seq_id
stringlengths
4
11
text
stringlengths
113
2.92M
repo_name
stringlengths
4
125
sub_path
stringlengths
3
214
file_name
stringlengths
3
160
file_ext
stringclasses
18 values
file_size_in_byte
int64
113
2.92M
program_lang
stringclasses
1 value
lang
stringclasses
93 values
doc_type
stringclasses
1 value
stars
int64
0
179k
dataset
stringclasses
3 values
pt
stringclasses
78 values
32710979605
import gym import pytest @pytest.mark.skip(reason='suspected as slow, > 5min. TODO (peterz) fix') def test_treechop_smoke(): with gym.make('minerl:MineRLTreechop-v0') as env: env.reset() for _ in range(10): env.step(env.action_space.sample())
sihangw/minerl
tests/env_smoke_test.py
env_smoke_test.py
py
277
python
en
code
null
github-code
50
21238320601
from datetime import datetime from typing import List from json import load, dump from os.path import exists from nextcord import Embed, Member, Message from nextcord.ext.commands import Cog, Context from pytz import timezone from ..bot import RF from ..utils import Moderation class Log(Cog): def __init__(self, bot: RF): self.bot = bot self.Moderation = Moderation(bot) @Cog.listener() async def on_member_update(self, before: Member, after: Member) -> None: if before.roles != after.roles: if len(after.roles) < len(before.roles): # Remove roles filter_role = list(filter(lambda r: r not in after.roles, before.roles)) if len(filter_role) > 1: sorted_roles = sorted(filter_role, key=lambda r: r.position, reverse=True) roles = ", ".join([role.mention for role in sorted_roles]) description = f"{after.mention} was removed from the roles:\n{roles}" else: description = f"{after.mention} was removed from {filter_role[0].mention}" else: # Receive roles filter_role = list(filter(lambda r: r not in before.roles, after.roles)) if len(filter_role) > 1: sorted_roles = sorted(filter_role, key=lambda r: r.position, reverse=True) roles = ", ".join([role.mention for role in sorted_roles]) description = f"{after.mention} was given the roles:\n{roles}" else: description = f"{after.mention} was given the {filter_role[0].mention} role" embed = Embed(colour=0xFF470F,timestamp=datetime.now(tz=timezone("Asia/Ho_Chi_Minh")),description=f"**{description}**",) embed.set_author(name=after, icon_url=after.display_avatar) embed.set_footer(text=f"Author: {after}, ID: {after.id}") await self.Moderation.logSend(after.guild, embed=embed) @Cog.listener() async def on_message_edit(self, before: Message, after: Message) -> None: if not after.author.bot: if before.content != after.content: embed = Embed(colour=0x337FD5, timestamp=datetime.now(tz=timezone("Asia/Ho_Chi_Minh")), description=f"**Message edited in** {after.channel.mention} [Jump to message]({after.jump_url})",) embed.set_footer(text=f"User ID: {after.author.id}") embed.set_author(name=after.author, icon_url=after.author.display_avatar) fields = [("Before", before.content, False), ("After", after.content, False),] for name, value, inline in fields: embed.add_field(name=name, value=value, inline=inline) await self.Moderation.logSend(after.guild, embed=embed) def sniperUser(self, message: Message): filePath = f"./RF/cogs/MessageLog/{message.guild.id}-sniper.json" def logMessage(message: Message): with open(filePath, "r+") as f: data = load(f) data[str(message.author.id)] = message.content data[str(message.guild.id)] = {message.author.id: message.content} f.seek(0) dump(data, f, indent=4) f.truncate() if not exists(filePath): with open(filePath, "w") as f: f.write("{}") logMessage(message) else: logMessage(message) @Cog.listener() async def on_message_delete(self, message: Message) -> None: if not message.author.bot: embed = Embed(description=f"**Message sent by {message.author.mention} deleted in {message.channel.mention}** \n{message.content}", colour=0xFF470F, timestamp=datetime.now(tz=timezone("Asia/Ho_Chi_Minh")),) embed.set_footer(text=f"User ID: {message.author.id} | Message ID: {message.id}") embed.set_author(name=message.author, icon_url=message.author.display_avatar) self.sniperUser(message) await self.Moderation.logSend(message.guild, embed=embed) @Cog.listener() async def on_command_completion(self, ctx: Context) -> None: embed = Embed(colour=0x2F3136, description=f"Used `{ctx.command}` command in {ctx.channel.mention} \n{ctx.message.content}", timestamp=datetime.now(tz=timezone("Asia/Ho_Chi_Minh")),) embed.set_author(name=ctx.author, icon_url=ctx.author.display_avatar) await self.Moderation.logSend(ctx.guild, embed=embed) @Cog.listener() async def on_bulk_message_delete(self, messages: List[Message]) -> None: with open(f"./RF/cogs/MessageLog/{messages[0].guild.id}.txt", "w") as f: f.write(f"{len(messages)} messages deleted in #{messages[0].channel.name}:\n\n\n") for message in messages: f.write(f"{message.author} (User ID: {message.author.id} Message ID: {message.id})\n{message.content}\n\n\n") await self.Moderation.logSend(messages[0].guild, file=f) @Cog.listener() async def on_ready(self): if not self.bot.ready: self.bot.cogs_ready.ready_up("Log") def setup(bot): bot.add_cog(Log(bot))
codacy-badger/RF-911-Bot
RF/cogs/Log.py
Log.py
py
5,272
python
en
code
0
github-code
50
13567613364
import scrapy import re #import BaseSpider import sys sys.path.append('/home/shige/sg/sg') from sg.items import SgItem #import Selector from scrapy.selector import Selector class NewsSpider(scrapy.Spider): name = "news" # allowed_domains = ["http://news.hitwh.edu.cn/"] start_urls = ['http://news.hitwh.edu.cn/'] def parse(self, response): for href in response.css('a::attr(href)').extract(): try: new = re.findall(r"[i][d][=]\d{5}", href)[0] url = 'http://news.hitwh.edu.cn/news_detail.asp?' + new yield scrapy.Request(url, callback=self.parse_news) except: continue def parse_news(self, response): sel = Selector(response) item = SgItem() item['url'] = response.url item['title'] = sel.xpath("//div[@id='newsTitle']").extract() item['body'] = sel.xpath("//div[@id='newsContnet']//p//text()").extract() return item
hitwhsg/hitwhsg
news.py
news.py
py
984
python
en
code
0
github-code
50
42634935603
__author__ = 'Aaron Yang' __email__ = '[email protected]' __date__ = '12/18/2020 11:28 AM' class Solution: def exchange(self, nums): left, right = 0, len(nums) - 1 while left < right: while left < len(nums) and nums[left] % 2 != 0: left += 1 while right >= 0 and nums[right] % 2 == 0: right -= 1 if left < right: nums[left], nums[right] = nums[right], nums[left] left += 1 right -= 1 else: break return nums Solution().exchange([1, 3, 5])
AaronYang2333/CSCI_570
records/12-18/asd223.py
asd223.py
py
618
python
en
code
107
github-code
50
4443340570
from google_images_search import GoogleImagesSearch import zipfile import os # you can provide API key and CX using arguments, # or you can set environment variables: GCS_DEVELOPER_KEY, GCS_CX gis = GoogleImagesSearch( 'AIzaSyBpIAcN5IIIcmfLwGq3j6fAV5QkW6vn4N0', '2e5dded9ae895e14b', validate_images=True) # define search params: def search(keyword, imageNumber): _search_params = { 'q': keyword, 'num': imageNumber, # 'safe': 'medium', # 'fileType': 'jpg', # 'imgType': 'photo', # 'imgSize': 'MEDIUM', # 'imgDominantColor': 'brown', # 'rights': 'cc_publicdomain' } gis.search(search_params=_search_params, path_to_dir='./images/') handle = zipfile.ZipFile('images.zip', 'w') os.chdir('./images/') for x in os.listdir(): handle.write(x, compress_type=zipfile.ZIP_DEFLATED) os.remove(x) handle.close() os.chdir("../") os.rmdir("./images/") # for files in os.walk('./'): # for imagefile in files: # return imagefile.endswith('.zip')
raj-chinagundi/Piccauto
searching.py
searching.py
py
1,123
python
en
code
0
github-code
50
2338189529
# team.images.utils.py from team.images import app_config def list_to_str(lst): '''Creates string from string list separated using default separator''' list_as_string = '' if isinstance(lst, str) is False: for iterator in range(0, len(lst)): if iterator == 0: list_as_string = str(lst[iterator]) else: list_as_string = list_as_string + app_config.LIST_SEPARATOR + str(lst[iterator]) return list_as_string def get_column_descriptions(): STR_SEPARATOR = app_config.STR_SEPARATOR return 'file_name' + STR_SEPARATOR\ + 'file_size' + STR_SEPARATOR\ + 'metadata_image_format' + STR_SEPARATOR\ + 'metadata_image_width' + STR_SEPARATOR\ + 'metadata_image_height' + STR_SEPARATOR\ + 'metadata_image_dpi' + STR_SEPARATOR\ + 'product_code_from_file_name' + STR_SEPARATOR\ + 'possible_product_codes' + STR_SEPARATOR\ + 'filename_logo_removed' + STR_SEPARATOR\ + 'filename_is_box_offer' + STR_SEPARATOR\ + 'filename_is_offer' + STR_SEPARATOR\ + 'filename_is_label' + STR_SEPARATOR\ + 'filename_arranged' + STR_SEPARATOR\ + 'filename_dpi' + STR_SEPARATOR\ + 'logo_removed' + STR_SEPARATOR\ + 'filename_image_sequence' + STR_SEPARATOR\ + 'product_code_from_db' + STR_SEPARATOR\ + 'new_filename' + STR_SEPARATOR\ + 'products' + STR_SEPARATOR\ + 'warnings' + STR_SEPARATOR\ + 'errors' def rreplace(given_string, old, new, occurrence): split_list = given_string.rsplit(old, occurrence) return new.join(split_list) def exif_str_2_tuple(input_string): converted_list = list() for char in input_string: char2int = ord(char) if char2int < 256: converted_list.append(char2int) converted_list.append(0) else: converted_list.append(char2int%256) converted_list.append(floor(char2int/256)) converted_list.append(0) converted_list.append(0) return tuple(converted_list) def exif_tuple_2_str(input_tuple): output_string = '' for ix in range(0, len(input_tuple)): if ix % 2 == 0: lo_byte = input_tuple[ix] hi_byte = input_tuple[ix + 1]#this is risky in case tuple has not even number of values if lo_byte > 0 or hi_byte > 0: output_string = output_string + chr(hi_byte * 256 + lo_byte) #ix = ix + 1 return output_string
slobodz/team.images
team/images/service/utils.py
utils.py
py
2,543
python
en
code
0
github-code
50
32086595559
import sys from collections import defaultdict input = lambda:sys.stdin.readline() graph=defaultdict(list) N = int(input()) for _ in range(N-1): u, v = map(int, input().split()) graph[u].append(v) graph[v].append(u) q = int(input()) for _ in range(q): t, k = map(int, input().split()) if t == 1: if len(graph[k]) < 2: print('no') else: print('yes') else: print('yes')
sami355-24/2023SummerVacationCodingTestCamp
lsm/230922-lsm-14675.py
230922-lsm-14675.py
py
442
python
en
code
0
github-code
50
40993511170
""" Errors terminates the python code been executed - Syntax error - shows the error with ^ - most IDE catches this error - exceptions: errors that occur during execution - code is syntactically correct - but error occurs when you try to execute it exception handling: Try: block of code that might generate error / run this code except: handle the exception else: execute code when there is no error finally: executes whether an error occurs or not """ try: print(10/2) except: print("print nothing") else: print("No error") finally: print("I occur regardless of an error") try: x = 10 y = [10, 2, 3, 0, 4, 6] z = [x/m for m in y] except: print("error") finally: print("I occur regardless of an error") """ Example: database connection try: make a connection except: error finally: close the connection read and write to a file try: read the file write to a file except: error that occurs finally/else: close the fail """ """ types of Exceptions - Arithmetic error : Zerodivision Error eg10/0 OverflowError - Assertion error: when assertion fails - EOF error - Import error - ModuleNotFound error - Index error - Key error - Name error """ try: print(name) except NameError as err: #named exceptions msg = err print(f"A new message: {err}") except: print("other errors") """Creating customized Exceptions""" class NoNegativeInList(Exception): pass """raise exceptions""" list1 = [10, 4, 5, 6, -1, 7, 7] for x in list1: if x < 0: raise NoNegativeInList("Negative values shouldn't be in a list")
PavelKo41/SDAtraining
venv/exceptions.py
exceptions.py
py
1,647
python
en
code
0
github-code
50
1685923786
import math import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle3d.apis import manager from paddle3d.models.common import pointnet2_stack as pointnet2_stack_modules from paddle3d.models.heads.roi_heads.roi_head_base import RoIHeadBase from paddle3d.models.layers import (constant_init, kaiming_normal_init, xavier_normal_init) @manager.HEADS.add_component class PVRCNNHead(RoIHeadBase): def __init__(self, input_channels, model_cfg, num_class=1, **kwargs): super().__init__(num_class=num_class, model_cfg=model_cfg) self.roi_grid_pool_layer, num_c_out = pointnet2_stack_modules.build_local_aggregation_module( input_channels=input_channels, config=self.model_cfg["roi_grid_pool"]) grid_size = self.model_cfg["roi_grid_pool"]["grid_size"] pre_channel = grid_size * grid_size * grid_size * num_c_out self.pre_channel = pre_channel shared_fc_list = [] for k in range(0, self.model_cfg["shared_fc"].__len__()): shared_fc_list.extend([ nn.Conv1D( pre_channel, self.model_cfg["shared_fc"][k], kernel_size=1, bias_attr=False), nn.BatchNorm1D(self.model_cfg["shared_fc"][k]), nn.ReLU() ]) pre_channel = self.model_cfg["shared_fc"][k] if k != self.model_cfg["shared_fc"].__len__( ) - 1 and self.model_cfg["dp_ratio"] > 0: shared_fc_list.append(nn.Dropout(self.model_cfg["dp_ratio"])) self.shared_fc_layer = nn.Sequential(*shared_fc_list) self.cls_layers = self.make_fc_layers( input_channels=pre_channel, output_channels=self.num_class, fc_list=self.model_cfg["cls_fc"]) self.reg_layers = self.make_fc_layers( input_channels=pre_channel, output_channels=self.box_coder.code_size * self.num_class, fc_list=self.model_cfg["reg_fc"]) self.init_weights(weight_init='xavier') def init_weights(self, weight_init='xavier'): if weight_init not in ['kaiming', 'xavier', 'normal']: raise NotImplementedError for m in self.sublayers(): if isinstance(m, nn.Conv2D) or isinstance(m, nn.Conv1D): if weight_init == 'normal': m.weight.set_value( paddle.normal(mean=0, std=0.001, shape=m.weight.shape)) elif weight_init == 'kaiming': kaiming_normal_init( m.weight, reverse=isinstance(m, nn.Linear)) elif weight_init == 'xavier': xavier_normal_init( m.weight, reverse=isinstance(m, nn.Linear)) if m.bias is not None: constant_init(m.bias, value=0) elif isinstance(m, nn.BatchNorm1D): constant_init(m.weight, value=1) constant_init(m.bias, value=0) self.reg_layers[-1].weight.set_value( paddle.normal( mean=0, std=0.001, shape=self.reg_layers[-1].weight.shape)) def roi_grid_pool(self, batch_dict): """ Args: batch_dict: batch_size: rois: (B, num_rois, 7 + C) point_coords: (num_points, 4) [bs_idx, x, y, z] point_features: (num_points, C) point_cls_scores: (N1 + N2 + N3 + ..., 1) point_part_offset: (N1 + N2 + N3 + ..., 3) Returns: """ batch_size = batch_dict['batch_size'] rois = batch_dict['rois'] point_coords = batch_dict['point_coords'] point_features = batch_dict['point_features'] point_features = point_features * batch_dict[ 'point_cls_scores'].reshape([-1, 1]) global_roi_grid_points, local_roi_grid_points = self.get_global_grid_points_of_roi( rois, grid_size=self.model_cfg["roi_grid_pool"] ["grid_size"]) # (BxN, 6x6x6, 3) global_roi_grid_points = global_roi_grid_points.reshape( [batch_size, -1, 3]) # (B, Nx6x6x6, 3) xyz = point_coords[:, 1:4] xyz_batch_cnt = paddle.zeros((batch_size, ), dtype='int32') batch_idx = point_coords[:, 0] for k in range(batch_size): xyz_batch_cnt[k] = (batch_idx == k).sum().astype( xyz_batch_cnt.dtype) new_xyz = global_roi_grid_points.reshape([-1, 3]) new_xyz_batch_cnt = paddle.full((batch_size, ), global_roi_grid_points.shape[1], dtype='int32') pooled_points, pooled_features = self.roi_grid_pool_layer( xyz=xyz, xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=point_features, ) # (M1 + M2 ..., C) pooled_features = pooled_features.reshape([ -1, self.model_cfg["roi_grid_pool"]["grid_size"]**3, pooled_features.shape[-1] ]) # (BxN, 6x6x6, C) return pooled_features def forward(self, batch_dict): """ :param input_data: input dict :return: """ targets_dict = self.proposal_layer( batch_dict, nms_config=self.model_cfg["nms_config"] ['train' if self.training else 'test']) if self.training: targets_dict = batch_dict.get('roi_targets_dict', None) if targets_dict is None: targets_dict = self.assign_targets(batch_dict) batch_dict['rois'] = targets_dict['rois'] batch_dict['roi_labels'] = targets_dict['roi_labels'] # RoI aware pooling pooled_features = self.roi_grid_pool(batch_dict) # (BxN, 6x6x6, C) grid_size = self.model_cfg["roi_grid_pool"]["grid_size"] pooled_features = pooled_features.transpose([0, 2, 1]) shared_features = self.shared_fc_layer( pooled_features.reshape([-1, self.pre_channel, 1])) rcnn_cls = self.cls_layers(shared_features).transpose( [0, 2, 1]).squeeze(axis=1) # (B, 1 or 2) rcnn_reg = self.reg_layers(shared_features).transpose( [0, 2, 1]).squeeze(axis=1) # (B, C) if not self.training: batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg) batch_dict['batch_cls_preds'] = batch_cls_preds batch_dict['batch_box_preds'] = batch_box_preds batch_dict['cls_preds_normalized'] = False else: targets_dict['rcnn_cls'] = rcnn_cls targets_dict['rcnn_reg'] = rcnn_reg self.forward_ret_dict = targets_dict return batch_dict
PaddlePaddle/Paddle3D
paddle3d/models/heads/roi_heads/pvrcnn_head.py
pvrcnn_head.py
py
7,124
python
en
code
479
github-code
50
17194158385
""" This scripts receives OSC messages via the pyOSC library and controls APA102 LEDs with the Adafruit DotStar library. It is used for displaying video or test data on LED stripes. """ import os import OSC import time from subprocess import call from dotstar import Adafruit_DotStar """ Setup DotStar strip for use in manual mode""" strip = Adafruit_DotStar() strip.begin() strip.setBrightness(0) """ Load three different txt files that contain the video data. It is saved as hex arrays, one line per frame. """ with open("/home/pi/frames/frames1.txt", "rb") as fp: fone = fp.readlines() foneNumFrames = sum(1 for _ in fone) - 1 foneIndex = -1 with open("/home/pi/frames/frames2.txt", "rb") as fp: ftwo = fp.readlines() ftwoNumFrames = sum(1 for _ in ftwo) - 1 ftwoIndex = -1 with open("/home/pi/frames/frames3.txt", "rb") as fp: fthree = fp.readlines() fthreeNumFrames = sum(1 for _ in fthree) - 1 fthreeIndex = -1 """ Load the videos for test mode and blinking """ with open("/home/pi/frames/rgbColors.txt", "rb") as fp: testFrames = fp.readlines() with open("/home/pi/frames/testmode.txt", "rb") as fp: testmode = fp.readlines() activeTest = -1 """ These functions are executed, when a 'timecode' is received. The range is remapped from 0-1 to 0-number of frames. When the frame number wasn't received before, the corresponding line is read from the file. This line is then handed to the show function of the DotStar library as a byte array. """ def recFoneIndex(addr, tags, data, client_address): global foneIndex global fone global foneNumFrames index = int(data[0] * foneNumFrames) if index != foneIndex: foneIndex = index f = fone[index].rstrip() strip.show(bytearray.fromhex(f)) return def recFtwoIndex(addr, tags, data, client_address): global ftwoIndex global ftwo global ftwoNumFrames index = int(data[0] * ftwoNumFrames) if index != ftwoIndex: ftwoIndex = index f = ftwo[index].rstrip() strip.show(bytearray.fromhex(f)) return def recFthreeIndex(addr, tags, data, client_address): global fthreeIndex global fthree global fthreeNumFrames index = int(data[0] * fthreeNumFrames) if index != fthreeIndex: fthreeIndex = index f = fthree[index].rstrip() strip.show(bytearray.fromhex(f)) return def recTestmode(addr, tags, data, client_address): global activeTest global testmode indexIn = int(data[0] * 499) if indexIn != activeTest: activeTest = indexIn fr = testmode[indexIn].rstrip() strip.show(bytearray.fromhex(fr)) return """ This function makes the LED blink any number of times. Colors are: 0=Black, 1=100% Red, 2=100% Green, 3=100% Blue 4=50% Red, 5=50% Green, 6=50% Blue """ def Blink(color, count): global testFrames for i in range(count): f = testFrames[color].rstrip() strip.show(bytearray.fromhex(f)) time.sleep(0.2) f = testFrames[0].rstrip() strip.show(bytearray.fromhex(f)) time.sleep(0.2) return """ This test functions cycles through all LEDs to make sure the mapping is right. """ def recStripTest(addr, tags, data, client_address): with open("/home/pi/frames/rgbTest.txt", "rb") as fp: pixs = fp.readlines() for i in range(1500): f = pixs[i].rstrip() strip.show(bytearray.fromhex(f)) time.sleep(0.02) Blink(0,1) return def recConnectTest(addr, tags, data, client_address): Blink(7,3) return def recBlack(addr, tags, data, client_address): Blink(0,1) return def recExit(addr, tags, data, client_address): Blink(0,1) s.close() return def recShutdown(addr, tags, data, client_address): Blink(5,3) s.close() call("sudo shutdown -h now", shell=True) return def recReboot(addr, tags, data, client_address): Blink(0,1) call("sudo reboot", shell=True) return def recCpu(addr, tags, data, client_address): print(str(os.popen("top -n1 | awk '/Cpu\(s\):/ {print $2}'").readline().strip())) return def recRam(addr, tags, data, client_address): call("free -h", shell=True) return def recSampleRate(addr, tags, stuff, source): pass s = OSC.OSCServer(("",7000)) s.addDefaultHandlers() s.addMsgHandler('default', recSampleRate) #all not explicitly handled OSC messages s.addMsgHandler('/_samplerate', recSampleRate) s.addMsgHandler('/leds/fone', recFoneIndex) s.addMsgHandler('/leds/ftwo', recFtwoIndex) s.addMsgHandler('/leds/fthree', recFthreeIndex) s.addMsgHandler('leds/striptest', recStripTest) s.addMsgHandler('/leds/connecttest', recConnectTest) s.addMsgHandler('/leds/black', recBlack) s.addMsgHandler('/leds/exit', recExit) s.addMsgHandler('/leds/reboot', recReboot) s.addMsgHandler('/leds/shutdown', recShutdown) s.addMsgHandler('/leds/ram', recRam) s.addMsgHandler('/leds/cpu', recCpu) s.addMsgHandler('/leds/testmode',recTestmode) Blink(6,3) s.serve_forever()
DFortmann/Wireless-LEDs
oscServer3.py
oscServer3.py
py
4,792
python
en
code
3
github-code
50
261175975
""" Here the calculations for the forcasts and the tomorrow value will be calculated. """ from datetime import datetime, timedelta, timezone import pandas class Forecasts: def __init__(self, csv_location="weather.csv"): self.weather_dataframe = pandas.read_csv(csv_location) def get_forecast(self, now, then): belief_horizon_in_sec = self.get_belief_horizon_in_sec(now, then) then_in_datasource_format = self.transform_then_to_datasource_format(then) forecast = {} for sensor_type in ["temperature", "irradiance", "wind speed"]: forecast[sensor_type] = self.get_latest_forecast( then_in_datasource_format, belief_horizon_in_sec, sensor_type ) return forecast def get_latest_forecast(self, then, belief_horizon_in_sec, sensor_type): forecasts_dataframe = self.weather_dataframe[ (self.weather_dataframe["event_start"] == then) & (self.weather_dataframe["sensor"] == sensor_type) & (self.weather_dataframe["belief_horizon_in_sec"] >= belief_horizon_in_sec) ] if forecasts_dataframe.empty: return "No forecasts for this date range" event_value = forecasts_dataframe.loc[ forecasts_dataframe["belief_horizon_in_sec"].idxmin() ]["event_value"] return event_value def get_belief_horizon_in_sec(self, now, then): belief_horizon_in_sec = (then - now).total_seconds() return belief_horizon_in_sec def transform_then_to_datasource_format(self, then): then = datetime( then.year, then.month, then.day, then.hour, 0, tzinfo=timezone.utc ).isoformat() then_in_datasource_format = then[:-3].replace("T", " ") return then_in_datasource_format def get_tommorow(self, now): tommorow = now + timedelta(days=1) # get the next day # get the latest forecast for each time # get the max forecast for the 3 booleans pass def get_tomorrow_datetime_in_datasource_format(self, now): tommorow = now + timedelta(days=1) tommorow_start = datetime( tommorow.year, tommorow.month, tommorow.day, 0, 0, tzinfo=timezone.utc ).isoformat() tommorow_end = datetime( tommorow.year, tommorow.month, tommorow.day, 24, 0, tzinfo=timezone.utc ).isoformat() tommorow_start_in_datasource_format = tommorow_start[:-3].replace("T", " ") tommorow_end_in_datasource_format = tommorow_end[:-3].replace("T", " ") return tommorow_start_in_datasource_format, tommorow_end_in_datasource_format
GustaafL/weather_forecast
src/weather_forecast/forecasts.py
forecasts.py
py
2,673
python
en
code
0
github-code
50
69892425115
from django.shortcuts import render from django.http import HttpResponse from . import mqtt as mqtt_module import time MQTT_HOST = "77.234.202.168" MQTT_PORT = 1883 MQTT_KEEPALIVE_INTERVAL = 60 def index(request): return HttpResponse("<h2>QR_Reader module is loaded here</h2>") def qr_reader(request): # this loads the view inside templates folder inside this app # but django treats all the templates folder of different apps as one single /templates folder # so it will be wise to namespace them according to the app to remove any possibility of conflict #(optional) a mqtt request is to be made to the server to get the current_state # this can be optional as in real world its not relevant to the SGB return render(request,"qr_reader/waste_bin.html") def qr_reader_sabin(request): # psabin is supposed to edit here return render(request,"qr_reader/index-sabin.html") def custom_waste_bin(request): return render(request,"qr_reader/custom_bin.html") def mqtt_ajax_authenticate(request): decoded_qr = request.POST.get("code","error getting code") client = mqtt_module.client client.on_connect = mqtt_module.on_connect client.on_subscribe = mqtt_module.on_subscribe client.on_message = mqtt_module.on_message client.on_publish = mqtt_module.on_publish # establish mqtt connection subscribe to message topic from server client.connect(MQTT_HOST, MQTT_PORT, MQTT_KEEPALIVE_INTERVAL) client.loop_start() # publish qr_code to server client.subscribe(mqtt_module.SUB_AUTHENTICATE_TOPIC,0) client.publish(mqtt_module.PUB_AUTHENTICATE_TOPIC, decoded_qr); #waiting period of to receive a reply time.sleep(5) client.disconnect() client.loop_stop() return HttpResponse(mqtt_module.RESPONSE["open"]) def mqtt_ajax_waste(request): waste_meta_data = request.POST.get("waste_meta_data","error getting code") client = mqtt_module.client client.on_connect = mqtt_module.on_connect client.on_subscribe = mqtt_module.on_subscribe client.on_message = mqtt_module.on_message client.on_publish = mqtt_module.on_publish # establish mqtt connection subscribe to message topic from server client.connect(MQTT_HOST, MQTT_PORT, MQTT_KEEPALIVE_INTERVAL) client.loop_start() # publish qr_code to server client.subscribe(mqtt_module.SUB_WASTE_TOPIC,0) client.publish(mqtt_module.PUB_WASTE_TOPIC, waste_meta_data); #waiting period of to receive a reply time.sleep(5) client.disconnect() client.loop_stop() return HttpResponse(mqtt_module.RESPONSE)
itmo-swm/SGB-Simulation
qr_reader/views.py
views.py
py
2,484
python
en
code
0
github-code
50
24893180562
#숫자 카드 import sys N=int(input()) N_list = list(map(int, sys.stdin.readline().strip().split())) M=int(input()) M_list=list(map(int, sys.stdin.readline().strip().split())) N_list.sort() for i in M_list: MIN, MAX = 0, len(N_list) while True: if MIN > MAX: MAX = MAX+1 break mid = (MIN+MAX)//2 if 0 <= mid < len(N_list): if N_list[mid] < i: MIN = mid+1 else: MAX = mid-1 else: break if 0 <= MAX < len(N_list): if N_list[MAX]==i: print(1,end=" ") else: print(0,end=" ") else: print(0,end=" ")
AlPomo/AlgorithmReview
Baekjoon/Week04/10815_G.py
10815_G.py
py
687
python
en
code
0
github-code
50
18608030
from __future__ import division from __future__ import print_function from astropy.io import fits import argparse import numpy as np import re import sys def readfits(infile, iext=0): """Read FITS file. Parameters ---------- infile : string Input file name to be read. iext : int Extension number (0=first HDU) Returns ------- image2d : 2d numpy array, floats Data array. main_header: fits header Primary header. header : fits header Header corresponding to the extension read. When the extension is zero, 'header' and 'main_header' are the same. """ hdulist = fits.open(infile) main_header = hdulist[0].header header = hdulist[iext].header image2d = hdulist[iext].data.astype(np.float) # Only to ckeck the images dimensions NAXIS1 = main_header.get('NAXIS1') NAXIS2 = main_header.get('NAXIS2') # print(NAXIS1) # print(NAXIS2) hdulist.close() return image2d, main_header, header def trimming_images(image2, offsetx, offsety): """Trimming of images. Parameters ---------- image2 : 2d numpy array (float) Successive ramps.(Not the first) offsetx: int Offset in x between image2 and image1 offysety: int Offset in y between image2 and image1 Returns ------- IMP2 : 2d numpy array, floats Data array corresponding to trimmed image """ i1 = j1 = 0 i2 = image2.shape[0] j2 = image2.shape[1] IMP2= np.zeros((i2,j2)) if offsetx >= 0 and offsety > 0 : IMP = image2[(i1+offsety):i2, j1:(j2-offsetx)] IMP2[:(i2-offsety), (j1+offsetx):] = IMP elif offsetx <= 0 and offsety < 0 : IMP= image2[i1:(i2+offsety), (j1-offsetx):j2] IMP2[(i1-offsety):,: (j2+offsetx)]=IMP elif offsetx < 0 and offsety >= 0 : IMP= image2[(i1+offsety):i2, (j1-offsetx):j2] IMP2[:(i2-offsety), : (j2+offsetx)]=IMP elif offsetx > 0 and offsety <= 0 : IMP= image2[i1:(i2+offsety), j1:(j2-offsetx)] IMP2[(i1-offsety):, (j1+ offsetx):]=IMP else : # both offsets are zero IMP2 = np.copy(image2) return IMP2 if __name__ == "__main__": # define expected command-line arguments parser = argparse.ArgumentParser() parser.add_argument("input_list", help='"txt file with list of initial file names. Initial ramps"') parser.add_argument("input_offsets", help='"txt file with list of offsets between ramps"') parser.add_argument("--cube_with_ramps", help="generate cube with ramps", action="store_true") parser.add_argument("--trimmed_images", help="generate the trimmed ramps", action="store_true") args = parser.parse_args() # read list with file names list_files = np.genfromtxt(args.input_list, dtype=[('filename_initial', '|S100')]) filename_initial = list_files['filename_initial'] nfiles_initial = filename_initial.size # nfiles_initial = number of ramps list_offsets = np.genfromtxt(args.input_offsets, dtype=[('iflag', '<i8'), ('filename', '|S100'),('dark', '|S100'), ('offx', '<i8'), ('offy', '<i8')] ) filename = list_offsets['filename'] offx = list_offsets['offx'] offy = list_offsets['offy'] # Print the offsets between ramps for val in zip(filename, offx, offy): print(val) if offx[0] != 0 or offy[0] != 0: sys.exit("ERROR!!: Reference image has offsets different to zero") naxis1 = 2048 naxis2 = 2048 image3d = np.zeros((nfiles_initial , naxis2, naxis1)) for k in range(nfiles_initial): image, main_header, dum = readfits(filename_initial[k]) if image.shape != (naxis2, naxis1): sys.exit("ERROR!!: unexpected image dimensions") if k == 0: image3d[0,:,:] = image[:,:] else: T_image = trimming_images(image, offx[k], -offy[k] ) image3d[k,:,:] = T_image[:,:] median = np.median(image3d, axis=0) # Generating the median image of the ramps outfile2 = re.sub('ramp1.fits$', 'median.fits', filename_initial[0]) print("Generating the median of the ramps:\n" + outfile2) hdu = fits.PrimaryHDU(median, main_header) hdu.writeto(outfile2, clobber=True) # Generating cube with the ramps (corrected the offsets) # In principle we dont need generate the cube.fits if args.cube_with_ramps: outfile = re.sub('ramp1.fits$', 'cube_with_ramps.fits', filename_initial[0]) print("Generating datacube with all the ramps:\n" + outfile) hdu = fits.PrimaryHDU(image3d, main_header) hdu.writeto(outfile, clobber=True) # Generating the trimmed images of the ramps. # In principle we dont need generate the trimmed images if args.trimmed_images: list_cube_split = [] for k in range(nfiles_initial): list_cube_split.append(image3d[k,:,:]) outfile1 = re.sub('.fits$', '_trimmed.fits', filename_initial[k]) print("Generating trimmed images:\n" + outfile1) hdu = fits.PrimaryHDU(list_cube_split[k], main_header) hdu.writeto(outfile1, clobber=True)
criscabe/CIRCE
code/Data_reduction/median_of_ramps.py
median_of_ramps.py
py
5,633
python
en
code
2
github-code
50
18051536698
# importando as lib necessárias import pandas as pd import zipfile # Descompactando arquivo 'dados.zip' with zipfile.ZipFile('dados.zip', 'r') as zip_dados: zip_dados.extractall('C:\\Users\\Asus\\PycharmProjects') # Criando dataframes com os arquivos cvs descompactados df_origem = pd.read_csv('C:\\Users\\Asus\\PycharmProjects\\origem-dados.csv') df_tipos = pd.read_csv('C:\\Users\\Asus\\PycharmProjects\\tipos.csv') # Filtrando apenas as linhas onde 'status' é = a 'critico' filtro = df_origem[df_origem['status'] == 'CRITICO'] # Mesclar resultado do filtro com df_tipos filtro = pd.merge(filtro, df_tipos[['id', 'nome']], left_on='tipo', right_on='id', how='left') #excluir a coluna 'id' que veio de df_tipos, pois não foi pedida no exercicio filtro = filtro.drop('id', axis=1) # Alterar nome da coluna 'nome' para nome_tipo filtro = filtro.rename(columns={'nome': 'nome_tipo'}) #ordenar pela coluna 'created_at' filtro = filtro.sort_values('created_at') # Gerar o arquivo 'insert.sql' with open('insert-dados.sql', 'w') as insert: # ler cada linha do dataframe filtro for index, row in filtro.iterrows(): values = ( row['created_at'], row['product_code'], row['customer_code'], row['status'], row['tipo'], row['nome_tipo'] ) insert_stmt = "INSERT INTO dados_finais " \ "('created_at', 'product_code', 'customer_code', 'status', 'tipo', 'nome_tipo') " \ "VALUES ({}, {}, {}, {}, {}, {});\n".format(*values) # Escrevendo no arquivo 'insert-dados.sql' insert.write(insert_stmt) print('Arquivo insert-dados.sql, gerado com sucesso!')
