is logged in; basically applies the login_required decorator from auth module. """ @method_decorator(login_required) def dispatch(self, *ar, **kw): return super(LoginRequiredMixin, self).dispatch(*ar, **kw) class GetSuggestionCopyQSMixin(object): """ We want to get the 10 latest suggestions that the user has had copied or if there are none we create a new one. """ def get_queryset(self): queryset = self.request.user.suggestions.all()[:10] if not queryset.count(): SuggestionCopy.objects.create_random_for_user(self.request.user) return self.request.user.suggestions.all()[:10] return queryset class UserView(LoginRequiredMixin, GetSuggestionCopyQSMixin, ListView): """ The logged in user's view """ template_name = 'suggestions/user.html' class JSONResponseMixin(object): def render_to_response(self, ctx, **kw): return HttpResponse(json.dumps(ctx), 'application/json') class SkipSuggestionView( LoginRequiredMixin, GetSuggestionCopyQSMixin, JSONResponseMixin, View ): """ Skip over the current suggestion for the user and return a new suggestion """ def get(self, request, *ar, **kw): self.get_queryset()[0].delete() SuggestionCopy.objects.create_random_for_user(self.request.user) queryset = self.get_queryset() return self.render_to_response({'suggestion': queryset[0].data}) class GetSuggestionCopySingleMixin(object): def get_queryset(self): queryset = self.request.user.suggestions.all() if not queryset.count(): SuggestionCopy.objects.create_random_for_user(self.request.user) return self.request.user.suggestions.all() return queryset def get_object(self, id): return get_object_or_404(self.get_queryset(), pk=id) class ActionSuggestionView( LoginRequiredMixin, GetSuggestionCopySingleMixin, JSONResponseMixin, View ): """ Mark the current suggestion for the user as actioned and return a new suggestion """ def get(self, request, *ar, **kw): obj = self.get_object(kw['id']) obj.suggestion.actioned_by.add(request.user) suggestion = SuggestionCopy.objects.create_random_for_user( request.user ) return self.render_to_response({'suggestion': suggestion.data}) class LikeSuggestionView( LoginRequiredMixin, GetSuggestionCopySingleMixin, JSONResponseMixin, View ): """ Mark a suggestion as liked by the user and return the amount of likes """ def get(self, request, *ar, **kw): obj = self.get_object(kw['id']) obj.suggestion.liked_by.add(request.user) return self.render_to_response( {'likes': obj.suggestion.liked_by.count()} ) class PutBackView( LoginRequiredMixin, GetSuggestionCopySingleMixin, JSONResponseMixin, View ): """ Put a crossed suggestion back to current by making a copy of it """ def get(self, request, *ar, **kw): obj = self.get_object(kw['id']) self.get_queryset()[0].delete() suggestion = SuggestionCopy.objects.create_from_suggestion_for_user( obj.suggestion, request.user ) return self.render_to_response({'suggestion': suggestion.data}) class UpdateTextView( LoginRequiredMixin, GetSuggestionCopySingleMixin, JSONResponseMixin, View ): """ Update the text for "them" in the selected suggestion """ def post(self, request, *ar, **kw): obj = self.get_object(kw['id']) if not 'text' in request.POST: return HttpResponseBadRequest('No text supplied') obj.them_text = request.POST['text'] obj.save() return self.render_to_response({'status': 'success'}) class AddSuggestionView(LoginRequiredMixin, CreateView): """ Allow a logged in user to add their own suggestion for review that can be added (by an admin) to the pool of suggestions given on the site """ template_name = 'suggestions/add.html' form_class = AddSuggestionForm def get_success_url(self): return reverse('suggestions:add') def form_valid(self, form): form.save(self.request.user) messages.success(self.request, _('Thank you for your suggestion')) return HttpResponseRedirect(self.get_success_url())
rvause/djangodash2013
suggestions/views.py
views.py
py
6,614
python
en
code
3
github-code
6
23588347895
from time import sleep import psycopg2 import os import subprocess from datetime import datetime from pytz import timezone import filecmp db_name = os.environ['POSTGRES_DB'] db_user = os.environ['POSTGRES_USER'] db_pass = os.environ['PGPASSWORD'] db_host = os.environ['POSTGRES_HOST'] db_port = os.environ['POSTGRES_PORT'] #frequency = 18000 if os.environ['BACKUP_INTERVAL'] is None else os.environ['BACKUP_INTERVAL'] #/mnt/data/db KEEP_ALL = 0 def purgeBackup(old_file,new_file): if filecmp.cmp(old_file,new_file) == True: os.remove(old_file) def loadBackup(backup_file): ps = subprocess.Popen( ['psql', '-h', db_host, '-U', db_user, '-d', db_name, '-f', backup_file], stdout=subprocess.PIPE ) output = ps.communicate()[0] for line in output.splitlines(): print(line) def getFileInfo(path): result={} result['path'] = path # file modification timestamp of a file m_time = os.path.getmtime(path) # file creation timestamp in float c_time = os.path.getctime(path) # convert timestamp into DateTime object result['modifiedOn'] = datetime.fromtimestamp(m_time) # convert creation timestamp into DateTime object result['createdOn'] = datetime.fromtimestamp(c_time) return result #get last backup data = [getFileInfo('/mnt/data/db/{}'.format(item)) for item in os.listdir("/mnt/data/db") if item.endswith(".sql")] sorted_data=sorted(data, key=lambda i: i['modifiedOn'],reverse=True) last_backup = sorted_data[0]['path'] print(f"Last backup: {last_backup}") #Connecto to the database db_string = 'postgres://{}:{}@{}:{}/{}'.format(db_user, db_pass, db_host, db_port, db_name) print(db_string) db = psycopg2.connect(db_string) cursor = db.cursor() cursor.execute("SELECT version();") version = cursor.fetchone() print(version) cursor.execute("SELECT COUNT(*) FROM information_schema.tables WHERE table_schema = 'public'") count = cursor.fetchone() if len(count) > 0 and count[0] == 0: print("*** RECREATE DB from Backup! ****") print('loading {}'.format(last_backup)) loadBackup(last_backup) else: print("continue....") db.close() while True: tz = timezone('EST') x = datetime.now(tz) new_backup=f'/mnt/data/db/postgres-backup-{x.strftime("%m%d%y%H%M%S")}.sql' print('Backing up %s database to %s' % (db_name, new_backup)) ps = subprocess.Popen( ['pg_dump', '-h', db_host, '-U', db_user, '-d', db_name, '-f', new_backup], stdout=subprocess.PIPE) output = ps.communicate()[0] for line in output.splitlines(): print(line) if KEEP_ALL == 0: purgeBackup(last_backup,new_backup) last_backup = new_backup sleep(3600)
cjrisua/vinomio-api
docker/vinomioHC/app.py
app.py
py
2,723
python
en
code
0
github-code
6
6056727556
#!/usr/bin/env python3 import re import collections import vcf import sys import argparse import copy def parse_my_args(): parser = argparse.ArgumentParser("Combines a VCF of individual calls into one large VCF for population.") parser.add_argument("vcf", nargs="?", help="Input VCF file; default stdin.") parser.add_argument("-n", "--name", help="name of combined population.", required=True) args = parser.parse_args() return(args) def get_arg_vars(args): if args.vcf: inconn = open(args.vcf, "r") else: inconn = sys.stdin name = args.name return(inconn, name) def combine_vcf(vcfin, name, outwriter): regex = re.compile(r"[/|]") for record in vcfin: calls = [call for call in record] ad1 = 0 ad2 = 0 for call in calls: callgt = regex.split(call["GT"]) if len(callgt) == 1: inc = 2 else: inc = 1 for i in callgt: if i=="0": ad1 += inc if i=="1": ad2 += inc if ad1 >0 and ad2 > 0: gt = "0|1" elif ad2 > 0: gt = "1" else: gt = "0" writeout(gt, ad1, ad2, name, record, outwriter) #print(cmh.summary()) #control_ad0, control_ad1 = [calls.AD[:2] for i in control] #test_ad0, test_ad1 = [calls.AD[:2] for i in test] def writeout(gt, ad1, ad2, name, record, writer): newrecord = copy.deepcopy(record) newrecord.samples = [] CallData = collections.namedtuple("CallData", ["GT", "AD"]) mycalldat = CallData(GT = str(gt), AD = [str(ad1), str(ad2)]) newrecord.samples.append(vcf.model._Call(newrecord, name, mycalldat)) writer.write_record(newrecord) def main(): args = parse_my_args() inconn, name = get_arg_vars(args) vcfin = vcf.Reader(inconn) outwriter = vcf.Writer(sys.stdout, vcfin) combine_vcf(vcfin, name, outwriter) inconn.close() if __name__ == "__main__": main() #>>> for i in b: #... for j in i: #... try:print(j.data.AD)
jgbaldwinbrown/vcfstats
combine_single_indivs.py
combine_single_indivs.py
py
2,138
python
en
code
0
github-code
6
11002868168
from typing import List class WordFilter: def __init__(self, words: List[str]): self.a ={} for ind, i in enumerate(words): for j in range(len(i) + 1): for k in range(len(i) + 1): now = i[:j] + '$' + i[k:] self.a[now] = ind def f(self, prefix: str, suffix: str) -> int: k = prefix + '$' + suffix return self.a.get(k, -1) if __name__ == '__main__': words = ["apple"] prefix = "a" suffix = "e" obj = WordFilter(words) print(obj.f(prefix, suffix)) # Your WordFilter object will be instantiated and called as such: # obj = WordFilter(words) # param_1 = obj.f(prefix,suffix)
xixihaha1995/CS61B_SP19_SP20
745. Prefix and Suffix Search.py
745. Prefix and Suffix Search.py
py
702
python
en
code
0
github-code
6
38046454992
#!/usr/bin/env python3 import os import sys import rzpipe curdir = os.path.dirname(os.path.realpath(__file__)) rz = rzpipe.open(curdir + "/ls", ["-2"]) # print(rzpipe.__file__) # print(rzpipe.VERSION) rz.cmd("aa") sys.stdout.write("/bin/ls ") pi1 = rz.cmd("pi 1 @e:scr.color=0").strip() if pi1 == "push rbp": print("OK") else: print("FAIL") # print(pi1) # print(rz.cmd("pd 10")); rz.quit()
rizinorg/rz-pipe
python/examples/test.py
test.py
py
407
python
en
code
26
github-code
6
4732908565
import xml.etree.ElementTree as ET from datetime import datetime from bs4 import BeautifulSoup class XMLParser: def __init__(self, file: str): self.file = file self.parameters = {'INPUT':{}, 'DISCRIMINATOR':{}, 'QDC':{}, 'SPECTRA':{}, 'REJECTIONS':{}, 'ENERGY_CALIBRATION':{}, 'SYNC':{}, 'HARDWARE_COINCIDENCE':{}, 'MISC':{}} self.groups = list(self.parameters.keys()) self.reformatted = ['SRV_PARAM_CH_POLARITY','SRV_PARAM_CH_BLINE_NSMEAN','HARDWARE_COINCIDENCE','SRV_PARAM_START_MODE','SRV_PARAM_CH_SPECTRUM_NBINS','SRV_PARAM_CH_INDYN','SRV_PARAM_CH_CFD_FRACTION','SRV_PARAM_CH_DISCR_MODE','SRV_PARAM_CH_ENERGY_COARSE_GAIN','SRV_PARAM_TRGOUT_MODE'] self.reformatted_keys = ['polarity', 'baseline', 'coincidence', 'start', 'ebins', 'input_range', 'cfd', 'discriminator', 'coarse_gain', 'trig_out'] self.formatted = 0 self.board_formatted = False def get_board_properties(self): root = ET.parse(self.file).getroot() name = root.find('board/label').text id = root.find('board/id').text model = root.find('board/modelName').text adc_bits = root.find('board/adcBitCount').text sample_rate = int(root.find('board/sampleTime').text)*10**6 dpp_type = root.find('board/dppType').text roc = root.find('board/rocFirmware/major').text + '.' + root.find('board/rocFirmware/minor').text + ' build ' + str(hex(int(root.find('board/rocFirmware/build').text))).split('0x')[-1].zfill(4) amc = root.find('board/amcFirmware/major').text + '.' + root.find('board/amcFirmware/minor').text + ' build ' + str(hex(int(root.find('board/amcFirmware/build').text))).split('0x')[-1].zfill(4) link = root.find('board/connectionType').text + ' link #' + root.find('board/address').text status = root.find('board/active').text if status == 'true': status = True if status == 'false': status = False return name, id, model, adc_bits, sample_rate, dpp_type, roc, amc, link, status def reformat(self, list_of_params): """ Reformats the values of the XML file. Args: list_of_params (list): Contains `polarity`, `baseline`, `coincidence`, `start`, `ebins`, `input_range`, `cfd`, `discriminator`, `coarse_gain`, 'trig_out`. """ if 'all' in list_of_params: list_of_params.clear() list_of_params = ['polarity', 'baseline', 'coincidence', 'start', 'ebins', 'input_range', 'cfd', 'discriminator', 'coarse_gain', 'trig_out'] #Formatting of the text values if 'polarity' in list_of_params: pol = self.parameters['INPUT']['SRV_PARAM_CH_POLARITY'] real_pol = pol.split('_')[-1] self.parameters['INPUT']['SRV_PARAM_CH_POLARITY'] = real_pol if 'baseline' in list_of_params: bline = self.parameters['INPUT']['SRV_PARAM_CH_BLINE_NSMEAN'] real_bline = bline.split('_')[-1] self.parameters['INPUT']['SRV_PARAM_CH_BLINE_NSMEAN'] = real_bline if 'coincidence' in list_of_params: coinc_mode = self.parameters['HARDWARE_COINCIDENCE']['SRV_PARAM_COINC_MODE'] real_coinc_mode = coinc_mode[11:] self.parameters['HARDWARE_COINCIDENCE']['SRV_PARAM_COINC_MODE'] = real_coinc_mode if 'start' in list_of_params: start_mode = self.parameters['SYNC']['SRV_PARAM_START_MODE'] real_start_mode = start_mode[11:] self.parameters['SYNC']['SRV_PARAM_START_MODE'] = real_start_mode if 'ebins' in list_of_params: energy_bins = self.parameters['SPECTRA']['SRV_PARAM_CH_SPECTRUM_NBINS'] real_energy_bins = energy_bins[5:] +'.0' self.parameters['SPECTRA']['SRV_PARAM_CH_SPECTRUM_NBINS'] = real_energy_bins if 'input_range' in list_of_params: input_range = self.parameters['INPUT']['SRV_PARAM_CH_INDYN'] input_range = input_range.split('_')[1:] real_input_range = input_range[0] + '.' + input_range[1] self.parameters['INPUT']['SRV_PARAM_CH_INDYN'] = real_input_range if 'cfd' in list_of_params: cfd_frac = self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_CFD_FRACTION'] real_cfd_frac = cfd_frac.split('_')[-1] self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_CFD_FRACTION'] = real_cfd_frac if 'discriminator' in list_of_params: disc_mode = self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_DISCR_MODE'] disc_mode = disc_mode.split('_')[-1] if disc_mode == "LED": real_disc_mode = "Leading Edge Discriminator" if disc_mode == "CFD": real_disc_mode = "Constant Fraction Discriminator" self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_DISCR_MODE'] = real_disc_mode if 'coarse_gain' in list_of_params: coarse_gain = self.parameters['QDC']['SRV_PARAM_CH_ENERGY_COARSE_GAIN'] self.parameters['QDC']['SRV_PARAM_CH_ENERGY_COARSE_GAIN'] = coarse_gain.split('_')[1] if 'trig_out' in list_of_params: trig_out = self.parameters['SYNC']['SRV_PARAM_TRGOUT_MODE'].split('_')[2:] real_trig_out ="" for elem in trig_out: real_trig_out += elem + ' ' self.parameters['SYNC']['SRV_PARAM_TRGOUT_MODE'] = real_trig_out #FIXING THE VALUES THAT ARE IN NANOSECONDS TO SECONDS FOR SPINMOB AUTOSCALING if self.formatted == 0: self.parameters['INPUT']['SRV_PARAM_RECLEN'] = float(self.parameters['INPUT']['SRV_PARAM_RECLEN'])*10**(-9) self.parameters['INPUT']['SRV_PARAM_CH_PRETRG'] = float(self.parameters['INPUT']['SRV_PARAM_CH_PRETRG'])*10**(-9) self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_TRG_HOLDOFF'] = float(self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_TRG_HOLDOFF'])*10**(-9) self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_CFD_DELAY'] = float(self.parameters['DISCRIMINATOR']['SRV_PARAM_CH_CFD_DELAY'])*10**(-9) self.parameters['QDC']['SRV_PARAM_CH_GATE'] = float(self.parameters['QDC']['SRV_PARAM_CH_GATE'])*10**(-9) self.parameters['QDC']['SRV_PARAM_CH_GATESHORT'] = float(self.parameters['QDC']['SRV_PARAM_CH_GATESHORT'])*10**(-9) self.parameters['QDC']['SRV_PARAM_CH_GATEPRE'] = float(self.parameters['QDC']['SRV_PARAM_CH_GATEPRE'])*10**(-9) self.parameters['SPECTRA']['SW_PARAMETER_TIME_DISTRIBUTION_CH_T0'] = float(self.parameters['SPECTRA']['SW_PARAMETER_TIME_DISTRIBUTION_CH_T0'])*10**(-9) self.parameters['SPECTRA']['SW_PARAMETER_TIME_DISTRIBUTION_CH_T1'] = float(self.parameters['SPECTRA']['SW_PARAMETER_TIME_DISTRIBUTION_CH_T1'])*10**(-9) self.parameters['SPECTRA']['SW_PARAMETER_TIME_DIFFERENCE_CH_T0'] = float(self.parameters['SPECTRA']['SW_PARAMETER_TIME_DIFFERENCE_CH_T0'])*10**(-9) self.parameters['SPECTRA']['SW_PARAMETER_TIME_DIFFERENCE_CH_T1'] = float(self.parameters['SPECTRA']['SW_PARAMETER_TIME_DIFFERENCE_CH_T1'])*10**(-9) self.parameters['HARDWARE_COINCIDENCE']['SRV_PARAM_COINC_TRGOUT'] = float(self.parameters['HARDWARE_COINCIDENCE']['SRV_PARAM_COINC_TRGOUT'])*10**(-9) self.parameters['REJECTIONS']['SW_PARAMETER_CH_ENERGYCUTENABLE'] = (True if self.parameters['REJECTIONS']['SW_PARAMETER_CH_ENERGYCUTENABLE'] == 'true' else False) self.formatted += 1 def get_parameters(self): """ Gets the board parameters (shared parameters for all channels). """ root = ET.parse(self.file).getroot() board_parameters = root.find('board/parameters') for entry in board_parameters: key = entry.find('key').text value = entry.find('value/value').text group = entry.find('value/descriptor/group').text if value == 'true': value = True if value == 'false': value = False for tab in self.groups: if group == tab: #if units is None: self.parameters[tab][key] = value #else: #self.parameters[tab][key] = [value, units] self.formatted = 0 self.reformat(['all']) return self.parameters def get_chn_parameters(self, chn_number: str): root = ET.parse(self.file).getroot() channels = root.findall('board/channel') channel_in_use = channels[chn_number] # keys = channel_in_use.findall('values/entry/key') # values = channel_in_use.findall('values/entry/value') entries = channel_in_use.findall('values/entry') entries_with_vals = [] for index, entry in enumerate(entries): if entry.find('value') is not None: entries_with_vals.append(entries[index]) keys = [] values = [] for entry in entries_with_vals: keys.append(entry.find('key')) values.append(entry.find('value')) list_format = [] for key in keys: if key.text in self.reformatted: list_format.append(self.reformatted_keys[self.reformatted.index(key.text)]) for group in self.parameters: for index, key in enumerate(keys): if key.text in self.parameters[group]: if 'true' in values[index].text or 'false' in values[index].text: values[index].text = (True if values[index].text == 'true' else False) else: self.parameters[group][key.text] = values[index].text # self.formatted = 0 # self.reformat(list_format) return self.parameters def get_ch_label(self, chn_number: str): root = ET.parse(self.file).getroot() channels = root.findall('board/channel') channel_to_check = channels[chn_number] index = channel_to_check.find('index').text entries = channel_to_check.findall('values/entry') for entry in entries: if entry.find('key').text == "SW_PARAMETER_CH_LABEL": if entry.find('value') is not None: label = entry.find('value').text break else: # I'm a genius. Don't mind me using disgusting functions in python. label = "CH" #This is executed if the loop ends normally (so without encountering the break above.) return (index, label) class InfoParser: def __init__(self, file: str): self.file = file def get_run_info(self): with open(self.file) as f: informations = f.readlines()[0:4] self.id = informations[0].split('=')[-1][:-1] self.time_start = datetime.strptime(informations[1].split('=')[-1].split('.')[0], "%Y/%m/%d %H:%M:%S") self.time_stop = datetime.strptime(informations[2].split('=')[-1].split('.')[0], "%Y/%m/%d %H:%M:%S") self.time_real = self.time_stop - self.time_start return self.id, self.time_start, self.time_stop, self.time_real if __name__ == '__main__': file = "C:\\Users\\chloe\\OneDrive - McGill University\\Coincidence Testing\\Co60 Spectrums with different settings\\DAQ\\4096Chns-20lsb(LE)-80Gain-(300.80.50)-150s\\settings.xml" test = XMLParser(file) test.get_parameters() print(test.get_ch_label(2))
Chujo58/ReadROOT
XML_Parser.py
XML_Parser.py
py
11,752
python
en
code
0
github-code
6
9642933289
import socket udpsocket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) udpsocket.bind(("localhost",7777)) print("UDP server is up and listening") pair = udpsocket.recvfrom(1024) res = pair[0] add = pair[1] print("Response from client :") print("Message Received: ", res.decode()) print("Address of client: ", add, end = '\n\n') udpsocket.sendto(str.encode("Connected to Server!"), add) while(True): pair = udpsocket.recvfrom(1024) res = pair[0] add = pair[1] print("Client: ", res.decode()) message = input("ME: ") udpsocket.sendto(str.encode(message), add)
vaibhav477/TCP_chat_app
UDP_Implementation/server.py
server.py
py
607
python
en
code
0
github-code
6
20602647000
import sys sys.path.append('../') # sys.path.insert(0, '/path/to/application/app/folder') # from flask import Flask #from flask_testing import TestCase import unittest from unittest import TestCase import read_ini # class MyTest(TestCase): # def create_app(self): # app = Flask(__name__) # app.config['TESTING'] = True # return app # class TestDBcon(TestCase): def setUp(self): TestCase.setUp(self) def test_settings_ini_has_all_required_keys(self): expected_keys = ['name', 'age' , 'height'] filename = '../settings.ini' ini_to_dict = read_ini.convert_settings_ini_to_dict(filename) keys_retrived_from_ini_file = list(ini_to_dict) # or [*ini_to_dict] for k in expected_keys: self.assertIn(k, keys_retrived_from_ini_file, 'we got %s' % keys_retrived_from_ini_file) # self.assertListEqual(keys_retrived_from_ini_file, # expected_keys, 'we got %s' % # keys_retrived_from_ini_file) def test_get_value_from_settings_ini_file(self): expected_result = 'bhujay' self.assertEqual(read_ini.get_value_from_settings_ini_file('name'), expected_result, 'Test result is % s' % read_ini.get_value_from_settings_ini_file('name')) if __name__ == '__main__': unittest.main()
BhujayKumarBhatta/flask-learning
flaskr/tests/test_read_ini.py
test_read_ini.py
py
1,580
python
en
code
1
github-code
6
74530690747
#!/usr/bin/env python3 """antipatibot, discord server.""" import asyncio import logging import os import secrets from dataclasses import dataclass import discord from discord.ext import commands import yt_dlp as youtube_dl youtube_dl.utils.bug_reports_message = lambda: '' ytdl_format_options = { 'format': 'bestaudio/best', 'outtmpl': '%(extractor)s-%(id)s-%(title)s.%(ext)s', 'restrictfilenames': True, 'noplaylist': False, 'extract_flat': 'in_playlist', # don't extract stream urls / thumbnails # ... for playlists. 'nocheckcertificate': True, 'ignoreerrors': False, 'logtostderr': False, 'quiet': True, 'no_warnings': True, 'default_search': 'auto', 'source_address': '0.0.0.0' # bind to ipv4 since ipv6 addresses cause issues sometimes } ffmpeg_options = { 'options': '-vn' } ytdl = youtube_dl.YoutubeDL(ytdl_format_options) class YTDLSource(discord.PCMVolumeTransformer): """Youtube source class, which allows the bot to play youtube videos""" def __init__(self, source, *, data, volume=0.5): super().__init__(source, volume) self.data = data self.title = data.get('title') self.url = data.get('url') @classmethod async def from_url(cls, url, *, loop=None, stream=False): """Returns an audio from a youtube link.""" loop = loop or asyncio.get_event_loop() data = await loop.run_in_executor(None, lambda: ytdl.extract_info(url, download=not stream)) if 'entries' in data: # Take first item from a playlist. # This should never happen, since we handle this in the play command, # but better safe than sorry. data = data['entries'][0] filename = data['url'] if stream else ytdl.prepare_filename(data) return cls(discord.FFmpegPCMAudio(filename, **ffmpeg_options), data=data) @dataclass() class BotSettings: """Bot settings associated to each antipatibot instance.""" discord_token: str = os.getenv("ANTIPATIBOT_DISCORD_TOKEN", "") command_prefix: str = os.getenv("ANTIPATIBOT_COMMAND_PREFIX", "!") max_queue_size: int = int(os.getenv("ANTIPATIBOT_MAX_QUEUE_SIZE", "1000")) idle_timeout: int = int(os.getenv("ANTIPATIBOT_IDLE_TIMEOUT", "300")) @dataclass() class GuildData: """Data associated to each guild: song queue, music task and lock.""" guild_id: int = None lock: asyncio.Lock = asyncio.Lock() queue: asyncio.Queue = None task: asyncio.Task = None loop: bool = False def __init__(self, guild_id: int, max_queue_size: int, task: asyncio.Task = None): self.guild_id = guild_id self.task = task self.queue = asyncio.Queue(max_queue_size) # pylint: disable=R0201,R0904 class AntipatiBot(commands.Cog): """AntipatiBot's collection of command.""" def __init__(self, bot, log, settings: BotSettings): self.bot = bot self.log = log self.settings = settings self.guild_data = {} async def cog_command_error(self, ctx, error): message = ctx.message.content self.log.error(f"command_error:{ctx.guild.id}:{self.log.sanitize(ctx.author)}" + f":{ctx.command}:{ctx.author.id}:{message}:{error}") await ctx.message.reply("Invalid command.") async def cog_before_invoke(self, ctx): self.log.info( f"command:{ctx.guild.id}:{self.log.sanitize(ctx.author)}:{ctx.author.id}:{ctx.command}") @commands.Cog.listener() async def on_ready(self): """Triggers when the bot is ready to run, used to log basic information.""" self.log.info("login:%s", self.bot.user) for guild in self.bot.guilds: self.log.info("joined_guild:%d:%s", guild.id, self.log.sanitize(guild.name)) self.guild_data[guild.id] = GuildData(guild.id, self.settings.max_queue_size) async def ensure_guild_thread(self, guild_id: int): """Ensure the music_player_loop thread is running for the given guild_id""" guild_data = self.guild_data[guild_id] async with guild_data.lock: if guild_data.task is None: guild_data.task = asyncio.create_task(self.music_player_loop(guild_data)) async def terminate_guild_thread(self, guild_id: int): """Kill the music_player_loop thread for the given guild_id""" guild_data = self.guild_data[guild_id] async with guild_data.lock: if guild_data.task is not None: guild_data.task.cancel() guild_data.queue = asyncio.Queue(self.settings.max_queue_size) guild_data.loop = False guild_data.task = None @commands.Cog.listener() async def on_voice_state_update(self, member: discord.Member, before: discord.VoiceState, after: discord.VoiceState): """Triggers when the bot joins or leaves a voice channel. Starts the music_player_loop for the given guild.""" guild_id = member.guild.id if self.bot.user == member: """Ensure the music_player_loop is alive/dead""" if after.channel is not None: await self.ensure_guild_thread(guild_id) elif after.channel is None: await self.terminate_guild_thread(guild_id) else: """Terminate when you are left alone on a channel""" voice = discord.utils.get(self.bot.voice_clients, guild__id=guild_id) if voice is not None and len(voice.channel.members) < 2: # FIXME: possible race condition on idle timeout await voice.disconnect() await self.terminate_guild_thread(guild_id) async def music_player_loop(self, guild_data: GuildData): """Task which handles the queue list, cross-guild in theory (wip).""" self.log.info(f"music_player_loop:{guild_data.guild_id}:start") while True: try: (song_request, ctx) = \ await asyncio.wait_for(guild_data.queue.get(), self.settings.idle_timeout) self.log.info("song request: " + str(song_request)) player = await YTDLSource.from_url(song_request, loop=self.bot.loop, stream=True) playing_current_song = asyncio.Event() def on_song_end(error): if error is not None: self.log.error("Player error: %s", error) playing_current_song.set() ctx.voice_client.play(player, after=on_song_end) await ctx.send(f"Now playing: {player.title}") await playing_current_song.wait() if guild_data.loop: try: guild_data.queue.put_nowait((song_request, ctx)) except asyncio.QueueFull: pass except asyncio.CancelledError: self.log.info(f"music_player_loop:{guild_data.guild_id}:cancelled") return except asyncio.TimeoutError: self.log.info(f"music_player_loop:{guild_data.guild_id}:timeout") voice = discord.utils.get(self.bot.voice_clients, guild__id=guild_data.guild_id) if voice is not None: await voice.disconnect() return except Exception as exception: # pylint: disable=W0703 self.log.warning(f"music_player_loop:{guild_data.guild_id}:uncaught exception: {exception}") @commands.command() async def join(self, ctx, *, channel: discord.VoiceChannel = None): """ Either join a given voice channel or move to the author voice channel. If