gustavofranco88/pandas
criar_arquivo_sql.py
criar_arquivo_sql.py
py
1,713
python
pt
code
0
github-code
50
74418461276
# https://stackoverflow.com/questions/34588464/python-how-to-capture-image-from-webcam-on-click-using-opencv import cv2 import opencv.gridReaderFinal as gr def screenshot(size: int): '''Returns the grid from the captured image. If no image was captured, returns empty string. NOTE: Save path changes depending on which directory makes the call to this module.''' return_grid = "" cam = cv2.VideoCapture(1) # THIS LINE WILL CHANGE TO FIT DESIRED CAMERA cv2.namedWindow("test") ret, frame = cam.read() if not ret: print("Failed to grab frame: Camera not found") else: while True: ret, frame = cam.read() cv2.imshow("test", frame) k = cv2.waitKey(1) if k%256 == 27: # ESC pressed print("Escape hit, closing...") break elif k%256 == 32: # SPACE pressed img_name = "opencv_frame_0.png" # Same image gets overwritten with every capture. No multiple images cv2.imwrite(img_name, frame) print("{} written!".format(img_name)) res = gr.GridReader(img_name, size) # Grid size shouldn't be hardcoded for the future return_grid = res.readGrid() print(return_grid) if cv2.getWindowProperty("test", cv2.WND_PROP_VISIBLE) < 1: print("User pressed X on the window") break cam.release() cv2.destroyAllWindows() return return_grid if __name__ == "__main__": screenshot()
TimTwigg/Research
opencv/gridcapture.py
gridcapture.py
py
1,620
python
en
code
2
github-code
50
36363999649
from flask import Blueprint from CTFd.plugins.challenges import BaseChallenge from .models import DynamicInstanceChallenges class DynamicInstanceChallenge(BaseChallenge): id = "dynamic_instance" # Unique identifier used to register challenges name = "dynamic_instance" # Name of a challenge type templates = { # Templates used for each aspect of challenge editing & viewing "create": "/plugins/CTFd-DCI/templates/create.html", "update": "/plugins/CTFd-DCI/templates/update.html", "view": "/plugins/CTFd-DCI/templates/view.html", } scripts = { # Scripts that are loaded when a template is loaded "create": "/plugins/CTFd-DCI/assets/create.js", "update": "/plugins/CTFd-DCI/assets/update.js", "view": "/plugins/CTFd-DCI/assets/view.js", } # Route at which files are accessible. This must be registered using register_plugin_assets_directory() route = "/plugins/CTFd-DCI/assets/" # Blueprint used to access the static_folder directory. blueprint = Blueprint( "dynamic_instance", __name__, template_folder="templates", static_folder="assets", ) challenge_model = DynamicInstanceChallenges
PeronGH/CTFd-DCI
CTFd-DCI/challenge_type.py
challenge_type.py
py
1,219
python
en
code
0
github-code
50
3950322746
import speech_recognition as sr r = sr.Recognizer() # Define audio file audio = 'peacock.wav' # Process the audio file speech to text with sr.AudioFile(audio) as source: audio = r.record(source) print('Done') try: text = r.recognize_google_cloud(audio) print(text) except Exception as e: print(e)
MichaelZLai/interactive_notetaking
quick_stt.py
quick_stt.py
py
321
python
en
code
0
github-code
50
4893132817
def solve(ds): n, m = [int(i) for i in ds[0].split(' ')] fib = [1, 1] for i in range(2, n, 1): if 0 <= i - (m+1) < len(fib): # takes into account dying rabbits temp = fib[i-2] + fib[i-1] - fib[i - (m+1)] elif i == m: # first batch of dying rabbits temp = fib[i-2] + fib[i-1] - 1 else: # before i == m temp = fib[i-2] + fib[i-1] fib.append(temp) print(fib[-1]) if __name__ == '__main__': f = open('ds.txt', 'r') ds = [line.strip() for line in f] solve(ds)
Plezo/rosalind_solutions
FIBD.py
FIBD.py
py
567
python
en
code
0
github-code
50
44561341438
#!/usr/bin/env python3 import pyquil.api as api from classical import rand_graph, classical, bitstring_to_path, calc_cost from pyquil.paulis import sI, sZ, sX, exponentiate_commuting_pauli_sum from scipy.optimize import minimize from pyquil.api import WavefunctionSimulator from pyquil.gates import H from pyquil import Program from collections import Counter from tsp_qaoa_updated import binary_state_to_points_order import sys # returns the bit index for an alpha and j def bit(alpha, j): return j * num_cities + alpha def D(alpha, j): b = bit(alpha, j) return .5 * (sI(b) - sZ(b)) """ weights and connections are numpy matrixes that define a weighted and unweighted graph penalty: how much to penalize longer routes (penalty=0 pays no attention to weight matrix) """ def build_cost(penalty, num_cities, weights, connections): ret = 0 # constraint (a) for i in range(num_cities): cur = sI() for j in range(num_cities): cur -= D(i, j) ret += cur**2 # constraint (b) for i in range(num_cities): cur = sI() for j in range(num_cities): cur -= D(j, i) ret += cur**2 # constraint (c) for i in range(num_cities-1): cur = sI() for j in range(num_cities): for k in range(num_cities): if connections[j, k]: cur -= D(j, i) * D(k, i+1) ret += cur # constraint (d) (the weighting) for i in range(num_cities-1): cur = sI() for j in range(num_cities): for k in range(num_cities): if connections[j, k]: cur -= D(j, i) * D(k, i+1) * weights[j, k] ret += cur * penalty return ret def qaoa_ansatz(betas, gammas, h_cost, h_driver): pq = Program() pq += [exponentiate_commuting_pauli_sum(h_cost)(g) + exponentiate_commuting_pauli_sum(h_driver)(b) for g,b in zip(gammas,betas)] return pq def qaoa_cost(params, h_cost, h_driver, init_state_prog): half = int(len(params)/2) betas, gammas = params[:half], params[half:] program = init_state_prog + qaoa_ansatz(betas, gammas, h_cost, h_driver) return WavefunctionSimulator().expectation(prep_prog=program, pauli_terms=h_cost) if __name__ == '__main__': """ sys.argv ARGS: num_cities (int): number of cities in graph # Example command line call: python quantum.py 3 """ name, num_cities = sys.argv num_cities = int(num_cities) best_path = None best_cost = float("inf") weights, connections = None, None while not best_path: weights, connections = rand_graph(num_cities) best_cost, best_path = classical(weights, connections, loop=False) num_bits = num_cities**2 num_params = 4 # Optimize parameters init_state_prog = sum([H(i) for i in range(num_bits)], Program()) penalty = .01 h_cost = build_cost(penalty, num_cities, weights, connections) h_driver = -1. * sum(sX(i) for i in range(num_bits)) result = minimize(qaoa_cost, x0=[.5]*num_params, args=(h_cost, h_driver, init_state_prog), method='Nelder-Mead') betas, gammas = result.x[0:int(num_params/2)], result.x[int(num_params/2):] qvm = api.QVMConnection() # Sample the circuit for the most frequent path i.e. least costly SAMPLES = 1000 # Number of samples bitstring_samples = qvm.run_and_measure(qaoa_ansatz(betas, gammas, h_cost, h_driver), list(range(num_bits)), trials=SAMPLES) best_quantum_cost = float("inf") best_quantum_path = None best_bitstring = None for bitstring in bitstring_samples: path = bitstring_to_path(bitstring) if not path: continue cost = calc_cost(path, weights, connections) if cost < best_quantum_cost: best_quantum_cost = cost best_quantum_path = path best_bitstring = bitstring print() print("Output:") print("=============") print("Weights") print(weights) print("-------------") print("Best quantum path") print("(Cost = {}, Path = {})".format(best_quantum_cost, best_quantum_path)) print("-------------") print("Classical solution:") print("(Cost = {}, Path = {})".format(best_cost, best_path))
murphyjm/cs269q_radzihovsky_murphy_swofford
quantum.py
quantum.py
py
4,285
python
en
code
5
github-code
50
42088448727
# -*- coding: utf-8 -*- import logging import sys from loguru import logger class InterceptHandler(logging.Handler): """ Intercept logging messages and reroute them to the loguru. """ def emit(self, record): # Get corresponding Loguru level if it exists try: level = logger.level(record.levelname).name except ValueError: level = record.levelno # Find caller from where originated the logged message frame, depth = logging.currentframe(), 2 while frame.f_code.co_filename == logging.__file__: frame = frame.f_back depth += 1 (logger.opt(depth=depth, exception=record.exc_info) .log(level, record.getMessage())) logging.basicConfig(handlers=[InterceptHandler()], level=0) # Put together a formatting string for the logger. # Split into pieces to improve legibility. tim_fmt = "<green>{time:YYYY-MM-DD HH:mm:ss}</green>" lvl_fmt = "<level>{level: <8}</level>" src_fmt = "<cyan>{module}</cyan>:<cyan>{function}</cyan>" msg_fmt = "<level>{message}</level>" fmt = " | ".join([tim_fmt, lvl_fmt, src_fmt, msg_fmt]) config = { "handlers": [ {"sink": sys.stderr, "level": "INFO", "format": fmt}, # {"sink": "{time:YYYYMMDD_HHmmss}_crystalball.log", # "level": "DEBUG", # "format": fmt, # } ], } logger.configure(**config)
caracal-pipeline/crystalball
crystalball/logger_init.py
logger_init.py
py
1,423
python
en
code
2
github-code
50
72242345115
import pytest from flask import session from conftest import create_test_game from assassin_server.db_models import Players, Games, db, table_to_dict #For this test we'll run a 10 person game def test_mock_game(client, app): game_size = 10 # Now we'll start the game! players_info = create_test_game(client, game_size, 1) game_code = None with app.app_context(): game_code = db.session.query( Players.game_code ).filter_by( player_first_name = players_info[0]['player_first_name'] ).first().game_code creator_id = None with app.app_context(): creator_id = db.session.query( Players.player_id ).filter_by( player_first_name = players_info[0]['player_first_name'] ).first().player_id assert isinstance(creator_id, int) #make sure each player has a target, and that the targeting function has cycle length 4 with app.app_context(): current_id = creator_id for i in range(game_size): target_id = db.session.query( Players.target_id ).filter_by( player_id = current_id ).first().target_id assert target_id is not None if i < game_size-1: assert target_id is not None and target_id != creator_id else: assert target_id == creator_id current_id=target_id # start getting players # first we'll the first player get their target dead_player_index = player_got_target(app, client, players_info, 0, False) # now we'll find the index of a player other than the first who is alive. We'll let them win winner_index = None for i in range(1, game_size): if i != dead_player_index: winner_index = i # find the number of players left num_players_alive = None with app.app_context(): num_players_alive = len( db.session.query( Players.player_id ).filter_by( game_code = game_code ).all() ) assert num_players_alive > 0 # kill all the other players for i in range(num_players_alive-1): if i == num_players_alive-2: player_got_target(app, client, players_info, winner_index, True) else: player_got_target(app, client, players_info, winner_index, False) # make sure there's 1 player left with app.app_context(): num_players_alive = len( db.session.query( Players.player_id ).filter_by( game_code = game_code ).all() ) assert num_players_alive == 1 # finally the winner asks to be removed from the game headers = {'Authorization' : 'Bearer ' + players_info[winner_index]['access_token']} response=client.get( '/player_access/remove_from_game', headers=headers ) assert response.status_code == 200 #Make sure both the winner and the game are deleted with app.app_context(): assert db.session.query( Players.player_id ).filter_by( player_first_name = players_info[winner_index]['player_first_name'] ).scalar() is None assert db.session.query( Players.player_id ).filter_by( game_code = game_code ).scalar() is None assert db.session.query( Games.game_id ).filter_by( game_code = game_code ).scalar() is None # get's the target of a player and returns their new target's id def player_got_target(app, client, players_info, getter_index, is_winning_got): headers = {'Authorization' : 'Bearer ' + players_info[getter_index]['access_token']} response=client.get( '/player_access/request_target', headers=headers ) target_name = response.get_json() assert response.status_code == 200 target_index = None for i in range(len(players_info)): if players_info[i]['player_first_name'] == target_name['target_first_name']: target_index = i target_kill_code = db.session.query( Players.player_kill_code ).filter_by( player_first_name = players_info[target_index]['player_first_name'] ).first().player_kill_code #get your target headers=headers = {'Authorization' : 'Bearer ' + players_info[getter_index]['access_token']} response=client.post( '/player_access/got_target', headers=headers, json={'guessed_target_kill_code' : target_kill_code} ) assert response.status_code == 200 assert response.get_json().get('win') == is_winning_got headers = {'Authorization' : 'Bearer ' + players_info[target_index]['access_token']} response=client.get( '/player_access/remove_from_game', headers=headers ) assert response.status_code == 200 # make sure the target was killed and removed with app.app_context(): assert db.session.query( Players.player_id ).filter_by( player_first_name =target_name['target_first_name'] ).scalar() is None assert db.session.query( Players.target_first_name ).filter_by( player_first_name = players_info[getter_index]['player_first_name'] ).first().target_first_name != target_name['target_first_name'] return target_index # In this game, the other player quits from a 2 person game def test_quitter_game(app, client): players_info = create_test_game(client, 2, 1) # we'll find the game code game_code = None with app.app_context(): game_code = db.session.query( Players.game_code ).filter_by( player_first_name = players_info[0]['player_first_name'] ).first().game_code # we'll make the creator quit headers = {'Authorization' : 'Bearer ' + players_info[0]['access_token']} response=client.get( '/player_access/quit_game', headers=headers ) assert response.status_code == 200 # make sure they're gone with app.app_context(): assert db.session.query( Players.player_id ).filter_by( player_first_name = players_info[0]['player_first_name'] ).scalar() is None assert response.status_code == 200 # then the other player will check the game status response = client.post( '/status_access/game_state', json={ 'game_code':game_code } ) assert response.status_code == 200 assert response.get_json().get('game_state') == 2 # make sure there's 1 player left with app.app_context(): num_players_alive = len( db.session.query( Players.player_id ).filter_by( game_code = game_code ).all() ) assert num_players_alive == 1 # now the winner asks to be removed from the game headers = {'Authorization' : 'Bearer ' + players_info[1]['access_token']} response=client.get( '/player_access/remove_from_game', headers=headers ) assert response.status_code == 200 # make sure both the winner and the game are deleted with app.app_context(): assert db.session.query( Players.player_id ).filter_by( player_first_name = players_info[1]['player_first_name'] ).scalar() is None assert db.session.query( Players.player_id ).filter_by( game_code = game_code ).scalar() is None assert db.session.query( Games.game_id ).filter_by( game_code = game_code ).scalar() is None
grahamammal/comp225-server
tests/test_example_game.py
test_example_game.py
py
7,923
python
en
code
1
github-code
50
29597226637
from .views import * from django.urls import path urlpatterns = [ path('seller_blank_pages/', seller_blank_pages, name='seller_blank_pages'), path('seller_bootstrap_alert/', seller_bootstrap_alert,name='seller_bootstrap_alert'), path('seller_bootstrap_badge/',seller_bootstrap_badge,name='seller_bootstrap_badge'), path('seller_bootstrap_breadcrumb/',seller_bootstrap_breadcrumb,name='seller_bootstrap_breadcrumb'), path('seller_bootstrap_card/',seller_bootstrap_card,name='seller_bootstrap_card'), path('seller_bootstrap_carousel/',seller_bootstrap_carousel,name='seller_bootstrap_carousel'), path('seller_bootstrap_dropdown/',seller_bootstrap_dropdown,name='seller_bootstrap_dropdown'), path('seller_bootstrap_list_group/',seller_bootstrap_list_group,name='seller_bootstrap_list_group'), path('seller_bootstrap_modal/',seller_bootstrap_modal,name='seller_bootstrap_modal'), path('seller_bootstrap_nav/',seller_bootstrap_nav,name='seller_bootstrap_nav'), path('seller_bootstrap_pagination/',seller_bootstrap_pagination,name='seller_bootstrap_pagination'), path('seller_bootstrap_progress/',seller_bootstrap_progress,name='seller_bootstrap_progress'), path('seller_bootstrap_spinner/',seller_bootstrap_spinner,name='seller_bootstrap_spinner'), path('seller_buttons/',seller_buttons,name='seller_buttons'), path('seller_chart_apexcharts/',seller_chart_apexcharts,name='seller_chart_apexcharts'), path('seller_chart_chartjs/',seller_chart_chartjs,name='seller_chart_chartjs'), path('seller_chatboxs/',seller_chatboxs,name='seller_chatboxs'), path('seller_component_avatar/',seller_component_avatar,name='seller_component_avatar'), path('seller_component_hero/',seller_component_hero,name='seller_component_hero'), path('seller_component_sweet_alert/',seller_component_sweet_alert,name='seller_component_sweet_alert'), path('seller_component_toastify/',seller_component_toastify,name='seller_component_toastify'), path('seller_credits/',seller_credits,name='seller_credits'), path('seller_default/',seller_default,name='seller_default'), path('seller_layout_top_navigation/',seller_layout_top_navigation,name='seller_layout_top_navigation'), path('seller_editor/',seller_editor,name='seller_editor'), path('seller_email/',seller_email,name='seller_email'), path('seller_errors_403/',seller_errors_403,name='seller_errors_403'), path('seller_errors_404/',seller_errors_404,name='seller_errors_404'), path('seller_errors_500/',seller_errors_500,name='seller_errors_500'), path('seller_errors_503/',seller_errors_503,name='seller_errors_503'), path('seller_forgot_password/',seller_forgot_password,name='seller_forgot_password'), path('seller_forms_checkbox/',seller_forms_checkbox,name='seller_forms_checkbox'), path('seller_icons_boostrap/',seller_icons_boostrap,name='seller_icons_boostrap'), path('seller_index/',seller_index,name='seller_index'), path('seller_pricing/',seller_pricing,name='seller_pricing'), path('seller_profile/',seller_profile,name='seller_profile'), path('seller_radio/',seller_radio,name='seller_radio'), path('seller_register/',seller_register,name='seller_register'), path('seller_reset_password/',seller_reset_password,name='seller_reset_password'), path('seller_header/',seller_header,name='seller_header'), path('seller_forms_validation/',seller_forms_validation,name='seller_forms_validation'), path('seller_widgets_email/',seller_widgets_email,name='seller_widgets_email'), path('seller_login/',seller_login,name='seller_login'), path('seller_logout/',seller_logout,name='seller_logout'), path('seller_add_product/',seller_add_product,name='seller_add_product'), path('seller_otp/' ,seller_otp, name='seller_otp' ), path('my_product/' ,my_product, name='my_product' ), path('product_edit/<int:pk>' ,product_edit, name='product_edit' ), path('product_delete/<int:pk>' ,product_delete, name='product_delete' ), ]
JenilAnghan/Project
seller/urls.py
urls.py
py
4,052
python
en
code
0
github-code
50
42241845977
import multiprocessing import ConfigParser import sys import os CONF_FILE = "config.conf" def get_physical_mem_size(): mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') mem_gib = round(mem_bytes/(1024.**3)) return mem_gib def get_worker_threads_count(): cpu_count = multiprocessing.cpu_count() mem_size = get_physical_mem_size() if (mem_size <= cpu_count): return cpu_count max_threads = cpu_count * 5 return max_threads if mem_size >= max_threads else mem_size def print_line(text="_"): part = "_" * 30 line = part + text + part print("\n{}\n".format(line[:70])) def read_conf_file(): config = {} conf = ConfigParser.SafeConfigParser() if os.path.exists(CONF_FILE): conf.read([CONF_FILE]) else: return {} for sec in conf.sections(): for k, v in conf.items(sec): config[k] = v return config
amit-pub/tasks
image-downloader/download-to-local-FS/util.py
util.py
py
933
python
en
code
1
github-code
50
8100032419
__author__ = "Noreddine Kessa" __copyright__ = "!" __license__ = "MIT License" from NKTransitions import * from NKTransition import * class NKConfigToTransitions: def __init__(self, ConfigPath=""): self.ConfigPath =ConfigPath self.transitions = NKTransitions(Name="" , initialState="" , errorSate ="") def read(self , ConfigPath): self.ConfigPath =ConfigPath file1 = open(ConfigPath, 'r') Lines = file1.readlines() #Strips the newline character for line in Lines: print (f"Processing line:{line}") words = line.split(",") #process two words lines if len (words) >=2: if (words[0]=="$NAME"): self.transitions.Name = words[1] elif (words[0]=="$INITIALSTATE"): self.transitions.initialState = words[1] elif (words[0]=="$ERRORSTATE"): self.transitions.errorSate = words[1] #process multiple words lines if len(words)>= 5: if (words[0]=="$TRANSITION"): self.transitions.append(NKTransition(OriginalState=words[1], Event=words[2], NewState=words[3] , TransitionHandler=words[4], Condition=words[5], Comment=words[6])) #look for applicable OnEnter and OnExit handlers and add them to each transaction for line in Lines: words = line.split(",") if len (words) >=2: if (words[0]=="$ONEXIT"): for transaction in self.transitions.transitions: if transaction.OriginalState==words[1]: transaction.setOnExit(words[2]) if (words[0]=="$ONENTER"): for transaction in self.transitions.transitions: if transaction.NewState==words[1]: transaction.setOnEnter(words[2]) if (self.transitions.Name==""): print("Error: $NAME not defind\n") return False if (self.transitions.initialState==""): print("Error: $INITIALSTATE not defind\n") return False if (self.transitions.errorSate==""): print("Error: $ERRORSTATE not defind\n") return False if len(self.transitions.transitions) <1: print("Error: $TRANSITION not defind\n") return False return True def getTransitions(self): return self.transitions
knor12/NKFSMCompiler
NKFSMCompiler/NKConfigToTransitions.py
NKConfigToTransitions.py
py
2,837
python
en
code
0
github-code
50
15715570292
data = input() # 0이나 1일 경우에는 더하는게 맞다. answer = int(data[0]) for index in range(1, len(data)): num = int(data[index]) if num <= 1 or answer <= 1: answer += num else: answer *= num print(answer)
BTOCC24/Algorithm
This is codingTest/그리디/곱하기 혹은 더하기/곱하기 혹은 더하기.py
곱하기 혹은 더하기.py
py
248
python
ko
code
1
github-code
50
28596250625
"""Implementation of the Skeleton model """ import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../src'))) from classes import BaseModelImpl from torch import nn from layers.causalcall import CausalCallConvBlock class CausalCallModel(BaseModelImpl): """CasualCall Model """ def __init__(self, convolution = None, decoder = None, load_default = False, *args, **kwargs): super(CausalCallModel, self).__init__(*args, **kwargs) """ Args: convolution (nn.Module): module with: in [batch, channel, len]; out [batch, channel, len] decoder (nn.Module): module with: in [len, batch, channel]; out [len, batch, channel] """ self.convolution = convolution self.decoder = decoder if load_default: self.load_default_configuration() def forward(self, x): """Forward pass of a batch """ x = self.convolution(x) x = x.permute(2, 0, 1) # [len, batch, channels] x = self.decoder(x) return x def build_cnn(self): num_blocks = 5 num_channels = 256 kernel_size = 3 dilation_multiplier = 2 dilation = 1 layers = list() for i in range(num_blocks): if i == 0: layers.append(CausalCallConvBlock(kernel_size, num_channels, 1, dilation)) else: layers.append(CausalCallConvBlock(kernel_size, num_channels, int(num_channels/2), dilation)) dilation *= dilation_multiplier convolution = nn.Sequential(*layers) return convolution def get_defaults(self): defaults = { 'cnn_output_size': 128, 'cnn_output_activation': 'relu', 'encoder_input_size': None, 'encoder_output_size': None, 'cnn_stride': 1, } return defaults def load_default_configuration(self, default_all = False): """Sets the default configuration for one or more modules of the network """ if self.convolution is None or default_all: self.convolution = self.build_cnn() self.cnn_stride = self.get_defaults()['cnn_stride'] if self.decoder is None or default_all: self.decoder = self.build_decoder(encoder_output_size = 128, decoder_type = 'ctc') self.decoder_type = 'ctc'
marcpaga/basecalling_architectures
models/causalcall/model.py
model.py
py
2,462
python
en
code
5
github-code
50
19601138102
from __future__ import annotations from typing import Dict, TYPE_CHECKING, Union, Type from assistants.deployments.aws.api_endpoint import ApiEndpointWorkflowState from assistants.deployments.aws.api_gateway import ApiGatewayResponseWorkflowState from assistants.deployments.aws.cloudwatch_rule import ScheduleTriggerWorkflowState from assistants.deployments.aws.lambda_function import LambdaWorkflowState from assistants.deployments.aws.sns_topic import SnsTopicWorkflowState from assistants.deployments.aws.sqs_queue import SqsQueueWorkflowState from assistants.deployments.diagram.errors import InvalidDeployment from assistants.deployments.diagram.types import StateTypes, RelationshipTypes if TYPE_CHECKING: from assistants.deployments.diagram.workflow_states import WorkflowState from assistants.deployments.aws.aws_deployment import AwsDeployment WorkflowStateTypes = Type[Union[ LambdaWorkflowState, ApiEndpointWorkflowState, SqsQueueWorkflowState, SnsTopicWorkflowState, ScheduleTriggerWorkflowState ]] def workflow_state_from_json(credentials, deploy_diagram: AwsDeployment, workflow_state_json: Dict) -> WorkflowState: node_id = workflow_state_json["id"] node_type = workflow_state_json["type"] try: state_type = StateTypes(workflow_state_json["type"]) except ValueError as e: raise InvalidDeployment(f"workflow state {node_id} has invalid type {node_type}") state_type_to_workflow_state: Dict[StateTypes, WorkflowStateTypes] = { StateTypes.LAMBDA: LambdaWorkflowState, StateTypes.API_ENDPOINT: ApiEndpointWorkflowState, StateTypes.SQS_QUEUE: SqsQueueWorkflowState, StateTypes.SNS_TOPIC: SnsTopicWorkflowState, StateTypes.SCHEDULE_TRIGGER: ScheduleTriggerWorkflowState, StateTypes.API_GATEWAY_RESPONSE: ApiGatewayResponseWorkflowState } workflow_state_type = state_type_to_workflow_state.get(state_type) if workflow_state_json is None: raise InvalidDeployment(f"invalid workflow state type: {state_type} for workflow state: {node_id}") workflow_state = workflow_state_type( credentials, workflow_state_json.get("id"), workflow_state_json.get("name"), state_type ) workflow_state.setup(deploy_diagram, workflow_state_json) return workflow_state def workflow_relationship_from_json(deploy_diagram: AwsDeployment, workflow_relationship_json: Dict): try: relation_type = RelationshipTypes(workflow_relationship_json["type"]) except ValueError as e: relation_id = workflow_relationship_json["id"] relation_type = workflow_relationship_json["type"] raise InvalidDeployment(f"workflow relationship {relation_id} has invalid type {relation_type}") origin_node_id = workflow_relationship_json["node"] next_node_id = workflow_relationship_json["next"] origin_node = deploy_diagram.lookup_workflow_state(origin_node_id) next_node = deploy_diagram.lookup_workflow_state(next_node_id) origin_node.create_transition( deploy_diagram, relation_type, next_node, workflow_relationship_json)
refinery-labs/refinery
api/assistants/deployments/aws/new_workflow_object.py
new_workflow_object.py
py
2,966
python
en
code
2
github-code
50
33862318363
class Solution: def maxProfit(self, prices: List[int]) -> int: dp = [0 for _ in range(len(prices) + 1)] for i in range(1,len(prices)): if dp[i]: return dp[i] dp[i] = max(0, dp[i-1] + prices[i] - prices[i-1]) return max(dp)
mykoabe/Competetive-Programming
All collections/121-best-time-to-buy-and-sell-stock/121-best-time-to-buy-and-sell-stock.py
121-best-time-to-buy-and-sell-stock.py
py
304
python
en
code
1
github-code
50
86766993796
# Django from django.shortcuts import render_to_response, redirect, HttpResponseRedirect from django.contrib.auth import authenticate, login from django.contrib import messages from django.conf import settings from django.contrib.auth.decorators import login_required # Apps from misc.utils import * #Import miscellaneous functions from apps.walls.utils import query_newsfeed # Decorators # Models from django.contrib.auth.models import User from apps.walls.models import Post, Comment from notifications.models import Notification # Forms # View functions # Misc from django.templatetags.static import static # Python import os # Docs for attachments @login_required def home (request, *args, **kwargs): """ The home page that people will see when the login or go to the root URL - Redirects to newsfeed if logged in - Redirects to login page if not logged in """ user = request.user if settings.SOCIAL_AUTH_FORCE_FB and user.social_auth.filter(provider="facebook").count() == 0: return redirect("apps.users.views.associate") if user.is_authenticated(): # Check if user is already logged in if "role" not in request.session.keys(): return HttpResponseRedirect(reverse("identity")) # Redirect to home page return redirect("apps.home.views.newsfeed") @login_required def newsfeed(request): user = request.user notifications_list = query_newsfeed(user, page=1) local_context = { "current_page" : "newsfeed", "notifications" : notifications_list, } return render_to_response("pages/newsfeed.html", local_context, context_instance= global_context(request)) @login_required def portals(request): # notifications = request.user.notifications.unread() local_context = {} return render_to_response("pages/portals.html", local_context, context_instance= global_context(request)) @login_required def read_notification(request, notif_id): user = request.user if notif_id == "all": all_notifs = user.notifications.unread() for i in all_notifs: i.public = False i.save() all_notifs.mark_all_as_read() return redirect(reverse("newsfeed")) try: notif_id = int(notif_id) except ValueError: notif_id = None if not ( type(notif_id) is int ): raise InvalidArgumentTypeException try: notif = user.notifications.get(id = notif_id) except Notification.DoesNotExist: raise InvalidArgumentValueException # Logic notif.public = False #Use this to check if a notification was "read" by recipient, or another notif was added for same post notif.save() notif.mark_as_read() return redirect(reverse("wall", kwargs={ "wall_id" : notif.target.wall.id }) + "#post_" + str(notif.target.id)) @login_required def contacts(request): local_context = { } return render_to_response("pages/contacts.html", local_context, context_instance= global_context(request)) @login_required def markdown(request): return HttpResponseRedirect("http://sourceforge.net/p/misaki/discussion/markdown_syntax")
The-WebOps-Club/fest-api
apps/home/views.py
views.py
py
3,170
python
en
code
12
github-code
50
5112566879
import http.client domainFootballApi = "v3.football.api-sports.io" keyFootballApi = "..." headers = { 'x-apisports-key': keyFootballApi } def getRequest(queryLine): connection = http.client.HTTPSConnection(domainFootballApi) if (queryLine[0] != "/"): queryLine = "/" + queryLine connection.request("GET", queryLine, headers = headers) response = connection.getresponse() data = response.read() dataDecoded = data.decode("utf-8") return dataDecoded def doesFootballClubPlayToday(footballClub): queryLine = "/fixtures?live=all" dataDecoded = getRequest(queryLine) indexFootballClub = dataDecoded.find(footballClub) if (indexFootballClub >= 0): return True else: return False
petartotev/PT_Library_Python_UltimatePythotev
libraries/pythotev_library_http_football_api.py
pythotev_library_http_football_api.py
py
696
python
en
code
0
github-code
50
40158298450
import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.options = cms.untracked.PSet( numberOfStreams = cms.untracked.uint32(1) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(3) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:testDetSetVectorThinningTest1.root') ) process.slimmingTestA = cms.EDAnalyzer("ThinningDSVTestAnalyzer", parentTag = cms.InputTag('thingProducer'), thinnedTag = cms.InputTag('slimmingThingProducerA'), associationTag = cms.InputTag('slimmingThingProducerA'), trackTag = cms.InputTag('trackOfThingsProducerA'), parentWasDropped = cms.bool(True), thinnedSlimmedCount = cms.int32(1), refSlimmedCount = cms.int32(1), expectedParentContent = cms.VPSet( cms.PSet(id = cms.uint32(1), values = cms.vint32(range(0,50))), cms.PSet(id = cms.uint32(2), values = cms.vint32(range(50,100))), cms.PSet(id = cms.uint32(3), values = cms.vint32(range(100,150))), ), expectedThinnedContent = cms.VPSet( cms.PSet(id = cms.uint32(1), values = cms.vint32(range(0,9))), cms.PSet(id = cms.uint32(2), values = cms.vint32(range(50,59))), cms.PSet(id = cms.uint32(3), values = cms.vint32(range(100,109))), ), expectedIndexesIntoParent = cms.vuint32( list(range(0,9)) + list(range(50,59)) + list(range(100,109)) ), expectedNumberOfTracks = cms.uint32(8*3), expectedValues = cms.vint32( list(range(0,9)) + list(range(50,59)) + list(range(100,109)) ) ) process.p = cms.Path( process.slimmingTestA )
cms-sw/cmssw
FWCore/Integration/test/DetSetVectorThinningTest2_cfg.py
DetSetVectorThinningTest2_cfg.py
py
1,656
python
en
code
985
github-code
50
11237801787
import os import transformers import pandas as pd from utils import text_to_dataloader from bert_embedding import BertEmbeddingExtractorVanilla HEADER_CONST = "# sent_id = " TEXT_CONST = "# text = " STOP_CONST = "\n" WORD_OFFSET = 1 LABEL_OFFSET = 3 NUM_OFFSET = 0 def txt_to_dataframe(data_path): ''' read UD text file and convert to df format ''' with open(data_path, "r") as fp: df = pd.DataFrame( columns={ "text", "word", "label" } ) for line in fp.readlines(): if TEXT_CONST in line: words_list = [] labels_list = [] num_list = [] text = line.split(TEXT_CONST)[1] # this is a new text, need to parse all the words in it elif line is not STOP_CONST and HEADER_CONST not in line: temp_list = line.split("\t") num_list.append(temp_list[NUM_OFFSET]) words_list.append(temp_list[WORD_OFFSET]) labels_list.append(temp_list[LABEL_OFFSET]) if line == STOP_CONST: # this is the end of the text, adding to df cur_df = pd.DataFrame( { "text": len(words_list) * [text], "word": words_list, "word_offset": num_list, "label": labels_list, "word_count" : len(words_list) } ) df = pd.concat([df, cur_df]) return df if __name__ == '__main__': #MODEL_NAME = "bert-base-uncased" MODEL_NAME = "roberta-base" train_path = os.path.join("data", "en_partut-ud-train.conllu") df_train = txt_to_dataframe(train_path) bert_tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME) df_train, dataloader_train = text_to_dataloader(df_train.head(), "cuda", 32, bert_tokenizer, 256) print() bex = BertEmbeddingExtractorVanilla(1, MODEL_NAME) embedding_df = bex.extract_embedding(dataloader_train, "sum") print()
ErezSC42/bert_pos_analysis
test_embedding_extractor.py
test_embedding_extractor.py
py
2,169
python
en
code
0
github-code
50
1171679180
from launch import LaunchDescription from ament_index_python.packages import get_package_share_directory from launch_ros.actions import Node from launch.actions import ExecuteProcess import os.path def generate_launch_description(): ld = LaunchDescription() sim_node = Node( package="robot_projects_simulator", executable="ekf_sim_world", output={"both": "screen"} ) vis_node = Node( package="rviz2", executable="rviz2", arguments=["-d", os.path.join(get_package_share_directory("robot_projects_ekf_localization"), "config", "ekf_sim_world.rviz")], output={"both": "screen"} ) test_act_node = Node( package="teleop_twist_keyboard", executable="teleop_twist_keyboard", output='screen', prefix = 'xterm -e' ) topics = ['/cmd_vel', '/pt_sensor/reading', '/imu/reading', '/pose_sensor/reading', 'tf'] bag_process = ExecuteProcess( cmd=['ros2', 'bag', 'record'] + topics ) ld.add_action(sim_node) ld.add_action(vis_node) ld.add_action(test_act_node) ld.add_action(bag_process) return ld
lessthantrue/RobotProjects2
robot_projects_ekf_localization/launch/make_evaluate_bag.launch.py
make_evaluate_bag.launch.py
py
1,144
python
en
code
0
github-code
50
40577424537
import torch from torch import optim # Text text processing library and methods for pretrained word embeddings import torchtext from torchtext.vocab import Vectors, GloVe # Named Tensor wrappers from namedtensor import ntorch, NamedTensor from namedtensor.text import NamedField # Our input $x$ TEXT = NamedField(names=('seqlen',)) # Our labels $y$ LABEL = NamedField(sequential=False, names=(), unk_token=None) train, val, test = torchtext.datasets.SST.splits( TEXT, LABEL, filter_pred=lambda ex: ex.label != 'neutral') TEXT.build_vocab(train) LABEL.build_vocab(train) device=torch.device("cpu") train_iter, val_iter, test_iter = torchtext.data.BucketIterator.splits( (train, val, test), batch_size=10, device=device) # Build the vocabulary with word embeddings url = 'https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.simple.vec' TEXT.vocab.load_vectors(vectors=Vectors('wiki.simple.vec', url=url)) def test_code(model): "All models should be able to be run with following command." upload = [] # Update: for kaggle the bucket iterator needs to have batch_size 10 test_iter = torchtext.data.BucketIterator(test, train=False, batch_size=10) for batch in test_iter: # Your prediction data here (don't cheat!) probs = model(batch.text) # here we assume that the name for dimension classes is `classes` _, argmax = probs.max('classes') upload += argmax.tolist() with open("predictions.txt", "w") as f: f.write("Id,Category\n") for i, u in enumerate(upload): f.write(str(i) + "," + str(u) + "\n") class logisticRegression(ntorch.nn.Module): #uses binarized version def __init__(self, vocabSize, embedSize): super(logisticRegression, self).__init__() self.vocabSize = vocabSize self.embedSize = embedSize # self.Wb = ntorch.nn.Linear(self.embedSize, 1) #self.W = Variable ntorch.tensor(torch.zeros((self.vocabSize), requires_grad=True), ("vocab",))) self.W = ntorch.nn.Linear(self.vocabSize, 1).spec("vocab", "singular") #self.b = ntorch.tensor(0., names=()) self.lossfn = ntorch.nn.CrossEntropyLoss().spec("classes") def predict(self, x): # y = self.Wb #y = (self.W.index_select('vocab', x.long()).sum('vocab') + self.b).sigmoid() y_ = self.W(x).sigmoid().sum('singular').sigmoid() # this is a huge hack y = ntorch.stack([y_, 1-y_], 'classes') #.log_softmax('classes') return y def forward(self, batchText): x = self.convertToX(batchText) return self.predict(x) def convertToX(self, batchText): #this function makes the feature vectors wth scatter x = ntorch.tensor( torch.zeros(self.vocabSize, batchText.shape['batch'], device=device), ('vocab', 'batch')) y = ntorch.tensor( torch.ones(batchText.shape['seqlen'], batchText.shape['batch'], device=device), ('seqlen', 'batch')) x.scatter_('vocab', batchText, y, 'seqlen') #print("len x:", len(x)) return x def loss(self, batch): prediction = self(batch.text) # probabilities #print("predict", prediction) #print('predict size', prediction.shape) #print("label", batch.label) return self.lossfn(prediction, batch.label) def train(lrModel, dataset): optimizer = optim.Adam(lrModel.parameters(), lr=0.01) # in your training loop: optimizer.zero_grad() # zero the gradient buffers losses = [] for i, batch in enumerate(dataset): optimizer.zero_grad() # zero the gradient buffers loss = lrModel.loss(batch) #loss = (batch.label.float() - prediction).abs().sum('batch') loss.backward() optimizer.step() losses.append(loss.item()) if i%200==0 and not i==0: print(f"iteration {i}") print(f"moving average loss={sum(losses[-1-100:-1])/100.}") val_losses = [] for vbatch in val_iter: val_losses.append( lrModel.loss(vbatch).item()) val_loss = sum(val_losses)/len(val_losses) print(f"val loss: {val_loss}") #import ipdb; ipdb.set_trace() if __name__=='__main__': #print("params", lr.parameters()) lrModel = logisticRegression(TEXT.vocab.vectors.size()[0], None) for i in range(10): print(f"epoch {i}") train(lrModel, train_iter) test_code(lrModel)
mtensor/cs287
ps1/logistic_regression.py
logistic_regression.py
py
4,453
python
en
code
0
github-code
50
24833699202
#öyle bir fonksiyon yazın ki kullanıcının adını gönderdiğinizde hoşgeldin isim yazsın. isim=input("İsminizi yazın. :") print("Hoşgeldin", isim) #kendisine girilen sayının karesinin karesini hesaplasın. sayi=int(input("Sayı gir:")) def hesapla(a): print(a*a*a*a) hesapla(sayi) #girilen bu sayının çift mi tek mi olduğunu ekrana yazsın. def tekmi(b): if b%2 == 0: print("Bu sayı çift bir sayıdır.") else: print("Bu sayı tek bir sayıdır.") tekmi(sayi)
progamerofTR/bilsem2
fonksiyon uygulama 2.py
fonksiyon uygulama 2.py
py
536
python
tr
code
0
github-code
50
27576108554
# -*- coding: utf-8 -*- """ Created on Thu Dec 2 12:41:14 2021 @author: hp """ from flask import Flask, render_template, request from wtforms import Form, TextAreaField, validators import pickle import sqlite3 import os import numpy as np import joblib loaded_model=joblib.load(r"D:/ML_Project\model.pkl") loaded_stop=joblib.load(r"D:/ML_Project\stopwords.pkl") loaded_vec=joblib.load(r"D:/ML_Project\vectorizer.pkl") app = Flask(__name__) def classify(document): label = {0: 'non-hate', 1: 'hate'} X = loaded_vec.transform([document]) y = loaded_model.predict(X)[0] proba = np.max(loaded_model.predict_proba(X)) if proba >= 0.85: return label[0], proba else: return label[1], proba class TweetForm(Form): tweet = TextAreaField('',[validators.DataRequired(),validators.length(min=15)]) @app.route(r'/') def index(): form = TweetForm(request.form) return render_template('tweetform.html', form=form) @app.route('/results', methods=['POST']) def results(): form = TweetForm(request.form) if request.method == 'POST' and form.validate(): tweet = request.form['tweet'] y, proba = classify(tweet) print(proba) return render_template('results.html', content=tweet, prediction=y, probability=round(proba*100, 2)) return render_template('tweetform.html', form=form) if __name__ == '__main__': app.run(debug=True)
ankitaanjali1202/Twitter-Senti-Meter
app.py
app.py
py
1,464
python
en
code
1
github-code
50
31023238558
import pygame import time import random from pygame.locals import* from time import sleep ############################ ########## Mario ########### ############################ class Mario(): def __init__(self, model): self.model = model self.x = 0 self.y = 0 self.model.scrollPos = self.x - 350 self.prev_x = 0 self.prev_y = 0 self.w = 60 self.h = 95 self.vvel = 0 self.mframe = 0 self.facingRight = True self.runningRight = False self.runningLeft = False self.onTop = False self.marioPics = [] self.marioPics.append(pygame.image.load("mario1.png")) self.marioPics.append(pygame.image.load("mario2.png")) self.marioPics.append(pygame.image.load("mario3.png")) self.marioPics.append(pygame.image.load("mario4.png")) self.marioPics.append(pygame.image.load("mario5.png")) self.marioPics.append(pygame.image.load("mario1left.png")) self.marioPics.append(pygame.image.load("mario2left.png")) self.marioPics.append(pygame.image.load("mario3left.png")) self.marioPics.append(pygame.image.load("mario4left.png")) self.marioPics.append(pygame.image.load("mario5left.png")) def collision(self, x, y, w, h): if self.x + self.w <= x: return False if self.x >= x + w: return False if self.y + self.h <= y: return False if self.y >= y + h: return False return True def leaveBlock(self, x, y, w, h): if self.y + self.h > y and self.prev_y + self.h <= y: self.vvel = 0 self.y = y - self.h self.onTop = True if self.y < y + h and self.prev_y >= y + h: self.y = y + h self.vvel = 0.1 if self.x + self.y > x and self.prev_x + self.w <= x: self.runningRight = False self.model.scrollPos = x - 350 - self.w self.x = x - self.w if self.x < x + w and self.prev_x >= x + w: self.runningLeft = False self.model.scrollPos = x - 350 + w self.x = x + w def notePrevious(self): self.prev_x = self.x self.prev_y = self.y def update(self): #gravity self.vvel += 3.14159 self.y += self.vvel #ground if self.y > 355: self.y = 355 self.vvel = 0 #run if self.runningLeft: self.x -= 10 self.model.scrollPos -= 10 self.facingRight = False if self.runningRight: self.x +=10 self.model.scrollPos += 10 self.facingRight = True #collision detection if self.collision(self.model.brick1.x, self.model.brick1.y, self.model.brick1.w, self.model.brick1.h): self.leaveBlock(self.model.brick1.x, self.model.brick1.y, self.model.brick1.w, self.model.brick1.h) if self.collision(self.model.brick2.x, self.model.brick2.y, self.model.brick2.w, self.model.brick2.h): self.leaveBlock(self.model.brick2.x, self.model.brick2.y, self.model.brick2.w, self.model.brick2.h) if self.collision(self.model.coinBlock1.x, self.model.coinBlock1.y, self.model.coinBlock1.w, self.model.coinBlock1.h): self.leaveBlock(self.model.coinBlock1.x, self.model.coinBlock1.y, self.model.coinBlock1.w, self.model.coinBlock1.h) if self.collision(self.model.coinBlock2.x, self.model.coinBlock2.y, self.model.coinBlock2.w, self.model.coinBlock2.h): self.leaveBlock(self.model.coinBlock2.x, self.model.coinBlock2.y, self.model.coinBlock2.w, self.model.coinBlock2.h) ############################ ########## Brick ########### ############################ class Brick(): def __init__(self, x, y): self.x = x self.y = y self.w = 100 self.h = 100 self.brickPic = pygame.image.load("Brick_Block.png") ############################ ######## CoinBlock ######### ############################ class CoinBlock(): def __init__(self, model, x, y): self.x = x self.y = y self.w = 90 self.h = 90 self.coinCount = 5 self.model = model self.coinBlockPic = pygame.image.load("coinBlock2.png") self.emptyCoinBlockPic = pygame.image.load("emptyCoinBlock2.png") def update(self): if(self.model.mario.y == self.y + self.h and self.model.mario.x + self.model.mario.w > self.x and self.model.mario.x < self.x + self.w): if self.coinCount > 0: self.vvelocity = -30.0 self.n = random.randint(1, 50) if self.n%2 == 0: self.hvelocity = self.n%15 else: self.hvelocity = -(self.n%15) self.model.coins.append(Coin(self.hvelocity, self.vvelocity, self.x, self.y, self.model)) self.coinCount -= 1 ############################ ########## Coin ############ ############################ class Coin(): def __init__(self, hvel, vvel, x, y, model): self.x = x self.y = y self.w = 0 self.h = 0 self.hvel = hvel self.vvel = vvel self.model = model self.coinPic = pygame.image.load("coin.png") def update(self): self.vvel += 3.14159 self.y += self.vvel self.x += self.hvel if self.y > 1000: self.vvel = 0 self.hvel = 0 self.y = 1000 ############################ ########## Model ########### ############################ class Model(): def __init__(self): self.scrollPos = 0 self.mario = Mario(self) self.brick1 = Brick(100, 200) self.brick2 = Brick(600, 350) self.coinBlock1 = CoinBlock(self, 900, 200) self.coinBlock2 = CoinBlock(self, 1200, 230) self.coins = list(()) def update(self): self.mario.update() self.coinBlock1.update() self.coinBlock2.update() for i in range(len(self.coins)): self.coins[i].update() ############################ ########## View ############ ############################ class View(): def __init__(self, model): screen_size = (800,600) self.screen = pygame.display.set_mode(screen_size, 32) self.model = model self.model.rect = self.model.mario.marioPics[0].get_rect() self.model.rect = self.model.brick1.brickPic.get_rect() def update(self): #draw the sky(sunny) self.screen.fill([0,200,200]) #draw the ground pygame.draw.rect(self.screen, (0, 128, 0), (0, 450, 800, 600)) #draw bricks self.screen.blit(self.model.brick1.brickPic, (self.model.brick1.x - self.model.scrollPos, self.model.brick1.y), self.model.rect) self.screen.blit(self.model.brick2.brickPic, (self.model.brick2.x - self.model.scrollPos, self.model.brick2.y), self.model.rect) #draw coin blocks if self.model.coinBlock1.coinCount > 0: self.screen.blit(self.model.coinBlock1.coinBlockPic, (self.model.coinBlock1.x - self.model.scrollPos, self.model.coinBlock1.y), self.model.rect) else: self.screen.blit(self.model.coinBlock1.emptyCoinBlockPic, (self.model.coinBlock1.x - self.model.scrollPos, self.model.coinBlock1.y), self.model.rect) if self.model.coinBlock2.coinCount > 0: self.screen.blit(self.model.coinBlock2.coinBlockPic, (self.model.coinBlock2.x - self.model.scrollPos, self.model.coinBlock2.y), self.model.rect) else: self.screen.blit(self.model.coinBlock2.emptyCoinBlockPic, (self.model.coinBlock2.x - self.model.scrollPos, self.model.coinBlock2.y), self.model.rect) #draw the coins for i in range(len(self.model.coins)): self.screen.blit(self.model.coins[i].coinPic, (self.model.coins[i].x - self.model.scrollPos, self.model.coins[i].y - 30), self.model.rect) #animate mario if self.model.mario.facingRight: #if he's facing right, animate right #increment mframe self.model.mario.mframe+=1 if self.model.mario.mframe > 4: self.model.mario.mframe = 0 #if keyRight and mario is on a surface, draw him running if self.model.mario.runningRight and (self.model.mario.onTop or self.model.mario.y == 355): self.screen.blit(self.model.mario.marioPics[self.model.mario.mframe], (350, self.model.mario.y), self.model.rect) #else draw him standing still else: self.screen.blit(self.model.mario.marioPics[3], (350, self.model.mario.y), self.model.rect) else: #if he's facing left, animate left #increment mframe self.model.mario.mframe+=1 if self.model.mario.mframe < 5 or self.model.mario.mframe > 9: self.model.mario.mframe = 5 #if keyLeft and mario is on a surface, draw him running if self.model.mario.runningLeft and (self.model.mario.onTop or self.model.mario.y == 355): self.screen.blit(self.model.mario.marioPics[self.model.mario.mframe], (350, self.model.mario.y), self.model.rect) #else draw him standing still else: self.screen.blit(self.model.mario.marioPics[7], (350, self.model.mario.y), self.model.rect) #idk pygame.display.flip() ############################ ####### Controller ######### ############################ class Controller(): def __init__(self, model): self.model = model self.keep_going = True def update(self): for event in pygame.event.get(): if event.type == QUIT: self.keep_going = False elif event.type == KEYDOWN: if event.key == K_ESCAPE: self.keep_going = False keys = pygame.key.get_pressed() self.model.mario.notePrevious() self.model.mario.runningRight = False self.model.mario.runningLeft = False if keys[K_LEFT]: self.model.mario.runningLeft = True if keys[K_RIGHT]: self.model.mario.runningRight = True if keys[K_SPACE] and (self.model.mario.y == 355 or self.model.mario.onTop) and self.model.mario.vvel == 0: self.model.mario.vvel = -35 ############################ ########## Main ############ ############################ print("Use the arrow keys to move. Press Esc to quit.") pygame.init() m = Model() v = View(m) c = Controller(m) while c.keep_going: c.update() m.update() v.update() sleep(0.04) print("Goodbye")
wws002/pyMario
game.py
game.py
py
9,260
python
en
code
0
github-code
50
23781955007
from cube import Config from cube.activities.utils import Utils import subprocess, os from shutil import copyfile # the alignment file probably needs to be checked class Conservationist: def __init__(self, upload_handler): # directories self.job_id = upload_handler.job_id self.workdir = "{}/{}".format(Config.WORK_DIRECTORY, self.job_id) self.work_path = "{}/{}".format(Config.WORK_PATH, self.job_id) # input self.original_seqfile_path = upload_handler.original_seqfile_path self.seq_input_types = upload_handler.seq_input_types self.input_aligned = upload_handler.aligned self.original_structure_path = upload_handler.original_structure_path self.chain = upload_handler.chain if upload_handler.chain else "-" self.ref_seq_name = upload_handler.ref_seq_name self.method = upload_handler.method # output self.specs_outname = "specs_out" self.png_input = "png_in" self.illustration_range = 400 self.run_ok = False self.errmsg = None self.score_file = None self.png_files = [] self.preprocessed_afa = "" self.xls = None self.pdbseq = None self.clean_structure_path = None self.pse_zip = None self.pml = None self.workdir_zip = None self.warn = None # toolbox self.utils = Utils(self.job_id) return def _write_cmd_file(self): prms_string = "" prms_string += "patch_sim_cutoff 0.4\n" prms_string += "patch_min_length 0.4\n" prms_string += "sink 0.3 \n" prms_string += "skip_query \n" prms_string += "\n" prms_string += "align %s\n" % self.preprocessed_afa prms_string += "refseq %s\n" % self.ref_seq_name prms_string += "method %s\n" % self.method prms_string += "\n"; prms_string += "outn %s/%s\n" % (self.work_path, self.specs_outname) if self.clean_structure_path: prms_string += "pdbf %s\n" % self.clean_structure_path prms_string += "pdbseq %s\n" % self.pdbseq #dssp_file && (prms_string += "dssp dssp_file\n"); outf = open("%s/cmd"%self.work_path, "w") outf.write(prms_string) outf.close() def prepare_run(self): self.preprocessed_afa = self.utils.construct_afa_name(self.original_seqfile_path) if self.input_aligned: filetype = self.seq_input_types[self.original_seqfile_path] if filetype=='fasta': # TODO check all seqs the same length copyfile(self.original_seqfile_path, self.preprocessed_afa) elif filetype=='gcg': # convert to afa if not self.utils.msf2afa(self.original_seqfile_path, self.preprocessed_afa): self.errmsg = self.utils.errmsg return None # again check if the same length else: # if not aligned - align if not self.utils.align(self.original_seqfile_path, self.preprocessed_afa): self.errmsg = self.utils.errmsg return None # choose reference sequence if we do not have one if not self.ref_seq_name: cmd = "grep '>' {} | head -n1".format(self.preprocessed_afa) output = subprocess.run([cmd], stdout=subprocess.PIPE, shell=True).stdout self.ref_seq_name = output[1:].decode('utf8').strip().split(" ")[0] # restrict to query afa_prev = self.preprocessed_afa restrict_to_qry_script = "{}/{}".format(Config.SCRIPTS_PATH, Config.SCRIPTS['restrict_afa_to_query']) self.preprocessed_afa = "{}/alnmt_restricted_to_ref_seq.afa".format(self.work_path) cmd = "{} {} {} > {}".format(restrict_to_qry_script, afa_prev, self.ref_seq_name, self.preprocessed_afa) process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if process.returncode!=0: self.warn = "Problem restricting to reference sequence" self.preprocessed_afa = afa_prev # cleanup pdb and extract chain afa_prev = self.preprocessed_afa if self.original_structure_path: # (note that it will also produce file with the corresponding sequence) pdb_cleanup_script = "{}/{}".format(Config.SCRIPTS_PATH, Config.SCRIPTS['pdb_cleanup']) self.pdbseq = ".".join(self.original_structure_path.split("/")[-1].split(".")[:-1])+self.chain cmd = "{} {} {} {} {}".format(pdb_cleanup_script, self.original_structure_path, self.pdbseq, self.chain, self.work_path) process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if process.returncode!=0: self.original_structure_path = None self.warn = "Problem with the structure file" else: self.clean_structure_path = "{}/{}.pdb".format(self.work_path, self.pdbseq) # align pdbseq to the rest of the alignment mafft = Config.DEPENDENCIES['mafft'] self.preprocessed_afa = "{}/alnmt_w_pdb_seq.afa".format(self.work_path) cmd = "{} --add {} {} > {}".format(mafft, self.clean_structure_path.replace('.pdb', '.seq'), afa_prev, self.preprocessed_afa) process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if process.returncode!=0: self.preprocessed_afa = afa_prev self.warn = "Problem running mafft" self.original_structure_path = None return None self._write_cmd_file() return True def check_run_ok(self, process): if process.returncode != 0: self.errmsg = process.stdout.decode("utf-8").strip() self.errmsg += process.stderr.decode("utf-8").strip() self.run_ok = False return False if "Unrecognized amino acid code" in process.stdout.decode("utf-8"): self.errmsg = process.stdout.decode("utf-8") self.run_ok = False return False self.score_file = "{}/{}.score".format(self.work_path, self.specs_outname) return True def conservation_map(self): # extract the input for the java file specs_score_file = "{}/{}.score".format(self.work_path, self.specs_outname) inf = open(specs_score_file,"r") png_input_file = "{}/{}".format(self.work_path, self.png_input) outf = open(png_input_file,"w") resi_count = 0 for line in inf: fields = line.split() if '%' in fields[0] or '.' in fields[3]: continue outf.write(" ".join([fields[2], fields[3], fields[4]])+"\n") resi_count += 1 inf.close() outf.close() pngmaker = Config.LIBS['seqreport.jar'] png_root = 'conservation_map' for i in range(0,resi_count, self.illustration_range): seq_frm = i+1 seq_to = min(resi_count, i+self.illustration_range) out_fnm = "{}.{}_{}" .format(png_root, seq_frm, seq_to) cmd = f"java -jar {pngmaker} {png_input_file} {self.work_path}/{out_fnm} {seq_frm} {seq_to} " cmd += f" > {self.work_path}/seqreport.out 2>&1" process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if process.returncode==0: self.png_files.append(out_fnm+".png") return def excel_spreadsheet(self): output_name_root = "conservation_on_the_sequence" output_path = "{}/{}".format(self.work_path, output_name_root) # if we have the annotation, add the annotation # xls_script = "{}/{}".format(Config.SCRIPTS_PATH, Config.SCRIPTS['specs2xls']) # the basic input is the specs score file cmd = "{} {} {}".format(xls_script, self.score_file, output_path) process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if process.returncode==0: self.xls = "{}/{}.xls".format(self.workdir,output_name_root) return def pymol_script(self): pml_args = [self.original_structure_path, self.method, self.score_file, self.chain] ret = self.utils.pymol_script("cons", pml_args) if ret: [self.pml, self.pse_zip] = ret def directory_zip(self): curr = os.getcwd() os.chdir(Config.WORK_PATH) shellzip = Config.DEPENDENCIES['zip'] archive_name = "cube_workdir_{}.zip".format(self.job_id) cmd = "{} -r {} {} > /dev/null ".format(shellzip, archive_name, self.job_id) process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if process.returncode ==0: os.rename(archive_name, "{}/{}".format(self.work_path, archive_name)) self.workdir_zip = "{}/{}".format(self.workdir, archive_name) os.chdir(curr) return ################################################### def run(self): os.mkdir(self.work_path) ### from this point on we are in the workdir currpath = os.getcwd() os.chdir(self.work_path) ### prepare if not self.prepare_run(): return ### specs specs = Config.DEPENDENCIES['specs'] cmd = "{} {}/cmd ".format(specs, self.work_path) process = subprocess.run([cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) ### check specs finshed ok if not self.check_run_ok(process): return ### postprocess self.conservation_map() self.excel_spreadsheet() self.pymol_script() self.directory_zip() self.run_ok = True return
ivanamihalek/cube_server
cube/activities/conservation.py
conservation.py
py
8,595
python
en
code
0
github-code
50
10860308596
from AsyncDjangoApp.celery import app from App.models import Tasks from time import sleep import random @app.task(bind=True) def process(self, job_name=None): b = Tasks(task_id=self.request.id, job_name=job_name) b.save() self.update_state(state='Dispatching', meta={'progress': '33'}) sleep(random.randint(5, 10)) # pre-processing the dataset in machine learning pipeline,... self.update_state(state='Running', meta={'progress': '66'}) sleep(random.randint(5, 10)) # training the algorithm,... self.update_state(state='Finishing', meta={'progress': '100'}) sleep(random.randint(5, 10)) # reporting metrics, saving the model,...
mahdi-ghelichi/AsyncDjangoApp
App/tasks.py
tasks.py
py
671
python
en
code
7
github-code
50
17169184421
from collections import OrderedDict import json from .logger import Logger from .handlers import ConsoleHandler, JsonFileHandler json_serializer = json.dumps STR_FMT_DICT = dict( progress=' [{0: <20}]', metrics=' [{0: <28}]', default=' [{0: <10}]' ) def get_str_format(key): if key not in STR_FMT_DICT: key = 'default' return STR_FMT_DICT[key] class ConsoleFormatter: def __init__(self): pass def __call__(self, message): now = message['time'] log_str = '{}-{}'.format(now.strftime('%y/%m/%d'), now.strftime('%H:%M:%S')) for key in message: if key == 'time': continue _msg = message[key] if isinstance(_msg, dict): _msg_list = [f'{k}: {v}' for k, v in _msg.items()] _log_str = ' '.join(_msg_list) else: _log_str = f'{key}: {_msg}' log_str += get_str_format(key).format(_log_str) log_str += '\n' return log_str class JsonFormatter: def __init__(self): pass def __call__(self, message): _message = message.copy() now = _message['time'] _message['time'] = OrderedDict( timestamp=now.timestamp(), date=now.strftime('%y/%m/%d'), time=now.strftime('%H:%M:%S') ) log_str = "{}\n".format(json_serializer(_message)) return log_str class TrainingLogger(Logger): def __init__(self, log_name, handlers=[], **kwargs): handlers = [ ConsoleHandler(formatter=ConsoleFormatter()), JsonFileHandler( formatter=JsonFormatter(), filepath=log_name, flush_freq=10) ] super().__init__(handlers=handlers)
Deep-Spark/DeepSparkHub
cv/semantic_segmentation/unet3d/pytorch/ixpylogger/training_logger.py
training_logger.py
py
1,769
python
en
code
28
github-code
50
28333036923
# A* Search Algorithm # # let openList equal empty list of nodes # let closedList equal empty list of nodes # put startNode on the openList (leave it's f at zero) # while openList is not empty # let currentNode equal the node with the least f value # remove currentNode from the openList # add currentNode to the closedList # if currentNode is the goal # You've found the exit! # let children of the currentNode equal the adjacent nodes # for each child in the children # if child is in the closedList # continue to beginning of for loop # child.g = currentNode.g + distance b/w child and current # child.h = distance from child to end # child.f = child.g + child.h # if child.position is in the openList's nodes positions # if child.g is higher than the openList node's g # continue to beginning of for loop # add the child to the openList class Graph: def __init__(self, adjacency_list): self.adjacency_list = adjacency_list def get_neighbors(self, v): return self.adjacency_list[v] # heuristic function with distances from the current node to the goal node def h(self, n): H = { 'A': 11, 'B': 6, 'C': 99, 'D': 1, 'E': 7, 'G': 0 } return H[n] def a_star_algorithm(self, start_node, stop_node): # open_list is a list of nodes which have been visited, but who's neighbors # haven't all been inspected, starts off with the start node # closed_list is a list of nodes which have been visited # and who's neighbors have been inspected open_list = set([start_node]) closed_list = set([]) # g contains current distances from start_node to all other nodes # the default value (if it's not found in the map) is +infinity g = {} g[start_node] = 0 # parents contains an adjacency map of all nodes parents = {} parents[start_node] = start_node while len(open_list) > 0: n = None # find a node with the lowest value of f() - evaluation function for v in open_list: if n == None or g[v] + self.h(v) < g[n] + self.h(n): n = v; if n == None: print('Path does not exist!') return None # if the current node is the stop_node # then we begin reconstructin the path from it to the start_node if n == stop_node: reconst_path = [] while parents[n] != n: reconst_path.append(n) n = parents[n] reconst_path.append(start_node) reconst_path.reverse() print('Path found: {}'.format(reconst_path)) return reconst_path # for all neighbors of the current node do for (m, weight) in self.get_neighbors(n): # if the current node isn't in both open_list and closed_list # add it to open_list and note n as it's parent if m not in open_list and m not in closed_list: open_list.add(m) parents[m] = n g[m] = g[n] + weight # otherwise, check if it's quicker to first visit n, then m # and if it is, update parent data and g data # and if the node was in the closed_list, move it to open_list else: if g[m] > g[n] + weight: g[m] = g[n] + weight parents[m] = n if m in closed_list: closed_list.remove(m) open_list.add(m) # remove n from the open_list, and add it to closed_list # because all of his neighbors were inspected open_list.remove(n) closed_list.add(n) print('Path does not exist!') return None adjac_lis = { 'A': [('B', 2), ('E', 3)], 'B': [('C', 1), ('G', 9)], 'C': None, 'D': [('G', 1)], 'E': [('D', 6)] } graph = Graph(adjac_lis) graph.a_star_algorithm('A', 'G')
PROxZIMA/Academic-Codes
Semester 6/LP2/A2/A2.py
A2.py
py
4,343
python
en
code
47
github-code
50
886111389
import os import subprocess import math import random as rd import numpy as np import automated_compiling as autcom NbDim = 8 # 5 elts in a solution (n1,n2,n3,nb_t,nb_it,tblk1,tblk2,tblk3) (opt and simdType not used yet) size = 256 lmin = [32, 32, 32, 1, 100, 16, 16, 16] lmax = [272, 272, 272, 8, 100, 80, 80, 80] def rand_multiple(fac, a, b): """Returns a random multiple of fac between a and b.""" min_multi = math.ceil(float(a) / fac) max_multi = math.floor(float(b) / fac) return fac * rd.randint(min_multi, max_multi) def generateS0(): # rd.seed(Me+1000*(1+SeedInc)) S0 = np.empty(NbDim,dtype=np.int) for i in range(NbDim): if(i == 0 or i == 5 or i == 6 or i == 7 ): S0[i] = rand_multiple(16, lmin[i], lmax[i]+1) elif (i == 4): S0[i] = 100 else: S0[i] = rd.randrange(lmin[i],lmax[i]+1,1) return(S0) def Neighborhood(S, param_indices): LNgbh = [] for i in param_indices: S1 = S.copy() if(i == 0 or i == 5 or i == 6 or i == 7): S1[i] += 16 if S1[i] <= lmax[i]: LNgbh.append(S1) S2 = S.copy() if(i == 0 or i == 5 or i == 6 or i == 7): S1[i] -= 16 if S2[i] >= lmin[i]: LNgbh.append(S2) return LNgbh def HillClimbing(S0,IterMax,param_list,cost_type): #T0, la, ltl unused in HC #SO: initial solution #IterMax: max nb of iteration #T0: initial temperature for "simulated annealing" #la: T = T*la: temperature evolution law for "simulated annealing" #ltl: length of Tabu list for "Tabu List" method #simIdx: version of the simulator (cost function) Sb = S0 eb = autcom.Cost(Sb, cost_type = "flops") iter = 0 #local search S = Sb LNgbh = Neighborhood(S, param_list) LNgbh = Neighborhood(S, param_list) while iter < IterMax and len(LNgbh): #BetterSolFound: k = rd.randrange(len(LNgbh)) Sk = LNgbh.pop(k) ek = autcom.Cost(Sb, cost_type = "flops") if ek < eb: Sb = Sk eb = ek LNgbh = Neighborhood(Sb, param_list) iter += 1 #return best Energy, best Solution, and nb of iter return eb,Sb,iter
MarcelKondo/Proj-intel-repo
mpi_HillClimbing.py
mpi_HillClimbing.py
py
2,327
python
en
code
1
github-code
50
20397466874
import os import json import datetime as dt import logging import pika import psycopg2 from sqlalchemy import create_engine from sqlalchemy import Column, String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from database import DataBaseConnection logging.basicConfig(filename=__name__, filemode='a', format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s \n\n', datefmt='%H:%M:%S', level=logging.DEBUG) class MqItemConsumer(): def __init__(self, *args, **kwargs): try: self.amqp_url = kwargs['AMQP_URL'] self.routing_key = kwargs['ROUTING_KEY'] except KeyError as ke: logging.exception(f'Exception in MqItemComsumer Initialization:\n {ke}') self.db_connection = DataBaseConnection(**kwargs) self.db_connection.connect() mq_connection = None mq_channel = None def callback(self, channel, method, properties, body): decoded_body = json.loads(body.decode('UTF-8')) logging.info(f'inserted data:::::::::\n {decoded_body}') self.db_connection.write_to_database(decoded_body) def connect_consume(self): try: self.mq_connection = pika.BlockingConnection( pika.ConnectionParameters(host=self.amqp_url)) except pika.exceptions.AMQPConnectionError as error: logging.exception(f'error in connection::::: {error}') if self.mq_connection.is_open: self.mq_channel = self.mq_connection.channel() self.mq_channel.queue_declare(queue=self.routing_key, durable=True) self.mq_channel.basic_consume(queue=self.routing_key, on_message_callback=self.callback, auto_ack=True,) try: self.mq_channel.start_consuming() except KeyboardInterrupt: self.mq_channel.stop_consuming() self.stop() def stop(self): self.mq_channel.close() self.mq_connection.close() self.db_connection.close()
WolfusFlow/Virtual_data_generator
orchestrator/MqItemConsumer.py
MqItemConsumer.py
py
2,275
python
en
code
0
github-code
50
23334016212
#!/usr/bin/python3 import xml.etree.ElementTree import argparse import sys import os.path import pprint import logging def process_cmdline(): parser = argparse.ArgumentParser() parser.add_argument('-f', '--fsroot', help='fsroot that was given to dar create') parser.add_argument('files', metavar='FILE', nargs='*', help='files to read, if empty, stdin is used') defaults = { 'fsroot': '__FSROOT__' } parser.set_defaults( **defaults ) return parser.parse_args() def read_xml( args ): xtree = None if len( args.files ) > 0: xtree = xml.etree.ElementTree.parse( args.files[0] ) else: xtree = xml.etree.ElementTree.parse( sys.stdin ) return xtree def xml2filenames( path, elem ): logging.debug( 'Enter: path={}, {}'.format( path, pprint.pformat( elem ) ) ) for child in elem: logging.debug( 'Processing: {}'.format( pprint.pformat( child ) ) ) if child.tag in ( 'Catalog', 'Attributes' ): continue newpath = os.path.join( path, child.attrib[ 'name' ] ) if child.tag == 'Directory': xml2filenames( newpath, child ) elif child.tag in ( 'File', 'Symlink', 'Socket', 'Pipe' ): print( newpath ) else: raise UserWarning( "Unknown Element tag '{}'".format( child.tag ) ) def run(): args = process_cmdline() xtree = read_xml( args ) root = xtree.getroot() xml2filenames( args.fsroot, root ) if __name__ == '__main__': # logging.basicConfig( level=logging.DEBUG ) logging.basicConfig( level=logging.WARNING ) run()
ncsa/pdbkup
bin/dar_parse_xml.py
dar_parse_xml.py
py
1,598
python
en
code
0
github-code
50
38131098194
# this is to keep mypy happy from .pyrosetta_import import pyrosetta import warnings from typing import List, Tuple class _IgorBase: def __init__(self): warnings.warn('Virtual only method: THIS METHOD SHOULD NOT BE RUN. CALL `Igor`', category=SyntaxWarning) self.pose = pyrosetta.Pose() self.constraint_file = '' self.ligand_residue: List[int] = [] self.key_residues: List[int] = [] self.atom_pair_constraint = 10 self.angle_constraint = 10 self.coordinate_constraint = 1 self.fa_intra_rep = 0.005 # default def _vector2residues(self, vector: pyrosetta.Vector1) -> List[int]: """ This method is for machines. See ``residues_in_vector`` instead. """ return [i + 1 for i, v in enumerate(vector) if v == 1]
matteoferla/Fragmenstein
fragmenstein/igor/_igor_base.py
_igor_base.py
py
817
python
en
code
132
github-code
50
1745617578