no channel is specified, connect to the user's current voice channel. """"" if channel is None: if ctx.author.voice is None: return await ctx.message.reply("You are not connected to a voice channel.") channel = ctx.author.voice.channel if ctx.voice_client is not None: await ctx.voice_client.move_to(channel) else: await channel.connect() await self.ensure_guild_thread(ctx.guild.id) @commands.command(aliases=["cicca"]) async def cichero(self, ctx): """Great classic.""" return await self.play(ctx, song_request="https://www.youtube.com/watch?v=DAuPe14li4g") @commands.command(aliases=["jhon"]) async def john(self, ctx): """He truly is.""" return await self.play(ctx, song_request="https://www.youtube.com/watch?v=dALcFSyFcXs") @commands.command() async def bastardo(self, ctx): """Mia mamma è una brava donna, napoletana ma brava""" return await self.play(ctx, song_request="https://www.youtube.com/watch?v=12gmyUCqLxA") @commands.command(aliases=["p", "youtube", "yt"]) async def play(self, ctx, *, song_request: str): """Add youtube song to playlist.""" async with ctx.typing(): guild_data = self.guild_data[ctx.guild.id] songs = [ytdl.extract_info(song_request, download=False)] if "entries" in songs[0]: # YouTube playlist songs = list(song for song in songs[0]["entries"]) for song in songs: try: guild_data.queue.put_nowait((song["url"], ctx)) except asyncio.QueueFull: await ctx.message.reply( f"Song queue is full (Max size: {guild_data.queue.maxsize})") return await ctx.message.reply("Song added to the queue" if len(songs) == 1 else f"Added {len(songs)} songs to the queue.") @commands.command(aliases=["clear", "clean", "hairottoilcazzo"]) async def stop(self, ctx, *, reply=True): """Clear the queue and stop playing music""" guild_data = self.guild_data[ctx.guild.id] try: while True: guild_data.queue.get_nowait() except asyncio.QueueEmpty: await self.skip(ctx) if reply: await ctx.message.reply("Song queue cleared and music stopped") @commands.command(aliases=["kill", "terminate", "harakiri"]) async def disconnect(self, ctx): """Clear the queue, stop playing music and disconnect from the channel""" await self.stop(ctx, reply=False) if ctx.voice_client is not None: await ctx.voice_client.disconnect() @commands.command(aliases=["next"]) async def skip(self, ctx): """Skip the song that is currently playing.""" if ctx.voice_client is not None and ctx.voice_client.is_playing(): ctx.voice_client.stop() @commands.command() async def loop(self, ctx): """Toggle the loop functionality""" async with ctx.typing(): guild_data = self.guild_data[ctx.guild.id] guild_data.loop = not guild_data.loop await ctx.message.reply(f"Loop {'activated' if guild_data.loop else 'deactivated'}") @commands.command(aliases=["die", "roll"]) async def dice(self, ctx, num: int = 1, sides: int = 20, show_sides: bool = True): """Roll an n sided dice""" if sides < 1 or sides > 0x1337 or num < 1 or num > 40: return await ctx.message.reply("You have been added to a list.") if num == 1: return await ctx.message.reply((f"[d{sides}] " if show_sides else "") + f"You rolled a {secrets.randbelow(sides) + 1}") rolls = [secrets.randbelow(sides) + 1 for _ in range(num)] return await ctx.message.reply( f"[{num}d{sides}] You rolled {'+'.join([str(r) for r in rolls])} = {sum(rolls)}") # pylint: disable=C0103 @commands.command() async def d4(self, ctx, n=1): """Roll a 4-sided dice""" await self.dice(ctx, sides=4, num=n, show_sides=False) @commands.command() async def d6(self, ctx, n=1): """Roll a 6-sided dice""" await self.dice(ctx, sides=6, num=n, show_sides=False) @commands.command() async def d8(self, ctx, n=1): """Roll a 8-sided dice""" await self.dice(ctx, sides=8, num=n, show_sides=False) @commands.command() async def d10(self, ctx, n=1): """Roll a 10-sided dice""" await self.dice(ctx, sides=10, num=n, show_sides=False) @commands.command() async def d12(self, ctx, n=1): """Roll a 10-sided dice""" await self.dice(ctx, sides=12, num=n, show_sides=False) @commands.command() async def d20(self, ctx, n=1): """Roll a 20-sided dice""" await self.dice(ctx, sides=20, num=n, show_sides=False) @commands.command() async def d100(self, ctx, n=1): """Roll a 100-sided dice""" await self.dice(ctx, sides=100, num=n, show_sides=False) @play.before_invoke @cichero.before_invoke @john.before_invoke @bastardo.before_invoke async def ensure_voice(self, ctx): """Pre-hook used to ensure you the bot is connected to a voice channel before starting to play music.""" return await self.join(ctx) def main(): """Entrypoint for antipatibot program""" logging.basicConfig(level=logging.INFO) logging.getLogger("discord").setLevel(logging.WARNING) log = logging.getLogger("antipatibot") # log.setLevel(logging.DEBUG) settings = BotSettings() bot = commands.Bot(command_prefix=commands.when_mentioned_or(settings.command_prefix), description="AntipatiBot") log.sanitize = lambda message: str(message).replace(":", "_") \ .replace("\r", "\\r") \ .replace("\n", "\\n") \ .replace("\t", "\\t") bot.add_cog(AntipatiBot(bot, log, settings)) try: discord_api_file = "/antipatibot/discord_token.txt" if os.path.exists(discord_api_file) and os.path.isfile(discord_api_file): with open(discord_api_file, encoding='utf8') as file: settings.discord_token = file.read().strip("\n\r\t ") bot.run(settings.discord_token) except discord.errors.LoginFailure: log.error("invalid_discord_token:Please set a valid discord bot API token.") if __name__ == "__main__": main()
antipatico/antipatibot
antipatibot.py
antipatibot.py
py
14,449
python
en
code
0
github-code
6
39672933944
import pytest import common @pytest.mark.parametrize( "data,start,end", [ ("0-0", 0, 0), ("11-22", 11, 22), ], ) def test_parse(data: str, start: int, end: int): assert common.SectionRange.parse(data) == common.SectionRange(start, end) @pytest.mark.parametrize( "range1,range2,res", [ ("1-2", "3-4", False), ("1-2", "2-3", False), ("1-2", "2-2", True), ("1-3", "2-2", True), ("2-2", "2-2", True), ("2-3", "2-2", True), ("2-3", "1-2", False), ("2-3", "1-1", False), ], ) def test_contains(range1: str, range2: str, res: bool): sr1 = common.SectionRange.parse(range1) sr2 = common.SectionRange.parse(range2) assert sr1.contains(sr2) == res @pytest.mark.parametrize( "range1,range2,res", [ ("1-2", "3-4", False), ("1-2", "2-3", True), ("1-2", "2-2", True), ("1-3", "2-2", True), ("2-2", "2-2", True), ("2-3", "2-2", True), ("2-3", "1-2", True), ("2-3", "1-1", False), ], ) def test_overlaps(range1: str, range2: str, res: bool): sr1 = common.SectionRange.parse(range1) sr2 = common.SectionRange.parse(range2) assert sr1.overlaps(sr2) == res
cmatsuoka/aoc
2022 - expedition/04 - camp cleanup/test_common.py
test_common.py
py
1,252
python
en
code
0
github-code
6
26197481166
""" Data import https://github.com/tategallery/collection """ import json import os import sys import time import pandas as pd csv_file = '/media/joji/DATA/workspace/data/artwork_data.csv' selected_columns = ['id', 'artist', 'title', 'medium', 'year', 'acquisitionYear', 'height', 'width', 'units'] def main(): df = pd.read_csv(csv_file, index_col='id', usecols=selected_columns) print(df) print(f"Unique artists: {len(df['artist'].unique())}") # print(len(set(df['artist']))) tf_series = df['artist'] == 'Bacon, Francis' print(tf_series.value_counts()) print(type(tf_series.value_counts())) print(df['artist'].value_counts()['Bacon, Francis']) if __name__ == '__main__': t01 = time.time() main() t02 = time.time() print(f'{sys.argv[0]} took {t02 - t01:.0f} seconds')
jojimpv/pandasdemo1
demo3.py
demo3.py
py
841
python
en
code
0
github-code
6
12691211626
import os from twilio.rest import Client from urllib.request import urlopen import re import time import smtplib #need twilio credientials to run account_sid = os.environ["TWILIO_ACCOUNT_SID"] auth_token = os.environ["TWILIO_AUTH_TOKEN"] twilio_number = os.environ["TWILIO_NUMBER"] ubc_url = "https://courses.students.ubc.ca/cs/main?pname=subjarea&tname=subjareas&req=5&dept=" WAIT_TIME = 20 def sendMessage(message, phonenumber): client = Client(account_sid, auth_token) client.messages.create( to=phonenumber, from_=twilio_number, body=message ) def check_seats(url, user_info, regex_objects): web_page_text = urlopen(url).read() htmlText = web_page_text.decode("utf8") general = re.search(regex_objects["general_seats"], htmlText) restricted = re.search(regex_objects["restricted_seats"], htmlText) temp_unavailable = htmlText.find("Note: this section is temp. unavailable") print("Still looking...") print("Restricted Seats: ", restricted.group(1)) print("General Seats: ", general.group(1)) if temp_unavailable != -1: return 3 if not general or not restricted: print("Something went wrong, maybe you put the wrong url in or lost internet connection, try restarting") return 0 if general.group(1) != '0': return 1 if restricted.group(1) != '0': return 2 else: return 0 def compile_regex(): regexs = {} regexs["general_seats"] = re.compile("<td width=&#39;200px&#39;>General Seats Remaining:</td><td align=&#39;left&#39;><strong>(.*?)</strong></td>") regexs["restricted_seats"] = re.compile("<td width=&#39;200px&#39;>Restricted Seats Remaining\*:</td><td align=&#39;left&#39;><strong>(.*?)</strong></td>") return regexs #gathers nessesary user info def gather_user_info(): user_info = {} user_info['department'] = input("Enter department:") user_info["course_number"] = input("Enter course number: ") user_info["section"] = input("Enter section number: ") user_info["phone_number"] = input("Enter phone number:(in format +xxxxxxxxxxx) ") user_info["restricted"] = input("Are restricted seats okay?(yes/no)") return user_info def main(): user_info = gather_user_info() print(user_info['department']) defined_url = ubc_url + user_info["department"] + "&course=" + user_info["course_number"] + "&section=" + user_info["section"] regex_objects = compile_regex() compile_regex() while True: status = check_seats(defined_url, user_info, regex_objects) if status == 1: print("GENERAL SEAT AVAILABLE SENDING MESSAGE") sendMessage('There is a general seat available in ' + user_info["department"] + ' ' + user_info["course_number"] + '! Grab it here: ' + defined_url, user_info["phone_number"]) break if status == 2: if user_info["restricted"] == "yes": print("RESTRICTED SEAT AVAILABLE") sendMessage('There is a restricted seat available in ' + user_info["department"] + ' ' + user_info["course_number"] + '! Grab it here: ' + defined_url, user_info["phone_number"]) break if status == 3: print("The course is temporarily unavailable") time.sleep(WAIT_TIME) else: time.sleep(WAIT_TIME) if __name__ == "__main__": main()
benkenj/UBCCourseNotifier
UBCCourseNotifierMain.py
UBCCourseNotifierMain.py
py
3,405
python
en
code
0
github-code
6
71456631549
import boto3 from operator import itemgetter ecr_client = boto3.client('ecr') repositories = ecr_client.describe_repositories()['repositories'] if len(repositories) == 0: print("Repository is empty!") for repo in repositories: print(f"Repository name: {repo['repositoryName']}") query_repository_name = "java-maven-app" images = ecr_client.describe_images( repositoryName=query_repository_name ) image_tags = [] for image in images['imageDetails']: image_tags.append({ 'tag': image['imageTags'], 'date': image['imagePushedAt'] }) sorted_images_based_on_date = sorted(image_tags, key=itemgetter("date"), reverse=True) for image in sorted_images_based_on_date: print(image)
ArshaShiri/DevOpsBootcampPythonAutomationAssignment
ecr_in_aws.py
ecr_in_aws.py
py
728
python
en
code
0
github-code
6
6923620355
#encoding=utf8 import sys reload(sys) sys.setdefaultencoding('utf8') import StringIO import json import logging import random import urllib import urllib2 # functions import responseHandler # standard app engine imports from google.appengine.api import urlfetch from google.appengine.ext import ndb import webapp2 # global variables from config import TOKEN BASE_URL = 'https://api.telegram.org/bot' + TOKEN + '/' # ================================ class EnableStatus(ndb.Model): # key name: str(chat_id) enabled = ndb.BooleanProperty(indexed=False, default=False) def setEnabled(chat_id, yes): es = EnableStatus.get_or_insert(str(chat_id)) es.enabled = yes es.put() def getEnabled(chat_id): es = EnableStatus.get_by_id(str(chat_id)) if es: return es.enabled return False class MeHandler(webapp2.RequestHandler): def get(self): urlfetch.set_default_fetch_deadline(60) self.response.write(json.dumps(json.load(urllib2.urlopen(BASE_URL + 'getMe')))) class GetUpdatesHandler(webapp2.RequestHandler): def get(self): urlfetch.set_default_fetch_deadline(60) self.response.write(json.dumps(json.load(urllib2.urlopen(BASE_URL + 'getUpdates')))) class SetWebhookHandler(webapp2.RequestHandler): def get(self): urlfetch.set_default_fetch_deadline(60) url = self.request.get('url') if url: self.response.write(json.dumps(json.load(urllib2.urlopen(BASE_URL + 'setWebhook', urllib.urlencode({'url': url}))))) class WebhookHandler(webapp2.RequestHandler): def post(self): urlfetch.set_default_fetch_deadline(60) body = json.loads(self.request.body) logging.info('request body:') logging.info(body) self.response.write(json.dumps(body)) update_id = body['update_id'] message = body['message'] message_id = message.get('message_id') location = message.get('location') date = message.get('date') text = message.get('text') fr = message.get('from') chat = message['chat'] chat_id = chat['id'] # location - weather if location: lat = location.get('latitude') lon = location.get('longitude') weather = responseHandler.locationInput(lat, lon) responseHandler.sendWeather(chat_id, weather) return # command if text: if text.startswith('/'): if text.lower() == '/start': responseHandler.sendTextMessage(chat_id, '幸会。') setEnabled(chat_id, True) # 待办:最好把这里做成每晚定时 elif text.lower() == '/weathertmr': LAT = 57.63 LON = 18.31 weather = responseHandler.locationInput(LAT, LON) responseHandler.forecastWeather(chat_id, weather) elif text.lower() == '/stop': responseHandler.sendTextMessage(chat_id, '好,下次再说。') setEnabled(chat_id, False) else: responseHandler.sendTextMessage(chat_id, '什么?') else: responseHandler.replyMessage(chat_id, message_id, '嗯') app = webapp2.WSGIApplication([ ('/me', MeHandler), ('/updates', GetUpdatesHandler), ('/set_webhook', SetWebhookHandler), ('/webhook', WebhookHandler), ], debug=True)
eglantine-shell/xiaoyiqingbot-2022
main.py
main.py
py
3,527
python
en
code
0
github-code
6
16543818867
from nuitka.nodes.CallNodes import makeExpressionCall from nuitka.nodes.ConstantRefNodes import makeConstantRefNode from nuitka.nodes.ContainerMakingNodes import ( makeExpressionMakeTuple, makeExpressionMakeTupleOrConstant, ) from nuitka.nodes.DictionaryNodes import makeExpressionMakeDictOrConstant from nuitka.nodes.FunctionNodes import ( ExpressionFunctionRef, makeExpressionFunctionCall, makeExpressionFunctionCreation, ) from nuitka.nodes.KeyValuePairNodes import makeExpressionPairs from nuitka.nodes.OutlineNodes import ExpressionOutlineBody from nuitka.nodes.ReturnNodes import StatementReturn from nuitka.nodes.VariableAssignNodes import makeStatementAssignmentVariable from nuitka.nodes.VariableRefNodes import ExpressionTempVariableRef from nuitka.PythonVersions import python_version from .ComplexCallHelperFunctions import ( getFunctionCallHelperDictionaryUnpacking, getFunctionCallHelperKeywordsStarDict, getFunctionCallHelperKeywordsStarList, getFunctionCallHelperKeywordsStarListStarDict, getFunctionCallHelperPosKeywordsStarDict, getFunctionCallHelperPosKeywordsStarList, getFunctionCallHelperPosKeywordsStarListStarDict, getFunctionCallHelperPosStarDict, getFunctionCallHelperPosStarList, getFunctionCallHelperPosStarListStarDict, getFunctionCallHelperStarDict, getFunctionCallHelperStarList, getFunctionCallHelperStarListStarDict, ) from .ReformulationDictionaryCreation import buildDictionaryUnpackingArgs from .ReformulationSequenceCreation import buildListUnpacking from .TreeHelpers import ( buildNode, buildNodeTuple, getKind, makeStatementsSequenceFromStatements, ) def buildCallNode(provider, node, source_ref): called = buildNode(provider, node.func, source_ref) if python_version >= 0x350: list_star_arg = None dict_star_arg = None positional_args = [] # For Python3.5 compatibility, the error handling with star argument last # is the old one, only with a starred argument before that, things use the # new unpacking code. for node_arg in node.args[:-1]: if getKind(node_arg) == "Starred": assert python_version >= 0x350 list_star_arg = buildListUnpacking(provider, node.args, source_ref) positional_args = () break else: if node.args and getKind(node.args[-1]) == "Starred": assert python_version >= 0x350 list_star_arg = buildNode(provider, node.args[-1].value, source_ref) positional_args = buildNodeTuple(provider, node.args[:-1], source_ref) else: positional_args = buildNodeTuple(provider, node.args, source_ref) # Only the values of keyword pairs have a real source ref, and those only # really matter, so that makes sense. keys = [] values = [] for keyword in node.keywords[:-1]: if keyword.arg is None: assert python_version >= 0x350 outline_body = ExpressionOutlineBody( provider=provider, name="dict_unpacking_call", source_ref=source_ref ) tmp_called = outline_body.allocateTempVariable( temp_scope=None, name="called" ) helper_args = [ ExpressionTempVariableRef(variable=tmp_called, source_ref=source_ref), makeExpressionMakeTuple( elements=buildDictionaryUnpackingArgs( provider=provider, keys=(keyword.arg for keyword in node.keywords), values=(keyword.value for keyword in node.keywords), source_ref=source_ref, ), source_ref=source_ref, ), ] dict_star_arg = makeExpressionFunctionCall( function=makeExpressionFunctionCreation( function_ref=ExpressionFunctionRef( function_body=getFunctionCallHelperDictionaryUnpacking(), source_ref=source_ref, ), defaults=(), kw_defaults=None, annotations=None, source_ref=source_ref, ), values=helper_args, source_ref=source_ref, ) outline_body.setChildBody( makeStatementsSequenceFromStatements( makeStatementAssignmentVariable( variable=tmp_called, source=called, source_ref=source_ref ), StatementReturn( expression=_makeCallNode( called=ExpressionTempVariableRef( variable=tmp_called, source_ref=source_ref ), positional_args=positional_args, keys=keys, values=values, list_star_arg=list_star_arg, dict_star_arg=dict_star_arg, source_ref=source_ref, ), source_ref=source_ref, ), ) ) return outline_body # For Python3.5 compatibility, the error handling with star argument last # is the old one, only with a starred argument before that, things use the # new unpacking code. if node.keywords and node.keywords[-1].arg is None: assert python_version >= 0x350 dict_star_arg = buildNode(provider, node.keywords[-1].value, source_ref) keywords = node.keywords[:-1] else: keywords = node.keywords for keyword in keywords: keys.append( makeConstantRefNode( constant=keyword.arg, source_ref=source_ref, user_provided=True ) ) values.append(buildNode(provider, keyword.value, source_ref)) if python_version < 0x350: list_star_arg = buildNode(provider, node.starargs, source_ref, True) dict_star_arg = buildNode(provider, node.kwargs, source_ref, True) return _makeCallNode( called=called, positional_args=positional_args, keys=keys, values=values, list_star_arg=list_star_arg, dict_star_arg=dict_star_arg, source_ref=source_ref, ) def _makeCallNode( called, positional_args, keys, values, list_star_arg, dict_star_arg, source_ref ): # Many variables, but only to cover the many complex call cases. if list_star_arg is None and dict_star_arg is None: result = makeExpressionCall( called=called, args=makeExpressionMakeTupleOrConstant( elements=positional_args, user_provided=True, source_ref=source_ref, ), kw=makeExpressionMakeDictOrConstant( makeExpressionPairs(keys=keys, values=values), user_provided=True, source_ref=source_ref, ), source_ref=source_ref, ) # Bug compatible line numbers before Python 3.8 if python_version < 0x380: if values: result.setCompatibleSourceReference( source_ref=values[-1].getCompatibleSourceReference() ) elif positional_args: result.setCompatibleSourceReference( source_ref=positional_args[-1].getCompatibleSourceReference() ) return result else: # Dispatch to complex helper function for each case. These do # re-formulation of complex calls according to Developer Manual. key = ( bool(positional_args), bool(keys), list_star_arg is not None, dict_star_arg is not None, ) table = { (True, True, True, False): getFunctionCallHelperPosKeywordsStarList, (True, False, True, False): getFunctionCallHelperPosStarList, (False, True, True, False): getFunctionCallHelperKeywordsStarList, (False, False, True, False): getFunctionCallHelperStarList, (True, True, False, True): getFunctionCallHelperPosKeywordsStarDict, (True, False, False, True): getFunctionCallHelperPosStarDict, (False, True, False, True): getFunctionCallHelperKeywordsStarDict, (False, False, False, True): getFunctionCallHelperStarDict, (True, True, True, True): getFunctionCallHelperPosKeywordsStarListStarDict, (True, False, True, True): getFunctionCallHelperPosStarListStarDict, (False, True, True, True): getFunctionCallHelperKeywordsStarListStarDict, (False, False, True, True): getFunctionCallHelperStarListStarDict, } get_helper = table[key] helper_args = [called] if positional_args: helper_args.append( makeExpressionMakeTupleOrConstant( elements=positional_args, user_provided=True, source_ref=source_ref, ) ) # Order of evaluation changed in Python3.5. if python_version >= 0x350 and list_star_arg is not None: helper_args.append(list_star_arg) if keys: helper_args.append( makeExpressionMakeDictOrConstant( pairs=makeExpressionPairs(keys=keys, values=values), user_provided=True, source_ref=source_ref, ) ) # Order of evaluation changed in Python3.5. if python_version < 0x350 and list_star_arg is not None: helper_args.append(list_star_arg) if dict_star_arg is not None: helper_args.append(dict_star_arg) result = makeExpressionFunctionCall( function=makeExpressionFunctionCreation( function_ref=ExpressionFunctionRef( function_body=get_helper(), source_ref=source_ref ), defaults=(), kw_defaults=None, annotations=None, source_ref=source_ref, ), values=helper_args, source_ref=source_ref, ) # Bug compatible line numbers before Python 3.8 if python_version < 0x380: result.setCompatibleSourceReference( source_ref=helper_args[-1].getCompatibleSourceReference() ) return result
Nuitka/Nuitka
nuitka/tree/ReformulationCallExpressions.py
ReformulationCallExpressions.py
py
10,742
python
en
code
10,019
github-code
6
10747823823
'''S3 uploader module''' import os import time import signal import sys import boto3 # This module seems to have some issues. pylint ignore them from setproctitle import setproctitle, getproctitle # pylint: disable=E0611 from kafkatos3.ThreadPool import ThreadPool def upload_file(self, filename): '''horrible callback function outside the class because it needs to be pickable''' self.upload_file_to_s3(filename) class S3Uploader(object): '''class for uploading files to s3''' def __init__(self, config, logger): '''constructor''' self.config = config self.logger = logger self.pool = None def upload_file_to_s3(self, filename): '''upload file to s3''' self.logger.info("Uploading file: " + filename + " to s3") working_dir = self.config.get("main", "working_directory") s3_key = "kafkatos3" + filename.replace(working_dir + "/tos3", "") self.logger.info("S3 key is " + s3_key) if self.config.get("s3", "s3_access_key") != "": access_key = self.config.get("s3", "s3_access_key") secret_key = self.config.get("s3", "s3_secret_key") s3client = boto3.client("s3", aws_access_key_id=access_key, aws_secret_access_key=secret_key) else: s3client = boto3.client("s3") bucket = self.config.get("s3", "s3_bucket_name") s3client.upload_file(filename, bucket, s3_key) os.remove(filename) def run(self): '''main executor''' def cb_exit_gracefully(signum, frame): '''callback to exit gracefully for a pool thread''' self.logger.info("Shutting down S3Uploader, signum %d"% (signum)) sys.exit(0) self.logger.info("S3Uploader process starting up") self.pool = ThreadPool(int(self.config.get("s3", "s3uploader_workers"))) setproctitle("[s3upload] " + getproctitle()) signal.signal(signal.SIGINT, cb_exit_gracefully) signal.signal(signal.SIGTERM, cb_exit_gracefully) while True: tos3_dir = os.path.join(self.config.get( "main", "working_directory"), "tos3") files = self.get_files(tos3_dir, ".gz") self.pool.map(self.upload_file_to_s3, files) time.sleep(float(self.config.get( "s3", "s3upload_check_interval"))) sys.exit(0) def get_files(self, directory, extension): ''' return a list of files in a directory recusively based on extension''' file_list = [] for dirpath, _, files in os.walk(directory): for filename in files: fname = os.path.join(dirpath, filename) filename, file_extension = os.path.splitext(fname) if file_extension == extension: file_list.append(fname) return file_list
snowch/kafkatos3
kafkatos3/S3Uploader.py
S3Uploader.py
py
2,919
python
en
code
null
github-code
6
40128810884
#!/usr/bin/env python3 import itertools from collections import defaultdict from heapq import heappush, heappop import sys sys.setrecursionlimit(10**6) input = sys.stdin.buffer.readline INF = 10 ** 9 + 1 # sys.maxsize # float("inf") def debug(*x): print(*x, file=sys.stderr) def blute_solve(N, AS): "void()" buf = [] def blute(xs, buf): debug("blute: xs, buf", xs, buf) if not xs: return 0 if not buf: # first player score 0 return blute(xs[1:], [xs[0]]) # insert candidate = [] for i in range(len(buf)): s = min(buf[i - 1], buf[i]) newBuf = buf[:] newBuf.insert(0, xs[0]) candidate.append(blute(xs[1:], newBuf) + s) return max(candidate) candidate = [] for xs in itertools.permutations(range(N)): candidate.append(blute(xs, buf)) return max(candidate) def solve(N, AS): buf = [] AS.sort(reverse=True) ret = AS[0] for i in range(N - 2): ret += AS[1 + i // 2] return ret def main(): N = int(input()) AS = list(map(int, input().split())) print(solve(N, AS)) T1 = """ 4 2 2 1 3 """ def test_T1(): """ >>> as_input(T1) >>> main() 7 """ T0 = """ 3 3 2 1 """ def test_T0(): """ >>> as_input(T0) >>> main() 5 """ T2 = """ 7 1 1 1 1 1 1 1 """ def test_T2(): """ >>> as_input(T2) >>> main() 6 """ def _test(): import doctest doctest.testmod() def as_input(s): "use in test, use given string as input file" import io global read, input f = io.StringIO(s.strip()) def input(): return bytes(f.readline(), "ascii") def read(): return bytes(f.read(), "ascii") USE_NUMBA = False if (USE_NUMBA and sys.argv[-1] == 'ONLINE_JUDGE') or sys.argv[-1] == '-c': print("compiling") from numba.pycc import CC cc = CC('my_module') cc.export('solve', solve.__doc__.strip().split()[0])(solve) cc.compile() exit() else: input = sys.stdin.buffer.readline read = sys.stdin.buffer.read if (USE_NUMBA and sys.argv[-1] != '-p') or sys.argv[-1] == "--numba": # -p: pure python mode # if not -p, import compiled module from my_module import solve # pylint: disable=all elif sys.argv[-1] == "-t": _test() sys.exit() elif sys.argv[-1] != '-p' and len(sys.argv) == 2: # input given as file input_as_file = open(sys.argv[1]) input = input_as_file.buffer.readline read = input_as_file.buffer.read main()
nishio/atcoder
abc173/d.py
d.py
py
2,643
python
en
code
1
github-code
6
31574941802