# -*- coding: utf-8 -*- """ Created on Wed Mar 30 17:36:17 2022 @author: noemie """ import xarray as xr import numpy as np #import pandas as pd import os import random #import pyproj as proj from sklearn.decomposition import PCA import copy as cp from sklearn.decomposition import KernelPCA from sklearn.preprocessing import normalize from sklearn.model_selection import KFold from sklearn.metrics.pairwise import cosine_similarity, linear_kernel from sklearn import cluster import wpca def remove_short(ds): l = [len(ds.sel(traj=i).dropna(dim='obs').obs) for i in ds.traj] keep = np.array([i for i in range(len(l)) if l[i] > 90]) # more than 3 months ds2 = ds.sel(traj=xr.DataArray(keep)).rename_dims({'dim_0':'traj'}) return ds2 def get_traj_sub(year_init, year_final, delta_year, files, length_days): dslist = [] for yr in range(year_init,year_final+1,delta_year): print(yr) filesS = files[np.where(np.array([int(files[i][-7:-3]) for i in range(len(files))]) == yr)[0][0]] dsl = xr.open_dataset(filesS) dsl = remove_short(dsl) # remove short trajectories -- to avoid memory errors dsl = dsl.sel(obs = np.arange(length_days+366)) dslist.append(dsl) ds = xr.concat(dslist, dim='traj') return ds def random_sample(N_particles, ds): random.seed(4) sample = random.sample(list(ds.traj.values), k=N_particles) ds_samp = ds.sel(traj=xr.DataArray(sample)).rename_dims({'dim_0':'traj'}) # select the random particles return ds_samp def Part_0_make_subset(Dataset_path, init_year,final_year, delta_year, files, length_days, N_particles): ds = get_traj_sub(init_year, final_year, delta_year, files, length_days) ds_samp = random_sample(N_particles, ds) ds_samp.to_netcdf(Dataset_path) return None def lons_in_interval(start_lon, lons): #this should shift all longitudes so it lies in start_lon + 360. if start_lon<0 : print('start_lons should be in [0-360[') return None else: lons_shifted = lons while np.any(lons_shifted<0): lons_shifted[lons_shifted<0] = lons_shifted[lons_shifted<0]+360 lons_2 = cp.copy(lons_shifted) lons_2[lons_shifted>=start_lon] = lons_shifted[lons_shifted>=start_lon] - start_lon lons_2[lons_shifted<start_lon] = lons_shifted[lons_shifted<start_lon] - start_lon +360 return cp.copy(lons_2) def extract(path, length_days, start_lon) : ds = xr.open_dataset(path) ds = remove_short(ds) lats = ds.lat[:,0:length_days].values lons_i = ds.lon[:,0:length_days].values lons = lons_in_interval(start_lon, lons_i) temps = ds.temperature[:,0:length_days].values sal = ds.salinity[:,0:length_days].values date = ds.time[:,0].values return lats, lons, temps, sal, date def extract_all_per_year(yr, length_days, all_filles, start_lon) : file = all_filles[np.where(np.array([int(all_filles[i][-7:-3]) for i in range(len(all_filles))]) == yr)[0][0]] lats, lons, temps, sal, date = extract(file, length_days, start_lon) return lats, lons, temps, sal, date def translate(lat, lon): return lat-np.repeat(lat[:,0][:, np.newaxis], lat.shape[1], axis=1), lon-np.repeat(lon[:,0][:, np.newaxis], lon.shape[1], axis=1) def resample(lats, lons, length_days): lats_resamp = np.zeros(lats.shape) lons_resamp = np.zeros(lats.shape) for i in range(lats.shape[0]): latsl = lats[i,:]#lats_proj ? latsl = latsl[~np.isnan(latsl)] xp = np.linspace(0,len(latsl),length_days) lats_resamp[i,:] = np.interp(xp, range(len(latsl)), latsl) lonsl = lons[i,:] #lons_proj ? lonsl = lonsl[~np.isnan(lonsl)] lons_resamp[i,:] = np.interp(xp, range(len(lonsl)), lonsl) return lats_resamp, lons_resamp def weightPCA(lats, wtype): if wtype == 'cos' : w = np.cos( np.radians(lats) ) elif wtype == 'sqrt-cos' : w = np.sqrt(abs(np.cos( np.radians(lats) ))) elif wtype == False: w = np.ones(lats.shape) return w def PCA_Kernelized(Xlat_lon, n_components, copy, whiten, svd_solver, w, kernel, degreek): # weight PCA s = int(Xlat_lon.shape[1]/2) Xlat_lon[:,s:] = Xlat_lon[:,s:]*w pca = PCA(n_components=n_components, copy=copy, whiten=whiten, svd_solver = svd_solver) X_reduced = pca.fit_transform(Xlat_lon) N_features_PCA = pca.n_features_ N_samples_PCA = pca.n_samples_ N_components_PCA = pca.n_components_ Explained_variance_ratio_PCA = pca.explained_variance_ratio_ print('The number of initial features was: ', N_features_PCA) print('The number of selected features is: ', N_components_PCA) print('The number of samples is: ', N_samples_PCA) print('The explained variance desired is:', n_components, '%, the obtained variance explained is: ', np.sum(Explained_variance_ratio_PCA), '%') pca = KernelPCA(n_components=N_components_PCA, copy_X=copy, eigen_solver=svd_solver, kernel=kernel, degree=degreek, fit_inverse_transform=True) X_reduced = pca.fit_transform(Xlat_lon) return X_reduced, pca def Part_1_pre_processing_one_sort(t, la, lo, resamp, length_days, wtype, norm): if t == True : lats_train_pp, lons_train_pp = translate(la, lo) if resamp == True: lats_train_pp, lons_train_pp = resample(lats_train_pp, lons_train_pp, length_days) w = weightPCA(lats_train_pp, wtype) # Reshape X_lats_lons_train = np.concatenate((lats_train_pp, lons_train_pp), axis = 1) #concatenation of features to make it in the correct shape if resamp == False: X_lats_lons_train[np.isnan(X_lats_lons_train)] = 0 w[np.isnan(w)]=0 # Normalize if norm == True: X_lats_lons_train = normalize(X_lats_lons_train, copy=True) return w, X_lats_lons_train def Part_1_pre_processing(Dataset_path, length_days, perctest, perctrain, norm, t, resamp,wtype, start_lon): lats_all,lons_all, temps_all, sals_all, date_all = extract(Dataset_path, length_days, start_lon) lats_test, lons_test, lats_train, lons_train, lats_valid, lons_valid, temps_train, temps_test, temps_valid, sals_train, sals_test, sals_valid = split_sets(lats_all, lons_all,temps_all, sals_all, perctest, perctrain) print('Pre_processing') # PRE-PROCESSING w_train, X_lats_lons_train = Part_1_pre_processing_one_sort(t, lats_train, lons_train, resamp, length_days, wtype, norm) w_test, X_lats_lons_test = Part_1_pre_processing_one_sort(t, lats_test, lons_test, resamp, length_days, wtype, norm) w_valid, X_lats_lons_valid = Part_1_pre_processing_one_sort(t, lats_valid, lons_valid, resamp, length_days, wtype, norm) # weights, for train it's applied in PCA - kernel s = int(X_lats_lons_valid.shape[1]/2) X_lats_lons_valid[:,s:] = X_lats_lons_valid[:,s:]*w_valid s = int(X_lats_lons_test.shape[1]/2) X_lats_lons_test[:,s:] = X_lats_lons_test[:,s:]*w_test return X_lats_lons_valid, X_lats_lons_test, X_lats_lons_train, w_train, w_valid, w_test def Part_2_PCA(path_save_PCA, name_PCA_config, X_lats_lons_valid, X_lats_lons_test, X_lats_lons_train, w_train, n_components, copy, whiten, svd_solver, kernel, degreek): X_reduced_train, pca= PCA_Kernelized(X_lats_lons_train, n_components, copy, whiten, svd_solver, w_train, kernel, degreek) X_reduced_valid = pca.transform(X_lats_lons_valid) X_reduced_test = pca.transform(X_lats_lons_test) a = pca.alphas_ l = pca.lambdas_ dc = pca.dual_coef_ Save_PCA(path_save_PCA, name_PCA_config,X_reduced_train, X_reduced_valid, X_reduced_test, a, l, dc ) return None def k_means_X_cv(n_splits, X_reduced, n_clusters, init, nmb_initialisations, max_iter, tol, algorithm, verbose, sample_weight): kf = KFold(n_splits=n_splits, shuffle=True) avg_silouhette = 0 i = 0 for train_index, val_index in kf.split(X_reduced): print('fold nmb ', i) i+=1 X_train = X_reduced[train_index,:] k_means = cluster.KMeans(n_clusters=n_clusters, init=init, n_init = nmb_initialisations, max_iter = max_iter, tol = tol, algorithm = algorithm, verbose = verbose) k_means.fit(X_train, sample_weight = sample_weight) X_centers = k_means.cluster_centers_ a_temp = k_means.inertia_ #a_temp = silhouette_score(X_val, labs_val) if a_temp>avg_silouhette: X_centered_memory = X_centers k_means_memory = k_means avg_silouhette = a_temp return X_centered_memory, k_means_memory, a_temp def get_number_centroids(X_centers_train, X_reduced_train): N_clusters = X_centers_train.shape[0] Liste_number= np.zeros(N_clusters) for n in range(N_clusters): RV = X_centers_train[n]-X_reduced_train[:,:] N_RV = np.linalg.norm(RV, axis = 1) Liste_number[n] = np.argmin(N_RV) return Liste_number def split_sets(lats_all, lons_all, temps_all, sals_all, perctest, perctrain): s0, s1 = lats_all.shape data = np.concatenate((lats_all,lons_all), axis=1) random.seed(4) random.shuffle(data) random.seed(4) random.shuffle(temps_all) random.seed(4) random.shuffle(sals_all) lats_test = data[:int(perctest*s0), 0:s1] lons_test = data[:int(perctest*s0), s1:] lats_train = data[int(perctest*s0):int(perctest*s0)+int(perctrain*s0), 0:s1] lons_train = data[int(perctest*s0):int(perctest*s0)+int(perctrain*s0), s1:] lats_valid = data[int(perctest*s0)+int(perctrain*s0):, 0:s1] lons_valid = data[int(perctest*s0)+int(perctrain*s0):, s1:] temps_test = temps_all[:int(perctest*s0),:] sals_test = sals_all[:int(perctest*s0),:] temps_train =temps_all[int(perctest*s0):int(perctest*s0)+int(perctrain*s0),:] sals_train = sals_all[int(perctest*s0):int(perctest*s0)+int(perctrain*s0),:] temps_valid = temps_all[int(perctest*s0)+int(perctrain*s0):,:] sals_valid = sals_all[int(perctest*s0)+int(perctrain*s0):,:] return lats_test, lons_test, lats_train, lons_train, lats_valid, lons_valid, temps_train, temps_test, temps_valid, sals_train, sals_test, sals_valid def predict(X_reduced_val, X_centers): X_reduced_val2 = np.repeat(X_reduced_val[:,:,np.newaxis], X_centers.shape[0], axis = 2) X_centers2 = np.repeat(np.transpose(X_centers)[np.newaxis,:,:], X_reduced_val.shape[0], axis = 0) return np.argmin(np.linalg.norm(X_reduced_val2-X_centers2, axis=1), axis = 1) def Save_PCA(path_save_PCA,name_PCA_config, X_reduced_train, X_reduced_valid, X_reduced_test, a, l, dc ): np.savetxt(path_save_PCA+'/X_train_kernelpca_%s.csv'%name_PCA_config, X_reduced_train, delimiter=',') np.savetxt(path_save_PCA+'/X_valid_kernelpca_%s.csv'%name_PCA_config, X_reduced_valid, delimiter=',') np.savetxt(path_save_PCA+'/X_test_kernelpca_%s.csv'%name_PCA_config, X_reduced_test, delimiter=',') np.savetxt(path_save_PCA+'/alphas_kernelpca_%s.csv'%name_PCA_config, a, delimiter=',') np.savetxt(path_save_PCA+'/lambdas_kernelpca_%s.csv'%name_PCA_config, l, delimiter=',') np.savetxt(path_save_PCA+'/dualcoef_kernelpca_%s.csv'%name_PCA_config, dc, delimiter=',') def Part_2_Load_PCA(name_kernel_pca, path_kernelpca) : X_reduced_train = np.genfromtxt(path_kernelpca+'X_train_kernelpca_'+name_kernel_pca+'.csv', delimiter=',') X_reduced_valid = np.genfromtxt(path_kernelpca+'X_valid_kernelpca_'+name_kernel_pca+'.csv', delimiter=',') X_reduced_test = np.genfromtxt(path_kernelpca+'X_test_kernelpca_'+name_kernel_pca+'.csv', delimiter=',') return X_reduced_train, X_reduced_valid, X_reduced_test def Part_3_kmeans_clustering(name_PCA_config, path_save_PCA, n_split, n_clusters, init, nmb_initialisations, max_iter, tol, algorithm, verbose, sample_weight, ntest, path_save_clustering): X_reduced_train, X_reduced_valid, X_reduced_test = Part_2_Load_PCA(name_PCA_config, path_save_PCA) # K-MEANS CLUSTERING print('Kmeans') X_centers_train, k_means_model, a_temp = k_means_X_cv(n_split, X_reduced_train, n_clusters, init, nmb_initialisations, max_iter, tol, algorithm, verbose, sample_weight) labels_valid = predict(X_reduced_valid, X_centers_train) labels_test = predict(X_reduced_test, X_centers_train) print('Get Centroids') centroids = get_number_centroids(X_centers_train, X_reduced_train) Part_3_save_clustering(ntest, path_save_clustering, labels_valid, labels_test, X_reduced_valid, X_reduced_test, centroids, a_temp,X_centers_train) return None def Part_3_save_clustering(ntest, path_save_clustering, labels_valid, labels_test, X_reduced_valid, X_reduced_test, centroids, a_temp,X_centers_train): os.makedirs(path_save_clustering) np.save(path_save_clustering+'centroids'+ntest, centroids) np.save(path_save_clustering+'X_centers_train'+ntest, X_centers_train) np.save(path_save_clustering+'labels_test'+ntest, labels_test) np.save(path_save_clustering+'X_reduced_test'+ntest, X_reduced_test) np.save(path_save_clustering+'labels_valid'+ntest, labels_valid) np.save(path_save_clustering+'X_reduced_valid'+ntest, X_reduced_valid) return None def Part_4_prediction(X_lats_lons, X_lats_lons_train, Alphas,lambdas, X_centers_train, kernel) : if kernel == 'cosine': Kernel_matrix = cosine_similarity(X_lats_lons, X_lats_lons_train) elif kernel == 'linear': Kernel_matrix = linear_kernel(X_lats_lons, X_lats_lons_train) else: print('Houston, issue here ! ') Alphas_scaled = Alphas/np.sqrt(lambdas) X_reduced = np.matmul(Kernel_matrix, Alphas_scaled) labels = predict(X_reduced, X_centers_train) return labels, X_reduced def run_script_prediction(name, norm, t, resamp, length_days, wtype, lats, lons, lats_train, lons_train, path_save, name_kernel_pca, X_centers_train, path_kernelpca, kernel) : w, X_lats_lons = Part_1_pre_processing_one_sort(t, lats, lons, resamp, length_days, wtype, norm) w_train, X_lats_lons_train = Part_1_pre_processing_one_sort(t, lats_train, lons_train, resamp, length_days, wtype, norm) s = int(X_lats_lons.shape[1]/2) X_lats_lons[:,s:] = X_lats_lons[:,s:]*w s = int(X_lats_lons_train.shape[1]/2) X_lats_lons_train[:,s:] = X_lats_lons_train[:,s:]*w_train Alphas = np.genfromtxt(path_kernelpca+'alphas_kernelpca_'+name_kernel_pca+'.csv', delimiter=',') Lambdas = np.genfromtxt(path_kernelpca+'lambda_kernelpca_'+name_kernel_pca+'.csv', delimiter=',') return Part_4_prediction(X_lats_lons, X_lats_lons_train, Alphas, Lambdas, X_centers_train, kernel) def apply_to_all_data(path_save_clustering, ntest, init_year,final_year, length_days, files, start_lon, norm, t, resamp,wtype, name_PCA_config, path_save_PCA, Dataset_path, perctest, perctrain, kernel): centroids, labels_test, labels_valid, lats_test, lats_valid, lons_test, lons_valid, lons_train, lats_train, \ X_reduced_test, X_Reduced_valid, temps_test, temps_train, temps_valid, sals_test, sals_train, sals_valid, X_centers_train = load_data_test_train_valid(path_save_clustering, ntest, Dataset_path, length_days, perctest, perctrain, start_lon) for yr in range(init_year,final_year): print('Year', yr) lats_all,lons_all, temps_all, sals_all, date_all = extract_all_per_year(yr, length_days, files, start_lon) labels_all = [] for sep in range(0,lats_all.shape[0],500) : print(sep,'/',lats_all.shape[0]) lats_all_l = lats_all[sep:sep+500,:] ; lons_all_l = lons_all[sep:sep+500,:] labels, X_reduced = run_script_prediction(ntest, norm, t, resamp, length_days, wtype, lats_all_l, lons_all_l, lats_train, lons_train, path_save_clustering, name_PCA_config, X_centers_train, path_save_PCA, kernel) labels_all.extend(labels) np.save(path_save_clustering+'ClassifiedData/'+'labels_data_%i'%yr, labels_all) return None def load_data_test_train_valid(path_save_clustering, ntest, Dataset_path, length_days, perctest, perctrain, start_lon): lats_all,lons_all, temps_all, sals_all, date_all = extract(Dataset_path, length_days, start_lon) lats_test, lons_test, lats_train, lons_train, lats_valid, lons_valid, temps_train, temps_test, temps_valid, sals_train, sals_test, sals_valid = split_sets(lats_all, lons_all,temps_all, sals_all, perctest, perctrain) CENTROID = np.load(path_save_clustering+'centroids'+ntest+'.npy', allow_pickle = True) LABELS_TEST = np.load(path_save_clustering+'labels_test'+ntest+'.npy', allow_pickle = True) X_REDUCED_TEST = np.load(path_save_clustering+'X_reduced_test'+ntest+'.npy', allow_pickle = True) LABELS_VALID = np.load(path_save_clustering+'labels_valid'+ntest+'.npy', allow_pickle = True) X_REDUCED_VALID = np.load(path_save_clustering+'X_reduced_valid'+ntest+'.npy', allow_pickle = True) X_centers_train = np.load(path_save_clustering+'X_centers_train'+ntest+'.npy', allow_pickle = True) return CENTROID, LABELS_TEST, LABELS_VALID, lats_test, lats_valid, lons_test, lons_valid, lons_train, lats_train, \ X_REDUCED_TEST, X_REDUCED_VALID, temps_test, temps_train, temps_valid, sals_test, sals_train, sals_valid, X_centers_train def load_data_year(path_save_clustering, yr, length_days, files, start_lon): labels = np.load(path_save_clustering+'ClassifiedData/'+'labels_data_%i'%yr +'.npy', allow_pickle = True) lats_all,lons_all, temps_all, sals_all, date_all = extract_all_per_year(yr, length_days, files, start_lon) return lats_all, lons_all, temps_all, sals_all, date_all, labels def get_labels_time_series(path_save_clustering, init_year,final_year, n_clusters, length_days, files, start_lon): Dates_all = []; Perc_labels_all = []; for yr in range(init_year,final_year): print('Year', yr) lats_all, lons_all, temps_all, sals_all, time_data, labels_data = load_data_year(path_save_clustering, yr, length_days, files, start_lon) Date_data = np.unique(time_data) Dates_all.extend(Date_data) Perc_labels = np.zeros((len(Date_data), n_clusters)) for i in range(len(Date_data)): d0 = np.where(Date_data[i] ==time_data)[0] for di in d0: Perc_labels[i,labels_data[di]] +=1 Perc_labels[i,:] =100*Perc_labels[i,:]/len(d0) Perc_labels_all.extend(Perc_labels) Perc_labels_all = np.array(Perc_labels_all) return Dates_all, Perc_labels_all
noemieplanat/Clustering_Lagrangian_particles
Scripts/All_functions_ML.py
All_functions_ML.py
py
18,619
python
en
code
0
github-code
50
25193341516
# Creating a dictionary of 20 countries Countries = dict({'1': 'Argentina', '2': 'Australia', '3': 'Brazil', '4': 'Colombia', '5': 'Egypt', '6': 'France', '7': 'Germany', '8': 'Greece', '9': 'Hong Kong', '10': 'Kiribati', '11': 'Lesotho', '12': 'Madagascar', '13': 'Mexico', '14': 'Nepal', '15': 'New Zealand', '16': 'Nigeria', '17': 'Philippines', '18': 'Portugal', '19': 'United Arab Emirates', '20': 'United Kingdom'}) # To manage the different possible output formats of the file # serialization and deserialization options are defined serialization_option = "XML" serialization_option = "JSON" serialization_option = "BINARY" deserialization_option = "XML" deserialization_option = "JSON" deserialization_option = "BINARY" # Server and port addresses are indicated server_address = 'localhost' port_number = 9999 # To generate the encryption token for encrypting and decrypting the operation from cryptography.fernet import Fernet key = Fernet.generate_key()
CT673/End-of-Module-Assignment
Config.py
Config.py
py
1,313
python
en
code
0
github-code
50
3120828974
from jupyter_client.manager import start_new_kernel import thebe.core.file as File import thebe.core.constants as Constant import thebe.core.output as output import thebe.core.logger as Logger import thebe.core.database as Database import thebe.core.html as Html from pygments import highlight from pygments.lexers import BashLexer, PythonLexer, MarkdownLexer from pygments.formatters import HtmlFormatter import pypandoc, time, sys, datetime, glob, re, sys, time, os, copy, logging, threading, queue, json class jupyter_client_wrapper: def __init__(self, fileName): # Setting up self.loggers self.lUpdate = Logger.getLogger('update.log', 'update') self.logger = Logger.getLogger('main.log', 'main') self.mess_logger = Logger.getLogger('mess.log', 'mess') self.status_logger = Logger.getLogger('status.log', 'status') self.execute_logger = Logger.getLogger('execute.log', 'execute') self.kernel_manager, self.jupyter_client = start_new_kernel() # Determine what kind of file working with self.fileLocation, is_ipynb = File.setup(fileName) # Initialize some variables # self.isActive = False self.executionThread = None self.Cells = [] self.executions = 0 # Initialize local and global scope for old # execution engine self.LocalScope = {} self.GlobalScope = {} ''' ------------------------------- Setter functions ------------------------------- ''' def setSocket(self, socketio): self.socketio = socketio ''' ------------------------------- Execution pre-preprocessing ------------------------------- ''' def execute(self, update = 'changed'): #self.Cells = Database.getCells(self.fileLocation) if self._isActive(): self.socketio.emit('flash') else: if update == 'changed': self._execute_changed() elif update == 'all': self._execute_all() elif update == 'connected': self._execute_connected() elif type(update) == list: self._execute_cell(update) else: pass time.sleep(.5) ''' ------------------------------- Execution pre-preprocessing - Helpers ------------------------------- ''' def _execute_cell(self, index): # self.isActive = True self._execute(update = index) # self.isActive = False def _execute_changed(self): if self._isModified(): self.status_logger.info('Execute changed...') # self.isActive = True self._execute(update = 'changed') # self.isActive = False self.status_logger.info('Finished...') def _execute_all(self): self.status_logger.info('Execute all...') # self.isActive = True self.Cells = [] self._execute(update = 'all') # self.isActive = False self.status_logger.info('Finished...') def _execute_connected(self): if not self.Cells: self.status_logger.info('Execute connected...') # self.isActive = True self._execute(update = 'connected') # self.isActive = False time.sleep(2) else: self.socketio.emit('show all', self._convert()) def _restart_kernel(self): self.status_logger.info('Restarting kernel...') kernel_manager.restart_kernel() while True: try: io_msg_content = self.jupyter_client.get_iopub_msg(timeout=3)['content'] time.sleep(.01) except queue.Empty: break def _isModified(self, x=.3): ''' Return true if the target file has been modified in the past x amount of time ''' lastModified=os.path.getmtime(self.fileLocation) timeSinceModified=int(time.time()-lastModified) if timeSinceModified<=x: return True else: return False ''' ------------------------------- Execution - Main - Helpers ------------------------------- ''' def _execute(self, update = 'changed'): ''' Execute cells based on 'update' value ''' self.status_logger.info('Updating...') self._update(self._getFileContent(), update) self.status_logger.info('Showing...') self.socketio.emit('show all', self._convert()) ''' ''' self.status_logger.info('Executing...') self.executionThread = threading.Thread(target = self._executeThread) self.executionThread.daemon = True self.executionThread.start() def _update(self, fileContent, update): ''' Update the 'Cells' variable with new data from the Thebe file ''' # 'cells' is for the new cells cells = [] # Ignore code that comes before the first delimiter ignoreFirst = self._ignoreFirst(fileContent) self.lUpdate.info('---------------') self.lUpdate.info('ignoreFirst: %s'%(ignoreFirst,)) # True cell count, used because sourceCount # can be unreliable cellCount = 0 for sourceCount, source in enumerate(fileContent.split(Constant.CellDelimiter)): self.lUpdate.info('---------------') self.lUpdate.info('Cell count: %s'%(cellCount,)) # Ignore the first source if a cell delimiter # does not preceed it if ignoreFirst: ignoreFirst = False continue #Split source by line source = source.splitlines(True) self.lUpdate.info('Source length: %s'%(len(source),)) if self._validSource(source): # Get copy of cell initially populated cell = copy.deepcopy(Constant.Cell) cell = self._setMarkdown(source, cell) self.lUpdate.info('Changed: %s'%(cell['changed'],)) # Handle front end buttons if update == 'all': cell = self._setChanged(source, cell, force_change = True) elif type(update) == list and cellCount in update: cell = self._setChanged(source, cell, force_change = True) else: cell = self._setChanged(source, cell) self.lUpdate.info('Changed: %s'%(cell['changed'],)) # Set execution counter if it exists previously try: cell['execution_count'] = self.Cells[cellCount]['execution_count'] except IndexError: pass cells.append(cell) cellCount += 1 self.Cells = cells self.status_logger.info('Changed cells: %s'%([x['changed'] for x in self.Cells],)) def _executeThread(self): ''' Run the newly changed cells and return their output. ''' self.status_logger.info('Inside execute thread...') self.Cells = self._runNewCells() self.executions += 1 ''' Update the database with the fresh code. And outputs. ''' # Database.update(self.fileLocation, self.Cells, GlobalScope, LocalScope, executions) self._updateIpynb() self.status_logger.info('Execution thread finished...') ''' ------------------------------- Actual execution ------------------------------- ''' def _runNewCells(self): ''' Run each changed cell, returning the output. ''' # Append cells containing updated output to this newCells = [] # Toggle to true when the users code produces an # error so code execution can stop kill = False for cellCount, cell in enumerate(self.Cells): # Run changed code if it is not markdown # and no prior cell has triggered an error if cell['changed']: self.socketio.emit('message', 'Running cell #%s...'%(cellCount)) self.socketio.emit('loading', cellCount) cell['changed'] = False if cell['cell_type'] != 'markdown' and not kill: self.logger.info('\n------------------------\nRunning cell #%s\nIn directory: %s\nWith code:\n%s\n-------------------------------'%(cellCount, os.getcwd(), cell['source'])) # Execute the code from the cell, stream # outputs using socketio, and return output outputs = self._jExecute(cell['source']) # Prevent subsequent execution of code # if in error was found if self._hasError(outputs): kill = True # Add output data to cell cell['outputs'] = outputs # How does ipython do this? cell['execution_count'] = cell['execution_count'] + 1 # Append run cell the new cell list newCells.append(cell) # Stop the front end loading self.socketio.emit('stop loading') self.status_logger.info('End of runAllCells...') return newCells def _jExecute(self, code): ''' ''' self.status_logger.info('Inside jExecute thread...') code = ''.join(code) # Execute the code msg_id = self.jupyter_client.execute(code) # Get the execution status # When the execution state is "idle" it is complete t = True try: io_msg_content = self.jupyter_client.get_iopub_msg(timeout=1)['content'] except queue.Empty: t = False self.status_logger.info('After first message in jExecute...') # Initialize the temp variable temp = {} # Initialize outputs outputs = [] # Continue polling for execution to complete # which is indicated by having an execution state of "idle" while t: # Save the last message content. This will hold the solution. # The next one has the idle execution state indicating the execution # is complete, but not the stdout output temp = io_msg_content self.execute_logger.info(temp) # Check the message for various possibilities if 'data' in temp: # Indicates completed operation if 'image/png' in temp['data']: plotData = temp['data']['image/png'] output = self._getPlotOutput(plotData) outputs.append(output) self.socketio.emit('output', output) if 'name' in temp and temp['name'] == "stdout": # indicates output # Create output for server use output = self._getStdOut(temp['text']) outputs.append(output) # Send HTML output for immediate front end use htmlOutput = copy.deepcopy(output) htmlOutput['data']['text/plain'] = [Html.convertText(text, ttype = 'bash') for text in htmlOutput['data']['text/plain']] self.socketio.emit('output', htmlOutput) if 'evalue' in temp: # Indicates error # Create output for server use output = self._getErr(temp['evalue']) outputs.append(output) # Send HTML output for immediate front end use htmlOutput = copy.deepcopy(output) htmlOutput['evalue'] = [Html.convertText(text, ttype = 'bash') for text in htmlOutput['evalue']] self.socketio.emit('output', htmlOutput) # If there is an error than it is pointless # to keep on running code break # Poll the message try: io_msg_content = self.jupyter_client.get_iopub_msg(timeout=1)['content'] time.sleep(.1) if 'execution_state' in io_msg_content and io_msg_content['execution_state'] == 'idle': break except queue.Empty: break self.status_logger.info('End of jExecute thread...') return outputs ''' ------------------------------- Execution helper functions ------------------------------- ''' def _hasError(self, outputs): ''' If an error cell exists in outputs return true ''' for output in outputs: if 'evalue' in output: return True return False def _fillPlot(cell, plot): ''' If an image exists in the plot variable, create and return a plot cell. ''' if plot: output = Constant.getDisplayOutput() output['data']['image/png'] = plot cell['outputs'].append(output) return cell def _getPlotOutput(self, plot): ''' ''' output = Constant.getDisplayOutput() output['data']['image/png'] = plot return output def _getStdOut(self, stdOut): output = Constant.getExecuteOutput() output['data']['text/plain'] = stdOut.splitlines(True) return output def _getErr(self, err): output = Constant.getErrorOutput() output['evalue'] = err.splitlines(True) return output ''' ------------------------------- Preprocessing helper functions ------------------------------- ''' def _getFileContent(self): fileContent = '' with open(self.fileLocation, 'r') as file_content: fileContent = file_content.read() return fileContent def _update_all(self): # 'cells' is for the new cells cells = [] def _ignoreFirst(self, fileContent): # Ignore code that comes before the first delimiter if not fileContent.startswith(Constant.CellDelimiter): self.logger.info('Ignoring first...') return True else: return False def _getSourceList(self): ''' Form the hashes from the cell list into a list ''' return [cell['source'] for cell in self.Cells] def _toThebe(self, ipynb): ''' Take in a ipynb dictionary, and returns a string in thebe format. (Cell sources to delimited by our Constants.CellDelimiter) ''' output = '' for cell in ipynb['cells']: if cell['cell_type'] == 'markdown': output = ''. join(\ (output, \ (Constant.CellDelimiter + 'm\n' + \ ''.join(cell['source']))\ )) else: output = ''. join(\ (output, \ (Constant.CellDelimiter + '\n' + \ ''.join(cell['source']))\ )) return output def _setChanged(self, source, cell, force_change = False): ''' Detect if a cell has been changed ''' if force_change: cell['changed'] = True cell['last_changed'] = time.strftime("%x %X", time.gmtime()) cell['outputs'] = [] else: try: x = self._getSourceList().index(source) cell = self.Cells[x] except ValueError: cell['changed'] = True cell['last_changed'] = time.strftime("%x %X", time.gmtime()) return cell def _setMarkdown(self, source, cell): ''' Determine if a cell is marked down ''' # Detect if cell is Markdown if source[0] == 'm\n': # Set cell as markdown cell['cell_type'] = 'markdown' # Remove the new line after the delimiter source.pop(0) #Set sourceCode cell['source'] = source return cell def _validSource(self, source): ''' Return false if source list is all Just new lines ''' for s in source: if s != '\n': return True return False def _updateIpynb(self): ''' Write the new changes to the ipynb file. ''' self.status_logger.info('Updating .ipynb...') cCells = copy.deepcopy(self.Cells) # Remove extra attributes created by thebe. self._sanitize(cCells) # Save cells into a ".ipynb" file with open(File.getPrefix(self.fileLocation)+'.ipynb', 'w') as f: # Get the jupyter cell list wrapper ipynb = Constant.getIpynb() # Wrap cells ipynb['cells'] = cCells # Overwrite old ipynb file json.dump(ipynb, f, indent=True) def _sanitize(self, Cells): ''' Remove the extra attributes that thebe uses, that Jupyter does not ''' for i, cell in enumerate(Cells): del Cells[i]['execution_count'] del Cells[i]['changed'] ''' ------------------------------- HTML conversion ------------------------------- ''' def _convert(self): ''' Return a deep copy of cellList with code replaced with html-ized code ''' # Deep copy cells so the original is not converted to HTML tempCells = copy.deepcopy(self.Cells) for cell in tempCells: # Preprocessing a code cell if cell['cell_type'] == 'code': # Highlight the Python syntax cell['source'] = \ [highlight(source, PythonLexer(), HtmlFormatter()) for source in cell['source']] # Highlight standard output and error for output in cell['outputs']: # Highlight the standard output if output['output_type'] == 'execute_result': output['data']['text/plain'] = \ [highlight(text, BashLexer(), HtmlFormatter()) \ for text in output['data']['text/plain']] # Highlight the error if output['output_type'] == 'error': output['traceback'] = \ [highlight(text, BashLexer(), HtmlFormatter()) \ for text in output['traceback']] # Preprocessing a markdown cell if cell['cell_type'] == 'markdown': # Flatten the list so multi line latex delimiters # are not separated by HTML elements as this would # break MathJax. cell['source'] = ''.join(cell['source']) # Remove any html that could interupt # markdown conversion clean = re.compile('<.*>.*</.*>') cell['source'] = re.sub(clean, '', cell['source']) # Convert the markdown # These arguments are used to let pypandoc # know to ignore latex pdoc_args = ['--standalone', '--mathjax'] # Convert from markdown to HTML cell['source'] = \ pypandoc.convert_text(cell['source'], \ 'html', format = 'md',\ extra_args = pdoc_args) return tempCells def _isActive(self): if self.executionThread: if self.executionThread.is_alive(): return True else: return False else: return False
hotsoupisgood/Thebe
thebe/core/jupyter_wrapper.py
jupyter_wrapper.py
py
19,967
python
en
code
0
github-code
50
27157479985
import pandas as pd import numpy as np import logging import math logging.basicConfig(format="%(asctime)s %(name)s:%(levelname)s:%(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def varStats(dataframe,round=2): format_str = "{" + "0:,." + str(round) + "f}" data=dataframe list_role = [] list_dtype = [] list_level = [] list_use = [] list_sum = [] list_max = [] list_min = [] list_total_count = [] list_null = [] list_null_rate = [] list_unique = [] list_unique_rate = [] list_mean = [] list_median=[] list_q1=[] list_q3=[] list_var = [] list_std=[] list_skew = [] list_kurt=[] list_notnull_count = [] list_mode = [] list_range = [] list_qrange = [] list_cov = [] list_sum_of_squares=[] list_se = [] for i in data.columns: if i.lower() in ['y', 'target']: role = "目标" elif i.lower() in ['id','userid','user_id','order_no','order_id']: role = "ID" else: role = "输入" list_dtype.append(str(data[i].dtypes)) list_role.append(role) if data[i].nunique()==2: list_level.append("二值型") elif data[i].nunique()>2 and str(data[i].dtypes)=="object": list_level.append("名义型") elif data[i].nunique()==1: list_level.append("单一值") else: list_level.append("区间型") list_use.append("是") list_total_count.append(len(data)) list_notnull_count.append(data[i].notnull().sum()) list_null.append(data[i].isnull().sum()) list_null_rate.append('{:,.2%}'.format(data[i].isnull().sum() / len(data))) list_unique.append(data[i].nunique()) list_unique_rate.append('{:,.2%}'.format(data[i].nunique() / len(data))) list_mode.append(data[i].mode()[0]) #数值变量计算 if str(data[i].dtypes)=="int64" or str(data[i].dtypes)=="float64": list_min.append(data[i].min()) list_q1.append(format_str.format(data[i].quantile(0.25))) list_q3.append(format_str.format(data[i].quantile(0.75))) list_skew.append(format_str.format(data[i].skew())) list_kurt.append(format_str.format(data[i].kurt())) list_mean.append(format_str.format(data[i].mean())) list_var.append(format_str.format(data[i].var())) list_std.append(format_str.format(data[i].std())) list_median.append(format_str.format(data[i].median())) list_max.append(data[i].max()) list_range.append(format_str.format(data[i].max()-data[i].min())) list_qrange.append(format_str.format(data[i].quantile(0.75) - data[i].quantile(0.25))) list_cov.append(format_str.format(data[i].std()/data[i].mean())) list_sum.append(format_str.format(data[i].sum())) list_sum_of_squares.append(format_str.format(sum([num*num for num in data[i]]))) list_se.append(format_str.format(data[i].var()/math.sqrt(data[i].notnull().sum()))) else: list_min.append("") list_q1.append("") list_q3.append("") list_skew.append("") list_kurt.append("") list_mean.append("") list_var.append("") list_std.append("") list_median.append("") list_max.append("") list_range.append("") list_qrange.append("") list_cov.append("") list_sum.append("") list_sum_of_squares.append("") list_se.append("") df = pd.DataFrame( {"变量名": data.columns, '数据类型': list_dtype, '角色': list_role, '水平': list_level, '是否使用': list_use,'总体计数': list_total_count,'非缺失值计数': list_notnull_count,'均值':list_mean,'均值标准误':list_se,'方差': list_var,'标准差':list_std,'变异系数':list_cov,'总和':list_sum,'平方和':list_sum_of_squares,'众数':list_mode,'最小值': list_min,'Q1': list_q1,'中位数': list_median,'Q3':list_q3,'最大值': list_max,'极差': list_range,'四分位间距': list_qrange,'峰度':list_kurt,'偏度':list_skew,'缺失值': list_null, '缺失值占比': list_null_rate,'唯一值': list_unique, '唯一值占比': list_unique_rate}) df.to_csv("var_stats.csv") logging.info('描述统计处理完成') return df
leeoo/pyminer
pyminer2/extensions/packages/data_miner/data_miner/features/statistics/basic_stats.py
basic_stats.py
py
4,475
python
en
code
null
github-code
50
17009503445