from PIL import Image import sys import argparse from os.path import exists import time import math import re import tkinter as tk from tkinter import filedialog, ttk import threading import population import province import vicmap mod_dir_loc = "" save_file_loc = "" map_type = "" global_population = 0 mean_savings = 0 sd_savings = 0 all_pops = [] test_map = None progress = None gui_mode = True verbose = False out_file_location = "map_out.png" def vprint(s): if verbose: print(s) if gui_mode: pass # Do something to the progress bar idk # Loads a game file from the mod directory, or if missing, from the game directory. def get_game_file_loc(location): if exists(mod_dir_loc + location): return mod_dir_loc + location elif exists(game_dir + location): return game_dir + location else: sys.exit("File not found " + location) def split_dec(line): sides = line.split("=") return (sides[0].strip(), sides[1].strip()) def open_save(location): return open(location, "r", encoding='iso-8859-1') def read_save(save_file): i = 0 current_prov = None for line in save_file: i = i + 1 if bool(re.search("^\d+=$", line)): current_prov = int(split_dec(line)[0]) save_file.__next__() if not bool(re.search("\tname", save_file.__next__())): continue save_file.__next__() line = save_file.__next__() if re.search("^}$", line.strip()): province.id_dict[current_prov].is_water = True elif bool(re.search(population.pop_regex, line.strip())): population.POP(save_file, current_prov, split_dec(line)[0]) elif bool(re.search("battle=", line)): province.make_battle(save_file) vprint(f"Lines parsed: {i}") def load_UI(): global progress window = tk.Tk() window.title("Victoria 2 Mapper") save_file_entry = tk.Entry(width=100) mod_dir = tk.Entry(width=100) def set_mod_dir(): global mod_dir_loc mod_dir_loc = tk.filedialog.askdirectory() mod_dir.insert(0, mod_dir_loc) ld_mod = tk.Button(text="Choose Mod", command=set_mod_dir) def set_save_file(): global save_file_loc save_file_loc = tk.filedialog.askopenfilename() save_file_entry.insert(0, save_file_loc) ld_save = tk.Button(text="Choose Save", command=set_save_file) map_type_entry = tk.Entry(width = 100) def make_map_ui(): make_map(map_type_entry.get()) make_button = tk.Button(text="Make Map", command=threading.Thread(target=make_map_ui).start) progress = tk.ttk.Progressbar() tk.Label(text="Save File:").grid(row = 0, column = 0, padx=3, pady=3) save_file_entry.grid(row = 0, column = 1, padx=3, pady=3) ld_save.grid(row = 0, column = 2, padx=3, pady=3) tk.Label(text="Mod Directory:").grid(row = 1, column = 0, padx=3, pady=3) mod_dir.grid(row = 1, column = 1, padx=3, pady=3) ld_mod.grid(row = 1, column = 2, padx=3, pady=3) tk.Label(text="Parameters:").grid(row = 2, column = 0, padx=3, pady=3) map_type_entry.grid(row = 2, column = 1, padx=3, pady=3) make_button.grid(row = 3, column = 1, padx=3, pady=3) progress.grid(row = 4, column = 1, padx=3, pady=3) window.mainloop() # Map Function # def draw_map(map_func): global test_map # Some poorly made maps have invalid colors, this uses the previous color as a backup. prev_color = None # Previous color used on the province map prev_draw = None for x in range(vicmap.MAP_W): for y in range(vicmap.MAP_H): this_color = vicmap.pixel_map[x, y] if (this_color == (0, 0, 0)): this_color = prev_color this_prov = province.color_dict[this_color] test_map[x, vicmap.MAP_H - y - 1] = map_func(this_prov, x, y) prev_color = this_color def pop_attr_map(attr): attr_dict = { "religion" : population.religions, "culture" : population.cultures, "kind" : population.pop_types } attr_list = attr_dict[attr] def out_func(this_prov, x, y): out_colors = ((0, 0, 0),) if this_prov.is_water: return (255, 255, 255) rel_tuple = this_prov.most_populous(attr) out_colors = (attr_list[rel_tuple[0]], attr_list[rel_tuple[-1]]) if len(out_colors) > 1 and (x + y) % 5 == 0: return out_colors[1] else: return out_colors[0] return out_func def pop_attr_heatmap(attr, kind): most = province.get_most(attr, kind) def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) return (int(255 * (this_prov.get_amnt(attr, kind)/most)), 0, 0) return out_func def pop_attr_percent_map(attr, kind): def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) if this_prov.total_pop == 0: return (0, 0, 0) return (int(255 * (this_prov.get_amnt(attr, kind)/this_prov.total_pop)), 0, 0) return out_func def pop_average_savings(): most = 0 for prov in province.provinces: if not prov.is_water and prov.total_pop > 0: prov.avg_savings = sum([pop.money for pop in prov.POPs]) / prov.total_pop most = prov.avg_savings if prov.avg_savings > most else most print(most) def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) if this_prov.total_pop == 0: return (0, 0, 0) return (int(255 * (this_prov.avg_savings/most)), 0, 0) return out_func def pop_magnitude_savings(): most = 0 for prov in province.provinces: if not prov.is_water and prov.total_pop > 0: prov.mag_savings = ((sum([pop.money for pop in prov.POPs]) / prov.total_pop) - mean_savings) / sd_savings most = prov.mag_savings if prov.mag_savings > most else most print(most) def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) if this_prov.total_pop == 0: return (0, 0, 0) if this_prov.mag_savings < 0: return (255, 0, 0) return (0, 255, 0) return out_func def pop_total_savings(): most = 0 for prov in province.provinces: if not prov.is_water and prov.total_pop > 0: prov.total_savings = sum([pop.money for pop in prov.POPs]) most = prov.total_savings if prov.total_savings > most else most def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) if this_prov.total_pop == 0: return (0, 0, 0) return (int(255 * (this_prov.total_savings/most)), 0, 0) return out_func def population_heatmap(): def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) return (int(255*(this_prov.total_pop/province.largest_prov_pop)), 0, 0) return out_func def battle_death_map(): most = max(province.provinces, key=lambda prov: prov.battle_deaths).battle_deaths def out_func(this_prov, x, y): if this_prov.is_water: return (255, 255, 255) return (int(255*(this_prov.battle_deaths/most)), 0, 0) return out_func def make_map(params): global global_population, mean_savings, sd_savings, all_pops, test_map, progress, save_file_loc, mod_dir_loc # Intertpret what kind of map the user wants. map_types = { "population" : (population_heatmap, 0), "total_savings" : (pop_total_savings, 0), "average_savings" : (pop_average_savings, 0), "magnitude_savings" : (pop_magnitude_savings, 0), "attr_percent" : (pop_attr_percent_map, 2), "attr_heatmap" : (pop_attr_heatmap, 2), "attr" : (pop_attr_map, 1), "battle_deaths" : (battle_death_map, 0) } params = params.split(' ') map_type_func = map_types[params[0]][0] map_type_param_amnt = map_types[params[0]][1] map_type_func_params = None if map_type_param_amnt == 0: map_type_func_params = () else: map_type_func_params = tuple(params[1:1+map_type_param_amnt]) population.make_pop_regex() vprint("Loading Files...") vicmap.load_map(get_game_file_loc("/map/provinces.bmp")) province.load_provinces(get_game_file_loc("/map/definition.csv")) population.load_culture(get_game_file_loc("/common/cultures.txt")) vprint("Reading Save...") save_file = open_save(save_file_loc) read_save(save_file) vprint("Doing Stats...") for prov in province.provinces: prov.get_population() for prov in province.provinces: all_pops += prov.POPs global_population = sum([prov.total_pop for prov in province.provinces]) mean_savings += sum([pop.money for pop in all_pops]) / global_population sd_savings = math.sqrt(sum([((pop.money / pop.size - mean_savings)**2) * pop.size for pop in all_pops]) / global_population) img = Image.new('RGB', (vicmap.MAP_W, vicmap.MAP_H), "BLACK") test_map = img.load() vprint("Drawing Map...") draw_map(map_type_func(*map_type_func_params)) img.save(out_file_loc) #img.show() def print_license(): license = """ MIT License Copyright (c) 2020 neopythagorean Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ print (license) def command_line(): global mod_dir_loc, save_file_loc, out_file_loc, verbose parser = argparse.ArgumentParser(description='Mapping tool for Victoria 2.') parser.add_argument('desc', type=str, nargs='?', help='map description string') parser.add_argument('-o', type=str, nargs='?', default='map_out.png', help='out file') parser.add_argument('-s', type=str, nargs=1, help='save file') parser.add_argument('-m', type=str, nargs=1, help='mod directory') parser.add_argument('-g', type=str, nargs=1, help='game directory') parser.add_argument('--verbose', action='store_true', help='print debug info') parser.add_argument('--gui', action='store_true', help='force GUI') parser.add_argument('--license', action='store_true', help='show license information') p_args = parser.parse_args(sys.argv[1:]) verbose = p_args.verbose vprint("--VICTORIA 2 MAPPER--") if p_args.gui: # Force GUI load_UI() return if p_args.license: print_license() return mod_dir_loc = p_args.m[0] game_dir = p_args.g[0] save_file_loc = p_args.s[0] out_file_loc = p_args.o start = time.perf_counter() make_map(p_args.desc) elapsed = time.perf_counter() - start vprint(f"Done in {elapsed:.3f}s") def main(): if len(sys.argv) == 1: # No Arguments -- load GUI load_UI() else: command_line() main()
neopythagorean/vic2mapper
src/mapper.py
mapper.py
py
12,604
python
en
code
2
github-code
6
27214693785
""" Overview: Functions to deal with encoding binary data easily. """ import sys from typing import Optional, List import chardet from ..collection import unique _DEFAULT_ENCODING = 'utf-8' _DEFAULT_PREFERRED_ENCODINGS = ['utf-8', 'gbk', 'gb2312', 'gb18030', 'big5'] # common encodings for chinese __all__ = [ 'auto_decode' ] def _decode(data: bytes, encoding: str) -> str: return data.decode(encoding) def auto_decode(data: bytes, encoding: Optional[str] = None, prefers: Optional[List[str]] = None) -> str: r""" Overview: Auto decode binary data to string, the encoding mode will be automatically detected. Arguments: - data (:obj:`bytes`): Original binary data to be decoded. - encoding (:obj:`Optional[str]`): Encoding mode to be used, default is ``None`` which \ means this function need to automatically detect the encoding. - prefers (:obj:`Optional[List[str]]`): Prefered encodings. Returns: - str (:obj:`str`): Decoded string. Examples:: >>> auto_decode(b'kdsfjldsjflkdsmgds') # 'kdsfjldsjflkdsmgds' >>> auto_decode(b'\xd0\x94\xd0\xbe\xd0\xb1\xd1\x80\xd1\x8b\xd0\xb9 \xd0' ... b'\xb2\xd0\xb5\xd1\x87\xd0\xb5\xd1\x80') # "Добрый вечер" >>> auto_decode(b'\xa4\xb3\xa4\xf3\xa4\xd0\xa4\xf3\xa4\xcf') # "こんばんは" >>> auto_decode(b'\xcd\xed\xc9\xcf\xba\xc3') # "晚上好" """ if encoding: return _decode(data, encoding) else: if prefers is None: prefers = _DEFAULT_PREFERRED_ENCODINGS _elist = filter(bool, unique([ *prefers, sys.getdefaultencoding(), chardet.detect(data)['encoding'] ])) last_err = None for enc in _elist: try: return _decode(data, enc) except UnicodeDecodeError as err: if last_err is None or err.start > last_err.start: last_err = err raise last_err
HansBug/hbutils
hbutils/encoding/decode.py
decode.py
py
2,040
python
en
code
7
github-code
6
15792066200
import argparse from os import listdir, makedirs from os.path import isfile, join, basename, dirname, isdir from PIL import Image from tqdm import tqdm # folder_path = 'photos' # left, top, right, bottom = 559, 225, 1361, 0 # -d ./photos -s ./photos2 -c -a 559 225 1361 0 def build_argparse(): parser = argparse.ArgumentParser() parser.add_argument('-d', '--directory', help = 'perform the action on all photos in a directory', type = str, default = False) parser.add_argument('-f', '--file', help = 'perform the action on one photo', type = str, default = False) parser.add_argument('-n', '--name', help = 'new file name', type = str, default = '') parser.add_argument('-s', '--save', help = 'destination directory to save the new photos', type = str, default = False) parser.add_argument('-c', '--crop', help = 'crop the image(s) in a rectangle', action = 'store_true') parser.add_argument('-a', '--area', help = 'define the rectangle to crop, the order of sequence is: left, top, ' 'right, bottom', type = int, nargs = 4, default = [0, 0, 0, 0]) parser.add_argument('-l', '--left', help = 'the left pixel from to crop', type = int, default = 0) parser.add_argument('-t', '--top', help = 'the top pixel from to crop', type = int, default = 0) parser.add_argument('-r', '--right', help = 'the right pixel from to crop', type = int, default = 0) parser.add_argument('-b', '--bottom', help = 'the bottom pixel from to crop', type = int, default = 0) args = parser.parse_args() return args def photo_crop(image_path, save_to_path, left = 0, top = 0, right = 0, bottom = 0, number = 0, new_file_name = ''): with Image.open(image_path) as image: image_colors = image.load() if left == 0 and right == 0 and top == 0 and bottom == 0: right, bottom = image.size if bottom == 0: for y in range(400, image.size[1]): if image_colors[1358, y] == (181, 181, 181, 255): bottom = y bottom += 2 cropped_image = image.crop((left, top, right, bottom)) if new_file_name == '': cropped_image.save(join(save_to_path, basename(image_path))) else: if '.' in new_file_name: cropped_image.save(join(save_to_path, '{}{:02d}.{}'.format(new_file_name.split('.')[0], number if number > 0 else '', basename(new_file_name).split('.')[1]))) else: cropped_image.save(join(save_to_path, '{}{:02d}.{}'.format(new_file_name.split('.')[0], number if number > 0 else '', basename(image_path).split('.')[1]))) def all_files_in_folder(folder_path): return [join(folder_path, f) for f in listdir(folder_path) if isfile(join(folder_path, f))] def main(): args = build_argparse() if args.crop: if args.area != [0, 0, 0, 0]: left, top, right, bottom = args.area else: left = args.left top = args.top right = args.right bottom = args.bottom if args.directory: if args.save: path_to_save = args.save if not isdir(path_to_save): makedirs(path_to_save) else: path_to_save = args.directory for i, image_path in enumerate(tqdm(all_files_in_folder(args.directory))): photo_crop(image_path, path_to_save, left, top, right, bottom, i+1, args.name) print("The operations are completed check the {} folder for the photos.".format(path_to_save)) elif args.file: if args.save: path_to_save = args.save if not isdir(path_to_save): makedirs(path_to_save) else: path_to_save = dirname(args.file) photo_crop(args.file, path_to_save, left, top, right, bottom, 0, args.name) print("The operation is completed check the {} folder for the photo.".format(path_to_save)) main()
zsoman/photo_editing
PhotoCropper.py
PhotoCropper.py
py
4,114
python
en
code
0
github-code
6
38194485687
# -*- coding: utf-8 -*- """ env:python3 author:Jiashuai Liu to choose from 3 types by 5 characters """ import numpy as np # Random consistency index RI_dict = {1: 0, 2: 0, 3: 0.58, 4: 0.90, 5: 1.12, 6: 1.24, 7: 1.32, 8: 1.41, 9: 1.45} # The weight is obtained and calculated by sum method def get_w(array): row = array.shape[0] # Calculate the order a_axis_0_sum = array.sum(axis=0) # print(a_axis_0_sum) New = array / a_axis_0_sum # print(b) b_axis_0_sum = New.sum(axis=0) # sum by column, not used behind b_axis_1_sum = New.sum(axis=1) # added according to the rows, get eigenvectors of each row # print(b_axis_1_sum) w = b_axis_1_sum / row # normalization(eigenvectors) AW = (w * array).sum(axis=1) # print(AW) max_max = sum(AW / (row * w)) # Maximum eigenvalue # print(max_max) CI = (max_max - row) / (row - 1) CR = CI / RI_dict[row] if CR < 0.1: # print(round(CR, 3)) # print('meet the consistency') # print(np.max(w)) # print(sorted(w,reverse=True)) # print('the Maximum eigenvalue is ',max_max) # print('eigenvector is :%s' % w) return w else: print(round(CR, 3)) # Rounding, followed by decimal places print('Do not meet the consistency, please modify') def main(array): if type(array) is np.ndarray: return get_w(array) else: print('Please enter numpy object') # define the first layer, the shape is 5*5 if __name__ == '__main__': e = np.array([[1, 2, 7, 5, 5], [1 / 2, 1, 4, 3, 3], [1 / 7, 1 / 4, 1, 1 / 2, 1 / 3], [1 / 5, 1 / 3, 2, 1, 1], [1 / 5, 1 / 3, 3, 1, 1]]) print("the shape of e is", e.shape) # the follow 5 matrix define the second layer, the shape of them is 3*3 a = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]]) b = np.array([[1, 2, 5], [1 / 2, 1, 2], [1 / 5, 1 / 2, 1]]) c = np.array([[1, 1, 3], [1, 1, 3], [1 / 3, 1 / 3, 1]]) d = np.array([[1, 3, 4], [1 / 3, 1, 1], [1 / 4, 1, 1]]) f = np.array([[1, 4, 1 / 2], [1 / 4, 1, 1 / 4], [2, 4, 1]]) e = main(e) a = main(a) b = main(b) c = main(c) d = main(d) f = main(f) try: res = np.array([a, b, c, d, f]) # print(res) ret = (np.transpose(res) * e).sum(axis=1) print(ret) except TypeError: print('Data error, may not meet the consistency, please modify')
Liujiashuai/mathematical-modeling
AHP.py
AHP.py
py
2,504
python
en
code
1
github-code
6
19886899760
import os import pytest from pendulum import datetime from pathlib import Path from hypothesis_trio.stateful import ( initialize, rule, run_state_machine_as_test, TrioAsyncioRuleBasedStateMachine, ) from hypothesis import strategies as st from guardata.client.types import EntryID, LocalFileManifest, Chunk from guardata.client.fs.storage import WorkspaceStorage from guardata.client.fs.workspacefs.file_transactions import FSInvalidFileDescriptor from guardata.client.fs.exceptions import FSRemoteBlockNotFound from tests.common import freeze_time, call_with_control class File: def __init__(self, local_storage, manifest): self.fresh_manifest = manifest self.entry_id = manifest.id self.local_storage = local_storage def ensure_manifest(self, **kwargs): manifest = self.local_storage.manifest_storage._cache[self.entry_id] for k, v in kwargs.items(): assert getattr(manifest, k) == v def is_cache_ahead_of_persistance(self): return self.entry_id in self.local_storage.manifest_storage._cache_ahead_of_localdb async def get_manifest(self): return await self.local_storage.get_manifest(self.entry_id) async def set_manifest(self, manifest): async with self.local_storage.lock_manifest(self.entry_id): await self.local_storage.set_manifest(self.entry_id, manifest) def open(self): return self.local_storage.create_file_descriptor(self.fresh_manifest) @pytest.fixture async def foo_txt(alice, alice_file_transactions): local_storage = alice_file_transactions.local_storage now = datetime(2000, 1, 2) placeholder = LocalFileManifest.new_placeholder(alice.device_id, parent=EntryID(), now=now) remote_v1 = placeholder.to_remote(author=alice.device_id, timestamp=now) manifest = LocalFileManifest.from_remote(remote_v1) async with local_storage.lock_entry_id(manifest.id): await local_storage.set_manifest(manifest.id, manifest) return File(local_storage, manifest) @pytest.mark.trio async def test_close_unknown_fd(alice_file_transactions): with pytest.raises(FSInvalidFileDescriptor): await alice_file_transactions.fd_close(42) @pytest.mark.trio async def test_operations_on_file(alice_file_transactions, foo_txt): file_transactions = alice_file_transactions fd = foo_txt.open() assert isinstance(fd, int) with freeze_time("2000-01-03"): await file_transactions.fd_write(fd, b"hello ", 0) await file_transactions.fd_write(fd, b"world !", -1) await file_transactions.fd_write(fd, b"H", 0) await file_transactions.fd_write(fd, b"", 0) assert foo_txt.is_cache_ahead_of_persistance() fd2 = foo_txt.open() await file_transactions.fd_write(fd2, b"!!!", -1) data = await file_transactions.fd_read(fd2, 1, 0) assert data == b"H" await file_transactions.fd_close(fd2) foo_txt.ensure_manifest( size=16, is_placeholder=False, need_sync=True, base_version=1, created=datetime(2000, 1, 2), updated=datetime(2000, 1, 3), ) data = await file_transactions.fd_read(fd, 5, 6) assert data == b"world" await file_transactions.fd_close(fd) assert not foo_txt.is_cache_ahead_of_persistance() fd2 = foo_txt.open() data = await file_transactions.fd_read(fd2, -1, 0) assert data == b"Hello world !!!!" await file_transactions.fd_close(fd2) assert not foo_txt.is_cache_ahead_of_persistance() foo_txt.ensure_manifest( size=16, is_placeholder=False, need_sync=True, base_version=1, created=datetime(2000, 1, 2), updated=datetime(2000, 1, 3), ) @pytest.mark.trio async def test_flush_file(alice_file_transactions, foo_txt): file_transactions = alice_file_transactions fd = foo_txt.open() foo_txt.ensure_manifest( size=0, is_placeholder=False, need_sync=False, base_version=1, created=datetime(2000, 1, 2), updated=datetime(2000, 1, 2), ) with freeze_time("2000-01-03"): await file_transactions.fd_write(fd, b"hello ", 0) await file_transactions.fd_write(fd, b"world !", -1) assert foo_txt.is_cache_ahead_of_persistance() foo_txt.ensure_manifest( size=13, is_placeholder=False, need_sync=True, base_version=1, created=datetime(2000, 1, 2), updated=datetime(2000, 1, 3), ) await file_transactions.fd_flush(fd) assert not foo_txt.is_cache_ahead_of_persistance() await file_transactions.fd_close(fd) assert not foo_txt.is_cache_ahead_of_persistance() foo_txt.ensure_manifest( size=13, is_placeholder=False, need_sync=True, base_version=1, created=datetime(2000, 1, 2), updated=datetime(2000, 1, 3), ) @pytest.mark.trio async def test_block_not_loaded_entry(alice_file_transactions, foo_txt): file_transactions = alice_file_transactions foo_manifest = await foo_txt.get_manifest() chunk1_data = b"a" * 10 chunk2_data = b"b" * 5 chunk1 = Chunk.new(0, 10).evolve_as_block(chunk1_data) chunk2 = Chunk.new(10, 15).evolve_as_block(chunk2_data) foo_manifest = foo_manifest.evolve(blocks=((chunk1, chunk2),), size=15) async with file_transactions.local_storage.lock_entry_id(foo_manifest.parent): await foo_txt.set_manifest(foo_manifest) fd = foo_txt.open() with pytest.raises(FSRemoteBlockNotFound): await file_transactions.fd_read(fd, 14, 0) await file_transactions.local_storage.set_chunk(chunk1.id, chunk1_data) await file_transactions.local_storage.set_chunk(chunk2.id, chunk2_data) data = await file_transactions.fd_read(fd, 14, 0) assert data == chunk1_data + chunk2_data[:4] @pytest.mark.trio async def test_load_block_from_remote(alice_file_transactions, foo_txt): file_transactions = alice_file_transactions # Prepare the backend workspace_id = file_transactions.remote_loader.workspace_id await file_transactions.remote_loader.create_realm(workspace_id) foo_manifest = await foo_txt.get_manifest() chunk1_data = b"a" * 10 chunk2_data = b"b" * 5 chunk1 = Chunk.new(0, 10).evolve_as_block(chunk1_data) chunk2 = Chunk.new(10, 15).evolve_as_block(chunk2_data) foo_manifest = foo_manifest.evolve(blocks=((chunk1, chunk2),), size=15) await foo_txt.set_manifest(foo_manifest) fd = foo_txt.open() await file_transactions.remote_loader.upload_block(chunk1.access, chunk1_data) await file_transactions.remote_loader.upload_block(chunk2.access, chunk2_data) await file_transactions.local_storage.clear_clean_block(chunk1.access.id) await file_transactions.local_storage.clear_clean_block(chunk2.access.id) data = await file_transactions.fd_read(fd, 14, 0) assert data == chunk1_data + chunk2_data[:4] size = st.integers(min_value=0, max_value=4 * 1024 ** 2) # Between 0 and 4MB @pytest.mark.slow @pytest.mark.skipif(os.name == "nt", reason="Windows file style not compatible with oracle") def test_file_operations( tmpdir, hypothesis_settings, reset_testbed, file_transactions_factory, alice, alice_backend_cmds ): tentative = 0 class FileOperationsStateMachine(TrioAsyncioRuleBasedStateMachine): async def start_transactions(self): async def _transactions_controlled_cb(started_cb): async with WorkspaceStorage.run(alice, Path("/dummy"), EntryID()) as local_storage: file_transactions = await file_transactions_factory( self.device, alice_backend_cmds, local_storage=local_storage ) await started_cb(file_transactions=file_transactions) self.transactions_controller = await self.get_root_nursery().start( call_with_control, _transactions_controlled_cb ) @initialize() async def init(self): nonlocal tentative tentative += 1 await reset_testbed() self.device = alice await self.start_transactions() self.file_transactions = self.transactions_controller.file_transactions self.local_storage = self.file_transactions.local_storage self.fresh_manifest = LocalFileManifest.new_placeholder( alice.device_id, parent=EntryID() ) self.entry_id = self.fresh_manifest.id async with self.local_storage.lock_entry_id(self.entry_id): await self.local_storage.set_manifest(self.entry_id, self.fresh_manifest) self.fd = self.local_storage.create_file_descriptor(self.fresh_manifest) self.file_oracle_path = tmpdir / f"oracle-test-{tentative}.txt" self.file_oracle_fd = os.open(self.file_oracle_path, os.O_RDWR | os.O_CREAT) async def teardown(self): if not hasattr(self, "fd"): return await self.file_transactions.fd_close(self.fd) os.close(self.file_oracle_fd) @rule(size=size, offset=size) async def read(self, size, offset): data = await self.file_transactions.fd_read(self.fd, size, offset) os.lseek(self.file_oracle_fd, offset, os.SEEK_SET) expected = os.read(self.file_oracle_fd, size) assert data == expected @rule(content=st.binary(), offset=size) async def write(self, content, offset): await self.file_transactions.fd_write(self.fd, content, offset) os.lseek(self.file_oracle_fd, offset, os.SEEK_SET) os.write(self.file_oracle_fd, content) @rule(length=size) async def resize(self, length): await self.file_transactions.fd_resize(self.fd, length) os.ftruncate(self.file_oracle_fd, length) @rule() async def reopen(self): await self.file_transactions.fd_close(self.fd) self.fd = self.local_storage.create_file_descriptor(self.fresh_manifest) os.close(self.file_oracle_fd) self.file_oracle_fd = os.open(self.file_oracle_path, os.O_RDWR) run_state_machine_as_test(FileOperationsStateMachine, settings=hypothesis_settings)
bitlogik/guardata
tests/client/fs/workspacefs/test_file_transactions.py
test_file_transactions.py
py
10,393
python
en
code
9
github-code
6
32371281333
import cv2 import matplotlib.pyplot as plt def plotImg(img): if len(img.shape) == 2: plt.imshow(img, cmap='gray') plt.show() else: plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.show() t=0 img = cv2.imread('cv.png') gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) binary_img = cv2.adaptiveThreshold(gray_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV, 131, 15) plotImg(binary_img) _, _, boxes, _ = cv2.connectedComponentsWithStats(binary_img) # first box is the background boxes = boxes[1:] filtered_boxes = [] for x,y,w,h,pixels in boxes: if h < 100 and w < 100 and h > 10 and w > 10: filtered_boxes.append((x,y,w,h)) t=t+1 for x,y,w,h in filtered_boxes: cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255),2) print(t) plotImg(img)
RisinPhoenix12/Computer-Vision
dots.py
dots.py
py
818
python
en
code
1
github-code
6
25097367954
# -*- coding: utf-8 -*- """ Created on Tue Jul 19 13:24:42 2022 @author: maria """ import numpy as np import pandas as pd from numpy import zeros, newaxis import matplotlib.pyplot as plt import scipy as sp from scipy.signal import butter,filtfilt,medfilt import csv import re import functions2022_07_15 as fun import cProfile animal= 'Hedes' date= '2022-07-21' #note: if experiment type not known, put 'suite2p' instead experiment = '2' #the file number of the NiDaq file, not alway experiment-1 because there might have been an issue with a previous acquisition etc file_number = '1' log_number = '1' plane_number = '1' #IMPORTANT: SPECIFY THE FRAME RATE frame_rate = 15 #the total amount of seconds to plot seconds = 5 #specify the cell for single cell plotting filePathlog = 'Z://RawData//'+animal+ '//'+date+ '//'+experiment+'//Log'+log_number+'.csv' #%% #getting stimulus identity Log_list = fun.GetStimulusInfo (filePathlog, props = ["Ori", "SFreq", "TFreq", "Contrast"]) cProfile.run('re.compile("foo|bar")') #%% #converting the list of dictionaries into an array and adding the time of the stimulus #worked easiest by using pandas dataframe log = np.array(pd.DataFrame(Log_list).values).astype(np.float64) #log[0] is the degrees, log[1] would be spatial freq etc (depending on the order in the log list) #no of stimuli specifes the total amount of stim shown # nr_stimuli = aligned.shape[1] # #log_Ori takes the first column of the log array because that corresponds to the first elelment in props in the GetStimulusInfo function above log_Ori = log[:,0].reshape(480,) #first getting the angles available, usually only 4 when trying other parameters angles = np.array([0, 90, 180, 270]) #Temp freq TFreq = np.array([0.5, 1, 2, 4, 8, 16]) SFreq = np.array([0.01, 0.02, 0.04, 0.08, 0.16, 0.32]) #%% #getting indices for the same type of stim, ie same orientation and same temp frep #for one angle reps = 20 all_oneP_TFreq = np.zeros((reps, TFreq.shape[0])).astype(int) log_TFreq = log[:,2] #for angle in range(angles.shape[0]): angle = 0 for freq in range(TFreq.shape[0]): #and j in range(TFreq.shape[0]): specific_P = np.where((log[:,0] == angles[angle]) & (log_TFreq == TFreq[freq])) [0] all_oneP_TFreq[:, freq] = specific_P #all_TFreq = #%% for all angles #getting a 3D array with shape(orientation, repeats, TFreq) reps = 20 all_TFreq = np.zeros((angles.shape[0], reps, TFreq.shape[0])).astype(int) for angle in range(angles.shape[0]): for freq in range(TFreq.shape[0]): #and j in range(TFreq.shape[0]): specific_P = np.where((log[:,0] == angles[angle]) & (log_TFreq == TFreq[freq])) [0] all_TFreq[angle, :, freq] = specific_P cProfile.run('re.compile("foo|bar")')
mariacozan/Analysis_and_Processing
functions/2022-07-19_checking_log_file.py
2022-07-19_checking_log_file.py
py
2,748
python
en
code
0
github-code
6
27984730572
from Circle import Circle def main(): circle1 = Circle() print(circle1.radius, " ", format(circle1.get_area(), ".4f")) circle2 = Circle(5) print(circle2.radius, " ", format(circle2.get_area(), ".3f")) circle3 = Circle(25) print(circle3.radius, " ", format(circle3.get_area(), ".3f")) circle4 = Circle(100) print(circle4.radius, " ", format(circle4.get_area(), ".3f")) main()
skyclouds2001/Python-Learning
study-7/7-2.py
7-2.py
py
413
python
en
code
1
github-code
6
30984637396
from datetime import datetime from constants import ProducerTypes from events.producers import get_producer from events.utils import get_routing_key from models import ( Task, TaskCost, ) from popug_schema_registry.models.v1.task_cost_added_event_schema import ( TaskCostAddedEventSchema, ) def send_taskcost_added_event(taskcost: TaskCost, task: Task) -> None: producer = get_producer(ProducerTypes.TASKCOSTS_BC) event = TaskCostAddedEventSchema( data={ "public_id": taskcost.public_id, "task_public_id": task.public_id, "debit_cost": taskcost.debit_cost, "credit_cost": taskcost.credit_cost, }, produced_at=datetime.utcnow(), ) producer.publish_message( event.json().encode("utf-8"), get_routing_key(event.title, event.version), )
Drozdetskiy/popug_jira
popug_accounting/src/events/taskcost/send_event.py
send_event.py
py
857
python
en
code
5
github-code
6
41211788790
from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np import os import json from PIL import Image import requests from io import BytesIO import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) def cosine_similarity(ratings): sim = ratings.dot(ratings.T) if not isinstance(sim, np.ndarray): sim = sim.toarray() norms = np.array([np.sqrt(np.diagonal(sim))]) return (sim / norms / norms.T) def main(): y_test = [] x_test = [] FILE_PATH = "/content/gdrive/MyDrive/TER/MoviesDataBase/movie_1202" IMAGE_BASE_PATH = "https://image.tmdb.org/t/p/w500" for movie in os.listdir(FILE_PATH): if movie.split(".")[1] != "json": continue movie_id = movie.split('_')[1].split('.')[0] fr = open(FILE_PATH + "/" + movie) movie_model = json.load(fr) fr.close() if movie_model['poster_path']: img_path = IMAGE_BASE_PATH + movie_model['poster_path'] html = requests.get(img_path, verify=False) poster = Image.open(BytesIO(html.content)) poster_img = poster.crop() if poster: # img = image.load_img(poster_img, target_size=(224, 224)) img = poster_img.resize((224, 224)) # img.show() y_test.append(movie_id) x = image.img_to_array(img) # print(movie_id) # print(x[:,:,0]) # print(np.shape(x[:,:,0])) # exit(0) if np.shape(x)[2] == 1: x = np.stack((x[:, :, 0],) * 3, axis=-1) x = np.expand_dims(x, axis=0) if len(x_test) > 0: # print(np.shape(x_test)) # print(np.shape(x)) # exit(0) x_test = np.concatenate((x_test, x)) else: x_test = x x_test = preprocess_input(x_test) model = ResNet50(weights='imagenet', include_top=False) features = model.predict(x_test) # print(np.shape(features)) # print(len(y_test)) features_compress = features.reshape(len(y_test), 7 * 7 * 2048) # print(np.shape(features_compress)) # sim = cosine_similarity(features_compress) image_sample = Image.open("/content/gdrive/MyDrive/TER/Test/image2.jpg") imageS = image_sample.crop() thisImage = imageS.resize((224, 224)) my_image = image.img_to_array(thisImage) my_x = np.expand_dims(my_image, axis=0) my_x = preprocess_input(my_x) my_features = model.predict(my_x) my_features_compress = my_features.reshape(1, 7 * 7 * 2048) new_features = np.append(features_compress, my_features_compress, axis=0) # print(np.shape(new_features)) # exit(0) sim = cosine_similarity(new_features) # print("sim:", np.shape(sim)) top = np.argsort(-sim[-1, :], axis=0)[1:3] recommend = [y_test[i] for i in top] print(recommend) # print(sim) if __name__ == "__main__": main()
ming19956/PFE
information-retrival-search-engine/informationRetrival/resnet50/resnet50.py
resnet50.py
py
3,180
python
en
code
2
github-code
6
30779245065
#Ask user for name name=input("Enter your name: ") #Ask user for the age age=input("Enter your age: ") #Ask city city= input("Enter the city name you live in: ") #Ask what they enjoy like=input("Enter what you like to do:") #Create output text sentence="Your name is {} and you are {} years old. you live in {} and you love {}" output=sentence.format(name,age,city,like) #Print output print(output)
Sruti-Dey/python_mini_projects
02_hello_you.py
02_hello_you.py
py
404
python
en
code
0
github-code
6
33055278390
import psycopg2 as psy import pandas as pd # Class for connect and write Postgresql class PsycopgPostgresWarehouse: def __init__(self, host, database, user, pw, port): self.host = host self.database = database self.user = user self.pw = pw self.port = port # Connect Database def connect_database(self) -> str: try: conn = psy.connect( host=self.host, database=self.database, user=self.user, password=self.pw, port=self.port ) print("Connect Success") except: print("Failed connect") return conn # Connect database query data to Dataframe @staticmethod def to_dataframe(conn, query) -> pd.DataFrame: df = pd.read_sql(query, conn) return df # https://www.mindphp.com/developer/tips-python/7907-static-method-in-python.html#:~:text=Static # %20method%20%E0%B8%84%E0%B8%B7%E0%B8%AD%20%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%97%E0%B8%B3%E0%B9%83%E0%B8%AB%E0%B9 # %89,%E0%B9%80%E0%B8%A3%E0%B8%B5%E0%B8%A2%E0%B8%81%E0%B9%80%E0%B8%A1%E0%B8%98%E0%B8%AD%E0%B8%94%E0%B9%81%E0%B8 # %95%E0%B9%88%E0%B8%A5%E0%B8%B0%E0%B8%84%E0%B8%A3%E0%B8%B1%E0%B9%89%E0%B8%87%20%E0%B9%80%E0%B8%8A%E0%B9%88%E0%B8 # %99 @staticmethod def execute_mogrify_upsert(conn, dataframe, column_unique, table): df_not_unique_key = dataframe.drop(columns=column_unique) upsert_value = ["EXCLUDED." + s for s in df_not_unique_key.columns] tpls = [tuple(x) for x in dataframe.to_numpy()] cols = ','.join(list(dataframe.columns)) cols_2 = ','.join(list(df_not_unique_key.columns)) cols_3 = ','.join(upsert_value) no_column = len(dataframe.columns) add_no_column_to_insert = "%s," * no_column add = add_no_column_to_insert.rstrip(add_no_column_to_insert[-1]) cursor = conn.cursor() values = [cursor.mogrify("(" + add + ")", tup).decode('utf8') for tup in tpls] sql = "INSERT INTO %s(%s) VALUES " % (table, cols) + ",".join( values) + " ON CONFLICT (" + column_unique + ") DO UPDATE SET (" + cols_2 + ")" + " = (" + cols_3 + ")" # print(sql) cursor.execute(sql) print("Data upserted using execute_mogrify() successfully. : " + str(table) + "") conn.commit() cursor.close() @staticmethod def execute_mogrify_upsert_single_column(conn, dataframe, column_unique, table): df_not_unique_key = dataframe.drop(columns=column_unique) upsert_value = ["EXCLUDED." + s for s in df_not_unique_key.columns] tpls = [tuple(x) for x in dataframe.to_numpy()] cols = ','.join(list(dataframe.columns)) cols_2 = ','.join(list(df_not_unique_key.columns)) cols_3 = ','.join(upsert_value) no_column = len(dataframe.columns) add_no_column_to_insert = "%s," * no_column add = add_no_column_to_insert.rstrip(add_no_column_to_insert[-1]) cursor = conn.cursor() values = [cursor.mogrify("(" + add + ")", tup).decode('utf8') for tup in tpls] sql = "INSERT INTO %s(%s) VALUES " % (table, cols) + ",".join( values) + " ON CONFLICT (" + column_unique + ") DO UPDATE SET " + cols_2 + "" + " = " + cols_3 + "" # print(function) cursor.execute(sql) print("Data upserted using execute_mogrify() successfully. : " + str(table) + "") conn.commit() cursor.close() @staticmethod def execute_mogrify_insert(conn, dataframe, table): # Creating a list of tupples from the dataframe values tpls = [tuple(x) for x in dataframe.to_numpy()] # dataframe columns with Comma-separated cols = ','.join(list(dataframe.columns)) no_column = len(dataframe.columns) add_no_column_to_insert = "%s," * no_column add = add_no_column_to_insert.rstrip(add_no_column_to_insert[-1]) # SQL query to execute cursor = conn.cursor() values = [cursor.mogrify("(" + add + ")", tup).decode('utf8') for tup in tpls] sql = "INSERT INTO %s(%s) VALUES " % (table, cols) + ",".join(values) # print(function) # try: cursor.execute(sql) # print(cursor.execute(function)) conn.commit() print("Data inserted using execute_mogrify() successfully.") cursor.close() # except (Exception, psy.DatabaseError): # print(psy.DatabaseError) # print("Error") # cursor.close() # pass
Tana8M/data-engineer-assignment
pipeline/function/postgresql_function/psycopg2_postgresql.py
psycopg2_postgresql.py
py
4,631
python
en
code
0
github-code
6
34111450286
"""helloworld URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ ''' from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ] ''' from django.conf.urls import url,include from django.contrib import admin from . import view,mysql from ctrl import views from controller import index from controller import gui # 包涵路由 other=[ url(r'^info/',view.info), url(r'^psd/',view.psd), ] urlpatterns = [ url(r'^$', view.hello), url(r'^hi',view.hi), url(r'^int/',view.myint), url(r'^json/',view.json), url(r'^res/',view.res), url(r'^admin/', admin.site.urls), url(r'^insert/',mysql.insert), url(r'^find/',mysql.find), url(r'^update/',mysql.update), url(r'^del/',mysql.delete), url(r'^user/',include(other)), url(r'^cc/',views.cc), url(r'^index/',index.index), url(r'^gui/',gui.index), url(r'^controller/',include('controller.urls')), #使用子路由 ]
githubrghd/mydemo
python-demo/helloworld/helloworld/urls.py
urls.py
py
1,551
python
en
code
null
github-code
6
74672197946
#we use flag variables as a signal to the program for systems where multiple conditions may end a while loop #we set the flag to either True or False active = True prompt = "Tell Me Your Name and I Will Give It A Godly Title " message = "" while active: message = input(prompt) if message == "quit": active = False else: message += " The God" print(message)
ncortezi/python_education_2023
chapter_7/intro_flags.py
intro_flags.py
py
374
python
en
code
0
github-code
6
10241474430
import scipy import copy import numpy as np def gesd(x, **kwargs): x_ = np.array(x) alpha = 0.05 if 'alpha' not in kwargs else kwargs['alpha'] n_out = int(np.ceil(len(x_) * 0.1)) if 'n_out' not in kwargs else kwargs['n_out'] outlier_side = 0 if 'outlier_side' not in kwargs else kwargs['outlier_side'] alpha_ = alpha / 2 if outlier_side == 0 else alpha n = len(x_) temp = x_ R = np.zeros([n_out]) rm_idx = copy.copy(R).astype(int) lam = copy.copy(R) for j in range(n_out): if outlier_side == -1: sample = np.nanmin(temp) rm_idx[j] = list(temp).index(sample) R[j] = (np.nanmean(temp) - sample) elif outlier_side == 0: R[j] = np.nanmax(abs(temp - np.nanmean(temp))) rm_idx[j] = np.argmax(abs(temp - np.nanmean(temp))) else: sample = np.nanmax(temp) rm_idx[j] = list(temp).index(sample) R[j] = (sample - np.nanmean(temp)) R[j] /= np.nanstd(temp) temp[rm_idx[j]] = float('nan') p = 1 - alpha_ / (n - j + 1) t = scipy.stats.t.ppf(p, n - j - 1) lam[j] = ((n - j) * t) / (np.sqrt((n - j - 1 + t ** 2) * (n - j + 1))) idx = np.zeros(n).astype(bool) if True in list(R > lam)[::-1]: a_ = list(R > lam)[::-1].index(True) b = rm_idx[0:a_] idx[b] = True x2 = x_[~idx] return idx, x2
WHThhhh/Seeg_prepro
GESD_wht.py
GESD_wht.py
py
1,421
python
en
code
2
github-code
6
23007665672
#!/usr/bin/env python # # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Top levels scripts to extract castro data from an all-sky analysis """ import os import argparse import numpy as np import yaml from astropy import table from fermipy import fits_utils from dmpipe import dmp_roi from dmpipe.dm_target import DMTargetFactory def read_targets(filepath): """ Read a set of targets from a fits file """ return read_targets_from_fits(filepath) def read_targets_from_fits(fitsfile): """ Read a set of targets from a fits file """ tab = table.Table.read(fitsfile) mask = np.zeros(len(tab), bool) key_col = tab['key'] for i in range(len(tab)): mask[i] = key_col[i].find('point') != -1 tab_mask = tab[mask] coords = np.ndarray((len(tab_mask), 2)) coords[:, 0] = tab_mask['glon'] coords[:, 1] = tab_mask['glat'] out_dict = {'targets': tab_mask['target'], 'coordinates': coords} return out_dict def read_targets_from_yaml(yamlfile): """ Read a set of targets from a yaml file """ din = yaml.load(yamlfile) coords = np.ndarray((len(din), 2)) for i, (key, val) in enumerate(din.items()): coords[i, 0] = val['l'] coords[i, 1] = val['b'] out_dict = {'targets': list(din.keys()), 'coordinates': coords} return out_dict def add_columns(out_table, in_table, col_names): """ Add columnes to a table """ for col in col_names: out_table.add_column(in_table[col]) def main(): """ Hook for command line access """ # Argument defintion usage = "usage: %(prog)s [input]" description = "Collect all the new source" parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument('--input', '-i', default='roi_set.yaml', help='ROI set definition file.') parser.add_argument('--output', '-o', type=argparse.FileType('w'), help='Output file.') parser.add_argument('--clobber', action='store_true', help='Overwrite output file.') parser.add_argument('--targets', '-t', type=str, help='Target file.') parser.add_argument('--filestr', '-f', default="tscube.fits", help="Name of file within each ROI sub-directory") # Argument parsing args = parser.parse_args() # Read the target file targ_type = os.path.splitext(args.targets)[1] print(targ_type) if targ_type in ['.fit', '.fits']: targets = DMTargetFactory.read_table(args.targets) roster = None else: targets, roster = DMTargetFactory.make_table([args.targets]) # Get the sky_crds sky_crds = DMTargetFactory.get_sky_crds(targets) # Make the roi_set object roi_set, basedir = dmp_roi.DMROISet.create_from_yaml(args.input) # extract the data out_table = roi_set.extract_table_data(sky_crds, args.filestr, basedir=basedir, tables=["SCANDATA", "FITDATA"]) # add_names_column(out_table,targets['name']) col_names = ['name', 'ra', 'dec', 'distance', 'proftype', 'glat', 'glon', 'j_integ', 'd_integ'] add_columns(out_table, targets, col_names) ebounds_table = roi_set.extract_single_table(args.filestr, basedir=basedir, table="EBOUNDS") # Write the output fits_utils.write_tables_to_fits(args.output, [out_table, ebounds_table], clobber=args.clobber, namelist=["SCANDATA", "EBOUNDS"]) if __name__ == '__main__': main()
fermiPy/dmpipe
dmpipe/scripts/extract_castro_data.py
extract_castro_data.py
py
3,510
python
en
code
0
github-code
6
18932829460
# === Úloha 5=== # Napíšte program, ktorý zistí pomocou funkcie, v ktorom týždni počas roka mal Janko najvyššie výdavky na sladkosti. Jankove výdavky vygeneruje program ako desatinné čísla v rozsahu (0€-2,55€) s presnosťou na dve desatinné miesta. from random import randint def najvyssie(vydavky): i_najvisieho = 0 for i in range(len(vydavky)): if vydavky[i] > vydavky[i_najvisieho]: i_najvisieho = i return i_najvisieho + 1 # na začiatku nemáme 0ty týždeň, ale prvý ! priklad_v = [randint(0, 255)/100 for i in range(4*12)] # 4 tyzdne pre kazdy mesiac priklad_naj_tyzden= najvyssie(priklad_v) print(f"vyd = {priklad_v}") print(f"najvyssi vydavok je v {priklad_naj_tyzden}. tyzdni, teda {priklad_v[priklad_naj_tyzden - 1]}")
Plasmoxy/MaturitaInformatika2019
ulohyPL/u05.py
u05.py
py
775
python
sk
code
2
github-code
6
18464161519
# Libraries import pandas as pd import re, sqlite3 # Reading the data data = pd.read_csv('Digimon_cards.csv') # Connecting with the database con = sqlite3.connect('Digimon_Cards.sqlite') cur = con.cursor() # Inserting the data ## Card type's table insert_card_type = 'INSERT INTO Card_types(name) VALUES' insert_card_type += '(' for card_type in data['Card_type'].unique(): insert_card_type += '"'+str(card_type) + '"'+'),(' insert_card_type = insert_card_type[:-2] +';' cur.execute(insert_card_type) con.commit() ## Color's table insert_color = 'INSERT INTO Colors(name) VALUES' insert_color += '(' for color in data['Color'].unique(): insert_color += '"'+str(color) + '"'+'),(' insert_color = insert_color[:-2] +';' cur.execute(insert_color) con.commit() ## Form's table insert_form = 'INSERT INTO Forms(name) VALUES' insert_form += '(' for form in data['Form'].unique(): insert_form += '"'+str(form) + '"'+'),(' insert_form = insert_form[:-2] +';' insert_form = re.sub('\("-"\),', '', insert_form) cur.execute(insert_form) con.commit() ## Atribute's table insert_attribute = 'INSERT INTO Attributes(name) VALUES' insert_attribute += '(' for attribute in data['Attribute'].unique(): insert_attribute += '"'+str(attribute) + '"'+'),(' insert_attribute = insert_attribute[:-2] +';' insert_attribute = re.sub('\("-"\),', '', insert_attribute) cur.execute(insert_attribute) con.commit() ## Digimon type's table insert_digimon_type = 'INSERT INTO Digimon_types(name) VALUES' insert_digimon_type += '(' for digimon_type in data['Digimon_type'].unique(): insert_digimon_type += '"'+str(digimon_type) + '"'+'),(' insert_digimon_type = insert_digimon_type[:-2] +';' cur.execute(insert_digimon_type) con.commit() ## Deck type's table insert_deck_type = 'INSERT INTO Deck_types(name) VALUES' insert_deck_type += '(' for deck_type in data['Deck_type'].unique(): insert_deck_type += '"'+str(deck_type) + '"'+'),(' insert_deck_type = insert_deck_type[:-2] +';' cur.execute(insert_deck_type) con.commit() ## Effect's table ### Combining all the effects features into one dataframe Effects = list(data['Effect']) Effects.extend(data['Digivolve_effect']) Effects.extend(data['Security_effect']) Effects = pd.DataFrame(Effects)[0].unique() ### Inserting the values insert_effect = "INSERT INTO Effects(name) VALUES" insert_effect = insert_effect + '(' for effect in Effects: insert_effect = insert_effect + '"' + str(effect) + '"' + '),(' insert_effect = insert_effect[:-2]+ ';' cur.execute(insert_effect) con.commit() ## Digimon's data colum_names = ['Card_type', 'Color', 'Form', 'Attribute','Digimon_type', 'Effect', 'Digivolve_effect', 'Security_effect', 'Deck_type'] insert_digimon = '''INSERT INTO Digimons(code, name, level, card_type_id, color_id, form_id, attribute_id, digimon_type_id, DP, Play_cost, Digivolve_cost_1, Digivolve_level_1, Digivolve_cost_2, Digivolve_level_2, effect_id, digivolve_effect_id, security_effect_id, deck_type_id, 'Deck_name','Image_link') VALUES''' for row in range(0,len(data)): i = 0 insert_digimon += '(' for feature in data.iloc[row]: title = data.columns.values[i] feature = feature if title in ['Effect', 'Digivolve_effect', 'Security_effect']: title = 'Effect' if title in colum_names: select_query = 'SELECT id FROM ' select_query += str(title) + 's' + ' WHERE name = ? ;' cur.execute(select_query, (feature, )) try: feature_id = cur.fetchone()[0] insert_digimon += '"'+str(feature_id) + '"'+',' except: insert_digimon += 'NULL,' elif pd.isna(feature): insert_digimon += 'NULL,' else: insert_digimon += '"' + str(feature) + '"'+',' i = i+1 insert_digimon = insert_digimon[:-1] +'),' insert_digimon = insert_digimon[:-2] +');' cur.execute(insert_digimon) con.commit() # Disconnecting from the database con.close()
davidr9708/Digimon_Card_Game
Code/3_Data_insertion.py
3_Data_insertion.py
py
4,306
python
en
code
9
github-code
6
11081518318
# 'local file' or 'database' data_source = 'local file' # if data is loaded from local file, provide file name: file_name = 'city_rides_2020.pkl' # columns that the data is grouped by. Should be compatible with file name # if data is loaded from file. groupby_cols = ['from_city', 'dep_week'] # color column is scaled to match the colormap # actually the limit end should match the number of colors in the colormap # which is generated below. But since the distribution of pax per cap is so # skewed, we decide to assign even to the top 2/3 values (scaled: 100 from 300) # to have the color of the highest values. scale_limits = (0, 300) cmap_limit = 100 radius_scale = 2000
relaxingdave/network_visualization
config.py
config.py
py
678
python
en
code
0
github-code
6
35424778344
from art import higher_lower,vs from game_data import data import random import os #Display art score = 0 game_continue = True account_b = random.choice(data) def format_data(account): """Takes the account data and return the printable format""" account_name = account["name"] account_desc = account["description"] account_country = account["country"] return f"{account_name}, a {account_desc}, from {account_country}" def check_answer(guess, a_follower,b_follower): """ Take the user guess and follower count an dreturn if they got it right.""" if a_follower > b_follower: return guess == "a" else: return guess == "b" print(higher_lower) #make the game repeatable while game_continue: #Generate random data #Making the accounts at position B become the next positon A account_a = account_b account_b = random.choice(data) while account_a == account_b: account_b = random.choice(data) #Format the account data into printable format print(f"Comapre A : {format_data(account_a)}") print(vs) print(f"Against B : {format_data(account_b)}") #ask user guess guess = input("Who has more followers? Type 'A' or 'B' : ").lower() #Check if user is correct. ## Get follower counr of each account. a_follower_account = account_a["follower_count"] b_follower_account = account_b["follower_count"] is_correct = check_answer(guess, a_follower_account, b_follower_account) #Give user feedback on their guesss. #score keeping if is_correct: score += 1 print(f"You are right! Current score : {score}") else: game_continue = False print(f"Sorry, that's wrong! Current score : {score}") #clear the screen between rounds
pav537/Python
Higher_Lower Game.py
Higher_Lower Game.py
py
1,900
python
en
code
0
github-code
6
18677295647
#!/usr/bin/env python """ Unit tests for module `msg`. """ from msg import Msg if __name__ == '__main__': # for testing only #import msg m = Msg() m.enable_color(True) # only required to force coloured output to file m.prefix_set('myprog') # make a prefix for following msg's m.info('Hello World (to stdout)') m.msg('This is m.msg(), with a prefix "myprog" (to stdout)') m.info('This is m.info() (to stdout)') m.warn('This is m.warn() (to stderr)') m.error("This is m.error() (to stderr)") m.line() m.warn('This is a multi-line m.warn() message.', 'This is the next line.', '(to stderr)') m.prefix_add('color') # set a double level prefix m.info(f"Double prefix '{m.prefixes}', from m.info() (to stdout)") m.msg(f"m.msg() with prefix '{m.prefixes}'") m.line() m.msg('Make new default colours for m.info() and m.warn()') m.set_colors(info_fore='LIGHTBLUE_EX', info_style='BRIGHT', warn_fore='RED', warn_back='WHITE', warn_style='BRIGHT') m.info('This is m.info()', 'with new default colours.') m.warn('This is m.warn()', 'with new default colours.') m.prefix_set('') m.line() m.msg('', 'Now back to m.msg() without prefixes.', '') m.prefix_set('colors') m.msg('Display all available foreground colours for m.info() with black background colour.') all_colors = [ 'BLACK','RED','GREEN','YELLOW','BLUE','MAGENTA','CYAN','WHITE', 'LIGHTBLACK_EX', 'LIGHTRED_EX','LIGHTGREEN_EX','LIGHTYELLOW_EX', 'LIGHTBLUE_EX', 'LIGHTMAGENTA_EX','LIGHTCYAN_EX','LIGHTWHITE_EX' ] all_styles = [ 'NORMAL', 'BRIGHT', 'DIM' ] for color in all_colors: if color == 'BLACK': continue # don't need black on black m.prefix_add(color) m.set_colors(info_fore=color, info_back='black') m.line(52) for style in all_styles: m.prefix_add(style) m.set_colors(info_style=style) m.info('Hello World.') m.prefix_pop() m.prefix_pop() m.line() m = Msg(prefixes=['textwrap'], use_color=True, columns=60, prefix_separator='> ') m.prefix_add(f'default {m.columns} cols') m.warn('This is a very, very, very long line that needs to be wrapped. Or else it will look like crap.', '') m.prefix_pop() m.prefix_add('disabled') m.enable_textwrap(False) m.line() m.warn("This is a very, very, very long line that doesn't want to be wrapped. Even if it will look like crap.") m.prefix_pop()
Open-Technology-Foundation/msg
unittests/msg-test.py
msg-test.py
py
2,402
python
en
code
0
github-code
6
39940042757
import numpy as np import matplotlib.pyplot as plt import os.path import Style import sys zsims = ['3.61', '4.038','5.017'] simnom = ['SAGE'] cm = plt.get_cmap('tab10') # Colour map to draw colours from path2sim = 'C:/Users/Olivia/TFG-TUT/' for iiz, zsim in enumerate(zsims): for sim in simnom: ffav = path2sim + 'Datos_simulaciones/Medias_' + zsim + '.csv' ffcorte = path2sim + 'Datos_simulaciones/Mass_SFR_corte_z_' + zsim + '.csv' ff10 = path2sim + 'Datos_simulaciones/Mass_SFR_10_z_' + zsim + '.csv' if not os.path.isfile(ffav): continue if not os.path.isfile(ffcorte): continue if not os.path.isfile(ff10): continue '''Definimos colores''' cols = [] col = cm(1. * iiz / len(zsims)) cols.append(col) #print(cols,col) '''MEDIAS''' ghist = np.loadtxt(ffav, skiprows=1, usecols=(0), unpack=True, delimiter=',') avSFR = np.loadtxt(ffav, skiprows=1, usecols=(1), unpack=True, delimiter=',') #Msun h^-1 yr^-1 ErrorMass = np.loadtxt(ffav, skiprows=1, usecols=(2), unpack=True, delimiter=',') '''CORTE''' MassCorte = np.loadtxt(ffcorte, skiprows=1, usecols=(1), unpack=True, delimiter=',') StarFRCorte = np.loadtxt(ffcorte, skiprows=1, usecols=(2), unpack=True, delimiter=',') SFRCorte = StarFRCorte - 9 #Msun h^-1 yr^-1 '''10 PORCIENTO''' Mass10 = np.loadtxt(ff10, skiprows=1, usecols=(1), unpack=True, delimiter=',') StarFR10 = np.loadtxt(ff10, skiprows=1, usecols=(2), unpack=True, delimiter=',') SFR10 = StarFR10 - 9 # Msun h^-1 yr^-1 indav = np.where(avSFR>0) #indcorte = np.where(StarFR>0) plt.style.use(Style.style1) plt.plot(Mass10, SFR10, marker='.', color = 'steelblue', linewidth=0, label='10$\%$ SAGE z = ' + zsims[iiz] + '') plt.plot(MassCorte, SFRCorte, marker='*', color = 'r', linewidth=0, label='corte SAGE z = ' + zsims[iiz] + '') plt.plot(ghist[indav], avSFR[indav], marker='^', linewidth=0, color='k', label='SAGE z = ' + zsims[iiz] + '') plt.errorbar(ghist[indav], avSFR[indav], yerr=ErrorMass[indav], xerr=None, fmt='.k') plt.ylabel('log$_{10} \;$ (SFR $[M_{\odot} \; h^{-1}\; yr^{-1}$])') plt.xlabel('log$_{10} \;$(M$ \; [M_{\odot} \; h^{-1} $])') #plt.title('Media de la función SFR SAGE frente bines de masa de las galaxias') #plt.xlim(8.4, 11.6) plt.ylim(-2.5,3) plotnom = path2sim + 'Figuras/Definitivas/Medias_corte_10_z_' + zsims[iiz] + '.png' plt.legend() plt.savefig(plotnom) plt.show()