# -*- coding: utf-8 -*- import os import argparse from datetime import datetime, timedelta from dataclasses import asdict from typing import List import uuid import const from logging import Logger import logger from mq import MQ, MQMsgData import ysapi def _send_msg(send_data: MQMsgData, queue_name: str, routing_key: str, log: Logger): try: with MQ(**const.MQ_CONNECT, queue=queue_name, routing_key=routing_key) as queue: msg = asdict(send_data) queue.send_message(message=msg) log.info('Send message queue=%(queue)s, data=%(data)s', {'queue': queue_name, 'data': msg}) except Exception: log.exception('Failed to send mq message error') raise def _get_order_item_id_list(task_no: int, log: Logger) -> List[str]: log.info('Start get order list') end_time = datetime.now() start_time = end_time - timedelta(days=const.ORDER_LIST_GET_LAST_DAYS) if const.IS_PRODUCTION: profile_dirname = f'yshop_producer_{task_no}' else: profile_dirname = f'yshop_producer_test_{task_no}' profile_dir = os.path.join(const.CHROME_PROFILE_DIR, profile_dirname) if const.IS_PRODUCTION: auth_file = os.path.join(const.TMP_DIR, f'yshop_auth_producer_{task_no}.json') else: auth_file = os.path.join(const.TMP_DIR, f'yshop_auth_producer_test_{task_no}.json') cert = (const.YSHOP_CERT_CRT_FILE, const.YSHOP_CERT_PKEY_FILE) with ysapi.YahooAPI(profile_dir=profile_dir, log=log, application_id=const.YJDN_APP_ID_PRODUCER, secret=const.YJDN_SECRET_PRODUCER, auth_file=auth_file, business_id=const.YSHOP_BUSINESS_ID, business_password=const.YSHOP_BUSINESS_ID, yahoo_id=const.YSHOP_YAHOO_ID, yahoo_password=const.YSHOP_YAHOO_PASSWORD, cert=cert) as api: log.info('Request to get order list') order_list = api.shopping.order.list.get(order_time_from=start_time, order_time_to=end_time) item_ids = [] for order_list_data in order_list: order_id = order_list_data.order_id log.info('Request to get order info order_id=%s', order_id) order_info_list = api.shopping.order.info.get(order_id=order_id) for order_info in order_info_list: order_status = order_info.order_status # 受注ステータス(在庫連動対象) # 1 : 予約中 # 2 : 処理中 # 3 : 保留 # 5 : 完了 if order_status not in [1, 2, 3, 5]: # 受注ステータス(在庫連動対象外) # 4 : キャンセル continue order_items = order_info.items if order_items: for order_item in order_items: item_id = order_item.item_id item_ids.append(item_id) log.info('Get order list: order_list=%s', item_ids) return item_ids def _producer(task_no: int, log: Logger): item_ids = _get_order_item_id_list(task_no=task_no, log=log) if not item_ids: return send_data = MQMsgData(id=str(uuid.uuid4()), item_ids=item_ids, msg_send_time=datetime.now().isoformat()) log.info('Send MQ') # 楽天 _send_msg(send_data=send_data, queue_name=const.MQ_RAKUTEN_QUEUE, routing_key=const.MQ_RAKUTEN_ROUTING_KEY, log=log) # AuPayマーケット _send_msg(send_data=send_data, queue_name=const.MQ_AU_QUEUE, routing_key=const.MQ_AU_ROUTING_KEY, log=log) def main(): parser = argparse.ArgumentParser(description='stockout_yshop_producer') parser.add_argument('--task_no', required=True, type=int, help='input process No type integer') arg_parser = parser.parse_args() log = logger.get_logger(task_name='stockout-yshop-producer', sub_name='main', name_datetime=datetime.now(), task_no=arg_parser.task_no, **const.LOG_SETTING) log.info('Start task') log.info('Input args task_no=%s', arg_parser.task_no) _producer(task_no=arg_parser.task_no, log=log) log.info('End task') if __name__ == '__main__': main()
pro-top-star/python-stock-out
app/stockout_yshop_producer.py
stockout_yshop_producer.py
py
4,722
python
en
code
2
github-code
50
25290415553
from matplotlib import pyplot as plt from matplotlib import cm def plot_by_num_and_group(sequences_in, numcol, groupcols): seq = sequences_in.copy() g = seq.groupby(groupcols) n_col = 4 n_row = len(g) // n_col + len(g) % n_col f, axes = plt.subplots(n_row, n_col, figsize=[20, 15], sharex=True, sharey=True, constrained_layout=True) axes = axes.ravel() for (n, df), (i, ax) in zip(g, enumerate(axes)): s = ax.scatter(df[numcol], df['logit_best_xg'], c=df['n_pass'], cmap='viridis') v = ax.vlines(df[numcol], df['logit_y_rep_low'], df['logit_y_rep_high'], color='grey', zorder=0) ax.set_title(n, y=0.77) if i % n_col == 0: ax.set_ylabel('Best xg (logit scale)') if i >= n_row * n_col - n_col: ax.set_xlabel(numcol) f.colorbar(s, ax=axes, label='number of passes in sequence', shrink=0.35, location='top') f.suptitle(f'Max xg in long sequences\nfor different {numcol}s and {groupcols}s', fontsize=20, x=0.01, y=0.99, ha='left', fontweight='bold') f.legend([v], ['Model predictions: 10%-90% credible interval'], frameon=False, loc='upper right', prop={'size': 14}) return f, axes def plot_player_effect(sequences_in, numcol, player, team, ax): team_seqs = sequences_in.query(f"team == '{team}'").copy() player_seqs = team_seqs.loc[lambda df: df['players'].str.contains(player)] cmap = cm.get_cmap('viridis') ax.vlines(team_seqs[numcol], team_seqs['logit_y_rep_low'], team_seqs['logit_y_rep_high'], color='grey', zorder=0, label="Model predictions: 10%-90% credible interval") ax.scatter(team_seqs[numcol], team_seqs['logit_best_xg'], color=cmap(0.5), label=f'Sequences without {player}') ax.scatter(player_seqs[numcol], player_seqs['logit_best_xg'], color='red', label=f'Sequences with {player}') ax.legend(frameon=False, loc='upper left') ax.set_title(f'{team} with and without {player}') ax.set_xlabel(numcol) ax.set_ylabel("Best xg (logit scale)") return ax
teddygroves/football_on_paper
plotting.py
plotting.py
py
2,214
python
en
code
0
github-code
50
8231560009
# Environment to play #environment = 'LunarLanderContinuous-v2' environment = 'Pendulum-v0' #environment = 'CartPole-v1' # environment = 'Acrobot-v1' # environment = 'MountainCar-v0' # Continuous Action if true #continuous_action = False continuous_action = True # Number of Episodes max_episodes = 100000 #Summaries log directory (/tmp/tf-rl/log) log_dir = '/tmp/tf-rl/log' # Model path for save (/tmp/tf-rl/model/)') save_model_dir = '/tmp/tf-rl/model/' #Interval to save model (500) interval_to_save_model = 500 # Model path for restore restore_model_path = None #restore_model_path = '/tmp/tf-rl/model/model-500' # Training mode train = True # Render mode render = True # Record mode record = False # Record path record_path = 'record/'
KatayamaLab/tf-rl
config.py
config.py
py
754
python
en
code
0
github-code
50
43949326095
# -*- coding: utf-8 -*- """ Created on Fri Oct 25 09:32:01 2019 @author: benja """ import pandas as pd import re import numpy as np import os from itertools import permutations import multiprocessing as mp import utils import string import json import sys from functools import partial def fn_alias_matcher(name, name_list): '''Return a name_listst of all uniq names that name could match with that are in name_list. e.g.: if name == 'Barbieri, Lindsay (Bar)', returns 'Barbieri, Lindsay' and 'Barbieri, Bar' if both are in name_list ''' try: alias, full_non_alias = separate_alias(name) if not alias: return [] ln = full_non_alias.split(',')[0] ln_matches = [s for s in name_list if ln+ ',' in s] full_alias = ln +', ' + alias full_non_alias = re.sub(f' \\({alias}\\)\s*', '', name) #non_alias = full_non_alias.split(', ')[1] #reverse_alias = f'{ln}, {alias} ({non_alias})' matches = [s for s in ln_matches if any( [s==name for name in (full_alias, full_non_alias, #reverse_alias )] )] return list(set(matches)) except: globals().update(locals()) print(name) raise def separate_alias(name): alias_match = re.search(r'\([\w\s\.]+\)', name) if alias_match: alias = alias_match.group().strip(r'\(\)') else: return False, False full_non_alias = re.sub(f' \\({alias}\\)\s*', '', name).strip() return alias, full_non_alias def ln_alias_matcher(name, name_list): alias, full_non_alias = separate_alias(name) alias = alias.replace('nee ', '') full_non_alias = full_non_alias.strip('-') if not alias: return [] full_alias = alias + ',' + full_non_alias.split(',')[1] out = [] matches = [s for s in name_list if any( [s==name for name in (full_alias, full_non_alias, #reverse_alias )] )] return list(set(matches)) def has_alias(name): '''Return True if the name has a fn alias in it.''' return bool(re.search(r'\([\w\s\.]+\)', name)) def extract_alias_authors(adf, fn= True): '''Return a dataframe with one column: longer_name. Having filtered down to only the longer_names that contain an alias.''' return adf[adf['longer_name'].apply(has_alias)][['longer_name']] def get_alias_type(name): 'Categorize and alias as being for a first or last name.' parts = name.split(',') if has_alias(parts[1]): return 'first_name' elif has_alias(re.split('[\s-]', parts[0])[1]) or re.search(r'\([\w\s\.]+\)-', parts[0]): return 'last_name' elif has_alias(parts[0].split(' ')[0]): return 'first_name' return None def duplicate_alias_entries(adf): '''Find all entries that have an author name with an alias: e.g. 'Barbieri, Lindsay (Bar).' Duplicate these entries, creating one for each possible name. e.g. 'Barbieri, Lindsay' and Barbieri, Bar ''' alias_dict = {} aliases = extract_alias_authors(adf) aliases['type'] = aliases['longer_name'].apply(get_alias_type) longer_names = adf['longer_name'].tolist() for function, a_type in zip([fn_alias_matcher, ln_alias_matcher], ['first_name', 'last_name'] ): alias_list = aliases[aliases['type']==a_type] for alias in alias_list: res = function(alias, longer_names) if res: alias_dict[alias] = res for alias, li in alias_dict.items(): if li: sel_rows = adf.loc[adf['longer_name']==alias] #print(f'Duplicating {sel_rows.shape[0]} rows') for name in li: new_rows = sel_rows.copy() new_rows['longer_name'] = name new_rows['aut_tuple'] = new_rows['aut_tuple'].apply( lambda li: [n.replace(alias, name) for n in li]) adf = adf.append(new_rows) adf = adf[adf['longer_name']!=alias] adf.index = range(0, adf.shape[0]) adf['aut_index'] = adf.index return adf, alias_dict def merge_from_aliases(adf, alias_dict): vals = [v for v in alias_dict.values() if len(v)>1] for li in vals: for name in li[1:]: adf.loc[adf['longer_name']==name, 'longer_name'] = li[0] author_id = adf.loc[adf['longer_name'] == li[0], 'author_id'].iloc[0] adf.loc[adf['longer_name']==name, 'author_id'] = author_id #adf['indicies'] = adf['indicies'].apply(tuple) return adf.drop_duplicates(subset=['longer_name', 'ID_num', 'indicies']) #%% def aut_cleaner(string): '''CLean author names''' string=re.sub(r'"|\[|', '', string) string = re.sub(r"'|\]", '', string) string = string.replace('()', '') string = re.sub('\s+', ' ', string) string = string.replace(' -', ' ') return initials_list_to_initials(string) def initials_list_to_initials(string): '''Convert a name Doe, JF to Doe, J. F.''' parts = name_spliter(string) if len(parts)==2: if parts[1].upper() == parts[1] and len(parts[1]) <= 3 and '.' not in parts[1]: return string.replace(parts[1], '. '.join(parts[1])+'.') return string f_letter =re.compile(r'^.+?\,\s\w') #load in postal codes data postal_codes = json.loads(open(os.path.join('data', 'postal-codes.json')).read()) postal_codes = [item for item in postal_codes if item['Regex'] and item['ISO']] pos_codes = [ {'country': item['Country'], 'iso': item['ISO'], 'regex': item['Regex'][1:-1].replace(r'\b', '')} for item in postal_codes] def uniq(li): '''Return list of unique elements in a list.''' return list(set(li)) def only_letters(stri): '''Remove all non-letter characters from a string.''' return ''.join([i for i in stri if i in string.ascii_letters]) def all_parts_match(name1, name2): '''Checks for inconsistencies between two names. Doe, John Edward will check true with Doe, J ; Doe, John, E; Doe, John - But not with Doe, James; Doe, John F; Doe, John Ellis.''' return all([ all([c1 == c2 for c1, c2 in zip(only_letters(part1), only_letters(part2))]) for part1, part2 in zip(name1.split(), name2.split())]) def name_spliter(name): '''Split name into its component parts.''' name_spliter_re=re.compile(r'\,|\s') try: return [part.strip() for part in name_spliter_re.split(name) if part.strip()] except: print(name) def name_num_dict(_string): '''Turn an entry for ORCID IDs or Researcher IDs into a dict of Name: id_num''' pieces=[p for p in _string.split(';') if p.strip()] try: vals=[piece.split('/') for piece in pieces] return {name.strip(): num.strip() for name, num in [v for v in vals if len(v)==2]} except: print(pieces) raise def consolidate_name_num_di(li_of_di): '''Parse a list of dictionaries to make one name_num_dict''' out={} errors=[] for di in li_of_di: #if all values are either missing from dict or the same: if all([out.get(key, value)==value for key, value in di.items()]): out.update(di) else: errors+list(di.keys()) return out, errors def name_num_dict_all(df, col): '''Turn a column with ORCID or Researcher ID numbers into a dictionary of Name: Id_num pairs.''' valid=df.dropna(subset=[col]) return consolidate_name_num_di( valid[col].apply(name_num_dict) ) #%% def parse_names1(string): '''Name Parser for AU/AF columns.''' return [aut_cleaner(name).strip() for name in string.split(';')] def parse_names_idnum(string): '''Name Parser for OI/RI columns.''' pieces=[p.strip('-, ') for p in string.split(';')] return [aut_cleaner(p.split('/')[0]).strip() for p in pieces] name_cols=['AF', 'AU'] id_cols=['RI', 'OI'] def collect_all_names(row): '''Get all versions of author name from a row of the dataframe. Return all unique names, and a dictionary of id numbers.''' names=[] dis={} for i, col in enumerate(name_cols): if type(row[col])==str: names+=parse_names1(row[col]) for col in id_cols: if type(row[col])==str: names+=parse_names_idnum(row[col]) dis[col]=name_num_dict(row[col]) else: dis[col]={} return names, dis def make_name_dict(names, di, index): '''From a list of names and a nested dictionary of ID_nums, return a list of dics: {names: list of associated names, RI: Researcher ID if any. OI: ORCID ID if any}''' out=[] fls=list(set([f_letter.search(n).group() for n in names if f_letter.search(n)])) #print(fls) #collect all names that match a ln_fi group try: for fl in fls: try: fl_names=[n for n in names if re.search('^'+fl, n)] except: continue if len (fl_names) >= 2: au = fl_names[0] af = fl_names[1] else: au = None af = None codes={} for key, sub_dict in di.items(): for n in fl_names: if n in sub_dict: codes[key]=sub_dict[n] break elif len (n.split(', '))==2: n=n.split(', ')[1]+', '+n.split(', ')[0] if n in sub_dict: fl_names.append(n) codes[key]=sub_dict[n] else: codes[key]=None if au: #print(fl_names) sub_out={**codes, **{'names': fl_names, 'indicies': index, 'AU': au, 'AF': af} } out.append(sub_out) return out except: globals().update(locals()) raise def all_ids_row(row): '''Collect all author identifiers for a given article. Returns a list of dicts''' try: names, dis=collect_all_names(row) return [{**{col: row[col] for col in row.index}, **row_dict} for row_dict in make_name_dict(names, dis, row.name)] except: globals().update({'row': row}) raise #%% def flat_w_uniq(nested_li): '''Flatten a list and remove redundant entries.''' return list(set(utils.list_flattener(nested_li))) #%% def make_aut_df(df): '''Get all name-forms associated with each numeric identifier for the two identifier lists.''' df['index'] = df.index df['list_of_authors'] = df['AF'].str.lower().apply(lambda x: str(x).split(';')) adf = pd.DataFrame(utils.list_flattener( utils.parallelize_on_rows( df, all_ids_row, num_of_processes=6).to_list() ) ) #adf.drop(columns = ['ln_fi'], inplace = True ) adf.rename(columns= {'names': 'aut_tuple', 'index': 'ID_num'}, inplace = True) return adf def flat_uniq_nonnan(data): '''Return a flat list of all non-Falsey, non-nan values.''' return [i for i in flat_w_uniq(list(data)) if utils.is_valid(i)] def ln_fi_from_group(li): '''Get the lastname, first-initial pair for the longest name in a group of names.''' return ln_fi_get(sorted(li, key=len)[-1]) def max_len(li): '''Return the longest item in a list''' return max(li, key=len) def is_full_name(name): '''Return whether the second part of a name has at least 2 letters in it.''' if ',' in name: return count_letters(name.split(',')[-1])>2 return False def full_name_matches(li): '''From a list of names, return a dictionary of possible matches. ''' matches = {} for i in sorted(li, key= len, reverse = True): res = [] for i2 in li: if all_parts_match(i, i2) and (count_letters(i)>=count_letters(i2)) and i != i2: res.append(i2) matches[i] = res return unpack_di_list(matches) def sorted_dict_items(di, key): '''Iterate through a dictionary sorted by key.''' for k,v in sorted(di.items(), key=key): yield k, v def unpack_di_list(di): '''Turn a dictionary where all values are lists into a dictionary where each key is a value from those lists, and the value is the key for that entry from the original dictionary. Assign only if the entry is unique. ''' di = {k:v for k, v in di.items() if v} di2 = {} flat = utils.list_flattener(list(di.values())) #iterate through dict for k, li in sorted_dict_items(di, key = lambda x: len(x[0])): if all_names_match_list(li) : for name in li: #Add to only if match is unique. if name not in di.keys() or k not in flat: #delete if item is already there to ensure unique dict if di2.get(name): di2[name]= 'Null' else: di2[name] = k return {k:v for k,v in di2.items() if v != 'Null' } #%% def identifier_df(adf, ID, other_id): '''Make a dataframe for the OId or RId column. args : adf - author dataframe ID : the identifier column name other_id : the other Identifier column ID. The resulting dataframe has the columns: aut_tuple (list): all forms of the name associated with that ID number inst, email, postal_code (lists): all institutions, email addresses and postal codes associated with this ID number indicies (list) : all indicies in the author dataframe where this author appears. longer_name : longest version of the name that has been found. last_name_first_init : last-name, first-initial. E.g Doe, J longer_names : all forms of the name that are not just last-name, first intial, would include Doe, John; Doe, J. E.; Doe John, E.; etc ''' gb = adf.groupby(ID) df = gb[['aut_tuple', 'inst', 'email', 'postal_code', 'indicies']].agg(flat_uniq_nonnan) df[other_id]=gb[other_id].agg(set).apply(lambda x: x.pop() if len(x)==1 else None) for column in ['inst', 'email', 'postal_code']: #assign empty lists for null values df.loc[df[column].isnull(), column] = [[]] * df[column].isnull().sum() with mp.Pool(mp.cpu_count()) as pool: df['longer_name'] = pool.map(max_len, df['aut_tuple']) df['last_name_first_init'] = pool.map(ln_fi_get, df['longer_name']) gb = df.reset_index().groupby('longer_name') #df2 = gb[['aut_tuple', 'inst', # 'email', 'postal_code', 'indicies']].agg('first') df['longer_names'] = df['aut_tuple'].apply( lambda x: [i for i in x if count_letters(i.split(',')[-1])>2]) ''' for column in ['inst', 'email', 'postal_code']: df.loc[df[column].isnull(), column] = [[]] * df[column].isnull().sum() cols = [ID, other_id, 'longer_name', 'last_name_first_init'] df[cols] = gb[cols].agg('first') df.set_index(ID, inplace=True) ''' return df def count_letters(stri): '''Return number of letters in a string.''' return len(re.findall('|'.join(string.ascii_letters), stri)) def break_into_sub_cols(df, col): '''Take a column that has a list of values in it, and exploded it such that each value has its own column. e.g. : df = x 0 [1, 1, 1] 1 [ 2, 2] break_into_sub_cols(df, 'x') yields: x x_0 x_1 x_2 0 [1, 1, 1] 1 1 1 1 [2, 2] 2 2 NaN ''' col_names=[f'{col}_{x}' for x in range(df[col].apply(len).max())] df[col_names]=df[col].apply(pd.Series) return df def tuple_match(tup1, tup2): '''Check if all items in tup1 are in tup2''' return all([t in tup2 for t in tup1]) #def get_keys(tup_of_names, keys): # # return [k for k in keys if tuple_match(tup_of_names, k)] f_letter_name=re.compile(r'^.+?\,\s\w$') def authorfix(name): '''Make three fixes to name ''' return list_of_initials_fix( f_initial_no_dot_fix( titlecase_fix( name) ) ) def titlecase_fix(name): '''Ensure that last name is titlecase ''' pieces=name.split(',') if len (pieces)==2: return pieces[0].title()+',' +pieces[1] else: return name def f_initial_no_dot_fix(name): '''Turn name of form Doe, J to Doe, J.''' if f_letter_name.search(name): return name+'.' return name def list_of_initials_fix(string): '''Turn a name of the form 'Johnson, LB' to "Johnson, L. B. for consistency." ''' parts = name_spliter(string) if len(parts)==2: if parts[1].upper() == parts[1] and len(parts[1]) <= 3 and '.' not in parts[1]: return string.replace(parts[1], '. '.join(parts[1])+'.') return string def aut_col_cleaner(names): '''Clean author strings, then put them back together.''' if type(names)==str: return '; '.join([authorfix(name.strip()).lower() for name in names.split(';')]) else: return names #%% def code_df_as_dict(df): '''Convert the author-code df to a dictionary.''' return {tuple(item): num for item, num in zip(df['aut_tuple'].tolist(), df.index.tolist())} def rebuild_df(series_list_dics): '''Last step in converting a paralellized split operation back to a dataframe.''' return pd.DataFrame( utils.list_flattener(series_list_dics.tolist())) def ln_fi_get(name): '''Get the last-name first-initial form of the name. e.g. ln_fi_get(Doe, John) return Doe, J.''' if f_letter.search(str(name)): return f_letter.search(name).group() def get_email(row): '''If the EM column in the df has an email that matches the author's first 5 letters of last name (or 3-4 if there are only 3-4) and first initial separately. return that email as a string. ''' emails=row['EM'] if type(emails)!=str: return None emails=emails.split(';') try: string1 = re.search('\w{3,5}', row['longer_name'].split(',')[0].lower()).group() string2 = row['last_name_first_init'][-1] except: return None for em in emails: if '@' not in em: continue n = em.split('@')[0] if string1 in n and (string2 in n.replace(string1, '') or only_letters(n) == string1): return em.strip() #%% def make_matcher(adf, col_names): '''Create a df for an alternate match field (or set off fields). Return a dataframe with columns: [col_names} + indicies : all indicies associated with this aut_tuple, longer name and an id number based on those columns.''' gb = adf.dropna(subset=col_names).groupby( ['last_name_first_init']+ col_names) matches = pd.DataFrame(gb['aut_tuple'].agg(flat_uniq_nonnan)) matches['indicies'] = gb['indicies'].agg(list) matches['longer_name'] = gb['longer_name'].agg(max_len) #matches['last_name_first_init'] = gb['last_name_first_init'].agg('first') matches=matches.reset_index() matches['id_num'] = matches.index.map(lambda x: '_'.join(col_names)+str(x)) return matches def split_by_first_letter(df, col): '''Split a dataframe into a list of 26 dataframes. Each one contains values for col where the first letter of that string is that letter.''' return [df[df[col].apply(lambda x: str(x)[0])==letter] for letter in string.ascii_uppercase] name_group=re.compile('\[.*?\]') def string_to_list(_str, sep = '; '): if _str[0] == '[': return _str.strip('[]').split(sep) def parse_multi_address(_string, name, row): '''From a multi-address string :"[names] address [names] more address" get the correct address for name. ''' if len(_string.split(';')) ==1 and '[' not in _string: return _string if '[' in _string and bool(re.search(f'{name}[;\]]', _string)): names=re.findall(name_group, _string) names=[parse_str_list(n) for n in names] addresses=[i.strip() for i in re.split(name_group, _string) if i] out={} for name_list, address in zip(names, addresses): for _name in name_list: out[_name]=address return out.get(name) elif all([len(_string.split(';')) == len(row['list_of_authors']), name in row['list_of_authors'], '[' not in _string]): return _string.split(';')[row['list_of_authors'].index(name)] else: return def parse_address_2(string, name, row): '''For parsing the corresponding author address in column "RP" Split on the string 'corresponding author' Name appears before this string, address appears after it. ''' pieces = re.split('\(corresponding author\),', string) for i, piece in enumerate(pieces): if name in piece: try: return pieces[i+1].split(';')[0].strip() except IndexError: return None def get_address(row): '''Extract the author address from either column C1 (inst affiliation) or from column RP (corresponding author). Try these until a valid result is returned''' for column, function in (('C1', parse_multi_address), ('RP', parse_address_2)): res = use_address_function(row, column, function) if res: return res def use_address_function(row, add_col, function): '''Meta-function for managing the workflow of an address retrieving function. Processes the string in row[add_col], and tries retreiving it using either of the names in the name columns. Stops when the function retreives a valid result. ''' _string = row[add_col] if type(_string)==str: _string = _string.lower() for col in ["AF", "AU"]: name = row[col] res = function(_string, name, row) if res: return res #%% def parse_str_list(string, sep=';'): '''Return a string that encodes a list as a list.''' string = string.replace('[', '').replace(']', '') return [i.strip() for i in string.split(sep)] def get_postal_code(string): '''Get the postal code, if any encoded in the address. Uses a list of postal code regexes. Returns: a string of the format: "{ISO_country_code} {postal code}" e.g. "US 01450"''' if type(string) != str: return None string = string.upper() if 'US' in string and re.search(r'\d{5}', string): return 'US'+' ' + re.search(r'\d{5}', string).group() else: for item in pos_codes: #iterate through dict of postal codes if check_postal_code_string(string, item): return item['iso']+ ' ' + re.search(item['regex'], string).group() return None def check_postal_code_string(string, item): '''Check whether a string matches a national postal code format. Must have: right format and the country's name or iso abbrv ''' iso_re=re.compile(item['iso']+'?(,|$)') if item['country'] in string or iso_re.search(string): #check for country name or ISO abbrv return bool(re.search(item['regex'], string)) def extract_inst(string): '''Extract institution from an address string.''' if type(string)==str: return string.split(',')[0].lower() else: return None #%% def get_uniq_items(df, column): '''Get list of items that appear exactly once in a given column of a dataframe''' val_counts = pd.DataFrame(df.value_counts(column)).reset_index() uniq_names = val_counts[val_counts[0]==1][column] return uniq_names def add_to_list_df(row, col_name): '''Concatenate the values for col_name from the left side of a merged dataframe to those from the right side of a merged data.''' try: if not row[f'{col_name}_x']: return row[f'{col_name}_y'] elif row[f'{col_name}_x'] in row[f'{col_name}_y']: return row[f'{col_name}_y'] elif type(row[f'{col_name}_x'])==list: return list(set(row[f'{col_name}_x']+row[f'{col_name}_y'])) else: return list(set([row[f'{col_name}_x']]+row[f'{col_name}_y'])) except: print(col_name) raise def nan_to_emptylist(data): '''Convert nans to empty_lists.''' data.loc[data.isnull()] = [[]] * data.isnull().sum() return data def match_by_columns(adf, ids, id_col, left_on, right_on): '''Find addtional matches by matching on other columns. Find any name entries that don't have an RI/OI, but have an email/inst/postal_code (with last-name first-initial) that matches a RI or OI entry. Return the adf, updated with the id column filled in and the ids updated with the new matches, encoded as a list of indicies of matching entries.''' m = adf[adf[id_col].isnull()].merge( ids.dropna(subset=right_on).reset_index(), left_on = left_on, right_on = right_on, how = 'inner') if right_on[-1] =='email_0': m.to_csv(os.path.join('data', f'{id_col}_emails.csv')) try: if not m.empty: col_names =[c for c in ['email', 'inst', 'postal_code'] if c not in left_on] #update the ids data_frame for col_name in ['email', 'inst', 'postal_code', 'aut_tuple']: ids.loc[m[f'{id_col}_y'], f'{col_name}'] = m.apply( lambda row: add_to_list_df(row, col_name), axis=1).tolist() for col in col_names: ids[col] = nan_to_emptylist(ids[col]) print(f'{m.shape[0]} Matches Found') #update author dataframe adf.loc[m['aut_index'], id_col] = m[f'{id_col}_y'].tolist() except: print(m.columns, ids.columns, adf.columns) raise return adf, ids def multi_val_matcher(adf, ids, id_col, col_name): '''Add id numbers to the author dataframe by matching on another column identifier: email, institution or postal code. Because the ids df can have arbitrarily many values for the col name, ''' ids=break_into_sub_cols(ids, col_name) for sub_col in [c for c in ids.columns if f'{col_name}_' in c]: adf, ids = match_by_columns(adf, ids, id_col, left_on = ['last_name_first_init', col_name], right_on = ['last_name_first_init', sub_col]) ids.drop(columns=[sub_col], inplace=True) return adf, ids def long_name_matcher(adf, ids, id_col): '''Add IDs to the adf from an id_dataframe based on exact matches of long-form names.''' ids['longer_names'] = ids['longer_names'].apply(lambda li: [i for i in li if is_full_name(i)]) ids=break_into_sub_cols(ids, 'longer_names') print(f'Matching to {id_col} by longer name') for sub_col in [c for c in ids.columns if 'longer_names_' in c]: adf, ids = match_by_columns(adf, ids, id_col, left_on = ['longer_name'], right_on = [sub_col]) ids.drop(columns=[sub_col], inplace=True) return adf, ids def all_numeric_matchers(adf, ids, id_col): '''Perform all matches to find pre-provided id numbers (RIs and OIs). adf : author dataframe ids : the identifier dataframe id_col : the identifier column each matching function collects additional data from other matching columns, e.g. if the ids df has an id# for Doe, John and finds another Doe, John, that whole entry becomes linked; the email address, institution and zip code all are added to the adf. ''' #Add to the adf, ids = long_name_matcher(adf, ids, id_col) for other_id in ['inst', 'email', 'postal_code']: print(f'Matching to {id_col} by {other_id}') adf, ids= multi_val_matcher(adf, ids, id_col, other_id) return adf, ids #%% def extract_unique_vals(df, column): '''Subset only those entries in the dataframe with a unique value for column''' indexer= df[column].value_counts()==1 return df[df[column].isin(indexer.index)] def vals_of_at_least(df, column, thresh =2): '''Subset the entries in a dataframe that have a value for column that occurs at least thresh times.''' indexer= df[column].value_counts()>=thresh return df[df[column].isin(indexer.index)] def alternate_matcher(adf, col_name): '''Find matches based on other column values. args - adf - author dataframe col_name : column name returns - adf with added ID numbers made for that column, and the matcher dataframe. ID numbers are added for all matches of the combination of col_name and last_name_first_initial So Doe, John and Doe, J. M. are matched if they both have the same value for col_name. ''' print('Making new matcher dataframe. ') matches = make_matcher(adf, [col_name]) print(matches.shape) adf[f'{col_name}_id'] = None m = try_merge(adf, matches, left_on = [col_name, 'last_name_first_init'], right_on = [col_name, 'last_name_first_init'], how = 'inner') m = extract_unique_vals(m, 'aut_index') m= vals_of_at_least(m, col_name) if not m.empty: print(f'{m.shape[0]} matches found') print(m[col_name].head(5)) adf.loc[m['aut_index'], f'{col_name}_id'] = m['id_num'].tolist() m2 = try_merge(adf, matches[matches['longer_name'].apply(is_full_name)], left_on = 'longer_name', right_on = 'longer_name', how = 'inner') m2 = extract_unique_vals(m2, 'aut_index') if not m2.empty: adf.loc[m2['aut_index'], f'{col_name}_id'] = m2['id_num'].tolist() return adf, matches def try_merge(left, right, **kwargs): '''Merge two dataframes together, using the standard pd.merge function. If this results in a memory error, save the right-side dataframe to a scratch csv and merge in chunks.''' try: return left.merge(right, **kwargs) except MemoryError: out = [] right.to_csv('scratch.csv') reader = pd.read_csv('scratch.csv', chunksize = 1000) for r in reader: out.append(left.merge(r, **kwargs)) del r os.remove('scratch.csv') return pd.concat(out) def row_names_match(row): '''Check that the longer_names from a row created from a df merge are matching.''' return all_parts_match(row['longer_name_x'], row['longer_name_y']) def match_to_codes_on_full_name(adf, match_cols, uniq_names): '''Find any remaining full-name matches. First between remaining names and ''' left= has_no_id(adf, match_cols, uniq_names) codes = adf[(adf[match_cols].fillna(False).sum(axis =1) != 0)][['OI', "RI", 'email_id', 'inst_id', 'postal_code_id', 'longer_name', 'last_name_first_init']].copy() codes = codes.groupby('longer_name').agg('first') try: #assign identifier info rows with full-name matches to the code df: m = try_merge(left, codes, left_on='last_name_first_init', right_on = 'last_name_first_init', how = 'inner') del codes if m.empty: print('No New Maches Found') else: m['matches'] = m.apply(row_names_match, axis=1) for col in match_cols: adf.loc[m[m['matches']]['aut_index'], col] = m[m['matches']][f'{col}_y'].tolist() #adf['name_id'] = None return adf except: globals().update(locals()) raise def all_names_match_list(li): return all([all_parts_match(x,y) for x,y in permutations(li,2)]) def all_ln_fi_match(left): '''Search for First-name last-initial groups where all names are consistent. Consistent names are defined as no clear contradictions between each other. See all_parts_match for explanation Assign these a 'name_ID' string. ''' print(f'{left.shape[0]} remaining names to resolve.') gb=left.dropna(subset=['last_name_first_init']).groupby('last_name_first_init') indexer = pd.DataFrame(gb['longer_name'].agg(lambda x: list(set(x)))).dropna() print('Finding all last-name, first initial groups with no inconsistencies.') indexer = indexer.loc[indexer['longer_name'].apply(all_names_match_list)] indexer['name_id'] = indexer.reset_index().reset_index()['index'].apply( lambda x: f'name{str(x)}').tolist() return indexer.merge(left, left_on = 'last_name_first_init', right_on = 'last_name_first_init', how = 'inner') def li_o_di_to_di(li_o_di): '''Convert a list of dicts to one dict.''' out_dict={} for di in li_o_di: out_dict.update(di) return out_dict def has_no_id(adf, match_cols, uniq_names): '''Return all entries that have no identifier in match_cols, and are not a unique last-name, first-initial pair.''' return adf[((adf[match_cols].fillna(False)!=False).sum(axis =1) == 0) & (adf['last_name_first_init'].isin(uniq_names) ==False)].copy() def assign_remaining_names(adf, match_cols): '''Final Pass through names that do not yet have matches. Assign all of them a unique identifier. Then check to see if any of them match with one another, purely based on name parts. ''' #Give a unique identifier to each unique value for longer-name left = adf[(adf[match_cols].fillna(False)!