Ovive57/TFG-TUT
Dibujo_Medias_corte_10.py
Dibujo_Medias_corte_10.py
py
2,682
python
en
code
1
github-code
6
69877253629
import torch from torch import nn import yaml import cv2 import numpy as np from vidgear.gears import CamGear from matplotlib import pyplot as plt from IPython.display import Image, clear_output import argparse import os import datetime import sys from PIL import ImageFont, ImageDraw, Image import time from pathlib import Path from utils.plots import * from utils.torch_utils import * from utils.general import * from utils.datasets import letterbox import gdown from deep_sort.utils.parser import get_config from deep_sort.deep_sort import DeepSort import pymysql # path 정리 path = "C:/Users/YongJun/Desktop/YOLO/1228_TNS/images" model = torch.load('C:/Users/YongJun/Desktop/YOLO/YOLOv5s_1229.pt') image_paths = sorted([os.path.join(path, f) for f in os.listdir(path) if f.endswith(".jpg") or f.endswith(".png")]) label_paths = sorted([os.path.join(path, f) for f in os.listdir(path) if f.endswith(".txt")]) # DB 연결 conn = pymysql.connect( host='localhost', user='root', password='013579', db='tns_db', charset='utf8' ) # DB 저장 데이터 - 시작 시간 기록 start_time = time.time() # 라벨링한 클래스 class_dict = { "OK": 0, "NG_Blur": 1, "NG_Scratch": 2, } ok_idx = class_dict['OK'] ng_blur_idx = class_dict['NG_Blur'] ng_scratch_idx = class_dict['NG_Scratch'] labels = [] # 웹캠 설정 cap1 = cv2.VideoCapture(0) cap2 = cv2.VideoCapture(1) # 웹캠 1번 탐지 ok_count1 = 0 ng_blur_count1 = 0 ng_scratch_count1 = 0 # 웹캠 2번 탐지 ok_count2 = 0 ng_blur_count2 = 0 ng_scratch_count2 = 0 # 최종 탐지 ok_count = 0 ng_count = 0 # 추가 부분 ok_detected1 = False ok_detected2 = False ng_detected1 = False ng_detected2 = False # YOLO 실행 while True: # 현재 시간 기록 current_time = time.time() # 이전 프레임과의 시간 차이 계산 elapsed_time = current_time - start_time # 이전 프레임의 시간 업데이트 start_time = current_time ret1, frame1 = cap1.read() ret2, frame2 = cap2.read() labels1 = [] labels2 = [] results1 = model(frame1) results2 = model(frame2) detections1 = results1.xyxy[0] detections2 = results2.xyxy[0] # 각 객체에 대해 Loop를 돌며, Line을 지나갔는지 검사 for detection in detections1: # 객체의 중심점 좌표 계산 center_x = (detection[0] + detection[2]) / 2 center_y = (detection[1] + detection[3]) / 2 # 객체가 Line을 지나갔는지 검사 - Line 설정 (317 ~ 323) if center_x > 317 and center_x < 323: label = detection[5] labels1.append(label) if label == ok_idx: ok_count1 += 1 elif label == ng_blur_idx: ng_blur_count1 += 1 elif label == ng_scratch_idx: ng_scratch_count1 += 1 # 각 객체에 대해 Loop를 돌며, Line을 지나갔는지 검사 for detection in detections2: # 객체의 중심점 좌표 계산 center_x = (detection[0] + detection[2]) / 2 center_y = (detection[1] + detection[3]) / 2 # 객체가 Line을 지나갔는지 검사 - Line 설정 (317 ~ 323) if center_x > 317 and center_x < 323: label = detection[5] labels2.append(label) if label == ok_idx: ok_count2 += 1 elif label == ng_blur_idx: ng_blur_count2 += 1 elif label == ng_scratch_idx: ng_scratch_count2 += 1 # 추가 부분 if ok_idx in labels1 and ok_idx in labels2: ok_detected1 = True ok_detected2 = True if ok_detected1 and ok_detected2: ok_count += 1 ok_detected1 = False ok_detected2 = False if ng_blur_idx in labels1 or ng_scratch_idx in labels1: ng_detected1 = True if ng_blur_idx in labels2 or ng_scratch_idx in labels2: ng_detected2 = True if ng_detected1 or ng_detected2: ng_count += 1 ng_detected1 = False ng_detected2 = False # DB 연동 cursor = conn.cursor() count = 0 for detection in detections1: count += 1 name = f"name{count}" # SQL 문을 통해서 MariaDB의 Table에 저장 - 제품 , 개수 , 상태 , confidence 등 추가 # (INSERT INTO tns (table name) id (table column ... ) VALUES (%s , %s , ...), (python_msg, python_msg)) cursor.execute("INSERT INTO tns (id) VALUES (%s)", (ok_count1)) conn.commit() # 동영상에서 나오는 cv2 의 text 정리 cv2.putText(frame1, f'OK: {ok_count}', (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(frame1, f'NG_Blur: {ng_blur_count}', (30, 55), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(frame1, f'NG_Scratch: {ng_scratch_count}', (30, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(frame2, f'OK: {ok_count2}', (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(frame2, f'NG_Blur: {ng_blur_count2}', (30, 55), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(frame2, f'NG_Scratch: {ng_scratch_count2}', (30, 80), cv2.FONT_HERSHEY_SIMPLEX, 1,(0, 0, 255), 2) cv2.line(frame1, (320, 0), (320, 640), (255, 0, 0), 2) cv2.line(frame2, (320, 0), (320, 640), (255, 0, 0), 2) cv2.imshow('TNS_CAP1', np.squeeze(results1.render())) cv2.imshow('TNS_CAP2', np.squeeze(results2.render())) # 'q' 키를 누르면 종료 if cv2.waitKey(1) == ord("q"): break # 종료시 리소스 해제 cap1.release() cap2.release() cv2.destroyAllWindows()
yeonsoo98/yolov5_object_count
detect.py
detect.py
py
5,852
python
ko
code
0
github-code
6
21640069600
from django import forms from django.core.exceptions import ValidationError from django.utils.translation import gettext_lazy as _ from .models import VideoFile class VideoFileForm(forms.ModelForm): """Form for user file uploading.""" def clean(self): cleaned_data = super().clean() original_file = cleaned_data.get('original_file') url = cleaned_data.get('url') if original_file and url: raise ValidationError( _('Only one field must be filled.') ) elif not original_file and not url: raise ValidationError( _('Please enter data in one of these fields.') ) class Meta: model = VideoFile fields = ( 'original_file', 'url', )
sergeybe/video-archive
src/video/forms.py
forms.py
py
813
python
en
code
0
github-code
6
15309466710
import asyncio from misc import dp,bot from .sqlit import reg_user from aiogram import types channel1 = -1001804437355 content_id = -1001165606914 print(1) markup = types.InlineKeyboardMarkup() bat_a = types.InlineKeyboardButton(text='Access to group 🔑', url = 'https://t.me/share/url?url=https%3A%2F%2Ft.me%2F%2BH4vDT3QPa381ODUy') markup.add(bat_a) async def posting(): while True: q = await bot.copy_message(chat_id=channel1,from_chat_id=content_id,message_id=10,reply_markup=markup) await asyncio.sleep(45) await bot.delete_message(chat_id=channel1,message_id=q.message_id) @dp.chat_join_request_handler() async def join(update: types.ChatJoinRequest): reg_user(update.from_user.id,1) await bot.copy_message(chat_id=update.from_user.id, from_chat_id=content_id, message_id=16, reply_markup=markup) try: await update.approve() except: pass @dp.message_handler(commands=['start']) async def start_bot(message: types.Message): reg_user(message.chat.id,ref=1) print(2) await bot.copy_message(chat_id=message.chat.id, from_chat_id=content_id, message_id=16, reply_markup=markup)
pytera895143242/spec2rep
handlers/commands_start.py
commands_start.py
py
1,164
python
en
code
0
github-code
6
13111704429
def update_single(conn, cursor, table, column, file_number, var): # update a single column in a sql db. Key is file_number. sql_update = "UPDATE " + table + " SET " + column + "= ? WHERE File_number = '" + file_number + "'" cursor.execute(sql_update, [var]) conn.commit() def insert(conn, cursor, table, columns, data): # insert data in multiple cols in a sql db. adds a new row col_number = len(data) place_holder = ["?"] * col_number place_str = ",".join(place_holder) sql_insert = "INSERT INTO " + table + "(" + columns + ") VALUES (" + place_str + ")" cursor.execute(sql_insert, data) conn.commit() def update_multiple(conn, cursor, table, columns, file_number, data): # update multiple columns in a sql db. Key is file_number. col_number = len(data) for index in range(0, col_number): sql_update = "UPDATE " + table + " SET " + columns[index] + "= ? WHERE File_number = '" + file_number + "'" var = data[index] cursor.execute(sql_update, [var]) conn.commit() def add_columns(cursor, table, columns): col_number = len(columns) for index in range(0, col_number): sql_add = "ALTER TABLE " + table + " ADD " + columns[index] cursor.execute(sql_add)
dakelkar/Create_BreastCancerDB
new_version/add_update_sql.py
add_update_sql.py
py
1,264
python
en
code
0
github-code
6
30272112886
from .views import * from django.urls import path urlpatterns = [ path('', home, name='home'), path('login/', login_user, name='login'), path('contact/', contact, name='contact'), path('api/<str:userid>/', api, name='api'), path('logout/', logout_user, name='logout'), path('register/', register, name='register'), path('server-maintenance/', freeze, name='freeze'), path('exam-status/<str:user>/', exam_end, name='exam_end'), path('exam-credential/', exam_authentication, name='exam_auth'), path('exam-credential/auth-user/exam/<str:userid>/', exam, name='exam'), path('activate/<uidb64>/<token>/<details>/', user_verification, name='activate') ]
supratim531/hetc-web
scholarship/urls.py
urls.py
py
693
python
en
code
0
github-code
6
29575131193
import json from argo_ams_library import AmsException, AmsMessage, ArgoMessagingService class PullPublish: def __init__(self, config): self.pull_sub = config["pull_sub"] self.pub_topic = config["pub_topic"] self.pull_topic = config["pull_topic"] self.ams = ArgoMessagingService(endpoint=config["host"], token=config["token"], project=config["project"]) def pull(self, nummsgs): messages = [] try: if not self.ams.has_sub(self.pull_sub): self.ams.create_sub(self.pull_sub, self.pull_topic) except AmsException as e: print(e) raise SystemExit(1) # try to pull number of messages from subscription. method will # return (ackIds, AmsMessage) tuples from which ackIds and messages # payload will be extracted. ackids = list() for id, msg in self.ams.pull_sub(self.pull_sub, nummsgs): data = msg.get_data() # msgid = msg.get_msgid() # attr = msg.get_attr() messages.append(json.loads(data.decode("utf-8"))) # print('msgid={0}, data={1}, attr={2}'.format(msgid, data, attr)) ackids.append(id) return messages, ackids def ack(self, ackids): # pass list of extracted ackIds to AMS Service so that # it can move the offset for the next subscription pull # (basically acknowledging pulled messages) if ackids: self.ams.ack_sub(self.pull_sub, ackids) def publish(self, messages): # messages = [{data:[{id:1},{state:'deployed'}],attributes=''}] try: if not self.ams.has_topic(self.pub_topic): self.ams.create_topic(self.pub_topic) except AmsException as e: print(e) raise SystemExit(1) # publish one message to given topic. message is constructed with # help of AmsMessage which accepts data and attributes keys. # data is Base64 encoded, attributes is dictionary of arbitrary # key/value pairs msg = AmsMessage() msglist = [] for message in messages: msglist.append(msg(data=json.dumps(message["data"]), attributes={})) try: ret = self.ams.publish(self.pub_topic, msglist) print(ret) except AmsException as e: print(e)
rciam/rciam-federation-registry-agent
ServiceRegistryAms/PullPublish.py
PullPublish.py
py
2,400
python
en
code
3
github-code
6
15768547417
from __future__ import annotations from typing import TYPE_CHECKING, Any, Type from django.db.models import JSONField from django.db.models.lookups import Lookup from pymilvus.client.types import DataType from .lookups import get_nearest_n if TYPE_CHECKING: from django_milvus.connection import Connection class MilvusField(JSONField): def __init__( self, dim: int, dtype: DataType, *args: Any, dbname: str = "default", nlist: int = 1024, nprobe: int = 32, metric_type: str = "L2", index_type: str = "IVF_FLAT", **kwargs: Any, ) -> None: self.dim = dim self.dtype = dtype self.dbname = dbname self.nlist = nlist self.nprobe = nprobe self.metric_type = metric_type self.index_type = index_type super().__init__(*args, **kwargs) def get_connection_class(self) -> Type["Connection"]: from .connection import Connection return Connection def get_connection(self) -> Connection: return self.get_connection_class()(self.dbname) def deconstruct(self): name, path, args, kwargs = super().deconstruct() kwargs.update( { "dim": self.dim, "dtype": self.dtype, "dbname": self.dbname, "nlist": self.nlist, "nprobe": self.nprobe, "metric_type": self.metric_type, "index_type": self.index_type, } ) return name, path, args, kwargs def get_lookup(self, lookup_name: str) -> Type[Lookup] | None: if lookup_name.startswith("nearest"): try: return get_nearest_n( int(lookup_name[8:]), self.model, self, self.get_connection(), ) except ValueError: raise ValueError( "incorrect syntax when looking up nearby vectors: use nearest_{int}. got {lookup_name}" ) else: raise ValueError("Not supported lookup: " + lookup_name)
kaleido-public/django-milvus
django_milvus/fields.py
fields.py
py
2,190
python
en
code
4
github-code
6
73925325948
CUSTOMERS = [ { "id": 1, "name": "Ryan Tanay" }, { "id": 2, "name": "Keeley Jones" }, { "id": 3, "name": "Summer Smith" } ] def get_all_customers(): return CUSTOMERS # Function with a single parameter def get_single_customer(id): # Variable to hold the found customer, if it exists requested_customer = None # Iterate the customerS list above. Very similar to the # for..of loops you used in JavaScript. for customer in CUSTOMERS: # Dictionaries in Python use [] notation to find a key # instead of the dot notation that JavaScript used. if customer["id"] == id: requested_customer = customer return requested_customer def create_customer(customer): # Get the id value of the last customer in the list max_id = CUSTOMERS[-1]["id"] # Add 1 to whatever that number is new_id = max_id + 1 # Add an `id` property to the customer dictionary customer["id"] = new_id # Add the customer dictionary to the list CUSTOMERS.append(customer) # Return the dictionary with `id` property added return customer def delete_customer(id): customer_index = -1 for index, customer in enumerate(CUSTOMERS): if customer["id"] == id: customer_index = index if customer_index >= 0: CUSTOMERS.pop(customer_index) def update_customer(id, new_customer): for index, customer in enumerate(CUSTOMERS): if customer["id"] == id: CUSTOMERS[index] = new_customer break
kellyfrancoeur/kennel-server
views/customer_requests.py
customer_requests.py
py
1,601
python
en
code
0
github-code
6
12731720405
#/usr/bin/python3.8 """ This example implements the interaction between Qt Widgets and a 2D matplotlib plot showing a gaussian curve with scipy. This app displays a graph inside gui """ import sys import numpy as np from scipy.stats import norm from matplotlib import pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT from PySide6.QtCore import Qt, Slot from PySide6.QtWidgets import (QtApplication, QWidget, QDoubleSpinBox, QVBoxLayout, QHBoxLayout) class PlotWidget(QWidget): def __init__(self,parent=None): super().__init__(parent) #create widgets self.view = FigureCanvas(Figure(figsize=(5,3))) self.axes = self.view.figure.subplots() self.toolbar = NavigationToolbar2QT(self.view,self) self.avg_input = QDoubleSpinBox() self.std_input = QDoubleSpinBox() self.avg_input.setPrefix("μ: ") self.std_input.setPrefix("σ: ") self.std_input.setValue(10) #create layout input_layout = QHBoxLayout() #widgets are aligned horiz input_layout.addWidget(self.avg_input) input_layout.addWidget(self.std_input) vlayout = QVBoxLayout() vlayout.addWidget(self.toolbar) vlayout.addWidget(self.view) vlayout.addWidget(self.input_layout) self.setLayout(vlayout) #connect input with a func self.avg_input.valueChanged.connect(self.on_change) self.std_input.valueChanged.connect(self.on_change) #Exec on_change func self.on_change() @Slot() #connect to this func def on_change(self): # Update plot with input values avg = self.avg_input.value() #get data from spinbox std = self.std_input.value() dx = np.linspace(-100,100) dy = norm.pdf(x, avg, std) self.axes.clear() self.axes.plot(dx,dy) self.view.draw() if __name__ == "__main__": app = QApplication(sys.argv) wPlot = PlotWidget() wPlot.show() sys.exit(app.exec())
ndlopez/learn_python
learn_qt/qt_graph.py
qt_graph.py
py
2,123
python
en
code
0
github-code
6
70504080829
from naman.core.models import VLan from django.core.exceptions import ImproperlyConfigured def assign_provisioning_vlan(machine): print("Entering assign_provisioning_vlan") prov_vlans = VLan.objects.filter(provisioning_purpose=True) if prov_vlans.count() == 0: raise ImproperlyConfigured("Missing provisioning vlans") for vlan in prov_vlans: try: machine.get_vlanconfig().append_vlan(vlan) return except VLan.NoFreeIPError: continue raise VLan.NoFreeIPError("No free IPs at any provisioning vlan") def assign_backup_vlan(machine): #logging.basicConfig(level=logging.DEBUG) print("Entering assign_backup_vlan") for vlan in machine.environment.backup_vlans.all().order_by('name'): try: machine.get_vlanconfig().append_vlan(vlan) return except VLan.NoFreeIPError: continue raise VLan.NoFreeIPError("No free IPs at any backup vlan") def assign_management_vlan(machine): print("Entering management vlan") man_vlans = VLan.objects.filter(management_purpose=True).order_by("name") if man_vlans.count() == 0: raise ImproperlyConfigured("Missing management vlans") for vlan in man_vlans: try: machine.get_vlanconfig().append_vlan(vlan) return except VLan.NoFreeIPError: continue raise VLan.NoFreeIPError("No free IPs at any management vlan") def assign_dmz_based_on_project(machine): print("Entering dmz based on project vlan") #if machine.dmz_located: project = machine if project is None or project.dmz is None: raise ImproperlyConfigured( "DMZ located machine must belong to a project which has dmz vlan assing") machine.get_vlan_config().append_vlan(project.dmz) def assign_service_vlan_based_on_project(machine): print("Entering service vlan based on project") project = machine.project for vlan in project.service_vlans.all().order_by('name'): try: machine.get_vlanconfig().append_vlan(vlan) return except VLan.NoFreeIPError: continue def assign_general_purpose_service_vlan(machine): print("General purpose service vlan") for vlan in machine.environment.service_vlans.all().order_by('-name'): #print "trying service vlan with: %s" % vlan try: machine.get_vlanconfig().append_vlan(vlan) return except VLan.NoFreeIPError: continue #raise VLan.NoFreeIPError("Can't assign free IP for service vlan") mappings = [ assign_backup_vlan, assign_management_vlan, assign_provisioning_vlan, assign_dmz_based_on_project, assign_service_vlan_based_on_project, assign_general_purpose_service_vlan, ]
jpardobl/naman
naman/core/mappings/vlan_actions.py
vlan_actions.py
py
2,859
python
en
code
0
github-code
6
36385272432
""" create some fake json book cover records from the book review dataset from kaggle. it's a very basic implementation for development - too clean for testing. """ import pandas as pd # read the relevant fields into memory df = pd.read_json('book_list.json') # type:pd.DataFrame # remove unneeded cols df = df.drop('version', axis=1) df = df.drop('revisionDate', axis=1) df = df.drop('publishedDate', axis=1) df = df.drop('tagLine', axis=1) df = df.drop('title', axis=1) df = df.drop('coverUrl', axis=1) # add chapterId col df['chapterId'] = df['bookId'] # reorder cols cols = df.columns.tolist() cols[0], cols[-1] = cols[-1], cols[0] cols[1], cols[-1] = cols[-1], cols[1] df = df[cols] # add chapter numbers df['chapterNum'] = pd.Series(0, index=df.index) # convert pandas dataframe to json and write to file json = df.to_json(path_or_buf='chapter_list.json', orient='records')
didactapp/didact-fake-json-data-generator
fake_chapters.py
fake_chapters.py
py
896
python
en
code
0
github-code
6
34045997209
from faster_rcnn.config import cfg, get_output_dir import argparse from utils_py3.timer import Timer import numpy as np import cv2 from utils_py3.cython_nms import nms # from utils_py3.boxes_grid import get_boxes_grid import pickle # import heapq from utils_py3.blob_helper import im_list_to_blob import os import math import tensorflow as tf from faster_rcnn.bbox_transform import clip_boxes, bbox_transform_inv import matplotlib.pyplot as plt from tensorflow.python.client import timeline import time import pdb def _get_image_blob(im): """ Convert an image into a network input. Argument : im(ndarray): a color image in BGR order Returns : blob(ndarray): a data blob holding an image pyramid im_scales_factors(list):list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape print("im_shape is:",im_shape) im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) print("min and max:",im_size_min,im_size_max) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(im_scale) processed_ims.append(im) blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors) # def _project_im_rois(im_rois, scales): # """Project image RoIs into the image pyramid built by _get_image_blob. # Arguments: # im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates # scales (list): scale factors as returned by _get_image_blob # Returns: # rois (ndarray): R x 4 matrix of projected RoI coordinates # levels (list): image pyramid levels used by each projected RoI # """ # im_rois = im_rois.astype(np.float, copy=False) # scales = np.array(scales) # # if len(scales) > 1: # widths = im_rois[:, 2] - im_rois[:, 0] + 1 # heights = im_rois[:, 3] - im_rois[:, 1] + 1 # # areas = widths * heights # scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) # diff_areas = np.abs(scaled_areas - 224 * 224) # levels = diff_areas.argmin(axis=1)[:, np.newaxis] # else: # levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) # # rois = im_rois * scales[levels] # # return rois, levels def _get_blobs(im): """ Convert an image and RoIs within that image into inputs """ blobs = {'data': None, 'rois': None} blobs['data'], im_scale_factors = _get_image_blob(im) return blobs, im_scale_factors def _clip_boxes(boxes, im_shape): """ Clip boxes to image boundaries """ boxes[:, 0::4] = np.maximum(boxes[:, 0::4], 0) boxes[:, 1::4] = np.maximum(boxes[:, 1::4], 0) boxes[:, 2::4] = np.minimum(boxes[:, 2::4], im_shape[1] - 1) boxes[:, 3::4] = np.minimum(boxes[:, 3::4], im_shape[0] - 1) return boxes def _recales_boxes(boxes, inds, scales): """ Rescale boxes according to image rescaling """ for i in range(boxes.shape[0]): boxes[i, :] = boxes[i, :] / scales[int(inds[i])] return boxes def im_detect(sess, net, im, boxes=None): """ Detect object classes in an image given object proposals Arguments: net: faster rcnn network to use im: color image to test(in BGR order) boxes(ndarray): R X 4 array of object proposals Returns: scores(ndarray): R X K array of object class scores(K includes background as object category 0) boxes(ndarray): R X (4*K) array of predicted bounding boxes """ blobs, im_scales = _get_blobs(im) im_blob = blobs['data'] blobs['im_info'] = np.array([[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32) print(blobs['im_info']) feed_dict = {net.data: blobs['data'], net.im_info: blobs['im_info'], net.keep_prob: 1.0} run_options = None run_metadata = None if cfg.TEST.DEBUG_TIMELINE: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() # pdb.set_trace() cls_score, cls_prob, bbox_pred, rois = sess.run( [net.get_output('cls_score'), net.get_output('cls_prob'), net.get_output('bbox_pred'), net.get_output('rois')], feed_dict = feed_dict, options=run_options,run_metadata=run_metadata ) assert len(im_scales) == 1, "Only single-image batch implemented" boxes = rois[:, 1:5] / im_scales[0] scores = cls_prob if cfg.TEST.BBOX_REG: box_deltas = bbox_pred pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = _clip_boxes(pred_boxes, im.shape) if cfg.TEST.DEBUG_TIMELINE: trace = timeline.Timeline(step_stats=run_metadata.step_stats) trace_file = open(str(long(time.time() * 1000)) + '-test-timeline.ctf.json', 'w') trace_file.write(trace.generate_chrome_trace_format(show_memory=False)) trace_file.close() return scores,pred_boxes def vis_detections(im, class_name, dets, thresh=0.8): """ Visual debugging of detections """ import matplotlib.pyplot as plt for i in range(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') plt.title('{} {:.3f}'.format(class_name, score)) # def apply_nms(all_boxes, thresh): def test_net(sess, net, imdb, weights_filename, max_per_image=300, thresh=0.05, vis=False): """ Test a faster rcnn network on an image database """ num_images = len(imdb.image_index) # pdb.set_trace() all_boxes = [[[] for _ in range(num_images)] for _ in range(imdb.num_classes)] output_dir = get_output_dir(imdb, weights_filename) _t = {'im_detect': Timer(), 'misc': Timer()} for i in range(2): box_proposals = None im = cv2.imread(imdb.image_path_at(i)) _t['im_detect'].tic() scores, boxes = im_detect(sess, net, im, box_proposals) _t['im_detect'].toc() # pdb.set_trace() _t['misc'].tic() if vis: image = im[:, :, (2, 1, 0)] plt.cla() plt.imshow(image) # skip j = 0, because it's the background class for j in range(1, imdb.num_classes): inds = np.where(scores[:, j] > thresh)[0] cls_scores = scores[inds, j] cls_boxes = boxes[inds, j*4:(j+1)*4] cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \ .astype(np.float32, copy=False) keep = nms(cls_dets, cfg.TEST.NMS) cls_dets = cls_dets[keep, :] print(cls_dets) if vis: vis_detections(image, imdb.classes[j], cls_dets) all_boxes[j][i] = cls_dets if vis: plt.show() # Limit to max_per_image detections * over all classes * if max_per_image > 0: image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1, imdb.num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] if j in range(1, imdb.num_classes): keep = np.where([all_boxes[j][i][:, -1]] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] _t['misc'].toc() print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \ .format(i + 1, num_images, _t['im_detect'].average_time, _t['misc'].average_time)) det_file = os.path.join(output_dir, 'detections.pkl') with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) # print ('Evaluating detections') # imdb.evaluate_detections(all_boxes, output_dir)
hx121071/faster-rcnn-tf-py3
lib/faster_rcnn/test.py
test.py
py
8,840
python
en
code
1
github-code
6
16257468366
import re import pytest from morphocut import Pipeline from morphocut.file import Find, Glob @pytest.mark.parametrize("sort", [True, False]) @pytest.mark.parametrize("verbose", [True, False]) def test_Find(data_path, sort, verbose, capsys): d = data_path / "images" with Pipeline() as pipeline: filename = Find(d, [".png"], sort, verbose) stream = pipeline.transform_stream() filenames = [o[filename] for o in stream] if sort: assert filenames == sorted(filenames) if verbose: out = capsys.readouterr().out assert re.search(r"^Found \d+ files in .+\.$", out) def test_Glob(data_path): d = data_path / "images/*.png" with Pipeline() as pipeline: result = Glob(d, True) pipeline.run()
morphocut/morphocut
tests/test_file.py
test_file.py
py
770
python
en
code
7
github-code
6
71316404667
import requests from bs4 import BeautifulSoup import json def get_pinned(github_user): URL = f"https://github.com/{github_user}" page = requests.get(URL) soup = BeautifulSoup(page.content, "html.parser") pinned_data = soup.find_all("div", {"class": "pinned-item-list-item-content"}) pinned_posts = [] for post in pinned_data: pinned_posts.append(post.find("a")["href"]) return pinned_posts def get_projects(github_user, query): URL = f"https://github.com/{github_user}?tab=repositories&q={query}&type=source" page = requests.get(URL) soup = BeautifulSoup(page.content, "html.parser") projects = soup.body.find("ul", {"data-filterable-for": "your-repos-filter"}) if not projects: return [] projects = projects.find_all("li") projects_parsed = [] for project in projects: project_data = {} title = project.find("h3").a project_data["name"] = title.text.strip().replace("-", " ").capitalize() project_data["link"] = title["href"] project_data["tags"] = [query] impact = project.find("div", class_="f6 color-text-secondary mt-2") if impact: impact = impact.find_all("a") for data in impact: project_data[data["href"].split("/")[-1]] = int(data.text.strip()) if "stargazers" not in project_data: project_data["stargazers"] = 0 if "members" not in project_data: project_data["members"] = 0 project_data["score"] = project_data["stargazers"] + project_data["members"] * 5 else: project_data["score"] = 0 projects_parsed.append(project_data) return projects_parsed def get_youtube_data(youtube_username): initial_data = "var ytInitialData = " final_data = ";" url = f"https://www.youtube.com/{youtube_username}/videos" page = requests.get(url) soup = BeautifulSoup(page.content, "html.parser") scripts = soup.body.find_all("script") videos_data = [] for script in scripts: data = script.encode_contents().decode(errors="replace") if initial_data not in data: continue data = data.replace(initial_data, "").replace(final_data, "") tab_renderers = json.loads(data)["contents"] tab_renderers = tab_renderers["twoColumnBrowseResultsRenderer"]["tabs"] for tab in tab_renderers: if "tabRenderer" not in tab: continue if tab["tabRenderer"]["title"] != "Videos": continue videos = tab["tabRenderer"]["content"]["sectionListRenderer"] videos = videos["contents"][0]["itemSectionRenderer"] videos = videos["contents"][0]["gridRenderer"]["items"] for video in videos: if "gridVideoRenderer" not in video: continue video = video["gridVideoRenderer"] published = "" if "publishedTimeText" in video: published = video["publishedTimeText"]["simpleText"] view_count_text = "" if "simpleText" in video["viewCountText"]: view_count_text = video["viewCountText"]["simpleText"] video_data = { "thumbnail": video["thumbnail"]["thumbnails"][-1]["url"], "title": video["title"]["runs"][0]["text"], "published": published, "viewCountText": view_count_text, "url": f"https://www.youtube.com/watch?v={video['videoId']}", } videos_data.append(video_data) return videos_data
HectorPulido/HectorPulido
ReadmeGenerator/scraper.py
scraper.py
py
3,744
python
en
code
10
github-code
6
15306370520
""" File: eulerCharacteristics.py Description: calculates the characteristics of the 2D Euler equation. This includes the flux and the eigenvectors associated with it Author: Pierre-Yves Taunay Date: November 2018 """ import numpy as np from utils import P_from_Ev GAM = 1.4 def compute_euler_flux(U,direction): rho = U[:,0] u = U[:,1] / rho v = U[:,2] / rho E = U[:,3] / rho P = P_from_Ev(E,rho,u,v) flx = np.zeros(U.shape) if direction == 'dx': flx[:,0] = rho*u flx[:,1] = rho*u**2 + P flx[:,2] = rho*u*v flx[:,3] = rho*E*u + P*u elif direction == 'dy': flx[:,0] = rho*v flx[:,1] = rho*u*v flx[:,2] = rho*v**2 + P flx[:,3] = rho*E*v + P*v return flx def eigenvector_x(u,v,a,q,h,nunk): Rj = np.zeros((nunk,nunk)) Lj = np.zeros((nunk,nunk)) # Right eigenvector Rj[0,:] = np.ones((1,nunk)) Rj[0,-1] = 0 Rj[1,0] = u - a Rj[1,1] = u Rj[1,2] = u + a Rj[1,3] = 0 Rj[2,0:3] = v Rj[2,3] = -1 Rj[3,0] = h - a * u Rj[3,1] = q Rj[3,2] = h + a * u Rj[3,3] = -v # Left eigenvector Lj[0,0] = (GAM-1)*q + a*u Lj[0,1] = (1-GAM)*u - a Lj[0,2] = (1-GAM)*v Lj[0,3] = (GAM-1) Lj[0,:] /= (2*a**2) Lj[1,0] = a**2 - (GAM-1)*q Lj[1,1] = (GAM-1)*u Lj[1,2] = (GAM-1)*v Lj[1,3] = (1-GAM) Lj[1,:] /= a**2 Lj[2,0] = (GAM-1)*q - a*u Lj[2,1] = (1-GAM)*u + a Lj[2,2] = (1-GAM)*v Lj[2,3] = (GAM-1) Lj[2,:] /= (2*a**2) Lj[3,0] = v Lj[3,2] = -1 return Rj, Lj def eigenvector_y(u,v,a,q,h,nunk): Rj = np.zeros((nunk,nunk)) Lj = np.zeros((nunk,nunk)) # Right eigenvector Rj[0,:] = np.ones((1,nunk)) Rj[0,-1] = 0 Rj[1,0:3] = u Rj[1,3] = 1 Rj[2,0] = v - a Rj[2,1] = v Rj[2,2] = v + a Rj[2,3] = 0 Rj[3,0] = h - a * v Rj[3,1] = q Rj[3,2] = h + a * v Rj[3,3] = u # Left eigenvector Lj[0,0] = (GAM-1)*q + a*v Lj[0,1] = (1-GAM)*u Lj[0,2] = (1-GAM)*v - a Lj[0,3] = (GAM-1) Lj[0,:] /= (2*a**2) Lj[1,0] = a**2 - (GAM-1)*q Lj[1,1] = (GAM-1)*u Lj[1,2] = (GAM-1)*v Lj[1,3] = (1-GAM) Lj[1,:] /= a**2 Lj[2,0] = (GAM-1)*q - a*v Lj[2,1] = (1-GAM)*u Lj[2,2] = (1-GAM)*v + a Lj[2,3] = (GAM-1) Lj[2,:] /= (2*a**2) Lj[3,0] = -u Lj[3,1] = 1 return Rj, Lj def compute_eigenvector(U,U0,direction): rho = U[:,0] u = U[:,1] / rho v = U[:,2] / rho E = U[:,3] / rho P = P_from_Ev(E,rho,u,v) nunk = U.shape[1] nelem = U.shape[0] a = np.sqrt(GAM*P/rho) q = 1/2*(u**2 + v**2) # Dynamic pressure h = a**2/(GAM-1) + q # Enthalpy rho0 = U0[:,0] u0 = U0[:,1] / rho0 v0 = U0[:,2] / rho0 E0 = U0[:,3] / rho0 P0 = P_from_Ev(E0,rho0,u0,v0) nunk = U0.shape[1] nelem = U0.shape[0] a0 = np.sqrt(GAM*P0/rho0) q0 = 1/2*(u0**2 + v0**2) # Dynamic pressure h0 = a0**2/(GAM-1) + q0 # Enthalpy Rjlist = [] Ljlist = [] if direction == 'dx': Rlhs0, Llhs0 = eigenvector_x(u0[0],v0[0],a0[0],q0[0],h0[0],nunk) for idx in range(nelem): Rj, Lj = eigenvector_x(u[idx],v[idx],a[idx],q[idx],h[idx],nunk) Rjlist.append(Rj) Ljlist.append(Lj) Rlhs0pre = None Llhs0pre = None elif direction == 'dy': # For the y-direction, the bottom boundary can either be pre or post-shock Rlhs0, Llhs0 = eigenvector_y(u0[0],v0[0],a0[0],q0[0],h0[0],nunk) Rlhs0pre, Llhs0pre = eigenvector_y(u0[-1],v0[-1],a0[-1],q0[-1],h0[-1],nunk) for idx in range(nelem): Rj, Lj = eigenvector_y(u[idx],v[idx],a[idx],q[idx],h[idx],nunk) Rjlist.append(Rj) Ljlist.append(Lj) Rj = Rjlist Lj = Ljlist return Rj,Lj,Rlhs0,Llhs0,Rlhs0pre,Llhs0pre def to_characteristics(U,flx,U0,flx0,order,Lh,alpha,Nx,Ny,direction,options,tc,lambda_calc_char): nelem = U.shape[0] nunk = U.shape[1] # Matrix holders V = np.zeros((nelem,order+1,nunk)) VLF = np.zeros((nelem,order+1,nunk)) H = np.zeros((nelem,order+1,nunk)) # For all elements, evaluate R_{i+1/2}^-1 * [STENCIL] # The conditional work for r = 2 (order 5) # We do the characteristics calculation for all elements for the whole stencil V,H,VLF = lambda_calc_char(U,flx,U0,flx0,order,Lh,alpha,direction,tc) return V,H,VLF
pytaunay/weno-tests
python/euler_2d/eulerCharacteristics.py
eulerCharacteristics.py
py
4,634
python
en
code
1
github-code
6
42557211122
import numpy from PIL import Image def histogram(img): image_gray = img.convert('L') killy = numpy.array(image_gray) maximum = numpy.max(killy) minimum = numpy.min(killy) dim = maximum - minimum + 1 hist, bins = numpy.histogram(killy, bins=dim) return hist image1 = Image.open("image1.jpg") hist1 = histogram(image1) image2 = Image.open("image2.jpg") hist2 = histogram(image2) image3 = Image.open("image3.jpg") hist3 = histogram(image3) image4 = Image.open("image4.jpg") hist4 = histogram(image4) image5 = Image.open("image5.jpg") hist5 = histogram(image5) image6 = Image.open("image6.jpg") hist6 = histogram(image6) image7 = Image.open("image7.jpg") hist7 = histogram(image7) image8 = Image.open("image8.jpg") hist8 = histogram(image8) image9 = Image.open("image9.jpg") hist9 = histogram(image9) image10 = Image.open("image10.jpg") hist10 = histogram(image10) def calcul_distance(h1, h2): size1 = len(h1) size2 = len(h2) somme = 0 somme2 = 0 if size2 > size1: for i in range(size2): if i < size1: somme = somme + (min(h1[i], h2[i])) else: somme = somme + h2[i] else: for i in range(size1): if i < size2: somme = somme + (min(h1[i], h2[i])) else: somme = somme + h1[i] for i in range(size1): somme2 = somme2 + h1[i] distance = 1 - somme / somme2 return distance distance1 = calcul_distance(hist1, hist2) distance2 = calcul_distance(hist1, hist3) distance3 = calcul_distance(hist1, hist4) distance4 = calcul_distance(hist1, hist5) distance5 = calcul_distance(hist1, hist6) distance6 = calcul_distance(hist1, hist7) distance7 = calcul_distance(hist1, hist8) distance8 = calcul_distance(hist1, hist9) distance9 = calcul_distance(hist1, hist10) dictionary = {"image2": distance1, "image3": distance2, "image4": distance3, "image5": distance4, "image6": distance5, "image7": distance6, "image8": distance7, "image9": distance8, "image10": distance9} print("Order of similarity used the request image <<image1>> : ") for w in sorted(dictionary, key=lambda x: dictionary[x] if x in dictionary else None, reverse=False): print(w, dictionary[w])
jouhaina-nasri/Project-Indexation
TP Indexation/Histogramme/app.py
app.py
py
2,290
python
en
code
0
github-code
6
22215955629
import random import os def get_answer() -> bool: """ functions gets an answer which decides if some actions will be done :return: """ x = input(str("press y for yes or n for no:")) while x != "y" and x != "n": print("you have entered a wrong answer") x = input(str("press y for yes or n for no:")) return x == "y" def get_color_biome(biome): """ :param biome: :return: """ color = "" obstacles = "" if biome == "grass": color = "\033[2;32;42m" obstacles = ["🌳", "🌲", "🌾"] elif biome == "snow": color = "\033[2;32;47m" obstacles = ["🎄", "🎁", "⛄"] elif biome == "dessert": color = "\033[2;32;43m" obstacles = ["🏜", "🌴", "🏵"] elif biome == "hell": color = "\033[2;32;41m" obstacles = ["🌋", "🔥", "📍"] elif biome == "unicorn": color = "\033[2;32;45m" obstacles = ["🌈", "🍧", "🌺", "🦄"] return color, obstacles def get_correct_int_input(message) -> int: """ :return: """ while True: try: age = int(input(message)) except ValueError: print(f'error input must be written with digits') else: break return age def generate_room_length_height(): """ :return: """ length = random.choice(range(8, 12)) height = random.choice(range(6, 9)) return length, height def generate_rooms(biome: str, length: int, height: int) -> list: """ "🧙‍" +🌳🌲🌾⛄🎁🎄 :return: """ output = [] color, obstacles = get_color_biome(biome) output.append((" " * (length + 2))) for i in range(height): obstacle_column = [random.choice(range(length)) for _ in range(random.choice(range(1, 3)))] obstacle_column.sort() obstacle_column.append(" ") # print(obstacle_column) # print(obstacle_column[0]) obstacle_count = 0 row = "" for i_1 in range(length): if i_1 == obstacle_column[obstacle_count]: row += f"{random.choice(obstacles)}" obstacle_count += 1 else: row += f" " output.append(row) output.append((" " * (length + 2))) return output def print_room(room: str, biome: str): """ :param room: :param biome: :return: """ print(f"\033[2;32;40m{room[0]}\033[0;0m") color, obstacles = get_color_biome(biome) margins = '\033[2;32;40m ' for item in room[1:-1]: print(f"{margins}{color}{item}{margins}\033[0;0m") print(f"\033[2;32;40m{room[-1]}\033[0;0m") def get_random_biome() -> str: """ :return: """ return random.choice(["grass", "snow", "dessert", "hell", "unicorn"]) def add_object_on_map(room: list, hero: str, column: int, row: int): """ :param hero: :param room: :param column: :param row: :return: """ column = column - 1 output = [] count_row_positions = 0 count_row_positions_actions = 0 last_ch = 0 space_len = 1 for i, item in enumerate(room): if i == row: if column == 0: if item[0] == " ": output.append(f"{hero}{item[2::]}") else: output.append(f"{hero}{item[1::]}") else: for i, ch in enumerate(item): if ch == " ": count_row_positions += 1 count_row_positions_actions += 1 elif ch != " ": count_row_positions += 1 count_row_positions_actions += 2 last_ch = i if count_row_positions_actions >= column * 2: break try: if item[i + 1] == " ": space_len = 2 except IndexError: space_len = 1 output.append(f"{item[0:count_row_positions]}{hero}{item[count_row_positions + space_len::]}") else: output.append(item) return output def choose_door(biome: str): """ :param biome: :return: """ dor = "" if biome == "grass": dor = "⛩" elif biome == "snow": dor = "🏛" elif biome == "dessert": dor = "🛕" elif biome == "hell": dor = "⛩" elif biome == "unicorn": dor = "🏛" return dor def choose_enemy(): """ :return: """ return random.choice(['💀', '👺', '👹', '🕷', '🦂', '👻', '👽', '😈', '🌬', '🎃', '👾', '🐲', "🎭"]) def enemy_name(how_many, symbol): pass def get_hero_name() -> str: """ If the username doesn't have unknown characters it returns the name :return: """ main_path = os.getcwd() os.chdir("Your_characters") while True: username = input(str("Enter your username:")) if len(username) >= 4 and f"{username}.txt" not in os.listdir(): x = 0 for ch in username: if ch in '!"#$%&\'*()+,/:;<=>?@[\\]^`{|}~': x = 1 if x == 0: break else: print("Error: username cannot contain any of these characters !\"#$%&\'*+,/:;<=>?@[\\]^`{|}~") else: if len(username) < 4: print("Error: username must have at least 4 characters") else: print("username already used") os.chdir(main_path) return username def write_hero_data(hero_name: str, hero_class: str, level: str, gold: str, materials: dict, gear: dict, inventory: list, stats): """ :return: """ main_path = os.getcwd() new_data = [hero_class, level, gold] for k, v in materials.items(): new_data.append(f"{v}") for k_1, v_1 in gear.items(): new_data.append(f"{v_1}") for item in inventory: new_data.append(item) for item_1 in stats: new_data.append(item_1) os.chdir("Your_characters") with open(f"{hero_name}.txt", "w") as fw: for item in new_data: fw.write(item + "\n") os.chdir(main_path) def read_abilities(selected_hero: str): """ :param selected_hero: :return: """ main_path = os.getcwd() os.chdir("heroes") for item in os.listdir(): if item[0:4] == selected_hero[0:4]: with open(item, "r") as fr: content = fr.readlines() os.chdir(main_path) output = [item.strip() for item in content] for item in output: print(item) def create_hero(): """ :return: """ name = "" main_while_break = 0 print("") print( "Choose a class for your hero:\nWizard(🧙)\nShadow(👤‍)\nVampire(🧛‍)\nfairy.txt(🧚‍)\nTriton(🧜)\nSpirit(🧞‍)") hero_class = str.lower(input("Choose one option by writing the class name:")) classes = ["wizard", "shadow", "fairy"] # ["wizard", "shadow", "vampire", "fairy", "triton", "spirit"] classes_stats = {"wizard": [40, 850, 45, 200, 0, 0, 3, 5, 0, 0, 70], "fairy": [32, 1050, 40, 175, 15, 50, 7, 7, 0, 15, 60]} while True: while hero_class not in classes: print("incorrect class, try again") hero_class = str.lower(input("Choose one option by writing the class name:")) with open("hero_class_description", "r") as fr: content = fr.readlines() for item in content: if str.lower(item[0:4]) == str.lower(hero_class[0:4]): print(f"\n{item}\n") print("Choose one option:\ngo back(b)\nchoose class(c)\nread abilities(a)") option = str.lower(input("Your option:")) while option: if option not in ["c", "b", "a"]: print("option is incorrect") elif option == "a": read_abilities(hero_class) elif option == "c": items_0 = {"helm": "empty_", "chest": "empty_", "boots": "empty_", "weapon": "empty_", "sec_weapon": "empty_", "jewel": "empty_"} materials_0 = {"wood": '0', "iron": '0', "diamond": '0', "angelic dust": '0'} name = get_hero_name() write_hero_data(name, hero_class, "0", "500", materials_0, items_0, ["empty_"] * 18) main_while_break = 1 break else: break print("\nChoose one option:\ngo back(b)\nchoose class(c)\nread abilities(a)") option = str.lower(input("Your option:")) if main_while_break == 1: break else: print("") print("Choose a class for your hero:\nWizard(🧙)\nShadow(👤‍)\nVampire(🧛‍)" "\nfairy.txt(🧚‍)\nTriton(🧜)\nSpirit(🧞‍)") hero_class = str.lower(input("Choose one option by writing the class name:")) classes = ["wizard", "shadow", "vampire", "fairy", "triton", "spirit"] return f"{name}.txt" def get_hero_symbol(hero_name): """ :param hero_name: :return: """ output = "" changed_directory = 0 main_path = os.getcwd() if main_path != "C:\\Users\\andre\\PycharmProjects\\The-Big-Book-of-Small-Python-Projects-solved-by-ramuica-\\Angeilic Powers\\Your_characters": os.chdir("Your_characters") changed_directory = 1 for item in os.listdir(): if item == f"{hero_name}.txt": with open(item, "r") as fr: content = fr.readlines() hero_and_class = {"wizard": "🧙", "shadow": "👤", "vampire": "🧛", "fairy": "🧚", "triton": "🧜", "spirit": "🧞"} for k, v in hero_and_class.items(): if k == content[0].strip(): output = v if changed_directory == 1: os.chdir(main_path) return output def get_item_symbol(item): """ :param item: :return: """ output = "" dict_items = {"crown": "👑", "wand": "🎆", "the_eye": "🧿", "robe": "👘", "talisman": "🎐", "boots": "👢"} for k, v in dict_items.items(): if item == k: output = v break return output def play_existing_hero(): """ :return: """ main_path = os.getcwd() os.chdir("Your_characters") while True: print("\nChoose what hero do you want to play:") for i, item in enumerate(os.listdir()): symbol = get_hero_symbol(item[0:-4]) print(f"{item[0:-4]}{symbol}({i + 1})") option = get_correct_int_input("\nChoose a hero by writing his corresponding number: ") if 0 < option <= len(os.listdir()): output = os.listdir()[option - 1] break else: print("the option you choose doesn't correspond to any hero") os.chdir(main_path) return output def decide_what_hero_to_play(): """ :return: """ while True: print("Do you want to create a new hero or to play an existing one?\nCreate(c)\nChoose existing hero(e)") option = input("\nChoose an option by writing his corresponding letter: ") if option == "e": return play_existing_hero() elif option == "c": return create_hero() else: print("\nthe letter you choose doesn't correspond to any option. Try again\n") def read_inventory(file): """ :param file: :return: """ main_path = os.getcwd() os.chdir("Your_characters") with open(file, "r") as fr: content = fr.readlines() os.chdir(main_path) inventory = [item.strip() for item in content] return inventory[0:31] def get_random_rarity(difficulty): """ :param difficulty: :return: """ red_item = 10 * difficulty grren_item = 50 * difficulty yellow_item = 500 * difficulty blue_item = 1300 * difficulty black_chance = 10000 - blue_item - yellow_item - grren_item - red_item list_chances = ["common"] * (black_chance) + ["normal"] * (blue_item) + ["rare"] * \ (yellow_item) + ["legendary"] * (grren_item) + ["angelic"] * (red_item) return random.choice(list_chances) def get_rarity_color(rarity): if rarity == "common": return "\033[40m", "\033[30m" elif rarity == "normal": return "\033[44m", "\033[34m" elif rarity == "rare": return "\033[43m", "\033[33m" elif rarity == "legendary": return "\033[42m", "\033[32m" elif rarity == "angelic": return "\033[41m", "\033[31m" def print_inventory(file): """ :param file: :return: """ symbol = get_hero_symbol(file[0:-4]) inventory = read_inventory(file) print(f"\033[4m{' ' * 30}\033[0;0m ") print(f"|\033[95m{file[0:-4]} lv: {inventory[1]}\033[0;0m " f"{' ' * (21 - len(file[0:-4]) - len(str(inventory[1])))}|") print(f"| \033[1;30;45m|{symbol}|\033[2;37;0m{' ' * 10}\033[1;30;47m{item_colored_symbol(inventory[12])}\033[0;0m " f"\033[1;30;47m{item_colored_symbol(inventory[7])}\033[2;37;0m{' ' * 7}|") print(f"|\033[32mwood: {inventory[3]}\033[0;0m{' ' * (22 - len(str(inventory[3])))}|") print(f"|\033[38msilver: {inventory[4]}\033[0;0m" f"{' ' * (8 - len(str(inventory[4])))}\033[1;30;47m{item_colored_symbol(inventory[10])}\033[0;0m " f"\033[1;30;47m{item_colored_symbol(inventory[8])}\033[0;0m \033[1;30;47m{item_colored_symbol(inventory[11])}\033[0;0m" f"{' ' * 3}|") print(f"|\033[34mdiamond: {inventory[5]}\033[0;0m{' ' * (19- len(str(inventory[5])))}|") print(f"|\033[31mangelic dust: {inventory[6]}\033[0;0m{' ' * (5- len(str(inventory[6])))}\033[1;30;47m" f"{item_colored_symbol(inventory[9])}\033[0;0m" f"{' ' * 7}|") print(f"|\033[33mgold: {inventory[2]}\033[0;0m{' ' * (22- len(str(inventory[2])))}|") row_1 = "" row_2 = "" row_3 = "" row_counter = 1 for item in inventory[13::]: if row_counter <= 6: row_1 += f"{item_colored_symbol(item)} " elif row_counter <= 12: row_2 += f"{item_colored_symbol(item)} " elif row_counter <= 18: row_3 += f"{item_colored_symbol(item)} " row_counter += 1 if row_counter < 7: row_1 += "\033[1;30;47m \033[0;0m " * (7 - row_counter) row_2 += "\033[1;30;47m \033[0;0m " * 6 row_3 += "\033[1;30;47m \033[0;0m " * 6 elif row_counter < 13: row_2 += "\033[1;30;47m \033[0;0m " * (13 - row_counter) row_3 += "\033[1;30;47m \033[0;0m " * 6 elif row_counter < 19: row_3 += "\033[1;30;47m \033[0;0m " * (19 - row_counter) print(f"|{' ' * 28}|") print(f"| {row_1} |") print(f"|{' ' * 28}|") print(f"| {row_2} |") print(f"|{' ' * 28}|") print(f"| {row_3} |") print(f"|\033[4m{' ' * 28}\033[0;0m|") def random_primary_stat(rarity,): """ :return: """ if rarity == "common": return f"primary: {random.choice(range(2, 5))}" elif rarity == "normal": return f"primary: {random.choice(range(4, 12))}" elif rarity == "rare": return f"primary: {random.choice(range(10, 25))}" elif rarity == "legendary": return f"primary: {random.choice(range(50, 100))}" elif rarity == "angelic": return f"primary: 200" def random_secondary_stat(rarity): """ :param rarity: :return: """ stat_factor = {"armor": 1, "hp": 10, "crit": 0.2, "crit_dmg": 1, "speed": 1, "mr": 1, "dodge": 0.4, "cc_immun": 0.2, "mana": 0.2} stat_name = random.choice(list(stat_factor.keys())) if rarity == "common": return f"{stat_name}: {round(random.choice(range(2, 5)) * stat_factor[stat_name], 1)}" elif rarity == "normal": return f"{stat_name}: {round(random.choice(range(4, 12)) * stat_factor[stat_name], 1)}" elif rarity == "rare": return f"{stat_name}: {round(random.choice(range(10, 25)) * stat_factor[stat_name], 1)}" elif rarity == "legendary": return f"{stat_name}: {round(random.choice(range(50, 100)) * stat_factor[stat_name], 1)}" elif rarity == "angelic": return f"{stat_name}: {round(200 * stat_factor[stat_name], 1)}" def create_item(item_name, difficulty): """ :param item_name: :param difficulty: :return: """ rarity = get_random_rarity(difficulty) return f"{item_name} {rarity} {random_primary_stat(rarity)}" \ f" {random_secondary_stat(rarity)} {random_secondary_stat(rarity)} {random_secondary_stat(rarity)}"\ def print_item(item): """ :param item: :return: """ item_l = item.split() item_color, text_color = get_rarity_color(item_l[1]) print(f" {text_color}{'_' * 16}\033[0;0m ") print(f"{text_color}|\033[0;0m{item_l[0]}{' ' * (15 - len(item_l[0]) - len(item_l[1]))}{text_color}{item_l[1]} |") print(f"{text_color}|\033[0;0m {item_color}{get_item_symbol(item_l[0]) }\033[0;0m{' ' * 13}{text_color}|\033[0;0m") print(f"{text_color}|{' ' * 16}|\033[0;0m") print(f"{text_color}|\033[0;0m {item_l[2]} {item_l[3]}\033[0;0m{' ' * (14 - len(item_l[2]) - len(item_l[3]))}{text_color}|\033[0;0m") print(f"{text_color}|\033[0;0m {item_l[4]} {item_l[5]}\033[0;0m{' ' * (14 - len(item_l[4]) - len(item_l[5]))}{text_color}|\033[0;0m") print(f"{text_color}|\033[0;0m {item_l[6]} {item_l[7]}\033[0;0m{' ' * (14 - len(item_l[6]) - len(item_l[7]))}{text_color}|\033[0;0m") print(f"{text_color}|\033[0;0m {item_l[8]} {item_l[9]}\033[0;0m{' ' * (14 - len(item_l[8]) - len(item_l[9]))}{text_color}|\033[0;0m") print(f"{text_color}|{'_' * 16}|\033[0;0m") def item_colored_symbol(item): """ :param item: :return: """ if item == "empty": return "\033[1;30;47m⬛\033[0;0m" else: item_l = item.split() item_color, text_color = get_rarity_color(item_l[1]) return f"{item_color}{get_item_symbol(item_l[0])}\033[0;0m" def navigate_inventory(file): """ :return: """ full_inventory = read_inventory(file) inventory = full_inventory[7::] print("inventory option:\n-see stats of a weapon(s)\n-equip a weapon(e)\ngo back(b)") option = input("choose one option by writing its corresponding value:") while True: if option == "s": print("Choose item:\nhead(0)\nchest(1)\nfeet(2)\nmain hand(3)\n2nd hand(4)\n" "jewel(5)\ninventory(coresponding number)") option_s = get_correct_int_input("choose one option by writing its corresponding value:") if option_s <= 21: if inventory[option_s] == "empty": print("You don't have an item in that slot") else: print_item(inventory[option_s]) else: print("Wrong value entered") elif option == "b": break else: print("wrong value entered") print("inventory option:\n-see stats of a weapon(s)\n-equip a weapon(e)\ngo back(b)") option = input("choose one option by writing its corresponding value:") def hero_movement(file, column: int, row: int, max_column: int, max_row: int, room): """ :param column: :param row: :param max_column: :param max_row: :return: """ print("You can move by entering a sequence of movements:\n-go up(w)\n-go left(a)\n-go down(s)\n-go right(d)\n\n" "Other options:\nsee inventory(i)\nexit(e)") movement = str.lower(input("enter a sequence of movements:")) correct_movement = 0 while True: if movement == "i": print_inventory(file) navigate_inventory(file) return column, row elif movement == "e": print("Are you sure you want to exit?") if get_answer(): return 0, 0 else: row_func = row column_func = column while True: for ch in movement: if ch not in "wasd": print("incorrect sequence") break else: for ch in movement: if ch == "w": row_func -= 1 if ch == "s": row_func += 1 if ch == "a": column_func -= 1 if ch == "d": column_func += 1 if 0 < column_func <= max_column and 0 < row_func <= max_row: print(f"Your room: {room}") print(f"column:{column_func} row:{row_func}") return column_func, row_func else: print("incorrect movement") break movement = str.lower(input("enter a sequence of movements:")) def village(): """ :return: """ return ["", f"{' ' * 2}⚒{' ' * 3}‼", f"{' ' * 7}", f"{' ' * 3}⛲{' ' * 3}", f"{' ' * 7}", f"💍{' ' * 2}💰{' ' * 2}📕"] def print_village(village): margin = f"\033[48;5;0m{' ' * 2}\033[0;0m" print(f"\033[48;5;0m{' ' * 22}\033[0;0m") print(f"\033[48;5;0m{' ' * 2}\033[48;5;28m🏘🏠⛪\033[48;5;0m{' ' * 2}\033[48;5;28m🏚🏤\033[48;5;0m \033[0;0m") print(f"{margin}{margin}\033[48;5;28m{village[1]}⛪{margin}") print(f"{margin}{margin}\033[48;5;28m{village[2]}{margin}{margin}") print(f"{margin}{margin}\033[48;5;28m{village[3]}{margin}{margin}") print(f"{margin}\033[48;5;28m🏰{village[4]}{margin}{margin}") print(f"{margin}\033[48;5;28m💒{village[5]}🏚{margin}") print(f"\033[48;5;0m{' ' * 1}\033[48;5;28m🏘🏠\033[48;5;0m{' ' * 2}\033[48;5;28m🏚🏤\033[48;5;0m {' ' * 3}\033[0;0m") print(f"\033[48;5;0m{' ' * 22}\033[0;0m") def village_interface(name): column_v, row_v = 1, 3 print(f"Move to the book(📕) if you want to read the Tutorial, and the rules") village_with_hero = add_object_on_map(village(), get_hero_symbol(name), column_v, row_v) print_village(village_with_hero) while True: column_v, row_v = hero_movement("ramulica.txt", column_v, row_v, 7, 5, "Village") if column_v == 0 and row_v == 0: return False else: village_with_hero = add_object_on_map(village(), get_hero_symbol(name), column_v, row_v) print_village(village_with_hero) if column_v == 7 and row_v == 1: print("Do you want to go in a mission?") if get_answer(): return True elif column_v == 1 and row_v == 5: print("Do you want to buy something from jeweler?") if get_answer(): print("make jeweler interface") elif column_v == 4 and row_v == 5: print("Do you want to buy something from shop?") if get_answer(): print("make shop interface") elif column_v == 7 and row_v == 5: print("Do you want to read the tutorial?") if get_answer(): print("Tutorial") elif column_v == 3 and row_v == 1: print("Do you want to craft something at the blacksmith?") if get_answer(): print("make blacksmith interface") def margin_random_generator(column, row): cl_rw = ["x", "y"] random.shuffle(cl_rw) if cl_rw[0] == "x": return [random.choice([column, 1]), random.choice(range(1, row))] else: return [random.choice(range(1, column)), random.choice([row, 1])] def door_data(entrance, biome, column, row, next_room): if entrance == "up": return random.choice(range(2, column - 1)), 1, next_room, choose_door(biome) elif entrance == "down": return random.choice(range(2, column - 1)), row, next_room, choose_door(biome) elif entrance == "right": return column, random.choice(range(2, row - 1)), next_room, choose_door(biome) elif entrance == "left": return 1, random.choice(range(2, row - 1)), next_room, choose_door(biome) class Map: def __init__(self, room, entrance, exit, length, height): self.entrance = entrance room_m = add_object_on_map(room, self.entrance[3], self.entrance[0], self.entrance[1]) self.exit = exit room_m = add_object_on_map(room_m, self.exit[3], self.exit[0], self.exit[1]) list_of_enemies = [] self.enemy_1 = margin_random_generator(length, height), choose_enemy() list_of_enemies.append(self.enemy_1) self.enemy_2 = margin_random_generator(length, height), choose_enemy() list_of_enemies.append(self.enemy_2) self.enemy_3 = margin_random_generator(length, height), choose_enemy() list_of_enemies.append(self.enemy_3) if random.choice([True, False]): self.enemy_4 = [random.choice(range(1, length)), random.choice(range(1, height))], choose_enemy() list_of_enemies.append(self.enemy_4) if random.choice([True, False]): self.enemy_5 = [random.choice(range(1, length)), random.choice(range(1, height))], choose_enemy() list_of_enemies.append(self.enemy_5) if random.choice([True, False]): self.enemy_6 = [random.choice(range(1, length)), random.choice(range(1, height))], choose_enemy() list_of_enemies.append(self.enemy_6) self.room = room_m self.list_of_enemies = list_of_enemies self.dead_enemies = [] def room_final(self): room_e = self.room for item in self.list_of_enemies: if item[0] not in self.dead_enemies: room_e = add_object_on_map(room_e, item[1], item[0][0], item[0][1]) return room_e def add_random_doors(): door_wall = ["up", "down"] for _ in range(5): if door_wall[-1] == "down": door_wall.extend(random.choice([['up', 'down'], ['right', 'left'], ['left', 'right']])) elif door_wall[-1] == "up": door_wall.extend(random.choice([['down', 'up'], ['right', 'left'], ['left', 'right']])) elif door_wall[-1] == "left": door_wall.extend(random.choice([['down', 'up'], ['right', 'left'], ['up', 'down']])) elif door_wall[-1] == "right": door_wall.extend(random.choice([['down', 'up'], ['up', 'down'], ['left', 'right']])) return door_wall[1::] def generate_arena(player, enemies): arena = [f"{' '* 54}"] * 15 column_row_l = [[14, 12], [10, 11], [18, 11], [6, 10], [22, 10], [2, 9], [26, 9]] effects_coordinates = [[0, 1], [-1, 1], [1, 1], [0, 2], [-1, 2], [1, 2]] for i, item in enumerate(player): for i_1, effect in enumerate(item[1::]): arena = add_object_on_map(arena, effect, column_row_l[i][0] + effects_coordinates[i_1][0], column_row_l[i][1] - effects_coordinates[i_1][1]) arena = add_object_on_map(arena, player[i][0], column_row_l[i][0], column_row_l[i][1]) for i, item in enumerate(enemies): for i_1, effect in enumerate(item[1::]): arena = add_object_on_map(arena, effect, column_row_l[i][0] + effects_coordinates[i_1][0], column_row_l[i][1] - effects_coordinates[i_1][1] - 6) arena = add_object_on_map(arena, enemies[i][0], column_row_l[i][0], column_row_l[i][1] - 6) return arena """ player: [[][]] """ def ordonate_hp(entities): coordinates = [7, 5, 9, 3, 11, 1, 13] life_row = [" ", " "] * 7 life_str = "" for i in range(len(entities)): life_row[coordinates[i]] = str(int(entities[i].life[0])).zfill(6) for item in life_row: life_str += item return life_str def printe_arena(arena, ally_l, enemy_l): margin = f"\033[48;5;16m \033[0;0m" print(f"\033[38;5;34m{ordonate_hp(enemy_l)}\033[0;0m") print(f"{margin}\033[48;5;16m{arena[0]}\033[0;0m{margin}") for item in arena[1:-1]: line = "" for ch in item: if ch != " ": line += f"\033[48;5;246m{ch}\033[48;5;236m" else: line += ch print(f"{margin}\033[48;5;236m{line}\033[0;0m{margin}") print(f"{margin}\033[48;5;16m{arena[-1]}\033[0;0m{margin}") print(f"\033[38;5;34m{ordonate_hp(ally_l)}\033[0;0m") print("\nabilities") print(ally_l[0].life, ally_l[0].mana) def get_effect_symbol(effect): effects = {"freeze": "❄", "burn": "🔥", "bleed": "🩸", "blind": "✨", "stun": "💫", "sleep": "💤", "taunt": "💢", "charm": "💞"} for k, v in effects.items(): if effect == k: return v def stats_from_items(inventory): added_stats = {"primary": 0, "armor": 0, "hp": 0, "crit": 0, "crit_dmg": 0, "speed": 0, "mr": 0, "dodge": 0, "cc_immun": 0, "mana": 0} for item in inventory[7:13]: item_stats = item.split("-") print(item_stats) for stat in item_stats[2::]: added_stats[stat[0:stat.find(":")]] += float(stat[stat.rfind(" ") + 1::]) return added_stats class Combatant_izoteric: def __init__(self, symbol, life, mana, data, good_bad_side, bonus = {"primary": 0, "armor": 0, "hp": 0, "crit": 0, "crit_dmg": 0, "speed": 0, "mr": 0, "dodge": 0, "cc_immun": 0, "mana": 0}): self.symbol = symbol self.primary = data[0] + bonus["primary"] self.life = [life + bonus["hp"]] + [data[1] + bonus["hp"]] self.damage = data[2] + bonus["primary"] self.speed = data[3] + bonus["speed"] self.crit = data[4] + bonus["crit"] self.crit_dmg = data[5] + bonus["crit_dmg"] self.armor = data[6] + bonus["armor"] self.mr = data[7] + bonus["mr"] self.dodge = data[8] + bonus["dodge"] self.cc_immun = data[9] + bonus["cc_immun"] self.mana = [mana + bonus["mana"]] + [data[10] + bonus["mana"]] self.side = good_bad_side self.effects = {} def deal_damage_heal(self, damage): if self.life[0] + damage <= self.life[1]: self.life = [self.life[0] + damage] + [self.life[1]] else: self.life = [self.life[1]] + [self.life[1]] def get_lose_mana(self, mana_difference): if self.mana[0] + mana_difference <= self.mana[1]: self.mana = [self.mana[0] + mana_difference] + [self.mana[1]] else: self.mana = [self.mana[1]] + [self.mana[1]] def round_end_effect(self): output = {} if 'burn' in self.effects: Combatant_izoteric.deal_damage_heal(self, -self.damage) if 'bleed' in self.effects: Combatant_izoteric.deal_damage_heal(self, -(self.life[0] * 0.1)) for k, v in self.effects.items(): if v > 0: output[k] = v - 1 self.effects = output def printable_symbols(self): return [self.symbol] + [get_effect_symbol(k) for k, v in self.effects.items()] def crit_mechanic(self): if self.crit >= 100: return self.damage + (self.damage * (self.crit_dmg + self.crit - 100) / 100) else: x = random.choice([1] * int(self.crit) + [0] * (100 - int(self.crit))) if x == 1: return self.damage + (self.damage * self.crit_dmg / 100) else: return self.damage def basic_attack_class(self, hero_class, enemies_l): output = [] if hero_class == "wizard": Combatant_izoteric.get_lose_mana(self, 15) for _ in range(len(enemies_l)): output.append([Combatant_izoteric.crit_mechanic(self)/len(enemies_l), []]) return output, "magical", "all" def first_ability(self, hero_class, enemies_l): output = [] if hero_class == "wizard": if self.mana[0] >= 25: Combatant_izoteric.get_lose_mana(self, -25) for _ in range(len(enemies_l)): output.append([Combatant_izoteric.crit_mechanic(self), [f'{random.choice(["freeze"] * 70 + ["none"] * 30)}2']]) else: print("not enough mana") return 'error' return output, "magical", "damage" def second_ability(self, hero_class, enemies_l): output = [] if hero_class == "wizard": if self.mana[0] >= 35: Combatant_izoteric.get_lose_mana(self, -35) try: attack_eneies = random.sample(range(len(enemies_l)), 2) except: attack_eneies = [0] for i in range(len(enemies_l)): if i in attack_eneies: if "freeze" in [item[0:-1] for item in enemies_l[i]]: output.append([Combatant_izoteric.crit_mechanic(self) * 4, ["burn3"]]) else: output.append([Combatant_izoteric.crit_mechanic(self) * 2, ["burn3"]]) else: output.append([0, []]) else: print("not enough mana") return 'error' return output, "magical", "damage" def third_ability(self, hero_class, enemies_effects_l): output = [] if hero_class == "wizard": if self.mana[0] == self.mana[1]: Combatant_izoteric.get_lose_mana(self, self.mana[1]) for item in enemies_effects_l: new_effects = [] for effect in item: if effect[0:-1] == "freeze": new_effects.append("freeze2") elif effect[0:-1] == "burn": new_effects.append("burn3") else: new_effects.append(effect) output.append([0, new_effects]) return output, "magical", "round" else: print("Not enough mana") return 'error' def forth_ability(self, hero_class, enemies_l): output = [] if hero_class == "wizard": if self.mana[0] >= 50: Combatant_izoteric.get_lose_mana(self, -50) attack_enemy = random.choice(range(len(enemies_l))) for i in range(len(enemies_l)): if i == attack_enemy: if "burn" in [item[0:-1] for item in enemies_l[i]]: Combatant_izoteric.deal_damage_heal(self, int(self.damage * 15 * 0.1)) output.append([Combatant_izoteric.crit_mechanic(self) * 15, ["blind2"]]) else: output.append([0, []]) else: print("not enough mana") return 'error' return output, "pure", "damage" def use_ability(self, hero_class, enemiy_l): option = input("choose ability") while True: if option == "a": # and "blind" not in self.effects: ability_0 = Combatant_izoteric.basic_attack_class(self, hero_class, enemiy_l) if ability_0 != "error": return ability_0 elif option == "q": ability_1 = Combatant_izoteric.first_ability(self, hero_class, enemiy_l) if ability_1 != "error": return ability_1 else: print('\033[38;5;160mYou do not have enough mana\033[0;0m') option = input("choose ability") elif option == "w": ability_2 = Combatant_izoteric.second_ability(self, hero_class, enemiy_l) if ability_2 != "error": return ability_2 else: print('\033[38;5;160mYou do not have enough mana\033[0;0m') option = input("choose ability") elif option == "e": ability_3 = Combatant_izoteric.third_ability(self, hero_class, enemiy_l) if ability_3 != "error": return ability_3 else: print('\033[38;5;160mYou do not have enough mana\033[0;0m') option = input("choose ability") elif option == "r": ability_4 = Combatant_izoteric.forth_ability(self, hero_class, enemiy_l) if ability_4 != "error": return ability_4 else: print('\033[38;5;160mYou do not have enough mana\033[0;0m') option = input("choose ability") else: option = input("choose ability") def enemy_attack(self, allies): output = [] if self.mana[0] == self.mana[1]: for i in range(len(allies)): output.append([Combatant_izoteric.crit_mechanic(self) * 1.2, [f"{random.choice(['stun'] * 5 + ['burn'] * 5 + ['blind'] * 5 + ['none'] * 85)}2"]]) else: Combatant_izoteric.get_lose_mana(self, 15) attack_ally = random.choice(range(len(allies))) for i in range(len(allies)): if i == attack_ally: output.append([Combatant_izoteric.crit_mechanic(self) * 1.2, [f"{random.choice(['stun'] * 5 + ['burn'] * 5 + ['blind'] * 5 + ['none'] * 85)}2"]]) else: output.append([0, []]) return output, "pure", "damage" def list_of_effects(self): output = [] for k, v in self.effects.items(): output.append(f"{k}{v}") return output def ability_effect(enemy_list, damage_effects): if damage_effects[1] == "magical": for i, item in enumerate(enemy_list): damage = damage_effects[0][i][0] - int(item.mr) Combatant_izoteric.deal_damage_heal(item, -damage) for effect in damage_effects[0][i][1]: if effect[0:-1] != "none": item.effects[effect[0:-1]] = int(effect[-1]) elif damage_effects[1] == "pure": for i, item in enumerate(enemy_list): damage = damage_effects[0][i][0] Combatant_izoteric.deal_damage_heal(item, -damage) for effect in damage_effects[0][i][1]: if effect[0:-1] != "none": item.effects[effect[0:-1]] = int(effect[-1]) elif damage_effects[1] == "error": return "again" def remove_dead_body(enemy_list): for item in enemy_list: if item.life[0] <= 0: enemy_list.remove(item) return enemy_list def enter_a_turn(meesage): x = input(meesage) while True: if x == "c": break else: print("You entered a wrong answer") x = input(meesage) return True hero_file = decide_what_hero_to_play() hero_name = hero_file[0:hero_file.rfind(".")] hero_inventory = read_inventory(hero_file) door_map_concatenation = add_random_doors() biome = get_random_biome() length_1, height_1 = generate_room_length_height() length_2, height_2 = generate_room_length_height() length_3, height_3 = generate_room_length_height() length_4, height_4 = generate_room_length_height() length_5, height_5 = generate_room_length_height() length_6, height_6 = generate_room_length_height() length_list = [length_1, length_2, length_3, length_4, length_5, length_6] height_list = [height_1, height_2, height_3, height_4, height_5, height_6] map_layout = [Map(generate_rooms(biome, length_1, height_1), door_data(door_map_concatenation[0], biome, length_1, height_1, "Village"), door_data(door_map_concatenation[1], biome, length_1, height_1, 1), length_1, height_1), Map(generate_rooms(biome, length_2, height_2), door_data(door_map_concatenation[2], biome, length_2, height_2, 0), door_data(door_map_concatenation[3], biome, length_2, height_2, 2), length_2, height_2), Map(generate_rooms(biome, length_3, height_3), door_data(door_map_concatenation[4], biome, length_3, height_3, 1), door_data(door_map_concatenation[5], biome, length_3, height_3, 3), length_3, height_3), Map(generate_rooms(biome, length_4, height_4), door_data(door_map_concatenation[6], biome, length_4, height_4, 2), door_data(door_map_concatenation[7], biome, length_4, height_4, 4), length_4, height_4), Map(generate_rooms(biome, length_5, height_5), door_data(door_map_concatenation[6], biome, length_5, height_5, 3), door_data(door_map_concatenation[7], biome, length_5, height_5, 5), length_5, height_5), Map(generate_rooms(biome, length_6, height_6), door_data(door_map_concatenation[6], biome, length_6, height_6, 4), door_data(door_map_concatenation[7], biome, length_6, height_6, 6), length_6, height_6) ] room_index = 0 while village_interface(hero_name): print("Do you want to continue on the same map or not?") if not get_answer(): door_map_concatenation = add_random_doors() biome = get_random_biome() length_1, height_1 = generate_room_length_height() length_2, height_2 = generate_room_length_height() length_3, height_3 = generate_room_length_height() length_4, height_4 = generate_room_length_height() length_5, height_5 = generate_room_length_height() length_6, height_6 = generate_room_length_height() length_list = [length_1, length_2, length_3, length_4, length_5, length_6] height_list = [height_1, height_2, height_3, height_4, height_5, height_6] map_layout = [Map(generate_rooms(biome, length_1, height_1), door_data(door_map_concatenation[0], biome, length_1, height_1, "Village"), door_data(door_map_concatenation[1], biome, length_1, height_1, 1), length_1, height_1), Map(generate_rooms(biome, length_2, height_2), door_data(door_map_concatenation[2], biome, length_2, height_2, 0), door_data(door_map_concatenation[3], biome, length_2, height_2, 2), length_2, height_2), Map(generate_rooms(biome, length_3, height_3), door_data(door_map_concatenation[4], biome, length_3, height_3, 1), door_data(door_map_concatenation[5], biome, length_3, height_3, 3), length_3, height_3), Map(generate_rooms(biome, length_4, height_4), door_data(door_map_concatenation[6], biome, length_4, height_4, 2), door_data(door_map_concatenation[7], biome, length_4, height_4, 4), length_4, height_4), Map(generate_rooms(biome, length_5, height_5), door_data(door_map_concatenation[6], biome, length_5, height_5, 3), door_data(door_map_concatenation[7], biome, length_5, height_5, 5), length_5, height_5), Map(generate_rooms(biome, length_6, height_6), door_data(door_map_concatenation[6], biome, length_6, height_6, 4), door_data(door_map_concatenation[7], biome, length_6, height_6, 6), length_6, height_6) ] column, row = map_layout[room_index].entrance[0], map_layout[room_index].entrance[1] room_1_h = add_object_on_map(Map.room_final(map_layout[room_index]), get_hero_symbol(hero_name), column, row) print_room(room_1_h, biome) while True: column, row = hero_movement(hero_file, column, row, length_list[room_index], height_list[room_index], room_index) if column + row == 0: break for i, item in enumerate(map_layout[room_index].list_of_enemies): if column == item[0][0] and row == item[0][1] and item[0] not in map_layout[room_index].dead_enemies: room_1_h = add_object_on_map(Map.room_final(map_layout[room_index]), get_hero_symbol(hero_name), column, row) print_room(room_1_h, biome) print(f"You've encountered an enemy {item[1]}. Do you want to fight it?") if get_answer(): difficulty = 1 enemies_len = random.choice(range(1, 7)) enemy_l = [Combatant_izoteric(item[1], 90000 / enemies_len, 0, [40 / enemies_len, 90000 / enemies_len, 45 / enemies_len, 200, 0, 0, 3, 5, 0, 0, 45], "evil") for i in range(enemies_len)] ally_l = [] enemy_2 = Combatant_izoteric("🧙‍", 850, 70, [40, 850, 45, 200, 0, 0, 3, 5, 0, 0, 70], "good", stats_from_items(read_inventory("ramulica.txt"))) print(enemy_2.primary) ally_l.append(enemy_2) print(enemy_2.mana) list_of_e = [Combatant_izoteric.list_of_effects(item_f) for item_f in enemy_l] printe_arena(generate_arena([Combatant_izoteric.printable_symbols(enemy_2)], [Combatant_izoteric.printable_symbols(item_f) for item_f in enemy_l]), ally_l, enemy_l) outcome = "Lose" turn = 0 while True: turn += 1 print(f"\n\033[38;5;220mIt's turn {turn}\033[0;0m\n") if "freeze" in enemy_2.effects or "stun" in enemy_2.effects: print(f"you are unable to attack because of your condition{enemy_2.effects}") else: if enter_a_turn("It's your turn to attack, enter c to continue"): damage_u_deal = Combatant_izoteric.use_ability(enemy_2, 'wizard', list_of_e) if damage_u_deal != "again": ability_effect(enemy_l, damage_u_deal) print( f"\n\033[38;5;27mYour mana pool is {enemy_2.mana[0]}/{enemy_2.mana[1]}\033[0;0m") print(f"You did \033[38;5;196m{damage_u_deal} damage\n\033[0;0m") enemy_l = remove_dead_body(enemy_l) list_of_e = [Combatant_izoteric.list_of_effects(item_f) for item_f in enemy_l] printe_arena(generate_arena([Combatant_izoteric.printable_symbols(enemy_2)], [Combatant_izoteric.printable_symbols(item_f) for item_f in enemy_l]), ally_l, enemy_l) if len(enemy_l) == 0: outcome = "Victory" break if enter_a_turn("It's enemy's turn to attack, enter c to continue"): for i, item_f in enumerate(enemy_l): if "freeze" in item_f.effects or "stun" in item_f.effects: print(f"enemy {i + 1} is unable to attack because of his condition{item_f.effects}") else: damage_dealt_by_enemy = Combatant_izoteric.enemy_attack(item_f, [enemy_2]) ability_effect([enemy_2], damage_dealt_by_enemy) print( f"Enemy {i + 1} did \033[38;5;196m{damage_dealt_by_enemy} damage\033[0;0m to you") printe_arena(generate_arena([Combatant_izoteric.printable_symbols(enemy_2)], [Combatant_izoteric.printable_symbols(item_f) for item_f in enemy_l]), ally_l, enemy_l) for item_f in enemy_l: Combatant_izoteric.round_end_effect(item_f) for item_f in ally_l: Combatant_izoteric.round_end_effect(item_f) if outcome == "Victory": print("victory") map_layout[room_index].dead_enemies.append(item[0]) break if column == map_layout[room_index].exit[0] and row == map_layout[room_index].exit[1]: room_1_h = add_object_on_map(Map.room_final(map_layout[room_index]), get_hero_symbol(hero_name), column, row) print_room(room_1_h, biome) print(room_index) print(f"Do you want to go to room {map_layout[room_index].exit[2]}") if get_answer(): room_index = map_layout[room_index].exit[2] column, row = map_layout[room_index].entrance[0], map_layout[room_index].entrance[1] elif column == map_layout[room_index].entrance[0] and row == map_layout[room_index].entrance[1]: room_1_h = add_object_on_map(Map.room_final(map_layout[room_index]), get_hero_symbol(hero_name), column, row) print_room(room_1_h, biome) print(f"Do you want to go to room {map_layout[room_index].entrance[2]}") if get_answer(): if map_layout[room_index].entrance[2] == "Village": break else: room_index = map_layout[room_index].entrance[2] column, row = map_layout[room_index].exit[0], map_layout[room_index].exit[1] room_1_h = add_object_on_map(Map.room_final(map_layout[room_index]), get_hero_symbol(hero_name), column, row) print_room(room_1_h, biome)
Ramulica/The-Big-Book-of-Small-Python-Projects-solved-by-ramuica-
Angeilic Powers/main.py
main.py
py
50,582
python
en
code
3
github-code
6
29457712632
#! /usr/bin/env python # -*- coding: utf-8 -*- '''translate.translate: provides main() entry point.''' __version__ = '0.1.3' import logging import argparse import requests from bs4 import BeautifulSoup from terminaltables import AsciiTable logging.basicConfig( filename = '.log', filemode = 'a+', level = logging.INFO, format = '%(asctime)s | %(levelname)s | %(message)s', datefmt = '%m/%d/%Y %H:%M:%S' ) def main(): ''' Parse the arguments and start running what needs to be running ''' parser = argparse.ArgumentParser() parser.add_argument( 'dictionary', nargs='?', type=str, default='', help='Dictionary to use for translation. To translate from english to french, it should take the value enfr, for english to italian, enit, etc.' ) parser.add_argument( 'word', nargs='?', type=str, default='', help='Word to be translated' ) parser.add_argument( '-l', '--list', action='store_true', help='Returns the list of available dictionaries.' ) args = parser.parse_args() logging.info('Arguments parsed') dictionaries = get_dictionaries() if args.list: logging.info('Attempting to print the list of available dictionaries') print('') print('**** Available dictionaries:') print(dictionaries.table) logging.info('Printed the list of available dictionaries') if args.word and args.dictionary: translate_word(args.dictionary, args.word) else: if not args.list: logging.info('User didn\'t pass the correct arguments. Displaying the help message and shutting down') print('Please enter a dictionary and a word.') print('\tEnter -l or --list to get a list of all available dictionaries.') print('Enter -h or --help for help.') def get_dictionaries(): ''' Requests wordreference.com homepage and parse the list of availables dictionaries ''' url = 'http://www.wordreference.com' logging.info('Requesting {} for parsing'.format(url)) r = requests.get(url) if r.status_code != 200: logging.info('Request failed with status {}'.format(r.status_code)) return -1 logging.info('Request for {} successful'.format(url)) logging.info('Attempting to parse the html and extract the list of dictionaries') soup = BeautifulSoup(r.content, 'html.parser') options = soup.find_all('option') dictionaries = [ ['Key', 'Dictionary'] ] dictionaries += [ [option['id'], option.get_text()] for option in options if option['id'][:2] != option['id'][2:4] # No definition option and len(option['id']) == 4 # No synonyms or conjugation option ] logging.info('List of dictionaries extracted') table = AsciiTable(dictionaries) return table def translate_word(dictionary, word): ''' Requests the page for the translation of "word" using the dictionary "dictionary". Print a formatted version of the response ''' # Iniital checks if not isinstance(dictionary, str) or len(dictionary) != 4: raise TypeError('''The "dictionary" argument must be a string of length 4, with the first two letters being the acronym of the original language, and the last two letters, the acronym of the language you would like to translate to.''') if not isinstance(word, str): raise TypeError('The "word" argument must be a string (type {} passed)'.format(type(word))) # Building the url (and formatting it) and get the html from GET base_url = 'http://www.wordreference.com/' url = base_url + dictionary + '/' + word.replace(' ', '%20') logging.info('Requesting {} for parsing'.format(url)) r = requests.get(url) if r.status_code != 200: logging.info('Request failed with status {}'.format(r.status_code)) return -1 logging.info('Request for {} successful'.format(url)) # Parsing the html to extract the data # I kept it to what matters: # * Original word/expression # * Translation # Because who really cares if it is an intransitive verb or a noun? logging.info('Attempting to parse the html and extract the translations') soup = BeautifulSoup(r.content, 'html.parser') table_single_form = soup.find_all('table', {'class': 'WRD'})[0] try: data_single_form = parse_translation_table(table_single_form) except IndexError: logging.warning('The word passed doesn\'t have any translation') return -1 logging.info('Translations extracted') # print the results in a pretty way print_results(word, data_single_form) def parse_translation_table(table): ''' Given the table of translations extracted with BeautifulSoup, returns a list of lists containing the various translations. ''' data = [ ['Original Language', 'Translation'] ] rows = table.find_all('tr') for row in rows: cells = row.find_all('td') if len(cells) == 3: if cells[2].em is None: continue cells[2].em.decompose() if cells[0].get_text(strip=True) == '': data[-1][1] += u'\n{}'.format(cells[2].get_text()) else: data += [[ cells[0].find('strong').get_text(), cells[2].get_text() ]] return data def print_results(word, data_single_form): ''' Pretty print of the translation results ''' print('') print('**** Translations for {}:'.format(word)) print(AsciiTable(data_single_form).table) print('')
alvarolopez/translate-term
translate/translate.py
translate.py
py
5,821
python
en
code
1
github-code
6
26305567938
#!/usr/bin/python3 from main import Session, engine, User local_session = Session(bind = engine) #ascending users = local_session.query(User).order_by(User.username).all() for user in users: print(f"{user.username}")
AndyMSP/holbertonschool-higher_level_programming
0x0F-python-object_relational_mapping/Practice_Video/ordering.py
ordering.py
py
225
python
en
code
0
github-code
6
2810887356
from odoo import api, fields, models class Note(models.Model): _inherit = 'note.note' @api.multi def act_back(self): if self._context.get('save_close'): return {'type': 'ir.actions.act_window_close'} return {'name': 'Notes', 'type': 'ir.actions.act_window', 'view_id': self.env.ref('note_quick.view_quick_note_kanban').id, 'view_mode': 'kanban', 'res_model': 'note.note', 'target': 'new'} @api.model def act_create_one(self): return {'name': 'Create a new note', 'type': 'ir.actions.act_window', 'view_id': self.env.ref('note_quick.view_quick_note_form').id, 'view_mode': 'form', 'res_model': 'note.note', 'target': 'new'} @api.multi def act_edit(self): return {'name': 'Edit Note', 'type': 'ir.actions.act_window', 'view_id': self.env.ref('note_quick.view_quick_note_form').id, 'view_mode': 'form', 'res_model': 'note.note', 'res_id': self.id, 'target': 'new'}
erlaangga/note_quick
note_quick/models/note.py
note.py
py
984
python
hi
code
0
github-code
6
38907343805
from sqlalchemy.exc import IntegrityError from sqlalchemy import select from sqlalchemy.orm import selectinload from app.core.repo.base import BaseSqlalchemyRepo from app.core.exceptions.repo import RepoException from .models import Review class ReviewRepo(BaseSqlalchemyRepo): model = Review async def create(self, db_session, obj_in): """ Create review """ try: return await super().create(db_session, obj_in) except IntegrityError as e: raise RepoException("Review name must be unique", e) async def get_review_by_room_id(self, db_session, room_id): stmt = select(self.model).options(selectinload(self.model.user)).where(self.model.room_id == room_id) result = await db_session.execute(stmt) return result.scalars().all() async def get(self, db_session, id): """ Get review by id """ obj = await super().get(db_session, id) if not obj: raise RepoException("Review not found", None, status=404) return obj async def get_all(self, db_session): """ Get all reviews """ return await super().list(db_session) async def update(self, db_session, id, obj_in): """ Update review by id """ db_obj = await self.get(db_session, id) if not db_obj: raise RepoException("Review not found", None, status=404) try: return await super().update(db_session, db_obj, obj_in) except IntegrityError as e: raise RepoException("Review title must be unique", e) async def delete(self, db_session, id, user_id): """ Delete review by id """ await self.get(db_session, id=id) return await super().delete(db_session, id=id)
rasimatics/excursio-backend
app/apps/review/repo.py
repo.py
py
1,901
python
en
code
1
github-code
6
28427138730
from smtplib import SMTP from email.header import Header from email.mime.text import MIMEText def main(): # 请自行修改下面的邮件发送者和接收者 sender = '[email protected]' receivers = ['[email protected]', '[email protected]'] message = MIMEText('用Python发送邮件的示例代码.', 'plain', 'utf-8') message['From'] = Header('大锤', 'utf-8') message['To'] = Header('发放', 'utf-8') message['Subject'] = Header('示例代码实验邮件', 'utf-8') smtper = SMTP('smtp.zhongfu.net') print("qqq") # 请自行修改下面的登录口令 smtper.login(sender, '密码') smtper.sendmail(sender, receivers, message.as_string()) print('邮件发送完成!') if __name__ == '__main__': main()