=False).sum(axis =1) == 0].copy() left_uniq = pd.DataFrame( left['longer_name'].unique(), columns = ['longer_name']).reset_index() left = try_merge(left, left_uniq, left_on = 'longer_name', right_on ='longer_name', how ='left') #assign a numeric string as a name identifier to each name left['name_id'] = left['index'].apply(lambda x: f'name_{str(x + adf.shape[0])}') #get all longer-name values for each lastname, first-initial value names = left.groupby('last_name_first_init')['longer_name'].agg(list).apply(uniq) #Dict of unique matches from a full-name matcher out_dict = li_o_di_to_di( names.apply( full_name_matches).tolist()) left['match_name'] = left['longer_name'].apply(lambda x: out_dict.get(x,x)) #recombine data and retreive new name_ids: keep_cols = ['match_name', 'longer_name', 'aut_index'] matcher = try_merge(left[keep_cols], left[['name_id', 'longer_name']], right_on = 'longer_name', left_on = 'match_name', how ='inner') #Collect names where new matches have been found. matcher = matcher[matcher['longer_name_x'] != matcher['longer_name_y']] #reattach these left= try_merge(left, matcher, left_on ='aut_index', right_on = 'aut_index', how = 'left') #assign name_id to matches first, then to original if none exists. left['name_id'] = left[['name_id_y', 'name_id_x']].apply( utils.first_valid, axis = 1) #assign name_ids numbers back to author dataframe adf.loc[left['aut_index'], 'name_id'] = left['name_id'].tolist() return adf def assign_name_string(adf): '''Assign the longest Name string available to each unique author identifier. Return the adf with that name in the column labelled "id_name"''' gb = adf.groupby('author_id')['longer_name'].agg(lambda x: max(x, key=len)) adf = try_merge(adf, gb, left_on = 'author_id', right_on = 'author_id', how = 'left') return adf.rename(columns = {'longer_name_x' : 'longer_name', 'longer_name_y': 'id_name'}) def clean_data(df): '''Format the dataframe for processing. Apply author-cleaning to author columns and set other important columns to lowercase.''' df['AU'] = df['AU'].apply(aut_col_cleaner) df['AF'] = df["AF"].apply(aut_col_cleaner) for col in ["EM", "OI", "RI"]: df[col] = df[col].apply(lambda x: str(x).lower()) return df.drop(columns = ['ln_fi']) def prep_aut_df(adf): '''Add columns to the author dataframe: aut_index : an indexer number. address : address if any email : email address, if any inst : institutional affiliation, if any last_name_first_initial postal_code : nation and number for postal code, if any''' adf['address'] = utils.parallelize_on_rows(adf, get_address) adf['longer_name'] = adf['aut_tuple'].apply(lambda x : sorted(x[1:], key = len)[-1]) with mp.Pool(mp.cpu_count()) as pool: adf['last_name_first_init']=pool.map(ln_fi_get, adf['AF']) adf['postal_code'] = pool.map(get_postal_code, adf['address']) adf['aut_index'] = adf.index assert adf['ID_num'].isnull().sum()== 0 adf['email']=utils.parallelize_on_rows(adf, get_email) adf['inst']=adf['address'].apply(extract_inst) return adf def resolve_names(adf): RIs = identifier_df(adf, 'RI', 'OI') assert np.nan not in RIs['email'].tolist() OIs = identifier_df(adf, 'OI', 'RI') assert np.nan not in OIs['email'].tolist() for ids, col in zip((RIs, OIs), ('RI', 'OI')): adf[col].loc[adf[col].isin(ids.index) == False] = np.nan print('Matching by RI') adf, RIs = all_numeric_matchers(adf, RIs, 'RI') print('Matching by OI') adf, OIs = all_numeric_matchers(adf, OIs, 'OI') assert adf['ID_num'].isnull().sum() == 0 #memory management del OIs del RIs assert adf['ID_num'].isnull().sum()==0 matcher_dict={} print("Matching by Email, Postal Code and Institution") for col_name in ['email', 'postal_code', 'inst']: print(f'Using {col_name} for matches') adf, matcher_dict[col_name] = alternate_matcher(adf, col_name) del matcher_dict[col_name] assert f'{col_name}_id' in adf.columns assert adf['ID_num'].isnull().sum()==0 match_cols= ['OI', "RI", 'email_id', 'inst_id', 'postal_code_id'] uniq_names=get_uniq_items(adf, 'last_name_first_init') #to_solve = adf.loc[(adf['RI'].isnull()) & (adf['OI'].isnull()) & (adf['last_name_first_init'].isin(uniq_names) ==False )] #RIs.to_csv(os.path.join('data', 'intermed_data', f'RIs{test_string}.csv')) #can #OIs.to_csv(os.path.join('data', 'intermed_data', f'OIs{test_string}.csv')) adf = match_to_codes_on_full_name(adf, match_cols, uniq_names) adf['name_id'] = None left = has_no_id(adf, match_cols, uniq_names) name_matches = all_ln_fi_match(left) adf.loc[name_matches['aut_index'], 'name_id'] = name_matches['name_id_x'].tolist() match_cols.append('name_id') assert adf['ID_num'].isnull().sum()==0 #adf.drop_duplicates(subset=['author_id']).to_csv(save_path) print('Finding pure name-based matches.') adf = assign_remaining_names(adf, match_cols) adf['author_id'] = adf[match_cols].apply(utils.first_valid, axis = 1) return adf def main(df, test): #assert df['ID_num'].isnull().sum()==0 df = clean_data(df) columns_to_use = ['AF', "AU", "EM", "OI", "RI", "C1", "RP" ] adf = make_aut_df(df.loc[:, columns_to_use]) print(f'Working with {adf.shape[0]} author-entries.') assert adf['ID_num'].isnull().sum()==0 if not test: del df print('Formatting Author Data') adf = prep_aut_df(adf) adf, alias_dict = duplicate_alias_entries(adf) adf = resolve_names(adf) adf = merge_from_aliases(adf, alias_dict) adf = assign_name_string(adf) print('Making Identifier Dataframes') assert adf['ID_num'].isnull().sum()==0 #del to_solve #del ids return adf def save_results(adf, data_path, save_path, article_data_save_path, nrows=None): adf = adf[['ID_num', 'longer_name', 'author_id', 'OI', "RI", 'email_id', 'inst_id', 'postal_code_id']] print('Saving Data') adf.to_csv(save_path) df = pd.read_csv(data_path, nrows = nrows) adf=try_merge(adf, df, left_on = 'ID_num', right_on= 'index', how = 'left') adf.to_csv(article_data_save_path) #%% if __name__ == '__main__': test = False if test: test_string = '_test' else: test_string = '' if len (sys.argv) == 1: save_dir = os.path.join('data', 'intermed_data') data_path=os.path.join(save_dir, 'all_data_2.csv') save_path=os.path.join(save_dir, f'all_author_data{test_string}.csv') article_data_save_path = os.path.join(save_dir, f'expanded_authors{test_string}.csv') elif len(sys.argv) == 4: data_path = sys.argv[1] save_path = sys.argv[2] article_data_save_path =sys.argv[3] else: raise ValueError(f'Script needs 3 arguments, data path and save path. {len(sys.argv)} args provided') if test: nrows = 2000*100 else: nrows = None df = pd.read_csv(data_path, nrows = nrows) print(df.shape) #assert df['ID_num'].isnull().sum()==0 #df = df.dropna(subset = ['AF'])[df['AF'].dropna().str.contains('Lal, R')] adf = main(df, test) # ============================================================================= # adf = adf[['ID_num', 'longer_name', 'author_id']] # # # save_results(adf, data_path, # save_path, article_data_save_path, nrows) # # =============================================================================
bubalis/ae_sysreview
author_work.py
author_work.py
py
45,236
python
en
code
0
github-code
50
42931306467
#!/usr/bin/python3 def weight_average(my_list=[]): if(len(my_list) == 0): return 0 suma = 0 divisor = 0 for i in my_list: suma += i[0] * i[1] for i in my_list: divisor += i[1] return suma / divisor
valerepetto14/holbertonschool-higher_level_programming
0x04-python-more_data_structures/100-weight_average.py
100-weight_average.py
py
248
python
en
code
0
github-code
50
36348384155
import json from .generalhandle import GeneralHandle from .generalhandle import BaseHandle from .converter import api2mc from .converter import mc2api import tornado.httpclient import logging logger = logging.getLogger('API') APIVersion = 'V5.1.0.1.0.20170421' CM_MAU_MQ = { 'ex': 'mau.cmmau.ex', 'key': 'mau.cmmau.k', } CM_MCU_MQ = { 'ex': 'mau.cmmcu.ex', 'key': 'mau.cmmcu.k', } class ConfListHandle(GeneralHandle): """ GET /confs """ _get = { 'action': 'redis', 'lua': 'v1/lua/getconflist.lua', 'converter': api2mc.conflist, } class MtHandle(GeneralHandle): """ GET /conf/{conf_id}/mt/{mt_id} DELETE /conf/{conf_id}/mt/{mt_id} """ _get = { 'action': 'redis', 'lua': 'v1/lua/getmtinfo.lua', 'converter': api2mc.getmtinfo, } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_DELMT_REQ', 'converter': api2mc.delmt, }, 'ack': { 'msg': 'CMU_CM_DELMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_DELMT_NACK', 'converter': mc2api.defaultnack, }, } class CallMtHandle(GeneralHandle): """ PUT /conf/{conf_id}/mt/{mt_id}/online """ _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CALLMT_REQ', 'converter': api2mc.callmt, }, 'ack': { 'msg': 'CMU_CM_CALLMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CALLMT_NACK', 'converter': mc2api.defaultnack, }, } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_DROPMT_REQ', 'converter': api2mc.callmt, }, 'ack': { 'msg': 'CMU_CM_DROPMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_DROPMT_NACK', 'converter': mc2api.defaultnack, }, } class CancelInspectMtHandle(GeneralHandle): """ DELETE confs/{conf_id}/inspections/{mt_id}/{mode} """ _delete_mt = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPSEEMT_REQ', 'converter': api2mc.newstopinspectmt, }, 'ack': { 'msg': 'CMU_CM_STOPSEEMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPSEEMT_NACK', 'converter': mc2api.defaultnack, }, } _delete_vmp = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPSEEVMP_REQ', 'converter': api2mc.newinspectvmp, }, 'ack': { 'msg': 'CMU_CM_STOPSEEVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPSEEVMP_NACK', 'converter': mc2api.defaultnack, }, } async def delete(self, *args, **kw): key = 'conf/%s/selected/video/%s/1' % (self.path_args[0], self.path_args[1]) inspectinfo = self.db.hgetall(key) if inspectinfo and inspectinfo[b'srctype'].decode() == '2': await self.handle(self._delete_vmp, *args) else: await self.handle(self._delete_mt, *args) class InspectMtHandle(GeneralHandle): """ GET confs/{conf_id}/inspections POST confs/{conf_id}/inspections DELETE confs/{conf_id}/inspections """ _get = { 'action': 'redis', 'lua': 'v1/lua/getinspectionlist.lua', 'converter': api2mc.getinspectionlist, } _post_mt = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTSEEMT_REQ', 'converter': api2mc.inspectmt, }, 'ack': { 'msg': 'CMU_CM_STARTSEEMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTSEEMT_NACK', 'converter': mc2api.defaultnack, }, } _post_vmp = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTSEEVMP_REQ', 'converter': api2mc.inspectvmp, }, 'ack': { 'msg': 'CMU_CM_STARTSEEVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTSEEVMP_NACK', 'converter': mc2api.defaultnack, }, } _delete_mt = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPSEEMT_REQ', 'converter': api2mc.stopinspectmt, }, 'ack': { 'msg': 'CMU_CM_STOPSEEMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPSEEMT_NACK', 'converter': mc2api.defaultnack, }, } _delete_vmp = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPSEEVMP_REQ', 'converter': api2mc.inspectvmp, }, 'ack': { 'msg': 'CMU_CM_STOPSEEVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPSEEVMP_NACK', 'converter': mc2api.defaultnack, }, } async def post(self, *args, **kw): data = self.get_argument('params') reqobj = json.loads(data) if reqobj['src']['type'] == 2: await self.handle(self._post_vmp, *args) else: await self.handle(self._post_mt, *args) async def delete(self, *args, **kw): data = self.get_argument('params') reqobj = json.loads(data) key = 'conf/%s/selected/video/%s/1' % (args[0], reqobj['dst']['mt_id']) inspectinfo = self.db.hgetall(key) if inspectinfo and inspectinfo[b'srctype'].decode() == '2': await self.handle(self._delete_vmp, *args) else: await self.handle(self._delete_mt, *args) class ChairManHandle(GeneralHandle): """ GET confs/{conf_id}/chairman PUT confs/{conf_id}/chairman """ _get = { 'action': 'redis', 'lua': 'v1/lua/getchairman.lua', 'converter': api2mc.getchairman, } _put_set = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_SETCHAIRMAN_REQ', 'converter': api2mc.setchairman, }, 'ack': { 'msg': 'CMU_CM_SETCHAIRMAN_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_SETCHAIRMAN_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CANCELCHAIRMAN_REQ', 'converter': api2mc.setchairman, }, 'ack': { 'msg': 'CMU_CM_CANCELCHAIRMAN_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CANCELCHAIRMAN_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): data = self.get_argument('params') reqobj = json.loads(data) if reqobj['mt_id'] != '': await self.handle(self._put_set, *args) else: await self.handle(self._put_cancel, *args) class UploadMtHandle(GeneralHandle): """ GET confs/{conf_id}/upload PUT confs/{conf_id}/upload """ _get = { 'action': 'redis', 'lua': 'v1/lua/getupload.lua', 'converter': api2mc.getupload, } _put_start = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_SPECSRCOFMMCU_REQ', 'converter': api2mc.startupload, }, 'ack': { 'msg': 'CMU_CM_SPECSRCOFMMCU_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_SPECSRCOFMMCU_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_CANCELSRCOFMMCU_CMD', 'converter': api2mc.sete164, } } async def put(self, *args, **kw): data = self.get_argument('params') reqobj = json.loads(data) if reqobj['mt_id'] != '': await self.handle(self._put_start, *args) else: await self.handle(self._put_cancel, *args) class SpeakerHandle(GeneralHandle): """ GET conf/{conf_id}/speaker PUT conf/{conf_id}/speaker """ _get = { 'action': 'redis', 'lua': 'v1/lua/getspeaker.lua', 'converter': api2mc.getspeaker, } _put_set = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_SETSPEAKER_REQ', 'converter': api2mc.setspeaker, }, 'ack': { 'msg': 'CMU_CM_SETSPEAKER_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_SETSPEAKER_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CANCELSPEAKER_REQ', 'converter': api2mc.sete164, }, 'ack': { 'msg': 'CMU_CM_CANCELSPEAKER_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CANCELSPEAKER_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['mt_id'] != '': await self.handle(self._put_set, *args) else: await self.handle(self._put_cancel, *args) class ConfSilenceHandle(GeneralHandle): """ PUT conf/{conf_id}/silence """ _put_set = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CONFSILENCE_REQ', 'converter': api2mc.sete164, }, 'ack': { 'msg': 'CMU_CM_CONFSILENCE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CONFSILENCE_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CANCELCONFSILENCE_REQ', 'converter': api2mc.sete164, }, 'ack': { 'msg': 'CMU_CM_CANCELCONFSILENCE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CANCELCONFSILENCE_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['value'] == 1: await self.handle(self._put_set, *args) else: await self.handle(self._put_cancel, *args) class ConfMuteHandle(GeneralHandle): """ PUT conf/{conf_id}/mute """ _put_set = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CONFMUTE_REQ', 'converter': api2mc.sete164, }, 'ack': { 'msg': 'CMU_CM_CONFMUTE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CONFMUTE_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CANCELCONFMUTE_REQ', 'converter': api2mc.sete164, }, 'ack': { 'msg': 'CMU_CM_CANCELCONFMUTE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CANCELCONFMUTE_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['value'] == 1: await self.handle(self._put_set, *args) else: await self.handle(self._put_cancel, *args) class ConfHandle(GeneralHandle): """ GET conf/{conf_id} """ _get = { 'action': 'redis', 'converter': api2mc.conf, 'lua': 'v1/lua/getconf.lua' } class ConfState(GeneralHandle): """ GET confs/{conf_id}/state """ _get = { 'action': 'redis', 'converter': api2mc.confstate, 'lua': 'v1/lua/getconfstate.lua' } class CascadesConfHandle(GeneralHandle): """ GET conf/{conf_id}/cascades """ _get = { 'action': 'redis', 'converter': api2mc.getcascadeconf, 'lua': 'v1/lua/getcascades.lua' } class CascadesMtHandle(GeneralHandle): """ GET conf/{conf_id}/cascades/{cascade_id}/mts POST confs/{conf_id}/cascades/{cascade_id}/mts """ _get = { 'action': 'redis', 'converter': api2mc.getcascademts, 'lua': 'v1/lua/getcascademts.lua' } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_ADDMT_REQ', 'converter': api2mc.addcascadesmt, }, 'ack': { 'msg': 'CMU_CM_ADDMT_ACK', 'converter': mc2api.cascadesaddmtack, }, 'nack': { 'msg': 'CMU_CM_ADDMT_NACK', 'converter': mc2api.defaultnack, }, } class DelayConfHandle(GeneralHandle): """ POST conf/{conf_id}/delay """ _post = { 'action': 'mqrpc', 'mq': CM_MAU_MQ, 'req': { 'msg': 'CM_MAU_DELAYCONF_REQ', 'converter': api2mc.delayconf, }, 'ack': { 'msg': 'MAU_CM_DELAYCONF_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'MAU_CM_DELAYCONF_NACK', 'converter': mc2api.defaultnack, }, } class MtSlienceHandle(GeneralHandle): """ PUT conf/{conf_id}/mt/{mt_id}/silence """ _put_set = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_MTSILENCE_REQ', 'converter': api2mc.setmtchnl, }, 'ack': { 'msg': 'CMU_CM_MTSILENCE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_MTSILENCE_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CANCELMTSILENCE_REQ', 'converter': api2mc.setmtchnl, }, 'ack': { 'msg': 'CMU_CM_CANCELMTSILENCE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CANCELMTSILENCE_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['value'] == 1: await self.handle(self._put_set, *args) else: await self.handle(self._put_cancel, *args) class MtMuteHandle(GeneralHandle): """ PUT conf/{conf_id}/mt/{mt_id}/mute """ _put_set = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_MTMUTE_REQ', 'converter': api2mc.setmtchnl, }, 'ack': { 'msg': 'CMU_CM_MTMUTE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_MTMUTE_NACK', 'converter': mc2api.defaultnack, }, } _put_cancel = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CANCELMTMUTE_REQ', 'converter': api2mc.setmtchnl, }, 'ack': { 'msg': 'CMU_CM_CANCELMTMUTE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CANCELMTMUTE_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['value'] == 1: await self.handle(self._put_set, *args) else: await self.handle(self._put_cancel, *args) class ConfMonitorHandle(GeneralHandle): """ GET conf/{conf_id}/monitors POST conf/{conf_id}/monitors """ _get = { 'action': 'redis', 'lua': 'v1/lua/getmonitorlist.lua', 'converter': api2mc.getmonitorlist, } _post_start = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTMONITORING_REQ', 'converter': api2mc.startmonitor, }, 'ack': { 'msg': 'CMU_CM_STARTMONITORING_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTMONITORING_NACK', 'converter': mc2api.defaultnack, }, } _post_startvmp = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTMONITORING_VMP_REQ', 'converter': api2mc.startmonitorvmp, }, 'ack': { 'msg': 'CMU_CM_STARTMONITORING_VMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTMONITORING_VMP_NACK', 'converter': mc2api.defaultnack, }, } _post_startmix = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTMONITORING_MIXER_REQ', 'converter': api2mc.startmonitormix, }, 'ack': { 'msg': 'CMU_CM_STARTMONITORING_MIXER_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTMONITORING_MIXER_NACK', 'converter': mc2api.defaultnack, }, } # _delete = { # 'action': 'mqpush', # 'mq': CM_MCU_MQ, # 'cmd': { # 'msg': 'CM_CMU_STOPMONITORING_CMD', # 'converter': api2mc.stopmonitor, # }, # } async def post(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['mode'] == 0 and reqobj['src']['type'] == 2: await self.handle(self._post_startvmp, *args) elif reqobj['mode'] == 1 and reqobj['src']['type'] == 3: await self.handle(self._post_startmix, *args) else: await self.handle(self._post_start, *args) class ConfSigleMonitorHandle(GeneralHandle): """ GET confs/{conf_id}/monitors/{dst_ip}/{dst_port} DELETE confs/{conf_id}/monitors/{dst_ip}/{dst_port} """ _get = { 'action': 'redis', 'lua': 'v1/lua/getmonitorinfo.lua', 'converter': api2mc.getmonitorinfo, } _delete = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STOPMONITORING_CMD', 'converter': api2mc.stopmonitor, }, } class NeedIFrameHandle(GeneralHandle): """ POST /api/v1/vc/confs/{conf_id}/neediframe/monitors """ _post = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_NEEDIFRAME_CMD', 'converter': api2mc.neediframe, } } class MonitorAliveHandle(GeneralHandle): """ POST conf/{conf_id}/monitor/keepalive """ _post = { 'action': 'mqpush', 'mq': CM_MAU_MQ, 'cmd': { 'msg': 'CM_MAU_MONITORKEEPALIVE_NTF', 'converter': api2mc.monitorkeepalive, } } class ConfSaftyHandle(GeneralHandle): """ POST conf/{conf_id}/safety """ _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_SETCONFSAFE_REQ', 'converter': api2mc.setconfsafty, }, 'ack': { 'msg': 'CMU_CM_SETCONFSAFE_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_SETCONFSAFE_NACK', 'converter': mc2api.defaultnack, }, } class VmpStartHandle(GeneralHandle): """ POST conf/{conf_id}/vmp """ _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTVMP_REQ', 'converter': api2mc.startvmp, }, 'ack': { 'msg': 'CMU_CM_STARTVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTVMP_NACK', 'converter': mc2api.defaultnack, }, } class VmpHandle(GeneralHandle): """ GET conf/{conf_id}/vmp/{vmp_id} POST conf/{conf_id}/vmp/{vmp_id} DELETE conf/{conf_id}/vmp/{vmp_id} """ _get = { 'action': 'redis', 'converter': api2mc.getvmpinfo, 'lua': 'v1/lua/getvmpinfo.lua' } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CHANGEVMPPARAM_REQ', 'converter': api2mc.changevmp, }, 'ack': { 'msg': 'CMU_CM_CHANGEVMPPARAM_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CHANGEVMPPARAM_NACK', 'converter': mc2api.defaultnack, } } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPVMP_REQ', 'converter': api2mc.stopvmp, }, 'ack': { 'msg': 'CMU_CM_STOPVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPVMP_NACK', 'converter': mc2api.defaultnack, }, } class StartMixerHandle(GeneralHandle): """ POST conf/{conf_id}/mix """ _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTMIX_REQ', 'converter': api2mc.startmixer, }, 'ack': { 'msg': 'CMU_CM_STARTMIX_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTMIX_NACK', 'converter': mc2api.defaultnack, }, } class MixerHandle(GeneralHandle): """ GET conf/{conf_id}/mix/{mix_id} DELETE conf/{conf_id}/mix/{mix_id} """ _get = { 'action': 'redis', 'converter': api2mc.getmixer, 'lua': 'v1/lua/getmixer.lua' } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPMIX_REQ', 'converter': api2mc.stopmix, }, 'ack': { 'msg': 'CMU_CM_STOPMIX_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPMIX_NACK', 'converter': mc2api.defaultnack, }, } class MixerMembersHandle(GeneralHandle): """ POST conf/{conf_id}/mix/{mix_id}/members DELETE conf/{conf_id}/mix/{mix_id}/members """ _post = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_ADDMIXMEMBER_CMD', 'converter': api2mc.setmixmembers, }, } _delete = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_REMOVEMIXMEMBER_CMD', 'converter': api2mc.setmixmembers, }, } class ConfPollStateHandle(GeneralHandle): """ PUT conf/{conf_id}/poll/state """ _put_pause = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_PAUSEPOLL_CMD', 'converter': api2mc.handlepollstate, }, } _put_resume = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_RESUMEPOLL_CMD', 'converter': api2mc.handlepollstate, }, } _put_stop = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STOPPOLL_CMD', 'converter': api2mc.handlepollstate, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) funcdict = { 0: self._put_stop, 1: self._put_pause, 2: self._put_resume, } await self.handle(funcdict[reqobj['value']], *args) class ConfPollHandle(GeneralHandle): """ GET conf/{conf_id}/poll PUT conf/{conf_id}/poll/ """ _get = { 'action': 'redis', 'converter': api2mc.getpollinfo, 'lua': 'v1/lua/getpollinfo.lua' } _put = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STARTPOLL_CMD', 'converter': api2mc.startpoll, }, } class ConfVadHandle(GeneralHandle): """ GET /confs/([0-9]+)/vad PUT confs/([0-9]+)/vad """ _get = { 'action': 'redis', 'converter': api2mc.getvadinfo, 'lua': 'v1/lua/getvadinfo.lua' } _put_start = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STARTMIX_REQ', 'converter': api2mc.startvad, }, 'ack': { 'msg': 'CM_CMU_STARTMIX_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CM_CMU_STARTMIX_NACK', 'converter': mc2api.defaultnack, }, } _put_stop = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STOPMIX_REQ', 'converter': api2mc.stopvad, }, 'ack': { 'msg': 'CMU_CM_STOPMIX_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPMIX_NACK', 'converter': mc2api.defaultnack, }, } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) funcdict = { 0: self._put_stop, 1: self._put_start, } await self.handle(funcdict[reqobj['state']], *args) class ShortMsgHandle(GeneralHandle): """ POST conf/{conf_id}/msg """ _post = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_SENDMSG_CMD', 'converter': api2mc.sendmsg, } } class MtRecHandle(GeneralHandle): """ POST confs/{conf_id}/mt_recoder/{mt_id} """ _post_pause = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_PAUSEPLAY_REQ', # 'converter': api2mc.rechandle, }, 'ack': { 'msg': 'CMU_CM_PAUSEPLAY_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_PAUSEPLAY_NACK', 'converter': mc2api.defaultnack, }, } _post_resume = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_RESUMEPLAY_REQ', # 'converter': api2mc.rechandle, }, 'ack': { 'msg': 'CMU_CM_RESUMEPLAY_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_RESUMEPLAY_NACK', 'converter': mc2api.defaultnack, }, } _post_stop = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STOPPLAY_REQ', # 'converter': api2mc.rechandle, }, 'ack': { 'msg': 'CMU_CM_STOPPLAY_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPPLAY_NACK', 'converter': mc2api.defaultnack, }, } async def post(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) funcdict = { 0: self._post_pause, 1: self._post_resume, 2: self._post_stop, } await self.handle(funcdict[reqobj['state']], *args) class MtListVmpsHandle(GeneralHandle): """ GET confs/{conf_id}/mtvmps POST confs/{conf_id}/mtvmps """ _get = { 'action': 'redis', 'converter': api2mc.getmtlistvmps, 'lua': 'v1/lua/getmtlistvmps.lua' } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTMTVMP_REQ', 'converter': api2mc.startmtvmp, }, 'ack': { 'msg': 'CMU_CM_STARTMTVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTMTVMP_NACK', 'converter': mc2api.defaultnack, } } class MtVmpsHandle(GeneralHandle): """ GET confs/{conf_id}/mtvmps/{mt_id} PUT confs/{conf_id}/mtvmps/{mt_id} DELETE confs/{conf_id}/mtvmps/{mt_id} """ _get = { 'action': 'redis', 'converter': api2mc.getmtvmps, 'lua': 'v1/lua/getmtvmps.lua' } _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CHANGEMTVMPPARAM_REQ', 'converter': api2mc.changemtvmps, }, 'ack': { 'msg': 'CMU_CM_CHANGEMTVMPPARAM_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CHANGEMTVMPPARAM_NACK', 'converter': mc2api.defaultnack, } } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPMTVMP_REQ', 'converter': api2mc.stopmtvmps, }, 'ack': { 'msg': 'CMU_CM_STOPMTVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPMTVMP_NACK', 'converter': mc2api.defaultnack, } } class HduListVmpsHandle(GeneralHandle): """ GET confs/{conf_id}/hduvmps POST confs/{conf_id}/hduvmps """ _get = { 'action': 'redis', 'lua': 'v1/lua/gethduvmpslist.lua', 'converter': api2mc.gethduvmpslist, } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTHDUVMP_REQ', 'converter': api2mc.starthduvmps, }, 'ack': { 'msg': 'CMU_CM_STARTHDUVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTHDUVMP_NACK', 'converter': mc2api.defaultnack, } } class HduVmpsHandle(GeneralHandle): """ GET confs/{conf_id}/hduvmps/{hdu_id} PUT confs/{conf_id}/hduvmps/{hdu_id} DELETE confs/{conf_id}/hduvmps/{hdu_id} """ _get = { 'action': 'redis', 'lua': 'v1/lua/gethduvmps.lua', 'converter': api2mc.gethduvmps, } _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CHANGEHDUVMP_REQ', 'converter': api2mc.changehduvmps, }, 'ack': { 'msg': 'CMU_CM_CHANGEHDUVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CHANGEHDUVMP_NACK', 'converter': mc2api.defaultnack, } } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPHDUVMP_REQ', 'converter': api2mc.stophduvmps, }, 'ack': { 'msg': 'CMU_CM_STOPHDUVMP_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPHDUVMP_NACK', 'converter': mc2api.defaultnack, } } class SpecDualkSrcHandle(GeneralHandle): """ GET confs/{conf_id}/dualstream PUT confs/{conf_id}/dualstream DELETE confs/{conf_id}/dualstream """ _get = { 'action': 'redis', 'lua': 'v1/lua/getdualstream.lua', 'converter': api2mc.getdualstream, } _put_start = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_SPECDUALSRC_CMD', 'converter': api2mc.specdualsrc, } } _put_stop = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_CANCELDUALSRC_CMD', 'converter': api2mc.stopspecdualsrc, } } _delete = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_CANCELDUALSRC_CMD', 'converter': api2mc.specdualsrc, } } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['mt_id'] != '': await self.handle(self._put_start, *args) else: key = "conf/%s/dualstream" % self.path_args[0] dualinfo = self.db.hgetall(key) if dualinfo: await self.handle(self._put_stop, *args, dualinfo[b'mtcascade'].decode(), dualinfo[b'mtid'].decode()) else: msg = { 'success': 0, 'error_code': 22014, } self.write(msg) class MtCameraRCHandle(GeneralHandle): """ POST conf/{conf_id}/mt/{mt_id}/camera/state """ _post_start = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_MTCAMERA_MOV_CMD', 'converter': api2mc.camerarc, } } _post_stop = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_MTCAMERA_STOP_CMD', 'converter': api2mc.camerarc, } } async def post(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['state'] == 0: await self.handle(self._post_start, *args) else: await self.handle(self._post_stop, *args) class MtVolumHandle(GeneralHandle): """ POST conf/{conf_id}/mt/{mt_id}/volum """ _put = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_MODMTVOLUME_CMD', 'converter': api2mc.mtvolum, } } class ConfHduListHandle(GeneralHandle): """ GET confs/{conf_id}/hdus POST confs/{conf_id}/hdus """ _get = { 'action': 'redis', 'lua': 'v1/lua/getconfhdulist.lua', 'converter': api2mc.getconfhdulist, } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTHDUSWITCH_REQ', 'converter': api2mc.newstarthdu, }, 'ack': { 'msg': 'CMU_CM_STARTHDUSWITCH_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTHDUSWITCH_NACK', 'converter': mc2api.defaultnack, } } _post_startpoll = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STARTHDUPOLL_CMD', 'converter': api2mc.newstarthdupoll, }, } _post_change = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_CHANGEHDUVMPMODE_CMD', 'converter': api2mc.newstophdu, }, } async def post(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['mode'] == 2: await self.handle(self._post_change, *args) self.clear() if reqobj['mode'] != 3: funcdict = self._post elif reqobj['mode'] == 3: funcdict = self._post_startpoll await self.handle(funcdict, *args) class PlatformHduListHandle(GeneralHandle): """ GET hdus """ _get = { 'action': 'mqrpc', 'mq': CM_MAU_MQ, 'req': { 'msg': 'CM_MAU_GETHDUINFOBYMOID_REQ', 'converter': api2mc.hdulist, }, 'ack': { 'msg': 'MAU_CM_GETHDUINFOBYMOID_ACK', 'converter': mc2api.hdulist, }, 'nack': { 'msg': 'MAU_CM_GETHDUINFOBYMOID_NACK', 'converter': mc2api.defaultnack, } } class HduHandle(GeneralHandle): """ GET conf/{conf_id}/hdu/{hdu_id} POST conf/{conf_id}/hdu/{hdu_id} DELETE conf/{conf_id}/hdu/{hdu_id} """ _get = { 'action': 'redis', 'lua': 'v1/lua/gethduchninfo.lua', 'converter': api2mc.gethduchninfo, } _post_start = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTHDUSWITCH_REQ', 'converter': api2mc.starthdu, }, 'ack': { 'msg': 'CMU_CM_STARTHDUSWITCH_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STARTHDUSWITCH_NACK', 'converter': mc2api.defaultnack, } } _post_stop = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPHDUSWITCH_REQ', 'converter': api2mc.stophdu, }, 'ack': { 'msg': 'CMU_CM_STOPHDUSWITCH_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPHDUSWITCH_NACK', 'converter': mc2api.defaultnack, } } _post_startpoll = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STARTHDUPOLL_CMD', 'converter': api2mc.starthdupoll, }, } _post_stoppoll = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STOPHDUPOLL_CMD', 'converter': api2mc.stophdupoll, }, } _delete_hdu = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPHDUSWITCH_REQ', 'converter': api2mc.deletehdu, }, 'ack': { 'msg': 'CMU_CM_STOPHDUSWITCH_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPHDUSWITCH_NACK', 'converter': mc2api.defaultnack, } } _delete_poll = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_STOPHDUPOLL_CMD', 'converter': api2mc.stophdupoll, }, } _post_change = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_CHANGEHDUVMPMODE_CMD', 'converter': api2mc.stophdu, }, } async def delete(self, *args, **kw): hdu_id = self.path_args[1].replace('_', '/') key = 'conf/%s/tvwall/%s' % (self.path_args[0], hdu_id) hduinfo = self.db.hgetall(key) if hduinfo: if hduinfo[b'style'].decode() == '0' and hduinfo[b'hdutype'].decode() == '1': await self.handle(self._delete_poll, *args) else: await self.handle(self._delete_hdu, *args, hduinfo[b'style'].decode()) else: msg = { 'success': 0, 'error_code': 20052, } self.write(msg) async def post(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['occupy'] == 1 and reqobj['mode'] == 2: await self.handle(self._post_change, *args) self.clear() if reqobj['mode'] != 3: funcdict = { 0: self._post_stop, 1: self._post_start, } elif reqobj['mode'] == 3: funcdict = { 0: self._post_stoppoll, 1: self._post_startpoll, } await self.handle(funcdict[reqobj['occupy']], *args) class MtListHandle(GeneralHandle): """ POST conf/{conf_id}/mtlist DELETE conf/{conf_id}/mtlist GET /conf/{conf_id}/mts' """ _get = { 'action': 'redis', 'lua': 'v1/lua/getconfmtlist.lua', 'converter': api2mc.getconfmtlist, } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_ADDMT_REQ', 'converter': api2mc.addmts, }, 'ack': { 'msg': 'CMU_CM_ADDMT_ACK', 'converter': mc2api.addmtack, }, 'nack': { 'msg': 'CMU_CM_ADDMT_NACK', 'converter': mc2api.defaultnack, } } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_DELMT_REQ', 'converter': api2mc.delmts, }, 'ack': { 'msg': 'CMU_CM_DELMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_DELMT_NACK', 'converter': mc2api.defaultnack, } } class MtsStateHandle(GeneralHandle): """ POST conf/{conf_id}/mts/state """ _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_CALLMT_REQ', 'converter': api2mc.setmts, }, 'ack': { 'msg': 'CMU_CM_CALLMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_CALLMT_NACK', 'converter': mc2api.defaultnack, } } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_DROPMT_REQ', 'converter': api2mc.setmts, }, 'ack': { 'msg': 'CMU_CM_DROPMT_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_DROPMT_NACK', 'converter': mc2api.defaultnack, } } async def recorderHandle(self, method_action, *args, **kw): try: account_info = await self.valid_token() if account_info is not None: if method_action is not None: method = self.request.method if method == 'POST': params = self.get_argument('params') reqobj = json.loads(params) if method == 'GET' or account_info['enableVRS'] and \ (reqobj['recorder_mode'] == 1 or account_info['enableLive']): action = getattr(self, method_action['action']) await action(method_action, account_info, *args, **kw) else: msg = { 'success': 0, 'error_code': 20005, } logger.error(msg) self.write(msg) else: logger.debug('method_action is none') handle = getattr(BaseHandle, self.request.method.lower()) handle(self, *args, **kw) except tornado.httpclient.HTTPError as e: print(e) msg = { 'success': 0, 'error_code': 10102, } logger.error(msg) self.write(msg) class RecordersHandle(GeneralHandle): """ GET confs/{conf_id}/recorders POST confs/{conf_id}/recorders """ handle = recorderHandle _get = { 'action': 'redis', 'lua': 'v1/lua/getrecorderlist.lua', 'converter': api2mc.getrecorderlist, } _post = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTREC_REQ', 'converter': api2mc.startrecorder, }, 'ack': { 'msg': 'CMU_CM_STARTREC_ACK', 'converter': mc2api.startrecack, }, 'nack': { 'msg': 'CMU_CM_STARTREC_NACK', 'converter': mc2api.defaultnack, } } class RecorderInsHandle(GeneralHandle): """ GET confs/{conf_id}/recorders/{rec_id} DELETE confs/{conf_id}/recorders/{rec_id} """ _get = { 'action': 'redis', 'lua': 'v1/lua/getrecorderstate.lua', 'converter': api2mc.getrecorderstate, } _delete = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPREC_REQ', 'converter': api2mc.recorderoperator, }, 'ack': { 'msg': 'CMU_CM_STOPREC_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPREC_NACK', 'converter': mc2api.defaultnack, } } class RecorderStateHandle(GeneralHandle): """" PUT confs/{conf_id}/recorders/{rec_id}/state """ _put_pause = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_PAUSEREC_REQ', 'converter': api2mc.recorderoperator, }, 'ack': { 'msg': 'CMU_CM_PAUSEREC_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_PAUSEREC_NACK', 'converter': mc2api.defaultnack, } } _put_resume = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_RESUMEREC_REQ', 'converter': api2mc.recorderoperator, }, 'ack': { 'msg': 'CMU_CM_RESUMEREC_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_RESUMEREC_NACK', 'converter': mc2api.defaultnack, } } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['value'] == 1: await self.handle(self._put_pause, *args) else: await self.handle(self._put_resume, *args) class PlayHandle(GeneralHandle): """ PUT /api/v1/vc/confs/{conf_id}/playback GET /api/v1/vc/confs/{conf_id}/playback """ _get = { 'action': 'redis', 'lua': 'v1/lua/getplaystate.lua', 'converter': api2mc.getplaystate, } _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STARTPLAY_REQ', 'converter': api2mc.startplay, }, 'ack': { 'msg': 'CMU_CM_STARTPLAY_ACK', 'converter': mc2api.startplayack, }, 'nack': { 'msg': 'CMU_CM_STARTPLAY_NACK', 'converter': mc2api.defaultnack, } } class PlayStateHandle(GeneralHandle): """ PUT /api/v1/vc/confs/{conf_id}/playback/state """ _put_pause = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_PAUSEPLAY_REQ', 'converter': api2mc.playoperator, }, 'ack': { 'msg': 'CMU_CM_PAUSEPLAY_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_PAUSEPLAY_NACK', 'converter': mc2api.defaultnack, } } _put_resume = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_RESUMEPLAY_REQ', 'converter': api2mc.playoperator, }, 'ack': { 'msg': 'CMU_CM_RESUMEPLAY_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_RESUMEPLAY_NACK', 'converter': mc2api.defaultnack, } } _put_stop = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_STOPPLAY_REQ', 'converter': api2mc.playoperator, }, 'ack': { 'msg': 'CMU_CM_STOPPLAY_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_STOPPLAY_NACK', 'converter': mc2api.defaultnack, } } async def put(self, *args, **kw): params = self.get_argument('params') reqobj = json.loads(params) if reqobj['value'] == 1: await self.handle(self._put_pause, *args) elif reqobj['value'] == 2: await self.handle(self._put_resume, *args) else: await self.handle(self._put_stop, *args) class PlayProgHandle(GeneralHandle): """ PUT /api/v1/vc/confs/{conf_id}/playback/current_progress """ _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_SEEK_REQ', 'converter': api2mc.playprog, }, 'ack': { 'msg': 'CMU_CM_SEEK_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_SEEK_NACK', 'converter': mc2api.defaultnack, } } class ViplistHandle(GeneralHandle): """ PUT /api/v1/vc/confs/{conf_id}/viplist GET /api/v1/vc/confs/{conf_id}/viplist """ _get = { 'action': 'redis', 'lua': 'v1/lua/getviplist.lua', 'converter': api2mc.getviplist, } _put = { 'action': 'mqrpc', 'mq': CM_MCU_MQ, 'req': { 'msg': 'CM_CMU_SETVIPLIST_REQ', 'converter': api2mc.setviplist, }, 'ack': { 'msg': 'CMU_CM_SETVIPLIST_ACK', 'converter': mc2api.defaultack, }, 'nack': { 'msg': 'CMU_CM_SETVIPLIST_NACK', 'converter': mc2api.defaultnack, } } class ForceBrdHandle(GeneralHandle): """ PUT /api/v1/vc/confs/{conf_id}/forcebroadcast """ _put = { 'action': 'mqpush', 'mq': CM_MCU_MQ, 'cmd': { 'msg': 'CM_CMU_FORCEBRD_CMD', 'converter': api2mc.forcebroadcast, }, } class APIVersionHandle(GeneralHandle): """ GET version """ async def get(self, *args, **kw): msg = { 'version': APIVersion, 'success': 1, } self.write(msg) class APILogLevelHandle(GeneralHandle): """ GET loglevel """ async def get(self, *args, **kw): reqobj = int(self.path_args[0]) loglvl = (logging.NOTSET, logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR) if logging.DEBUG <= loglvl[reqobj] <= logging.FATAL: logger = logging.getLogger('API') logger.setLevel(loglvl[reqobj]) msg = { 'success': 1, } else: msg = { 'success': 0, 'error_code': 112230 } self.write(msg) pre_url = '/api/v1/vc/' url = [ (pre_url + 'confs', ConfListHandle), (pre_url + 'confs/([0-9]+)', ConfHandle), # (pre_url + 'confs/([0-9]+)/state', ConfState), (pre_url + 'confs/([0-9]+)/cascades', CascadesConfHandle), (pre_url + 'confs/([0-9]+)/cascades/([0-9\.]