sunhuimoon/Python100Days
day14/day1403.py
day1403.py
py
772
python
en
code
0
github-code
6
39348226616
import os from rebasehelper.types import Options from rebasehelper.constants import CONFIG_PATH, CONFIG_FILENAME, CHANGES_PATCH from rebasehelper.plugins.plugin_manager import plugin_manager OPTIONS: Options = [ # basic { "name": ["--version"], "default": False, "switch": True, "help": "show rebase-helper version and exit", }, # output control { "name": ["-v", "--verbose"], "default": 0, "counter": True, "help": "be more verbose", }, { "name": ["--color"], "choices": ["always", "never", "auto"], "default": "auto", "help": "colorize the output, defaults to %(default)s", }, { "name": ["--background"], "choices": ["dark", "light", "auto"], "default": "auto", "help": "use color scheme for the given background, defaults to %(default)s", }, { "name": ["--results-dir"], "help": "location where the rebase-helper-results directory will be created", }, { "name": ["--workspace-dir"], "help": "location where the rebase-helper-workspace directory will be created", }, # tool selection { "name": ["--buildtool"], "choices": plugin_manager.build_tools.get_all_plugins(), "available_choices": plugin_manager.build_tools.get_supported_plugins(), "default": plugin_manager.build_tools.get_default_plugins(True), "help": "build tool to use, defaults to %(default)s", }, { "name": ["--srpm-buildtool"], "choices": plugin_manager.srpm_build_tools.get_all_plugins(), "available_choices": plugin_manager.srpm_build_tools.get_supported_plugins(), "default": plugin_manager.srpm_build_tools.get_default_plugins(True), "help": "SRPM build tool to use, defaults to %(default)s", }, { "name": ["--pkgcomparetool"], "choices": plugin_manager.checkers.get_all_plugins(), "available_choices": plugin_manager.checkers.get_supported_plugins(), "nargs": "?", "const": [""], "default": plugin_manager.checkers.get_default_plugins(), "type": lambda s: s.split(','), "help": "set of tools to use for package comparison, defaults to " "%(default)s if available", }, { "name": ["--outputtool"], "choices": plugin_manager.output_tools.get_all_plugins(), "available_choices": plugin_manager.output_tools.get_supported_plugins(), "default": plugin_manager.output_tools.get_default_plugins(True), "help": "tool to use for formatting rebase output, defaults to %(default)s", }, { "name": ["--versioneer"], "choices": plugin_manager.versioneers.get_all_plugins(), "available_choices": plugin_manager.versioneers.get_supported_plugins(), "default": None, "help": "tool to use for determining latest upstream version", }, # blacklists { "name": ["--versioneer-blacklist"], "choices": plugin_manager.versioneers.get_all_plugins(), "available_choices": plugin_manager.versioneers.get_supported_plugins(), "nargs": "?", "const": [""], "default": [], "type": lambda s: s.split(","), "help": "prevent specified versioneers from being run", }, { "name": ["--spec-hook-blacklist"], "choices": plugin_manager.spec_hooks.get_all_plugins(), "available_choices": plugin_manager.spec_hooks.get_supported_plugins(), "nargs": "?", "const": [""], "default": [], "type": lambda s: s.split(","), "help": "prevent specified spec hooks from being run", }, { "name": ["--build-log-hook-blacklist"], "choices": plugin_manager.build_log_hooks.get_all_plugins(), "available_choices": plugin_manager.build_log_hooks.get_supported_plugins(), "nargs": "?", "const": [""], "default": [], "type": lambda s: s.split(","), "help": "prevent specified build log hooks from being run" }, # behavior control { "name": ["--bugzilla-id"], "metavar": "BUG_ID", "default": None, "help": "do a rebase based on Upstream Release Monitoring bugzilla" }, { "name": ["--non-interactive"], "default": False, "switch": True, "dest": "non_interactive", "help": "do not interact with user", }, { "name": ["--favor-on-conflict"], "choices": ["downstream", "upstream", "off"], "default": "off", "dest": "favor_on_conflict", "help": "favor downstream or upstream changes when conflicts appear", }, { "name": ["--not-download-sources"], "default": False, "switch": True, "help": "do not download sources", }, { "name": ["-w", "--keep-workspace"], "default": False, "switch": True, "help": "do not remove workspace directory after finishing", }, { "name": ["--apply-changes"], "default": False, "switch": True, "help": "apply {} after a successful rebase".format(CHANGES_PATCH), }, { "name": ["--disable-inapplicable-patches"], "default": False, "switch": True, "dest": "disable_inapplicable_patches", "help": "disable inapplicable patches in rebased SPEC file", }, { "name": ["--skip-version-check"], "default": False, "switch": True, "help": "force rebase even if current version is newer than requested version", }, { "name": ["--update-sources"], "default": False, "switch": True, "help": "update \"sources\" file and upload new sources to lookaside cache", }, { "name": ["--skip-upload"], "default": False, "switch": True, "help": "skip uploading new sources to lookaside cache", }, { "name": ["--force-build-log-hooks"], "default": False, "switch": True, "help": "enforce running of build log hooks (even in non-interactive mode)", }, # remote builder options { "name": ["--builds-nowait"], "default": False, "switch": True, "help": "do not wait for remote builds to finish", }, { "name": ["--build-tasks"], "dest": "build_tasks", "metavar": "OLD_TASK,NEW_TASK", "type": lambda s: s.split(','), "help": "comma-separated remote build task ids", }, # additional local builder options { "name": ["--builder-options"], "default": None, "metavar": "BUILDER_OPTIONS", "help": "enable arbitrary local builder option(s), enclose %(metavar)s in quotes " "to pass more than one", }, { "name": ["--srpm-builder-options"], "default": None, "metavar": "SRPM_BUILDER_OPTIONS", "help": "enable arbitrary local srpm builder option(s), enclose %(metavar)s in quotes " "to pass more than one", }, # misc { "name": ["--lookaside-cache-preset"], "choices": ["fedpkg", "centpkg", "rhpkg", "rhpkg-sha512"], "default": "fedpkg", "help": "use specified lookaside cache configuration preset, defaults to %(default)s", }, { "name": ["--changelog-entry"], "default": "- New upstream release %{version}", "help": "text to use as changelog entry, can contain RPM macros, which will be expanded", }, { "name": ["--no-changelog-entry"], "default": False, "switch": True, "help": "do not add a changelog entry at all", }, { "name": ["--config-file"], "default": os.path.join(CONFIG_PATH, CONFIG_FILENAME), "help": "path to a configuration file, defaults to %(default)s", }, { "name": ["-D", "--define"], "default": [], "append": True, "dest": "rpmmacros", "metavar": "'MACRO EXPR'", "help": "define an rpm macro, can be used multiple times", }, # sources { "name": ["sources"], "metavar": "SOURCES", "nargs": "?", "default": None, "help": "version number or filename of the new source archive", }, ] def traverse_options(options): group_index = 0 for opt in options: if isinstance(opt, list): for inner_opt in opt: yield dict(group=group_index, **inner_opt) group_index += 1 else: yield opt
rebase-helper/rebase-helper
rebasehelper/options.py
options.py
py
8,712
python
en
code
42
github-code
6
24769179889
squaredWeight = None def performCollection(cityLevel, filename): import os if cityLevel: outputDir = 'GoogleTrendsCity/' if not os.path.exists(outputDir): os.mkdir(outputDir) else: outputDir = 'GoogleTrendsCountry/' if not os.path.exists(outputDir): os.mkdir(outputDir) import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() import time from pytrends.request import TrendReq pytrends = TrendReq() count = 0 for keyword in kw_list: count += 1 if not '/' in keyword: filename = outputDir+ keyword + '.pickle' from os import path if not path.exists(filename): pytrends.build_payload([keyword]) if cityLevel: df = pytrends.interest_by_region(resolution='CITY', inc_low_vol=True, inc_geo_code=False) else: df = pytrends.interest_by_region(resolution='COUNTRY', inc_low_vol=True, inc_geo_code=False) import pickle outfile = open(filename,'wb') pickle.dump(df,outfile) outfile.close() #time.sleep(3) print(count) def formCityList(filename): filenameToWriteTo = "allCities.pickle" from os import path if not path.exists(filenameToWriteTo): outputDir = 'GoogleTrendsCity/' import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() count = 0 allCities = {} for keyword in kw_list: print(count) if count != 897: filename = outputDir+ keyword + '.pickle' from os import path if path.exists(filename): import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() if len(df) != 0: cities = list(df['geoName']) latLong = list(df['coordinates']) for i in range(0, len(cities), 1): cityName = cities[i] if not cityName.lower() in allCities: allCities[cityName.lower()] = latLong[i] count += 1 import pickle outfile = open(filenameToWriteTo,'wb') pickle.dump(allCities, outfile) outfile.close() def averageAndStdDevAcrossAssociationsMadeByGoogle(cityLevel, filename): import os if cityLevel: outputDir = 'GoogleTrendsCity/' if not os.path.exists(outputDir): os.mkdir(outputDir) else: outputDir = 'GoogleTrendsCountry/' if not os.path.exists(outputDir): os.mkdir(outputDir) import os import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() print(len(kw_list)) count = 0 valuesReturned = [] zeroValueCount = 0 for keyword in kw_list: if keyword != 'con': filename = outputDir+ keyword + '.pickle' from os import path if path.exists(filename): import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() try: valuesReturned.append(len(df)) except: zeroValueCount += 1 count += 1 import numpy as np print(np.average(valuesReturned)) print(np.std(valuesReturned)) print(zeroValueCount) print(count) def assignRegion(cityLevel, filename, outputFile): import os outputDirAssignRegion = 'AssignRegion/' if not os.path.exists(outputDirAssignRegion): os.mkdir(outputDirAssignRegion) outputDirAssignRegion = 'AssignRegionWeightSquared/' if not os.path.exists(outputDirAssignRegion): os.mkdir(outputDirAssignRegion) outputDirAssignRegion = 'AssignRegion/' if squaredWeight: outputDirAssignRegion = 'AssignRegionWeightSquared/' isoToLat, isoToLong = getCountryInfo() print(isoToLat) print(isoToLong) import os if cityLevel: outputDir = 'GoogleTrendsCity/' if not os.path.exists(outputDir): os.mkdir(outputDir) else: outputDir = 'GoogleTrendsCountry/' if not os.path.exists(outputDir): os.mkdir(outputDir) import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() noData = 0 noWeightsOver0 = 0 rows = [['keyword', 'using top 1', 'using top 3', 'using weight > 50', 'all']] keywordToRegion1 = {} keywordToRegion2 = {} keywordToRegion3 = {} keywordToRegion4 = {} for keyword in kw_list: if keyword != 'con': filename = outputDir+ keyword + '.pickle' from os import path if path.exists(filename): import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() dataReturnedByTrends = False try: weights = list(df['value']) weightsValues = [] for value in weights: weightsValues.append(value[0]) df['weights'] = weightsValues df = df.loc[df['weights'] > 0] dataReturnedByTrends = True except: noData += 1 if dataReturnedByTrends: if len(df) > 0: df1 = df.nlargest(1, 'weights') df2 = df.nlargest(3, 'weights') df3 = df.loc[df['weights'] > 50] df4 = df label1 = predictRegion(cityLevel, df1, isoToLong) if label1 != None: keywordToRegion1[keyword] = label1 label2 = predictRegion(cityLevel, df2, isoToLong) if label2 != None: keywordToRegion2[keyword] = label2 label3 = predictRegion(cityLevel, df3, isoToLong) if label3 != None: keywordToRegion3[keyword] = label3 label4 = predictRegion(cityLevel, df4, isoToLong) if label4 != None: keywordToRegion4[keyword] = label4 if label1 != None or label2 != None or label3 != None or label4 != None: rows.append([keyword, label1, label2, label3, label4]) else: noWeightsOver0 += 1 print(str(noData) + " out of " + str(len(kw_list)) + " tokens had no data.") print(str(noWeightsOver0) + " out of " + str(len(kw_list)) + " tokens had no weights.") writeRowsToCSV(rows, outputDirAssignRegion+outputFile) rows = [['Resriction', 'Predictions', 'NA_SA', 'AF_EUR', 'AS_OC', 'Total Accuracy', 'Total Predictions']] rows.append(['using top 1']+evaluatePredictions(keywordToRegion1)) rows.append(['using top 3']+evaluatePredictions(keywordToRegion2)) rows.append(['using weight > 50']+evaluatePredictions(keywordToRegion3)) rows.append(['all']+evaluatePredictions(keywordToRegion4)) writeRowsToCSV(rows, outputDirAssignRegion+"Performance"+outputFile) def predictRegion(cityLevel, df, isoToLong): import numpy as np if cityLevel: geoNameToCoordinates = dict(zip(list(df["geoName"]), list(df['coordinates']))) geoNameToWeight = dict(zip(list(df["geoName"]), list(df['weights']))) label = None l1 = 0 l2 = 0 l3 = 0 for geoName in geoNameToCoordinates: coordinate = geoNameToCoordinates[geoName] weight = geoNameToWeight[geoName] if squaredWeight: weight = weight*weight long = coordinate['lng'] if long <= -25: l1 += weight elif long <= 65: l2 += weight else: l3 += weight Americas = l1 Africa_Europe = l2 Asia_Australia = l3 total = l1+l2+l3 if total > 0: ratioAmericas = float(Americas)/float(total) ratioAfrica_Europe = float(Africa_Europe)/float(total) ratioAsia_Australia = float(Asia_Australia)/float(total) ratioMax = np.max([ratioAmericas, ratioAfrica_Europe, ratioAsia_Australia]) label = None if ratioAmericas == ratioMax: label = "Americas" elif ratioAfrica_Europe == ratioMax: label = "Africa_Europe" else: label = "Asia_Australia" else: label = None else: countryISOCodeToWeight = dict(zip(list(df["geoCode"]), list(df['weights']))) label = None l1 = 0 l2 = 0 l3 = 0 for countryISOCode in countryISOCodeToWeight: weight = countryISOCodeToWeight[countryISOCode] long = isoToLong[countryISOCode] if long <= -25: l1 += weight elif long <= 65: l2 += weight else: l3 += weight Americas = l1 Africa_Europe = l2 Asia_Australia = l3 total = l1+l2+l3 if total > 0: ratioAmericas = float(Americas)/float(total) ratioAfrica_Europe = float(Africa_Europe)/float(total) ratioAsia_Australia = float(Asia_Australia)/float(total) ratioMax = np.max([ratioAmericas, ratioAfrica_Europe, ratioAsia_Australia]) label = None if ratioAmericas == ratioMax: label = "Americas" elif ratioAfrica_Europe == ratioMax: label = "Africa_Europe" else: label = "Asia_Australia" else: label = None return label def getCountryInfo(): #file with average lat, long for each country #country info from: https://gist.github.com/tadast/8827699#file-countries_codes_and_coordinates-csv import pandas as pd filePath = 'countries_codes_and_coordinates.csv' df=pd.read_csv(filePath, encoding='utf-8') print(df.columns) temp = list(df["Alpha-2 code"]) countryList = [] for isoCode in temp: countryList.append(str(isoCode).strip().replace('"', '')) latitudeList = [] temp = list(df['Latitude (average)']) for s in temp: latitudeList.append(float(s.strip().replace('"', ''))) longitudeList = [] temp = list(df['Longitude (average)']) for s in temp: longitudeList.append(float(s.strip().replace('"', ''))) isoToLat = dict(zip(countryList, latitudeList)) isoToLong = dict(zip(countryList, longitudeList)) isoToLat['CW'] = 12.1696 isoToLong['CW'] = -68.9900 isoToLat['XK'] = 42.6026 isoToLong['XK'] = 20.9030 isoToLat['SX'] = 18.0425 isoToLong['SX'] = -63.0548 isoToLat['MF'] = 18.0826 isoToLong['MF'] = -63.0523 isoToLat['AX'] = 60.1785 isoToLong['AX'] = 19.9156 isoToLat['BL'] = 17.9000 isoToLong['BL'] = -62.8333 isoToLat['BQ'] = 12.1684 isoToLong['BQ'] = -68.3082 return isoToLat, isoToLong def writeRowsToCSV(rows, fileToWriteToCSV): import csv if len(rows) > 0: with open(fileToWriteToCSV, "w", encoding='utf-8') as fp: a = csv.writer(fp, delimiter=',') a.writerows(rows) fp.close() print("Written " + str(len(rows)) + " rows to: " + fileToWriteToCSV) def evaluatePredictions(tokenToPrediction): import pandas as pd filePath = "Input/combineDBsCoordinateGroundTruthDiv3.csv" df=pd.read_csv(filePath, encoding='utf-8') tokenToLabel = dict(zip(list(df["id"]), list(df['label']))) l1 = 0 l2 = 0 l3 = 0 for token in tokenToPrediction: prediction = tokenToPrediction[token] if prediction == 'Americas': l1 += 1 elif prediction == 'Africa_Europe': l2 += 1 else: l3 += 1 print(str(l1) + ", " + str(l2) + ", " + str(l3) + " Americas vs. Africa_Europe vs. Asia_Australia") correct = {'Americas':0,'Africa_Europe':0,'Asia_Australia':0} wrong = {'Americas':0,'Africa_Europe':0,'Asia_Australia':0} for token in tokenToPrediction: label = tokenToLabel[token] prediction = tokenToPrediction[token] if label == prediction: if label == 'Americas': correct['Americas'] += 1 elif label == 'Africa_Europe': correct['Africa_Europe'] += 1 elif label == 'Asia_Australia': correct['Asia_Australia'] += 1 else: print("unknown label") import sys sys.exit() else: if label == 'Americas': wrong['Americas'] += 1 elif label == 'Africa_Europe': wrong['Africa_Europe'] += 1 elif label == 'Asia_Australia': wrong['Asia_Australia'] += 1 else: print("unknown label") import sys sys.exit() import numpy as np accuracy = float(np.sum(list(correct.values())))/float(np.sum(list(correct.values()))+np.sum(list(wrong.values()))) row = [] predictions = [] for key in ['Americas', 'Africa_Europe', 'Asia_Australia']: predictions.append(float(correct[key]+wrong[key])) precision = [] for key in ['Americas', 'Africa_Europe', 'Asia_Australia']: precision.append(round(float(correct[key])/float(correct[key]+wrong[key])*100,2)) row = [str(predictions)]+precision row += [round(accuracy*100, 2), float(np.sum(list(correct.values()))+np.sum(list(wrong.values())))] return row def compareQueryCityLocationVsTopTrendingCityLocation(): rows = [['query city', 'query city geo', 'top Google Trends city', 'top city geo', 'distance between two']] distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends = [] noWeightsOver0 = 0 noData = 0 filename = "allCities.pickle" import pickle infile = open(filename,'rb') cityToLatLong = pickle.load(infile) infile.close() count = 0 for cityName in cityToLatLong: if not '/' in cityName: queryCityCoordinates = (cityToLatLong[cityName]['lat'], cityToLatLong[cityName]['lng']) queryCityName = cityName outputDir = 'GoogleTrendsCity/' filename = outputDir+ cityName + '.pickle' from os import path if path.exists(filename): count += 1 import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() try: weights = list(df['value']) weightsValues = [] for value in weights: weightsValues.append(value[0]) df['weights'] = weightsValues df = df.loc[df['weights'] > 0] if len(df) > 0: df1 = df.nlargest(1, 'weights') topGoogleTrendCityCoordinates = list(df1['coordinates'])[0] topGoogleTrendCityName = list(df1['geoName'])[0] topGoogleTrendCityCoordinates = (topGoogleTrendCityCoordinates['lat'], topGoogleTrendCityCoordinates['lng']) from geopy.distance import geodesic from geopy.distance import great_circle distanceBetweenTheTwo = geodesic(queryCityCoordinates, topGoogleTrendCityCoordinates).miles distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends.append(distanceBetweenTheTwo) rows.append([queryCityName, str(queryCityCoordinates), topGoogleTrendCityName, str(topGoogleTrendCityCoordinates), distanceBetweenTheTwo]) else: noWeightsOver0 += 1 except: noData += 1 print(str(noData) + " out of " + str(count) + " tokens had no data.") print(str(noWeightsOver0) + " out of " + str(count) + " tokens had no weights.") import numpy as np print(np.average(distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends)) print(np.std(distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends)) writeRowsToCSV(rows, 'topCityAnalysis.csv') if __name__ == '__main__': pass step1 = False if step1: performCollection(True, 'Input/459.pickle') #Google Trends at city level performCollection(True, 'Input/3183.pickle') #Google Trends at city level performCollection(False, 'Input/459.pickle') #Google Trends at country level performCollection(False, 'Input/3183.pickle') #Google Trends at country level '''Google Trends does not always return the same number of cities the following code examines average/standard deviation for the number of cities returned''' if False: averageAndStdDevAcrossAssociationsMadeByGoogle(True, 'Input/459.pickle') averageAndStdDevAcrossAssociationsMadeByGoogle(True, 'Input/3183.pickle') averageAndStdDevAcrossAssociationsMadeByGoogle(False, 'Input/459.pickle') averageAndStdDevAcrossAssociationsMadeByGoogle(False, 'Input/3183.pickle') step2 = True if step2: squaredWeight = True #This parameter raises the weight associated by Google via weight=weight*weight filename = 'Input/459.pickle' outputFilename = '459.csv' assignRegion(True, filename, str(True)+outputFilename) assignRegion(False, filename, str(False)+outputFilename) filename = 'Input/3183.pickle' outputFilename = '3183.csv' assignRegion(True, filename, str(True)+outputFilename) assignRegion(False, filename, str(False)+outputFilename) '''Google Trends at city resolution associates tokens with city locations For each city, the city name and its coordinates are stored in file "allCities.pickle" Next we send each city name to Google Trends and utilize the top city result For example 'chicago' is sent and the top city result from Google Trends is returned The coordinates for both city query and the Google trend city are known These coordinates are used to compute distance in miles. Over 4789 cities on average the top city result from Google Trends is 362 miles away +/- 1335 miles. So Google Trends not same as geocoding, but for query such as Moscow Google is able to capture that this query is not likely to be utilized by Russian speakers in Moscow since those would like utilize Cyrilis version. The results of comparison for each city stored in: topCityAnalysis.csv''' step3 = False if step3: formCityList('Input/3183.pickle') #forms list of cities from Google Trend Associations, stores into "allCities.pickle" performCollection(True, "allCities.pickle") #Google Trends at city level compareQueryCityLocationVsTopTrendingCityLocation()
apanasyu/GoogleTrends
Main.py
Main.py
py
20,395
python
en
code
0
github-code
6
41562683103
# It's a combination of two things: [merging and sorting]! # Exploits the fact that arrays of 0 or 1 element are always sorted # Works by decomposing an array into smaller arrays of 0 or 1 elements, # then building up a newly sorted array # STEPS # 1. Divide the array, e.j [1, 2, 4, 3] => [1, 2], [4, 3] # 2. Divde the new array again: [1, 2] => [1], [2] && [4, 3] => [4], [3] # 3. Join and sort the single items: [1], [2] => [1, 2] && [4], [3] => [3, 4] # 4. join and sort the arrays again [1, 2] && [3, 4] => [1, 2, 3, 4] # Best time complexity: O(n log n) # Time complexity average: O(n log n) # Time complexity worst: O(n log n) # Space complexity: O(n) # Notes: For this algorithm does not care if the data is sorted # or the data length also there is not edge cases def merge(arrA, arrB): i = 0 j = 0 result = [] while(i <= len(arrA) and j <= len(arrB)): arrAIsLooped = (i >= len(arrA)) arrAValue = arrA[i] if not arrAIsLooped else -1 arrBIsLooped = (j >= len(arrB)) arrBValue = arrB[j] if not arrBIsLooped else -1 if arrAIsLooped and arrBIsLooped: break if (arrAValue < arrBValue) and not arrAIsLooped: i += 1 result.append(arrAValue) continue if (arrBValue < arrAValue) and not arrBIsLooped: j += 1 result.append(arrBValue) continue if not arrAIsLooped and arrBIsLooped: nextLoop = i + 1 nextItem = arrA[nextLoop] if (nextLoop + 1) <= len(arrA) else None i += 1 if nextItem: result.append(arrAValue if arrAValue < nextItem else nextItem) else: result.append(arrAValue) if not arrBIsLooped and arrAIsLooped: nextLoop = j + 1 nextItem = arrB[nextLoop] if nextLoop + 1 <= len(arrB) else None j += 1 if (nextItem): result.append(arrBValue if arrBValue < nextItem else nextItem) else: result.append(arrBValue) return result def merge_sort(arr): if len(arr) <= 1: return arr middle = len(arr) // 2 left_arr = merge_sort(arr[:middle]) rigth_arr = merge_sort(arr[middle:]) return merge(left_arr, rigth_arr) print(merge_sort([10,24,76,73, 199]))
Wainercrb/data-structures
merge-sort/main.py
main.py
py
2,396
python
en
code
0
github-code
6
25218471687
from django.db import models from article.models import Article from users.models import User from ckeditor.fields import RichTextField from mptt.models import MPTTModel, TreeForeignKey # Create your models here. class Comment(MPTTModel): article = models.ForeignKey(Article, on_delete=models.CASCADE) user = models.ForeignKey(User, on_delete=models.CASCADE) body = RichTextField() created = models.DateTimeField(auto_now_add=True) #mptt树形结构 parent = TreeForeignKey( 'self', on_delete=models.CASCADE, null=True, blank=True, related_name='children', ) #记录二级评论回复 reply_to = models.ForeignKey( User, null=True, blank=True, on_delete=models.CASCADE, related_name='replyers', ) class MPTTMeta: order_insertion_by = ['created'] def __str__(self): return self.body[:20]
MenGG6/personal-blog
comment/models.py
models.py
py
824
python
en
code
0
github-code
6
12646866981
from django import forms from .models import Reservation, Testimonial class ReservationForm(forms.ModelForm): name = forms.CharField(label='Your Name', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'name', 'placeholder': 'Your Name' } )) email = forms.EmailField(label="Your Email", widget=forms.EmailInput( attrs={ 'class': 'form-control', 'id': 'email', 'placeholder': 'Your Email' } )) reservation_date = forms.DateTimeField(label="Date & Time", widget=forms.DateTimeInput( attrs={ 'class': 'form-control datetimepicker-input', 'id': 'datetime', 'placeholder': 'Date & Time', 'data-target': '#date3', 'data-toggle': 'datetimepicker' } )) people = forms.IntegerField(label="No Of People", widget=forms.NumberInput( attrs={ 'class': 'form-control', 'id': 'people', 'placeholder': 'No Of People' } )) request = forms.CharField(label="Special Request", widget=forms.Textarea( attrs={ 'class': 'form-control', 'id': 'message', 'placeholder': 'Special Request', 'style': 'height: 100px;' } )) class Meta: model = Reservation fields = ( 'name', 'email', 'reservation_date', 'people', 'request' ) class ContactForm(forms.Form): name = forms.CharField(label='Your Name', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'name', 'placeholder': 'Your Name' } )) email = forms.EmailField(label="Your Email", widget=forms.EmailInput( attrs={ 'class': 'form-control', 'id': 'email', 'placeholder': 'Your Email' } )) subject = forms.CharField(label='Subject', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'subject', 'placeholder': 'Subject' } )) message = forms.CharField(label="Message", widget=forms.Textarea( attrs={ 'class': 'form-control', 'id': 'message', 'placeholder': 'Leave a message here', 'style': 'height: 150px;' } )) class FeedbackForm(forms.ModelForm): name = forms.CharField(label='Your Name', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'name', 'placeholder': 'Your Name' } )) profession = forms.CharField(label="Your Profession", widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'email', 'placeholder': 'Your Profession' } )) feedback = forms.CharField(label="Feedback", widget=forms.Textarea( attrs={ 'class': 'form-control', 'id': 'message', 'placeholder': 'Feedback...', 'style': 'height: 150px;' } )) photo = forms.FileField(label='Photo', widget=forms.FileInput( attrs={ 'type': 'file', 'class': 'form-control', 'id': 'subject', 'placeholder': 'Photo' } )) class Meta: model = Testimonial fields = ( 'name', 'profession', 'feedback', 'photo' )
Dantes696/restaraunt
res/forms.py
forms.py
py
4,061
python
en
code
0
github-code
6