+)/mts', CascadesMtHandle), (pre_url + 'confs/([0-9]+)/mts', MtListHandle), (pre_url + 'confs/([0-9]+)/silence', ConfSilenceHandle), (pre_url + 'confs/([0-9]+)/mute', ConfMuteHandle), (pre_url + 'confs/([0-9]+)/delay', DelayConfHandle), (pre_url + 'confs/([0-9]+)/monitors', ConfMonitorHandle), (pre_url + 'confs/([0-9]+)/monitors/([0-9.]+)/([0-9]+)', ConfSigleMonitorHandle), (pre_url + 'confs/([0-9]+)/monitors_heartbeat', MonitorAliveHandle), (pre_url + 'confs/([0-9]+)/neediframe/monitors', NeedIFrameHandle), (pre_url + 'confs/([0-9]+)/safty', ConfSaftyHandle), (pre_url + 'confs/([0-9]+)/speaker', SpeakerHandle), (pre_url + 'confs/([0-9]+)/chairman', ChairManHandle), (pre_url + 'confs/([0-9]+)/upload', UploadMtHandle), (pre_url + 'confs/([0-9]+)/online_mts', MtsStateHandle), (pre_url + 'confs/([0-9]+)/inspections', InspectMtHandle), (pre_url + 'confs/([0-9]+)/inspections/([0-9]+)/([0-9]+)', CancelInspectMtHandle), (pre_url + 'confs/([0-9]+)/(?:cascades/(?:[0-9]+)/)?mts/([0-9\.]+)', MtHandle), (pre_url + 'confs/([0-9]+)/mts/([0-9\.]+)/silence', MtSlienceHandle), (pre_url + 'confs/([0-9]+)/mts/([0-9\.]+)/mute', MtMuteHandle), (pre_url + 'confs/([0-9]+)/mts/([0-9\.]+)/camera', MtCameraRCHandle), (pre_url + 'confs/([0-9]+)/mts/([0-9\.]+)/volume', MtVolumHandle), (pre_url + 'confs/([0-9]+)/vmps', VmpStartHandle), (pre_url + 'confs/([0-9]+)/vmps/([0-9]+)', VmpHandle), (pre_url + 'confs/([0-9]+)/mixs', StartMixerHandle), (pre_url + 'confs/([0-9]+)/mixs/([0-9]+)', MixerHandle), (pre_url + 'confs/([0-9]+)/mixs/([0-9]+)/members', MixerMembersHandle), (pre_url + 'confs/([0-9]+)/sms', ShortMsgHandle), (pre_url + 'confs/([0-9]+)/vad', ConfVadHandle), (pre_url + 'confs/([0-9]+)/dualstream', SpecDualkSrcHandle), (pre_url + 'confs/([0-9]+)/poll', ConfPollHandle), (pre_url + 'confs/([0-9]+)/poll/state', ConfPollStateHandle), (pre_url + 'hdus', PlatformHduListHandle), (pre_url + 'confs/([0-9]+)/hdus', ConfHduListHandle), (pre_url + 'confs/([0-9]+)/hdus/([0-9_]+)', HduHandle), (pre_url + 'confs/([0-9]+)/mtvmps', MtListVmpsHandle), (pre_url + 'confs/([0-9]+)/mtvmps/([0-9\.]+)', MtVmpsHandle), (pre_url + 'confs/([0-9]+)/hduvmps', HduListVmpsHandle), (pre_url + 'confs/([0-9]+)/hduvmps/([0-9_]+)', HduVmpsHandle), (pre_url + 'confs/([0-9]+)/recorders', RecordersHandle), (pre_url + 'confs/([0-9]+)/recorders/([0-9]+)', RecorderInsHandle), (pre_url + 'confs/([0-9]+)/recorders/([0-9]+)/state', RecorderStateHandle), (pre_url + 'confs/([0-9]+)/playback', PlayHandle), (pre_url + 'confs/([0-9]+)/playback/state', PlayStateHandle), (pre_url + 'confs/([0-9]+)/playback/current_progress', PlayProgHandle), (pre_url + 'confs/([0-9]+)/viplist', ViplistHandle), (pre_url + 'confs/([0-9]+)/forcebroadcast', ForceBrdHandle), (pre_url + 'version', APIVersionHandle), (pre_url + 'loglevel/([0-9])', APILogLevelHandle), ]
github188/dest
80-moservice/vcapi/src/v1/vchandle.py
vchandle.py
py
54,755
python
en
code
0
github-code
50
23240011506
import pandas as pd import talib as ta import tushare as ts from tqdm import tqdm pd.set_option('display.max_columns', None) # set token ts.set_token('303f0dbbabfad0fd3f9465368bdc62fc775bde6711d6b59c2ca10109') # initialize pro api pro = ts.pro_api() def get_transform_data(path): df = pd.read_csv(path, index_col=0) df['date'] = pd.to_datetime(df['trade_date'], format='%Y%m%d') df.set_index('date', inplace=True) df = df.iloc[::-1] return df def append_return(df, start=1, end=10, step=1, max_entry_delay=1): for i in range(1, max_entry_delay + 1): df['t{}open'.format(str(i))] = df.open.shift(-i) for n in range(start, end, step): df['t{}_ret_on_t{}open'.format(str(n), str(i))] = (df.close.shift(-n) / df['t{}open'.format(str(i))] - 1) * 100 return df def calculate_signal(df, window): closed = df['close'].values df['ema' + str(window)] = ta.MA(closed, timeperiod=window, matype=1) # Condition df['ema_low<=ma' + str(window)] = df.low <= df['ema' + str(window)] df['ema_close>=ma' + str(window)] = df.close >= df['ema' + str(window)] # Combined Conditions df['ema_score_ma' + str(window)] = (df['ema_low<=ma' + str(window)] & df['ema_close>=ma' + str(window)]).astype(int) return df if __name__ == "__main__": # 中国平安 601318 ts_codes = ['601318.SH'] for ts_code in tqdm(ts_codes): file_path = f'../week1/solution_daily_price/{ts_code}.csv' data = get_transform_data(file_path) # append signal win = 100 data_w_signal = calculate_signal(data, window=win) # append returns data_panel = append_return(data_w_signal) data_panel.to_csv(f'panel_EMA/PANEL_{ts_code}.csv')
HuifengJin/Quant_project
solutions/week2/solution_panel.py
solution_panel.py
py
1,862
python
en
code
0
github-code
50
70969694234
# geeksforgeeks-practice def gcd(a, b): if a<b: small=a else: small=b for x in range(1,small+1): if ((a%x==0) and (b%x==0)): g=x return g
ArunimaGupta1/geeksforgeeks-practice
GCD.py
GCD.py
py
187
python
en
code
0
github-code
50
21540899903
# -*- coding: utf-8 -*- """ Created on Sun Oct 13 14:46:27 2019 @author: emili """ ##Importing Keras Libraries from keras.models import Sequential from keras.layers import Convolution2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense ##Initializing the CNN classifier = Sequential() ##Step 1: Convolution classifier.add(Convolution2D(32,3,3, input_shape = (64, 64 ,3), activation = "relu")) ##Param 1: nb_filter= number of featura detectors and dimensions rowsXcolumns ##Param 2: input_shape=(3,256,256) número de canales y tamaño de las imágenes de input ##Param 3: Activation Function para obtener non-linearity ##Step 2: Max Pooling classifier.add(MaxPooling2D(pool_size = (2,2))) ##Param 1: Tamaño del pool Map (2X2) ##Al aplicar los dos pasos anteriores conseguimos información de la imágen no solamente sobre sus features ## si no también sobre sus relaciones espaciales. ##Podemos agregar una segunda convolutional layer para mejorar el procesamiento de la imágen classifier.add(Convolution2D(32,3,3, activation = "relu")) classifier.add(MaxPooling2D(pool_size = (2,2))) ##Step 3: Flattening classifier.add(Flatten()) ##Usaremos el vector del Flatten para el input de nuestra ANN que tendrá fully connected layers ##ANN son geniales clasificadores para problemas no lineales y la clasificación de imágenes es un problema ## NO LINEAL (afortunadamente) ##Step 4: Full Connection ##Utilizamos Dense para crear una fully connected layer classifier.add(Dense(output_dim = 128, activation = "relu")) ##Param 1: Número de nodos en nuestra fully connected hidden layer classifier.add(Dense(output_dim = 1, activation = "sigmoid")) ##Output Layer ## Compiling CNN classifier.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"]) ##Part 2: Fitting CNN to the images from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) ##Esta parte es posible gracias a la manera en que organizamos nuestro folders de manera manual. training_set = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary') test_set = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary') classifier.fit_generator( training_set, steps_per_epoch=8000, epochs=25, validation_data=test_set, validation_steps=2000)
tresstogo/Deep_Learning
cnn_M.py
cnn_M.py
py
2,830
python
es
code
0
github-code
50
70307591194
# Databricks notebook source # MAGIC %md # Population vs. Median Home Prices # MAGIC #### *Linear Regression with Single Variable* # COMMAND ---------- # MAGIC %md ### Load and parse the data # COMMAND ---------- # Use the Spark CSV datasource with options specifying: # - First line of file is a header # - Automatically infer the schema of the data data = spark.read.csv("/databricks-datasets/samples/population-vs-price/data_geo.csv", header="true", inferSchema="true") data.cache() # Cache data for faster reuse data.count() # COMMAND ---------- display(data) # COMMAND ---------- data = data.dropna() # drop rows with missing values data.count() # COMMAND ---------- from pyspark.sql.functions import col exprs = [col(column).alias(column.replace(' ', '_')) for column in data.columns] vdata = data.select(*exprs).selectExpr("2014_Population_estimate as population", "2015_median_sales_price as label") display(vdata) # COMMAND ---------- from pyspark.ml import Pipeline from pyspark.ml.feature import VectorAssembler stages = [] assembler = VectorAssembler(inputCols=["population"], outputCol="features") stages += [assembler] pipeline = Pipeline(stages=stages) pipelineModel = pipeline.fit(vdata) dataset = pipelineModel.transform(vdata) # Keep relevant columns selectedcols = ["features", "label"] display(dataset.select(selectedcols)) # COMMAND ---------- # MAGIC %md ## Scatterplot of the data # COMMAND ---------- import numpy as np import matplotlib.pyplot as plt x = dataset.rdd.map(lambda p: (p.features[0])).collect() y = dataset.rdd.map(lambda p: (p.label)).collect() plt.style.use('classic') plt.rcParams['lines.linewidth'] = 0 fig, ax = plt.subplots() ax.loglog(x,y) plt.xlim(1.0e5, 1.0e7) plt.ylim(5.0e1, 1.0e3) ax.scatter(x, y, c="blue") display(fig) # COMMAND ---------- # MAGIC %md ## Linear Regression # MAGIC # MAGIC **Goal** # MAGIC * Predict y = 2015 Median Housing Price # MAGIC * Using feature x = 2014 Population Estimate # MAGIC # MAGIC **References** # MAGIC * [MLlib LinearRegression user guide](http://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression) # MAGIC * [PySpark LinearRegression API](http://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.regression.LinearRegression) # COMMAND ---------- # Import LinearRegression class from pyspark.ml.regression import LinearRegression # Define LinearRegression algorithm lr = LinearRegression() # COMMAND ---------- # Fit 2 models, using different regularization parameters modelA = lr.fit(dataset, {lr.regParam:0.0}) modelB = lr.fit(dataset, {lr.regParam:100.0}) print(">>>> ModelA intercept: %r, coefficient: %r" % (modelA.intercept, modelA.coefficients[0])) print(">>>> ModelB intercept: %r, coefficient: %r" % (modelB.intercept, modelB.coefficients[0])) # COMMAND ---------- # MAGIC %md ## Make predictions # MAGIC # MAGIC Calling `transform()` on data adds a new column of predictions. # COMMAND ---------- # Make predictions predictionsA = modelA.transform(dataset) display(predictionsA) # COMMAND ---------- predictionsB = modelB.transform(dataset) display(predictionsB) # COMMAND ---------- # MAGIC %md ## Evaluate the Model # MAGIC #### Predicted vs. True label # COMMAND ---------- from pyspark.ml.evaluation import RegressionEvaluator evaluator = RegressionEvaluator(metricName="rmse") RMSE = evaluator.evaluate(predictionsA) print("ModelA: Root Mean Squared Error = " + str(RMSE)) # COMMAND ---------- predictionsB = modelB.transform(dataset) RMSE = evaluator.evaluate(predictionsB) print("ModelB: Root Mean Squared Error = " + str(RMSE)) # COMMAND ---------- # MAGIC %md ## Plot residuals versus fitted values # COMMAND ---------- display(modelA,dataset) # COMMAND ---------- # MAGIC %md # Linear Regression Plots # COMMAND ---------- import numpy as np from pandas import * pop = dataset.rdd.map(lambda p: (p.features[0])).collect() price = dataset.rdd.map(lambda p: (p.label)).collect() predA = predictionsA.select("prediction").rdd.map(lambda r: r[0]).collect() predB = predictionsB.select("prediction").rdd.map(lambda r: r[0]).collect() pydf = DataFrame({'pop':pop,'price':price,'predA':predA, 'predB':predB}) # COMMAND ---------- # MAGIC %md ## View the pandas DataFrame (pydf) # COMMAND ---------- pydf # COMMAND ---------- # MAGIC %md ## Display the scatterplot and the two regression models # COMMAND ---------- fig, ax = plt.subplots() ax.loglog(x,y) ax.scatter(x, y) plt.xlim(1.0e5, 1.0e7) plt.ylim(5.0e1, 1.0e3) ax.plot(pop, predA, '.r-') ax.plot(pop, predB, '.g-') display(fig)
AdamPaternostro/Azure-Databricks-Dev-Ops
notebooks/MyProject/Pop. vs. Price LR.py
Pop. vs. Price LR.py
py
4,598
python
en
code
61
github-code
50
15660309619
import json import shutil from tempfile import mkdtemp class ExperimentalEnvironment(object): UNREL_GRAPH = "unrelated_graph" UNREL_RULE_GRAPH = "thermometer" UNREL_RULE_RULE = "temperature_rule" NOT_FEASIBLE_RULE = "light2_rule" MAIN_GRAPHS = ["facts.n3"] MAIN_RULE = ["light3_rule.n3"] QUERY_RULE = "light_goal.n3" def __init__(self): self.output_folder = mkdtemp( dir = "/tmp" ) self.copy_normal_knowledge() self.create_unrelated_graphs(1000) self.create_unrelated_rules(1000) self.create_not_feasible_rules(1000) self.create_scenario() self.create_scenario( unrelated_facts = 100 ) self.create_scenario( unrelated_rules = 100 ) self.create_scenario( not_feasible_rules = 100 ) self.create_scenario( unrelated_facts = 1000 ) self.create_scenario( unrelated_rules = 1000 ) self.create_scenario( not_feasible_rules = 1000 ) def _get_new_filename(self, filename): return self.output_folder + "/" + filename def _copy_file(self, filename): shutil.copyfile( filename, self._get_new_filename( filename ) ) def copy_normal_knowledge(self): self._copy_file( ExperimentalEnvironment.QUERY_RULE ) for normal_graphs in ExperimentalEnvironment.MAIN_GRAPHS: self._copy_file( normal_graphs ) for normal_rule in ExperimentalEnvironment.MAIN_RULE: self._copy_file( normal_rule ) def get_template_filepath(self, filename): return "%s.n3.tpl" % (filename) def get_output_filepath(self, filename, num): return "%s/%s_%d.n3" % (self.output_folder, filename, num) def create_files_from_template(self, template_filename, n): with open ( self.get_template_filepath(template_filename), "r") as input_file: content = input_file.read() for i in range(n): with open ( self.get_output_filepath(template_filename, i), "w" ) as output_file: output_file.write( content.replace(r"(?id)", str(i)) ) def create_unrelated_graphs(self, n): self.create_files_from_template( ExperimentalEnvironment.UNREL_RULE_GRAPH, n ) def create_unrelated_rules(self, n): self.create_files_from_template( ExperimentalEnvironment.UNREL_RULE_RULE, n ) self.create_files_from_template( ExperimentalEnvironment.UNREL_RULE_GRAPH, n ) def create_not_feasible_rules(self, n): self.create_files_from_template( ExperimentalEnvironment.NOT_FEASIBLE_RULE, n ) def create_scenario(self, unrelated_facts = 1, unrelated_rules = 1, not_feasible_rules = 1 ): config = {} config["query_goal"] = self._get_new_filename( ExperimentalEnvironment.QUERY_RULE ) config["virtual_nodes"] = [] one_node = {} # in one node all the content, nothing special since that part is not being evaluated one_node["facts"] = [] one_node["rules"] = [] for i in range(unrelated_facts): one_node["facts"].append ( self.get_output_filepath(ExperimentalEnvironment.UNREL_GRAPH, i) ) one_node["rules"] = [] for i in range(unrelated_rules): one_node["facts"].append ( self.get_output_filepath(ExperimentalEnvironment.UNREL_RULE_GRAPH, i) ) one_node["rules"].append ( self.get_output_filepath(ExperimentalEnvironment.UNREL_RULE_RULE, i) ) for i in range(not_feasible_rules): one_node["facts"] = [] one_node["rules"].append ( self.get_output_filepath(ExperimentalEnvironment.NOT_FEASIBLE_RULE, i) ) config["virtual_nodes"].append( one_node ) actuator_node = {} actuator_node["facts"] = [ self._get_new_filename(el) for el in ExperimentalEnvironment.MAIN_GRAPHS ] actuator_node["rules"] = [ self._get_new_filename(el) for el in ExperimentalEnvironment.MAIN_RULE ] config["virtual_nodes"].append( actuator_node ) with open ( "%s/scenario_%d_%d_%d.config" % (self.output_folder, unrelated_facts, unrelated_rules, not_feasible_rules), "w" ) as output_file: output_file.write( json.dumps(config) ) if __name__ == '__main__': ExperimentalEnvironment()
gomezgoiri/actuationInSpaceThroughRESTdesc
ScnImpl/wot2013/evaluation/environment.py
environment.py
py
4,472
python
en
code
0
github-code
50
35116740678
from collections import namedtuple def coll_namedtuple(): City = namedtuple('City', 'name country population coordinates') tokyo = City('Tokyo', 'JP', population=36.99, coordinates=(35.66, 139.69)) print(tokyo) print(City._fields) LatLong = namedtuple('LatLong', 'lat long') delhi_data =('Delhi NCR', 'IN', 21.935, LatLong(28.61, 77.20)) delhi = City._make(delhi_data) print(delhi._asdict()) def list_of_lists(): a = [['a', 'b']] b = a * 5 print(b) a[0][0] = 'c' print(b) b[0][1] = 'd' print('\n') print(a) print(b) if __name__ == '__main__': # coll_namedtuple() list_of_lists()
alexIGit/practics
py_luchano/tuple.py
tuple.py
py
626
python
en
code
0
github-code
50
17538298267
import pandas as pd import numpy as np # pandas分组 # -聚合 计算汇总统计 # -转换 执行一些特定于组的操作 # -过滤 再某些情况下丢弃数据 d = { 'Name': pd.Series(['Tom', 'James', 'Ricky', 'Vin', 'Steve', 'Minsu', 'Jack' 'Lee', 'David', 'Gasper', 'Betina', 'Andres']), 'Year' : pd.Series([2015, 2016, 2013, 2015, 2019, 2016, 2019, 2013, 2015, 2016, 2015]), 'Points': pd.Series([4.23, 3.24, 3.98, 2.56, 3.20, 4.6, 3.8, 3.78, 2.98, 4.80, 4.10]) } df = pd.DataFrame(d) print(df, '->df') dfed = df.groupby('Year').groups print(dfed) # 通过循环打印 for year, group in df.groupby('Year'): print(year) print(group) print('-' * 45) # 获得一个分组细节(拿到2015年的所有数据) grouped = df.groupby('Year') print(grouped.get_group(2015)) print('-' * 45) # 分组聚合 # 聚合函数为每个组返回聚合值.当创建了分组(groupby)对象, 就可以 # 对每个分组数据执行求和, 求标准差等操作 # 聚合每一年的评分 grouped = df.groupby('Year') print(grouped['Points'].agg(np.mean)) print(grouped['Points'].agg([np.mean, np.max, np.min])) # pandas数据表关联 # 默认通过相同的class_name进行合并 left = pd.DataFrame({ 'student_id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'student_name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung', 'Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'class_id': [1, 1, 1, 2, 2, 2, 3, 3, 3, 4] }) right = pd.DataFrame({ 'class_id': [1, 2, 3, 4], 'class_name': ['ClassA', 'ClassB', 'ClassC', 'ClassD'] }) print('-' * 45) print(left, '->left\n') print(right, '->right\n') # 合并两个DataFrame how参数, right,left右左连接, outer全连接, inner内连接, on确定以那个数据作为连接 # rs = pd.merge(left, right, on='subject_id', how='right') rs = pd.merge(left, right, how='inner') print(rs) # pandas透视表与交叉表
yruns/Machine_Learning
DataAnalysis/Pandas/groupBy.py
groupBy.py
py
1,931
python
zh
code
0
github-code
50
68087887
import operator W= input('Please enter a string ') d=dict() def most_frequent(string): for key in string: if key not in d: d[key] = 1 else: d[key] += 1 return d print (most_frequent(W)) sorted_d = dict( sorted(d.items(), key=operator.itemgetter(1),reverse=True)) print('Dictionary in descending order by value : ',sorted_d)
Divyanaik74/Xyz.py
Most_frequent.py
Most_frequent.py
py
373
python
en
code
0
github-code
50
71122609754
import http.server import socketserver PORT = 8000 MAX_OPEN_REQUESTS = 5 class TestHandler(http.server.BaseHTTPRequestHandler): def do_GET(self): print("GET received") print("Request line:" + self.requestline) print(" Cmd: " + self.command) print(" Path: " + self.path) contents = "" if self.path == '/': with open('index.html', 'r') as f: for i in f: contents += i contents = str(contents) elif self.path == '/blue': with open('blue.html', 'r') as f: for i in f: contents += i contents = str(contents) elif self.path == '/pink': with open('pink.html', 'r') as f: for i in f: contents += i contents = str(contents) else: with open('error.html', 'r') as f: for i in f: contents += i contents = str(contents) self.send_response(200) self.send_header('Content-Type', 'text/plain') self.send_header("Content-Length", len(str.encode(contents))) self.end_headers() self.wfile.write(str.encode(contents)) return Handler = TestHandler with socketserver.TCPServer(("", PORT), Handler) as httpd: print("Serving at PORT", PORT) httpd.serve_forever()
baasi/2018-19-PNE-practices
P5/webserver.py
webserver.py
py
1,460
python
en
code
0
github-code
50
39435831697
from PyQt6.QtCore import Qt, QSortFilterProxyModel, QModelIndex from PyQt6.QtWidgets import QHeaderView import Fandom from AbstractModel import AbstractModel class ItemModel(AbstractModel): def __init__(self): self.what = 'ALL' super().__init__([ AbstractModel.Column('ID', lambda x: x['ID'], QHeaderView.ResizeMode.ResizeToContents, Qt.AlignmentFlag.AlignRight | Qt.AlignmentFlag.AlignVCenter), AbstractModel.Column('Name', lambda x: x['Name'], QHeaderView.ResizeMode.ResizeToContents, Qt.AlignmentFlag.AlignLeft | Qt.AlignmentFlag.AlignVCenter), AbstractModel.Column('Description', lambda x: x['desc'], QHeaderView.ResizeMode.ResizeToContents, Qt.AlignmentFlag.AlignLeft | Qt.AlignmentFlag.AlignVCenter), ]) self.select() def select(self): self.beginResetModel() self._rows = [x for x in Fandom.all_by_name.values()] self.endResetModel() def id(self, idx: int): return self._rows[idx]['ID'] def typ(self, idx: int): return self._rows[idx]['Type'] def name(self, idx: int): return self._rows[idx]['Name'] def value(self, idx: int): return self._rows[idx] def get_tooltip(self, index: QModelIndex): return self._rows[index.row()]['desc'] class ItemProxy(QSortFilterProxyModel): def __init__(self, parent=None): super().__init__(parent) self._type = 'ALL' self._head = '' self._vocation = '' def set_type(self, typ='ALL'): self._type = typ self.invalidateFilter() def set_filter(self, head=''): self._head = head.lower() self.invalidateFilter() def set_vocation(self, vocation: str): if vocation != self._vocation: self.beginResetModel() self._vocation = vocation self.endResetModel() def filterAcceptsRow(self, source_row, source_parent): mod: ItemModel = self.sourceModel() row = mod.value(source_row) if self._head and not row['Name'].lower().startswith(self._head): return False if self._type != 'ALL' and self._type != row['Type']: return False if self._vocation: usable = row.get('usable', None) if usable and not usable.get(self._vocation, True): return False return True
mcondarelli/DDDAedit
ItemModel.py
ItemModel.py
py
2,591
python
en
code
0
github-code
50
13004426895
"""According to the question we need to maintain count of likes and dislikes such that from a set of numbers(Second line of input) if a particluar number exist in set A(Third line of input) then the happiness count will be 1, if it exist in (Forth line of input)B the happiness count will be -1 and if neither of the sets then the happiness count will remain unchanged. Here the First line of input dictates the number of entries in the COMPARING set(from which we will compare) and A and B (they both wil have same length).To keep the count of happiness we have created a variable count intialised to 0. """ x, y = map(int, input().split()) # x is length of storage and y is length of A, B storage = list() count = 0 storage = list(map(int, input().strip().split())) # map function converts all string input values into int A = set(map(int, input().strip().split())) B = set(map(int, input().strip().split())) for i in storage: if i in A: # if A then increment in count value count = count+1 if i in B: # if B then decrement in count value count = count-1 print(count)
TLE-MEC/Hack-CP-DSA
Hackerrank/No Idea!/Solution.py
Solution.py
py
1,246
python
en
code
180
github-code
50
13287888443
from fastapi import FastAPI, File, UploadFile import uvicorn import numpy as np from io import BytesIO from PIL import Image import tensorflow import cv2 from tensorflow.keras.applications.inception_v3 import preprocess_input app = FastAPI() model = tensorflow.keras.models.load_model("gender_model.h5") @app.get("/ping") async def ping(): return "Hello, I am alive" def preprocess_image(data) -> np.ndarray: img = np.array(Image.open(BytesIO(data))) gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') faces = cascade.detectMultiScale(gray,1.1,7) buffer = 30 ymin = max(0, faces[0][1]-buffer) ymax = min(img.shape[1], faces[0][1]+faces[0][3]+buffer) xmin = max(0, faces[0][0]-buffer) xmax = min(img.shape[0], faces[0][0]+faces[0][2]+buffer) face = img[ymin:ymax,xmin:xmax] face = cv2.resize(face,(224,224)) img_scaled = preprocess_input(face) reshape = np.reshape(img_scaled,(1,224,224,3)) image = np.vstack([reshape]) return image @app.post("/predict") async def predict(file: UploadFile = File(...)): img = preprocess_image(await file.read()) predictions = model.predict(img) classes = ['female', 'male'] result = classes[predictions[0].argmax()] return { "pred ": result } if __name__ == "__main__": uvicorn.run(app, host="localhost", port=8080)
raghuadloid/character_creation
gender.py
gender.py
py
1,422
python
en
code
0
github-code
50
23447294801
import unittest from city_functions import city_country from city_functions import city_country_people class CityFunctionsTestCase(unittest.TestCase): """Тесты для city_functions.py""" def test_city_country(self): """Работает ли связка Santiago Chile""" formatted_name = city_country("santiago", "chile") self.assertEqual(formatted_name, "Santiago, Chile") def test_city_country_people(self): """Работает ли связка Santiago Chile при обязательном параметре количества людей""" formatted_name = city_country_people("santiago", "chile") self.assertEqual(formatted_name, "Santiago, Chile") def test_city_country_people_full(self): """Работает ли связка Santiago Chile 5000000""" formatted_name = city_country_people("santiago", "chile", 5000000) self.assertEqual(formatted_name, "Santiago, Chile - population: 5000000") if __name__ == "__main__": unittest.main()
91nickel/python
tests.py/test_cities.py
test_cities.py
py
1,054
python
en
code
0
github-code
50
19935741898
#Problem 10 def is_prime(n): if n == 1: return False for i in range(2,int(n**(0.5))+1): if n%i==0: return False count = 0 total = 0 n = 1 while n < 2000000: n += 1 if is_prime(n) != False: count += 1 total += n print(total)
jasmineseah-17/euler
10_Summation_of_primes.py
10_Summation_of_primes.py
py
286
python
en
code
0
github-code
50
73324525275
import argparse from attrdict import AttrDict from deriva.core import ErmrestCatalog, get_credential, DerivaPathError from deriva.utils.catalog.manage.update_catalog import CatalogUpdater, parse_args from deriva.core.ermrest_config import tag as chaise_tags import deriva.core.ermrest_model as em groups = { 'pbcconsortium-reader': 'https://auth.globus.org/aa5a2f6e-53e8-11e8-b60b-0a7c735d220a', 'pbcconsortium-curator': 'https://auth.globus.org/da80b96c-edab-11e8-80e2-0a7c1eab007a', 'pbcconsortium-writer': 'https://auth.globus.org/6a96ec62-7032-11e8-9132-0a043b872764', 'pbcconsortium-admin': 'https://auth.globus.org/80df6c56-a0e8-11e8-b9dc-0ada61684422' } display = {'name_style': {'underline_space': True}} bulk_upload = { 'asset_mappings': [ { 'asset_type': 'table', 'ext_pattern': '^.*[.](?P<file_ext>json|csv)$', 'file_pattern': '^((?!/assets/).)*/records/(?P<schema>.+?)/(?P<table>.+?)[.]', 'default_columns': ['RID', 'RCB', 'RMB', 'RCT', 'RMT'] }, { 'column_map': { 'md5': '{md5}', 'url': '{URI}', 'dataset': '{dataset_rid}', 'filename': '{file_name}', 'biosample': '{biosample_rid}', 'byte_count': '{file_size}' }, 'dir_pattern': '^.*/DS-(?P<dataset>[0-9A-Z-]+)/EXP-(?P<experiment>[0-9A-Z-]+/tomography)', 'ext_pattern': '.mrc$', 'file_pattern': '.*_(?P<capillary>[0-9]+)_(?P<position>[0-9]+)_pre_rec', 'target_table': ['Beta_Cell', 'XRay_tomography_data'], 'checksum_types': ['md5'], 'hatrac_options': { 'versioned_uris': 'True' }, 'hatrac_templates': { 'hatrac_uri': '/hatrac/commons/data/{dataset_rid}/{biosample_rid}/{file_name}' }, 'record_query_template': '/entity/{target_table}/Dataset={dataset_rid}/Biosample={biosample_rid}/md5={md5}/url={URI_urlencoded}', 'metadata_query_templates': [ '/attribute/D:=Beta_Cell:Dataset/E:=Beta_Cell:Experiment/RID={experiment}/B:=Beta_Cell:Biosample/Capillary_Number={capillary}/Sample_Position={position}/dataset_rid:=D:RID,experiment_rid:=E:RID,biosample_rid:=B:RID' ], 'create_record_before_upload': 'False' }, { 'column_map': { 'md5': '{md5}', 'url': '{URI}', 'dataset': '{dataset_rid}', 'filename': '{file_name}', 'biosample': '{biosample_rid}', 'byte_count': '{file_size}' }, 'dir_pattern': '^.*/DS-(?P<dataset>[0-9A-Z-]+)/EXP-(?P<experiment>[0-9A-Z-]+/proteomics)', 'ext_pattern': '.csv$', 'file_pattern': '.*_(?P<capillary>[0-9]+)_(?P<position>[0-9]+)_pre_rec', 'target_table': ['Beta_Cell', 'XRay_tomography_data'], 'checksum_types': ['md5'], 'hatrac_options': { 'versioned_uris': 'True' }, 'hatrac_templates': { 'hatrac_uri': '/hatrac/commons/data/{dataset_rid}/{biosample_rid}/{file_name}' }, 'record_query_template': '/entity/{target_table}/Dataset={dataset_rid}/Biosample={biosample_rid}/md5={md5}/url={URI_urlencoded}', 'metadata_query_templates': [ '/attribute/D:=Beta_Cell:Dataset/E:=Beta_Cell:Experiment/RID={experiment}/B:=Beta_Cell:Biosample/Capillary_Number={capillary}/Sample_Position={position}/dataset_rid:=D:RID,experiment_rid:=E:RID,biosample_rid:=B:RID' ], 'create_record_before_upload': 'False' }, { 'asset_type': 'table', 'ext_pattern': '^.*[.](?P<file_ext>json|csv)$', 'file_pattern': '^((?!/assets/).)*/records/(?P<schema>WWW?)/(?P<table>Page)[.]', 'target_table': ['WWW', 'Page'], 'default_columns': ['RID', 'RCB', 'RMB', 'RCT', 'RMT'] }, { 'column_map': { 'MD5': '{md5}', 'URL': '{URI}', 'Length': '{file_size}', 'Filename': '{file_name}', 'Page_RID': '{table_rid}' }, 'dir_pattern': '^.*/(?P<schema>WWW)/(?P<table>Page)/(?P<key_column>.*)/', 'ext_pattern': '^.*[.](?P<file_ext>.*)$', 'file_pattern': '.*', 'target_table': ['WWW', 'Page_Asset'], 'checksum_types': ['md5'], 'hatrac_options': { 'versioned_uris': True }, 'hatrac_templates': { 'hatrac_uri': '/hatrac/{schema}/{table}/{md5}.{file_name}' }, 'record_query_template': '/entity/{schema}:{table}_Asset/{table}_RID={table_rid}/MD5={md5}/URL={URI_urlencoded}', 'metadata_query_templates': [ '/attribute/D:={schema}:{table}/RID={key_column}/table_rid:=D:RID' ] } ], 'version_update_url': 'https://github.com/informatics-isi-edu/deriva-qt/releases', 'version_compatibility': [['>=0.4.3', '<1.0.0']] } annotations = { chaise_tags.display: display, chaise_tags.bulk_upload: bulk_upload, 'tag:isrd.isi.edu,2019:catalog-config': { 'name': 'pbcconsortium', 'groups': { 'admin': 'https://auth.globus.org/80df6c56-a0e8-11e8-b9dc-0ada61684422', 'reader': 'https://auth.globus.org/aa5a2f6e-53e8-11e8-b60b-0a7c735d220a', 'writer': 'https://auth.globus.org/6a96ec62-7032-11e8-9132-0a043b872764', 'curator': 'https://auth.globus.org/da80b96c-edab-11e8-80e2-0a7c1eab007a' } }, } acls = { 'insert': [groups['pbcconsortium-curator'], groups['pbcconsortium-writer']], 'delete': [groups['pbcconsortium-curator']], 'enumerate': ['*'], 'create': [], 'select': [groups['pbcconsortium-writer'], groups['pbcconsortium-reader']], 'owner': [groups['pbcconsortium-admin']], 'write': [], 'update': [groups['pbcconsortium-curator']] } def main(catalog, mode, replace=False): updater = CatalogUpdater(catalog) updater.update_catalog(mode, annotations, acls, replace=replace) if __name__ == "__main__": host = 'pbcconsortium.isrd.isi.edu' catalog_id = 1 mode, replace, host, catalog_id = parse_args(host, catalog_id, is_catalog=True) credential = get_credential(host) catalog = ErmrestCatalog('https', host, catalog_id, credentials=credential) main(catalog, mode, replace)
informatics-isi-edu/betacell-consortium
catalog-configs/pbcconsortium.isrd.isi.edu_1.py
pbcconsortium.isrd.isi.edu_1.py
py
6,612
python
en
code
2
github-code
50
25533080487
import re import time def text_del(): srcFiles = open('test.txt', 'r') begin_flag = False ip_flag = False llc_flag = False l = [] show_list = [] dst = "" src = "" protocol = "" for file_path in srcFiles: file_path = file_path.rstrip() if file_path == "Ethernet(": begin_flag = True l.append(str(file_path)) if begin_flag: l.append(str(file_path)) if "dst=" in file_path: strlist = file_path.split('#') dst = strlist[1] #print(dst) if "src=" in file_path: strlist = file_path.split('#') src = strlist[1] #print(src) if "data=ARP" in file_path: protocol = "ARP" if "data=LLC" in file_path: protocol = "LLC" llc_flag = True if llc_flag: if "data=STP" in file_path: protocol = protocol + "-STP" if "v=4" in file_path: protocol = "IPv4" ip_flag = True if "v=6" in file_path: protocol = "IPv6" ip_flag = True if ip_flag: if "src=" in file_path: strlist = file_path.split('#') src = strlist[1] if "dst=" in file_path: strlist = file_path.split('#') dst = strlist[1] if "data=UDP" in file_path: protocol = protocol + "-UDP" if "data=TCP" in file_path: protocol = protocol + "-TCP" if "data=ICMP6" in file_path: protocol = protocol + "-ICMP6" if file_path == ") # Ethernet": l.append(str(file_path)) begin_flag = False ip_flag = False llc_flag = False break for i in range(len(l)): print(l[i]) print("dst is ", dst) print("src is ", src) print("protocol is", protocol) if __name__ == '__main__': #text_del() s = str(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) print(s) # line = "this hdr-biz 123 model server 456" # pattern = "model" # if pattern in line: # print("matchObj")
egoistor/sniff
test.py
test.py
py
2,375
python
en
code
0
github-code
50
21830967871
from flask_wtf import FlaskForm from wtforms import HiddenField, DecimalField, SubmitField, SelectField, FloatField from wtforms.validators import DataRequired, NumberRange from wtforms.widgets.html5 import NumberInput from wtforms_html5 import AutoAttrMeta from app.constants import MINIMUM_CONSUMPTION, MAXIMUM_CONSUMPTION, VEHICLE_TYPES, FUEL_TYPES from app.utils import get_fuel_prices consumption_validator = NumberRange(min=MINIMUM_CONSUMPTION, max=MAXIMUM_CONSUMPTION) class RouteForm(FlaskForm): class Meta(AutoAttrMeta): pass start_lon = HiddenField('start_lon', validators=[DataRequired()]) start_lat = HiddenField('start_lat', validators=[DataRequired()]) end_lon = HiddenField('end_lon', validators=[DataRequired()]) end_lat = HiddenField('end_lat', validators=[DataRequired()]) vehicle_type = SelectField('Type de véhicule', default=VEHICLE_TYPES[2], choices=VEHICLE_TYPES, validators=[DataRequired()]) fuel_type = SelectField('Type de carburant', default=FUEL_TYPES[0], choices=FUEL_TYPES, validators=[DataRequired()]) fuel_price = DecimalField('Prix du carburant', widget=NumberInput(), validators=[DataRequired()]) non_motorway_consumption = DecimalField('Consommation hors autoroute', widget=NumberInput(), validators=[DataRequired(), consumption_validator]) motorway_consumption_130 = DecimalField('Consommation à 130 km/h', widget=NumberInput(), validators=[DataRequired(), consumption_validator]) motorway_consumption_110 = DecimalField('Consommation à 110 km/h', widget=NumberInput(), validators=[DataRequired(), consumption_validator]) submit = SubmitField('Calculer')
GustaveCoste/110surautoroute
app/forms.py
forms.py
py
2,468
python
en
code
0
github-code
50
41390829547
import json import pickle import nmslib import requests import numpy as np questions_stored = r'D:\Archive\Voibot\qabot\data\question.pickle' answers_stored = r'D:\Archive\Voibot\qabot\data\answer.pickle' features_stored = r'D:\Archive\Voibot\qabot\data\feature.npy' index_stored = r'D:\Archive\Voibot\qabot\data\feature_index' # 加载问题和答案 with open(questions_stored, 'rb') as question_file: questions = pickle.load(question_file) with open(answers_stored, 'rb') as answer_file: answers = pickle.load(answer_file) features = np.load(features_stored) # 加载索引 index = nmslib.init(method='hnsw', space='cosinesimil') index.loadIndex(index_stored, load_data=True) def get_ques_vec(question): url = 'http://10.1.163.22:5000/encode' headers = {'Content-Type': 'application/json'} qas = [question] data = { 'id': 123, 'texts': qas } r = requests.post(url=url, headers=headers, data=json.dumps(data)) result = json.loads(r.text) qvector = result['result'] return qvector def match(question): qvector = get_ques_vec(question) ids, distance = index.knnQuery(qvector, k=3) return [questions[ids[0]], answers[ids[0]], distance[0]] # 返回最匹配的问题、答案及距离 if __name__ == "__main__": while True: question = input('Question: ') answer = match(question) print(answer) # qvector = get_ques_vec(question) # ids, distance = index.knnQuery(qvector, k=3) # print(questions[ids[0]], distance[0]) # print(questions[ids[1]], distance[1]) # print(questions[ids[2]], distance[2])
yaohsinyu/voibot
qabot/search.py
search.py
py
1,650
python
en
code
0
github-code
50
37632079064
class Solution: def moveZeroes(self, nums: List[int]) -> None: p,q=0,0 while q<len(nums): if nums[q]==0: q=q+1 else: nums[p],nums[q]=nums[q],nums[p] p=p+1 q=q+1
amanueldemirew/Competitive-Programming
0283-move-zeroes/0283-move-zeroes.py
0283-move-zeroes.py
py
280
python
en
code
0
github-code
50
9960952936
import logging from collections import Collection from math import isclose from multipledispatch import dispatch from bn.b_network import BNetwork from bn.values.value import Value from datastructs.assignment import Assignment from inference.approximate.sampling_algorithm import SamplingAlgorithm from inference.exact.naive_inference import NaiveInference from inference.exact.variable_elimination import VariableElimination from inference.query import ProbQuery, UtilQuery from utils.py_utils import current_time_millis class InferenceChecks: exact_threshold = 0.01 sampling_threshold = 0.1 # logger log = logging.getLogger('PyOpenDial') def __init__(self): self._variable_elimination = VariableElimination() self._sampling_algorithm_1 = SamplingAlgorithm(2000, 200) self._sampling_algorithm_2 = SamplingAlgorithm(15000, 1500) self._naive_inference = NaiveInference() self._timings = dict() self._numbers = dict() self._timings[self._variable_elimination] = 0 self._numbers[self._variable_elimination] = 0 self._timings[self._sampling_algorithm_1] = 0 self._numbers[self._sampling_algorithm_1] = 0 self._timings[self._sampling_algorithm_2] = 0 self._numbers[self._sampling_algorithm_2] = 0 self._timings[self._naive_inference] = 0 self._numbers[self._naive_inference] = 0 self._include_naive = False def include_naive(self, include_naive): self._include_naive = include_naive @dispatch(BNetwork, Collection, Assignment) def check_prob(self, network, query_vars, evidence): query = ProbQuery(network, query_vars, Assignment()) distrib_1 = self._compute_prob(query, self._variable_elimination) distrib_2 = self._compute_prob(query, self._sampling_algorithm_1) try: self._compare_distributions(distrib_1, distrib_2, 0.1) except AssertionError as e: distrib_2 = self._compute_prob(query, self._sampling_algorithm_2) self.log.debug('resampling for query %s' % (str(ProbQuery(network, query_vars, evidence)))) self._compare_distributions(distrib_1, distrib_2, 0.1) if self._include_naive: distrib_3 = self._compute_prob(query, self._naive_inference) self._compare_distributions(distrib_1, distrib_3, 0.01) @dispatch(BNetwork, str, str, float) def check_prob(self, network, query_var, a, expected): self.check_prob(network, [query_var], Assignment(query_var, a), expected) @dispatch(BNetwork, str, Value, float) def check_prob(self, network, query_var, a, expected): self.check_prob(network, [query_var], Assignment(query_var, a), expected) @dispatch(BNetwork, Collection, Assignment, float) def check_prob(self, network, query_vars, a, expected): query = ProbQuery(network, query_vars, Assignment()) distrib_1 = self._compute_prob(query, self._variable_elimination) distrib_2 = self._compute_prob(query, self._sampling_algorithm_1) assert isclose(expected, distrib_1.get_prob(a), abs_tol=InferenceChecks.exact_threshold) try: assert isclose(expected, distrib_2.get_prob(a), abs_tol=InferenceChecks.sampling_threshold) except AssertionError as e: distrib_2 = self._compute_prob(query, self._sampling_algorithm_2) assert isclose(expected, distrib_2.get_prob(a), abs_tol=InferenceChecks.sampling_threshold) if self._include_naive: distrib_3 = self._compute_prob(query, self._naive_inference) assert isclose(expected, distrib_3.get_prob(a), abs_tol=InferenceChecks.exact_threshold) @dispatch(BNetwork, str, float, float) def check_cdf(self, network, variable, value, expected): query = ProbQuery(network, [variable], Assignment()) distrib_1 = self._compute_prob(query, self._variable_elimination).get_marginal(variable).to_continuous() distrib_2 = self._compute_prob(query, self._sampling_algorithm_1).get_marginal(variable).to_continuous() assert isclose(expected, distrib_1.get_cumulative_prob(value), abs_tol=InferenceChecks.exact_threshold) try: assert isclose(expected, distrib_2.get_cumulative_prob(value), abs_tol=InferenceChecks.sampling_threshold) except AssertionError as e: distrib_2 = self._compute_prob(query, self._sampling_algorithm_2).get_marginal(variable).to_continuous() assert isclose(expected, distrib_2.get_cumulative_prob(value), abs_tol=InferenceChecks.sampling_threshold) if self._include_naive: distrib_3 = self._compute_prob(query, self._naive_inference).get_marginal(variable).to_continuous() assert isclose(expected, distrib_3.to_discrete().get_prob(value), abs_tol=InferenceChecks.exact_threshold) @dispatch(BNetwork, str, str, float) def check_util(self, network, query_var, a, expected): self.check_util(network, [query_var], Assignment(query_var, a), expected) @dispatch(BNetwork, Collection, Assignment, float) def check_util(self, network, query_vars, a, expected): query = UtilQuery(network, query_vars, Assignment()) distrib_1 = self._compute_util(query, self._variable_elimination) distrib_2 = self._compute_util(query, self._sampling_algorithm_1) assert isclose(expected, distrib_1.get_util(a), abs_tol=InferenceChecks.exact_threshold) try: assert isclose(expected, distrib_2.get_util(a), abs_tol=InferenceChecks.sampling_threshold * 5) except AssertionError as e: distrib_2 = self._compute_util(query, self._sampling_algorithm_2) assert isclose(expected, distrib_2.get_util(a), abs_tol=InferenceChecks.sampling_threshold * 5) if self._include_naive: distrib_3 = self._compute_util(query, self._naive_inference) assert isclose(expected, distrib_3.get_util(a), abs_tol=InferenceChecks.exact_threshold) def _compute_prob(self, query, inference_algorithm): start_time = current_time_millis() distrib = inference_algorithm.query_prob(query) inference_time = current_time_millis() - start_time self._numbers[inference_algorithm] = self._numbers[inference_algorithm] + 1 self._timings[inference_algorithm] = self._timings[inference_algorithm] + inference_time return distrib def _compute_util(self, query, inference_algorithm): start_time = current_time_millis() distrib = inference_algorithm.query_util(query) inference_time = current_time_millis() - start_time self._numbers[inference_algorithm] = self._numbers[inference_algorithm] + 1 self._timings[inference_algorithm] = self._timings[inference_algorithm] + inference_time return distrib def _compare_distributions(self, distrib_1, distrib_2, margin): rows = distrib_1.get_values() for row in rows: assert isclose(distrib_1.get_prob(row), distrib_2.get_prob(row), abs_tol=margin) def show_performance(self): if self._include_naive: print('Average time for naive inference: %f (ms)' % (self._timings[self._naive_inference] / 1000000.0 / self._numbers[self._naive_inference])) print('Average time for variable elimination: %f (ms)' % (self._timings[self._variable_elimination] / 1000000.0 / self._numbers[self._variable_elimination])) importance_sampling_time = (self._timings[self._sampling_algorithm_1] + self._timings[self._sampling_algorithm_2]) / 1000000.0 / self._numbers[self._sampling_algorithm_1] repeats = self._numbers[self._sampling_algorithm_2] * 100. / self._numbers[self._sampling_algorithm_1] print('Average time for importance sampling: %f (ms) with %f %% of repeats.' % (importance_sampling_time, repeats))
KAIST-AILab/PyOpenDial
test/common/inference_checks.py
inference_checks.py
py
7,930
python
en
code
9
github-code
50
42572707827
import math from typing import Tuple from PIL import Image def resize_crop(image: Image, size: Tuple[int, int]) -> Image: """Crop the image with a centered rectangle of the specified size""" img_format = image.format image = image.copy() old_size = image.size left = (old_size[0] - size[0]) / 2 top = (old_size[1] - size[1]) / 2 right = old_size[0] - left bottom = old_size[1] - top rect = [int(math.ceil(x)) for x in (left, top, right, bottom)] left, top, right, bottom = rect crop = image.crop((left, top, right, bottom)) crop.format = img_format return crop def resize_cover(image: Image, size: Tuple[int, int]) -> Image: """Resize image by resizing and keeping aspect ratio, then center cropping.""" img_format = image.format img = image.copy() img_size = img.size ratio = max(size[0] / img_size[0], size[1] / img_size[1]) new_size = [int(math.ceil(img_size[0] * ratio)), int(math.ceil(img_size[1] * ratio))] img = img.resize((new_size[0], new_size[1]), Image.LANCZOS) img = resize_crop(img, size) img.format = img_format return img
apockill/portrayt
portrayt/renderers/crop_utils.py
crop_utils.py
py
1,134
python
en
code
53
github-code
50
71449673754
#!/usr/bin/env python3 ''' FSMScorer - A class to assign scores to FSMs based on how well they classify strings through their output. Classes: FSMScorer - scores ''' import logging import automata class FSMScorer(object): '''A class to score FSMs based on their outputs against a reference set of strings.''' def __init__(self) -> None: self.reference_dict = dict() # initialise the cache self.cache = dict() @classmethod def from_reference_dict(cls, rd): r = cls() r.reference_dict = rd return r @classmethod def from_function(cls, f, reference_strings): '''Constructor from a function and reference strings.''' r = cls() for s in reference_strings: r.reference_dict[s] = f(s) return r def table_size(self): '''Returns the number of reference strings.''' return len(self.reference_dict) def ref_and_output(self, n): '''Return the n-th reference string and its output.''' k = list(self.reference_dict.keys())[n] return (k, self.reference_dict[k]) def set_output(self, s, out): '''Set the expected output for string s to out.''' self.reference_dict[s] = out # This has modified at least one string/output pair, therefore reset the cache self.reset() def reset(self): self.cache = dict() def score(self, automaton): '''Returns the number of correct results.''' #First, check if the automaton's score is cached h = str(automaton) if h in self.cache: logging.debug("CACHED score" + str(self.cache[h])) return self.cache[h] else: # not cached, compute value, cache it and return it count = 0 run = automata.MooreMachineRun(automaton) for w in self.reference_dict.keys(): run.reset() run.multistep(w) output = run.output() logging.debug("For input " + str(w) + " the output is " + str(output)) if output == self.reference_dict[w]: count += 1 # cache before returning self.cache[h] = count logging.debug("Score is " + str(count)) if count == len(self.reference_dict): logging.info("Maximal score reached.") return count # Unit testing code. import unittest as ut class TestCSA(ut.TestCase): def test_creation(self): f = FSMScorer() f.reference_dict[()] = [] self.assertEqual(f.table_size(),1) self.assertEqual(len(f.cache), 0) a = automata.CanonicalMooreMachine.from_string( "0 0 1 2\n" "0 0 1 2\n" "1 8 1 2") s = f.score(a) self.assertEqual(s, 0) self.assertTrue(str(a) in f.cache) self.assertFalse("" in f.cache) def test_from_reference_dict(self): f = FSMScorer.from_reference_dict({():0, (2,):1}) a = automata.CanonicalMooreMachine.from_string( "0 0 1 2\n" "0 0 1 2\n" "1 8 1 2") s = f.score(a) self.assertEqual(f.table_size(), 2) self.assertEqual(s, 2) a = automata.CanonicalMooreMachine.from_string( "0 1 1 2\n" "0 0 1 2\n" "1 8 1 2") s = f.score(a) self.assertEqual(len(f.cache), 2) def test_direct_access(self): f = FSMScorer.from_reference_dict({():0, (2,):1}) p = f.ref_and_output(1) self.assertEqual(p, ((2,),1)) f.set_output(p[0],2) _,s = f.ref_and_output(1) self.assertEqual(s, 2) def test_from_function(self): def Kleene_of(repeated, s): if len(s) == 0: return True elif s[0:len(repeated)] == repeated: return Kleene_of(repeated, s[len(repeated):]) else: return False def recognise_ab_star(w): '''Return 1 if the input is a member of the language (ab)*, else 0.''' return 1 if Kleene_of((0, 1), w) else 0 f = FSMScorer.from_function(recognise_ab_star,((), (0, 1), (0, 1, 1) )) a = automata.CanonicalMooreMachine.from_string( "1 2 1\n" "0 0 2\n" "0 2 2") s = f.score(a) self.assertEqual(len(f.reference_dict), 3) self.assertEqual(s, 2) self.assertEqual(len(f.cache), 1) self.assertTrue(str(a) in f.cache) if __name__ == '__main__': ut.main()
tonyzoltai/FSM-Evolution
FSMScorer.py
FSMScorer.py
py
4,639
python
en
code
0
github-code
50
38260145636
#!/usr/bin/env python import time import rospy import RPi.GPIO as GPIO from system_state.msg import WorkerState from remote_command.msg import DualshockInputs STATE_NAME_MAP= { 0: 'CHARGING/INACTIVE', 1: 'MANUAL CONTROL', 2: 'AUTONOMOUS CONTROL' } STATE_PINS = { 0: 22, ## Red 1: 18, ## Yellow 2: 17 ## Green } GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(STATE_PINS.values(), GPIO.OUT, initial=GPIO.LOW) class WorkerStateMachine(): def __init__(self, state= 0): self.state = 0 self.pub = None self.sub = None self.triangle = None ## Set initial state self.change_state(state) def triangle_pressed(self, triangle_state): return not self.triangle and triangle_state def display_state(self): for pin in STATE_PINS.values(): GPIO.output(pin, 0) GPIO.output(STATE_PINS[self.state], 1) def change_state(self, new_state): state_change_msg = ' Lilboi transitioned from state %i (%s) to state %i (%s)'%(self.state, STATE_NAME_MAP[self.state], new_state, STATE_NAME_MAP[new_state]) rospy.loginfo(rospy.get_caller_id() + state_change_msg) self.state = new_state self.display_state() def user_input_transitions(self, data): ## Charging if self.state == 0: if self.triangle_pressed(data.triangle): self.change_state(1) ## Manual Control elif self.state == 1: if self.triangle_pressed(data.triangle): self.change_state(2) ## Autonomous Control elif self.state == 2: if self.triangle_pressed(data.triangle): self.change_state(1) ## Update local values for next iteration self.triangle = data.triangle def shutdown(self): ## Return to state 0 self.change_state(0) self.pub.publish(self.state) def run_state_machine(self): ## Initialize state machine and publish the current state of this worker ## TODO: Name node based on worker ID rospy.init_node('lilboi_state_machine', anonymous=True) self.pub = rospy.Publisher('lilboi_state', WorkerState, queue_size=10) self.sub = rospy.Subscriber('remote_commands', DualshockInputs, self.user_input_transitions) ## TODO: Charging auto-transitions rate = rospy.Rate(10) while not rospy.is_shutdown(): self.pub.publish(self.state) rate.sleep() self.shutdown() if __name__ == '__main__': try: n = WorkerStateMachine() n.run_state_machine() except rospy.ROSInterruptException: GPIO.cleanup() pass
grodriguez78/amr_redux
src/system_state/src/worker_state_machine.py
worker_state_machine.py
py
2,374
python
en
code
0
github-code
50
28569533617
from typing import List # Solution class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # Initialise an empty set hashset = set() for number in nums: # Duplicate found if number in hashset: return True # add the unique number to hashset else: hashset.add(number) # No duplicates found return False
aakashmanjrekar11/leetcode
1. Array and Hashing/217. Contains Duplicate.py
217. Contains Duplicate.py
py
371
python
en
code
0
github-code
50
22539325683
#Course: CS2302 - Spring 2019 #Author: Solomon Davis #Lab Number: 4 #Instructor: Olac Fuentes #Last Modified: March 24, 2019 #Due Date: March 15, 2019 #Description: This code will use b-trees to carry out specific tasks. These #tasks include commputing the height of the tree,extracting items from a b-tree #into a sorted list, returning the minimum and maximum value, returning the #number of nodes at a specific depth, printing the values at a specific depth, #returning the of full nodes and full trees, and lastly given the depth of a #specific key in the b-tree. import time import matplotlib.pyplot as plt class BTree(object): # Constructor def __init__(self,item=[],child=[],isLeaf=True,max_items=5): self.item = item self.child = child self.isLeaf = isLeaf if max_items <3: #max_items must be odd and greater or equal to 3 max_items = 3 if max_items%2 == 0: #max_items must be odd and greater or equal to 3 max_items +=1 self.max_items = max_items def FindChild(T,k): # Determines value of c, such that k must be in subtree T.child[c], if k is in the BTree for i in range(len(T.item)): if k < T.item[i]: return i return len(T.item) def InsertInternal(T,i): # T cannot be Full if T.isLeaf: InsertLeaf(T,i) else: k = FindChild(T,i) if IsFull(T.child[k]): m, l, r = Split(T.child[k]) T.item.insert(k,m) T.child[k] = l T.child.insert(k+1,r) k = FindChild(T,i) InsertInternal(T.child[k],i) def Split(T): #print('Splitting') #PrintNode(T) mid = T.max_items//2 if T.isLeaf: leftChild = BTree(T.item[:mid]) rightChild = BTree(T.item[mid+1:]) else: leftChild = BTree(T.item[:mid],T.child[:mid+1],T.isLeaf) rightChild = BTree(T.item[mid+1:],T.child[mid+1:],T.isLeaf) return T.item[mid], leftChild, rightChild def InsertLeaf(T,i): T.item.append(i) T.item.sort() def IsFull(T): return len(T.item) >= T.max_items def Insert(T,i): if not IsFull(T): InsertInternal(T,i) else: m, l, r = Split(T) T.item =[m] T.child = [l,r] T.isLeaf = False k = FindChild(T,i) InsertInternal(T.child[k],i) def height(T): #Retutns the height of the B-tree if T.isLeaf: return 0 return 1 + height(T.child[0]) def Search(T,k): # Returns node where k is, or None if k is not in the tree if k in T.item: return T if T.isLeaf: return None return Search(T.child[FindChild(T,k)],k) def Print(T): # Prints items in tree in ascending order if T.isLeaf: for t in T.item: print(t,end=' ') else: for i in range(len(T.item)): Print(T.child[i]) print(T.item[i],end=' ') Print(T.child[len(T.item)]) def PrintD(T,space): # Prints items and structure of B-tree if T.isLeaf: for i in range(len(T.item)-1,-1,-1): print(space,T.item[i]) else: PrintD(T.child[len(T.item)],space+' ') for i in range(len(T.item)-1,-1,-1): print(space,T.item[i]) PrintD(T.child[i],space+' ') def SearchAndPrint(T,k): node = Search(T,k) if node is None: print(k,'not found') else: print(k,'found',end=' ') print('node contents:',node.item) def Smallest(T): if T.isLeaf: return T.item[0] return Smallest(T.child[0]) def Largest(T): if T.isLeaf: return T.item[-1] return Largest(T.child[len(T.item)]) def SmallestAtDepth(T,d): #Returns the smallest value at the given depth d if T.isLeaf: #If at depth d is the Btree is a leaf it returns the item with the smallest value return T.item[0] if d==0: #If the depth is 0 the smallest value is then returned from the given values return T.item[0] return SmallestAtDepth(T.child[0],d-1) #return the left most child in the Btree until the function is in the correct depth def LargestAtDepth(T,d): #Returns the largest value at the given depth d if T.isLeaf: #If at depth d is the Btree is a leaf it returns the item with the largest value return T.item[-1] if d==0: #If the depth is 0 the largest value is then returned from the given values return T.item[-1] return LargestAtDepth(T.child[len(T.item)],d-1) #return the right most child in the Btree until the function is in the correct depth def NumItems(T): #count = 0 if T.isLeaf: return len(T.item) for i in range(len(T.child)): NumItems(T.child[i]) #count +=1 #print(count) return NumItems(T.child[i]) + len(T.item) def FindDepth(T,k): if k != T.item: return FindDepth(T.item,k) + 1 if k == T.item: return 0 #for i in range(len(T.item)-1,-1,-1) if k>T.item: return FindDepth(T.item,k) + 1 if k<T.item: return FindDepth(T.item,k) + 1 def PrintDescending(T): if T.isLeaf: for i in range(len(T.item)-1,-1,-1): print(T.item[i],end=' ') else: PrintDescending(T.child[len(T.item)]) for i in range(len(T.item)-1,-1,-1): print(T.item[i],end=' ') PrintDescending(T.child[i]) def PrintItemsInNode(T,k): if T.child.item[i] == k: return -1 if T.child.item[i] < k: return PrintItemsInNode(T,k) return PrintItemsInNode(T,k) #def Height(T): # if T.isLeaf: # return 1 # else: # for i in range(len(T.item)): # return 1 + Height(T.child[i]) def PrintAtDepth(T,d): #Prints all the values at the given depth in the b-tree if d == 0: for i in range(len(T.item)): print(T.item[i],end=' ') #Print the item in the tree for i in range(len(T.child)): #Loop that traverses through entire the Btree PrintAtDepth(T.child[i],d-1) #Calls back to the function until the funtion is in the correct depth def NumberOfNodesAtDepth(T,d): #Count the number of nodes at a given a depth d global count if d == 0: count +=1 #Count that adds one when there is a value at a depth for i in range(len(T.child)): #Loop that traverses through entire the Btree NumberOfNodesAtDepth(T.child[i],d-1) #Calls back to the function until the funtion is in the correct depth return count def SortedList(T,L2): #Takes the values in the b-tree and puts it into a sorted list if T.isLeaf: for t in T.item: L2.append(t) #Appends value from tree to list else: for i in range(len(T.item)): #Loop that traverses through entire the Btree SortedList(T.child[i],L2) L2.append(T.item[i]) #Appends value from tree to list SortedList(T.child[len(T.item)],L2) def SearchDepth(T,k,count): # Returns Depth where k is, or -1 if k is not in the tree if k in T.item: #If the value k is equal to the item in the Btree the count is returned return count if T.isLeaf: #If the value k is not found in the Btree then -1 is returned return -1 #count +=1 return SearchDepth(T.child[FindChild(T,k)],k,count+1) def FullNodes(T): #Returns the number of full nodes in the b-tree global nodecount if T.isLeaf: if len(T.item) == 3: nodecount +=1 if len(T.child) == 3: nodecount +=1 for i in range(len(T.child)): #Loop that traverses through entire the Btree FullNodes(T.child[i]) return nodecount #Returns the count of full nodes def FullLeaves(T): #Returns the number of full leaves in the b-tree global leafcount if T.isLeaf: if len(T.item) == 3: #If the length of the leaf is 3 the count adds 1 to the counter leafcount +=1 else: for i in range(len(T.child)): #Loop that traverses through entire the Btree FullLeaves(T.child[i]) return leafcount #Returns the count of full leaves L = [30, 50, 10, 20, 60, 70, 100, 40, 90, 80, 110, 120, 1, 11 , 3, 4, 5,105, 115, 200, 2, 45, 6] T = BTree() for i in L: print('Inserting',i) Insert(T,i) PrintD(T,'') Print(T) print('\n####################################') PrintD(T,'') L2 = [] #start_time = time.time() SortedList(T,L2) #end_time = time.time() #running_time = start_time-end_time #plt.plot(0,running_time,'o',color='k') print(L2) count = 0 leafcount = 0 nodecount = 0 #start_time1 = time.time() print(SearchDepth(T,30,count)) #end_time1 = time.time() #running_time1 = start_time1-end_time1 #ax.plot(x,y,color='k') #plt.plot(1,running_time1,'o',color='k') #start_time2 = time.time() print(NumberOfNodesAtDepth(T,2)) #end_time2 = time.time() #running_time2 = start_time2-end_time2 #plt.plot(2,running_time2,'o',color='k') #start_time3 = time.time() print(FullLeaves(T)) #end_time3 = time.time() #running_time3 = start_time3-end_time3 #plt.plot(3,running_time3,'o',color='k') #start_time4 = time.time() print(FullNodes(T)) #end_time4 = time.time() #running_time4 = start_time4-end_time4 #plt.plot(4,running_time4,'o',color='k') #Print(T) #SearchAndPrint(T,60) #SearchAndPrint(T,200) #SearchAndPrint(T,25) #SearchAndPrint(T,20) #start_time5 = time.time() PrintAtDepth(T,2) #end_time5 = time.time() #running_time5 = start_time5-end_time5 #plt.plot(5,running_time5,'o',color='k') #print(FindDepth(T,60)) #start_time6 = time.time() print(height(T)) #end_time6 = time.time() #running_time6 = start_time6-end_time6 #plt.plot(6,running_time6,'o',color='k') #seconds = range(0,1000) #print(running_time) #plt.plot(6,running_time,'o',color='k') #plt.show() #start_time7 = time.time() print(SmallestAtDepth(T,1)) #end_time7 = time.time() #running_time7 = start_time7-end_time7 #plt.plot(7,running_time7,'o',color='k') #start_time8 = time.time() print(LargestAtDepth(T,2)) #end_time8 = time.time() #running_time8 = start_time8-end_time8 #plt.plot(8,running_time8,'o',color='k') #PrintDescending(T) #print(FindDepth(T,1)) #print PrintItemsInNode(T,30) #plt.show()
Solomond10/CS2302
LAB4/Lab 4.py
Lab 4.py
py
10,519
python
en
code
0
github-code
50
21753251086
from bunch import Bunch import datetime import numpy as np model_params = {"alpha_default": 0.3, # default alpha for all items "alpha_min": 0.1, # minimum possible alpha "alpha_max": 0.5, # maximum possible alpha "decay_scale": 0.21, # decay scaling factor "threshold": -0.8, # activation threshold "rec_prob_noise_reduction": 0.255, # recall probability noise reduction factor "intersesh_time_scale": 0.025} # factor to scale down intersession time # A list of all items, which the user has NOT yet encountered, BUT NEED to be learned items_new = [item_form] # A dictionary of all items, which the user HAS encountered, BUT still NEED to be learned items_seen = {item_form: item_info} # An ITEM'S FORM is represented simply by a string item_form_sample = "" # An ITEM'S INFORMATION is represented by the following values: item_info_sample = Bunch(cur_alpha=0.0, encounters=[]) # An ENCOUNTER is represented by the following information: encounter_sample = Bunch(time=datetime.datetime, alpha=0.0, result="") # Execution DEPENDS on values of arguments # # N = len(items seen this session) # B = 4 = [get current time, assign session start, +, assign session end] // BASIC instructions, always executed by the FUNCTION # SL // The session LENGTH # AEL = sum(all encounter lengths) / N // AVERAGE encounter LENGTH (same unit as session length) # NI // Instructions, when finding NEXT ITEM # ENC = 1 // Instructions, when ENCOUNTERING an item # RP = 5 // Instructions, when calculating RECALL PROBABILITY # NA = 4 | 5 | 8 // Instructions, when calculating NEW ALPHA # W = 9 + NI + ENC + RP + NA = [get current time, assign current time, // BASIC instructions, ALWAYS executed in the WHILE loop # if, assign new item, store encounter result, # store current alpha, create new encounter, # add new encounter, assign new alpha] + # NI + ENC + RP + NA # # INSTR_COUNT = B + (SL / AEL) * W + [get cur time, store cur time, if, break] = # = # def learn(items_seen, items_new, session_length): """ Goes through a single learning session. Arguments: items_seen -- a dictionary of items, which the user HAS encountered before, but still hasn't learned items_new -- a list of items, which the user HASN'T encountered before, but still needs to learn session_length -- the length of the study session (in seconds) Returns: updated lists of new and seen items """ # store the session's START time session_start = datetime.datetime.now() # store the session's END time session_end = session_start + datetime.timedelta(seconds=session_length) # while there is still time in the session while True: cur_time = datetime.datetime.now() if cur_time >= session_end: break # get the next item to be presented cur_item, cur_item_act, items_new = get_next_item(items_seen, items_new, cur_time) # Encounter the item and store the encounter's result cur_enc_result = encounter_item(cur_item) # Store the current item's alpha cur_item_alpha = items_seen[cur_item].cur_alpha # Add the current encounter to the item's encounter list items_seen[cur_item].encounters.append(Bunch(time=cur_time, alpha=cur_item_alpha, result=cur_enc_result)) # Adjust the alpha value depending on the result of the current encounter items_seen[cur_item].cur_alpha = calc_new_alpha(cur_item_alpha, calc_recall_prob(cur_item_act), cur_enc_result) # TODO: expand ACT(N) functions to get final instruction count # Execution DEPENDS on values of arguments # # N = len(items seen) # AEC = sum(len(encounters) for each item) / N // Average encounter count # ACT(AEC) = // Instructions, when calculating an item's activation # F = N * (3 + ACT(AEC)) // Instructions, in the FOR loop # = N * ([get cur item, store cur item, store item act] + ACT(AEC)) # B = 5 + F = [declare dictionary, calc future time // BASIC instructions, always executed by the FUNCTION # store future time, assign min_item, # declare next_item, assign next_item, # declare next_item_act, return values] + F # # |========================================================================================================================| # | CONDITIONS | INSTR COUNT | CUR INSTR LIST | TOTAL INSTR COUNT | # |========================================================================================================================| # | N == 0 | B + 7 + ACT(0) | [if, if, if, remove, | ... | # | | | create new enc list, | | # | | | assign new enc list, | | # | | | assign next_item_act] | | # | | | + ACT(0) | | # |========================================================================================================================| # | N != 0 & | B + 11 + ACT(0) | [if, min, if, elif, | ... | # | len(items_new) != 0 & | | >, !=, if, remove, | | # | min_item.act > threshold | | create new enc list, | | # | | | assign new enc list, | | # | | | assign next_item_act] | | # | | | + ACT(0) | | # |========================================================================================================================| # | N != 0 & | B + 7 | [if, min, if, elif, | ... | # | min_item.act < threshold | | >, !=, if, | | # | | | assign next_item_act] | | # |========================================================================================================================| # def get_next_item(items_seen, items_new, cur_time): """ Finds the next item to be presented based on their activation. Arguments: items_seen -- a dictionary of items, which the user HAS encountered before, but still hasn't learned items_new -- a list of items, which the user HASN'T encountered before, but still needs to learn cur_time -- the time at which the next item will be presented Returns: the next item to be presented, its activation and the possible updated list of new items """ # Maps an item to its activation item_to_act = {} # Add 15 seconds to the time in order to catch items before they fall below the retrieval threshold future_time = cur_time + datetime.timedelta(seconds=15) # Recalculate each SEEN item's activation at future time with their updated alphas for item in items_seen: item_to_act[item] = calc_activation(item, items_seen[item].cur_alpha, [enc for enc in items_seen[item].encounters if enc.time < future_time], [], future_time) # Get the item with the lowest activation min_item = "" if len(seen_items) == 0 else min(items_seen, key=item_to_act.get) # Stores the next item to be presented next_item = "" # If ALL items are NEW if min_item == "": # Select the next NEW item to be presented next_item = items_new[0] # If the lowest activation is ABOVE the retrieval threshold # AND # There ARE NEW items available elif item_to_act[next_item] > model_params["threshold"] and len(items_new) != 0: # select the next new item to be presented next_item = items_new[0] # In ALL other cases, the item with the lowest activation is selected # (regardless of whether it is below the retrieval threshold) else: next_item = min_item # Stores the next item's activation next_item_act = 0.0 # If the next item is NOT NEW if next_item in item_to_act: next_item_act = item_to_act[next_item] # If the next item IS NEW else: # Remove the selected item from the new item list items_new.remove(next_item) # Initialize the item in the 'seen' list items_seen[next_item] = Bunch(cur_alpha=model_params["alpha_default"], encounters=[]) # Calculate the item's activation next_item_act = calc_activation(next_item, items_seen[next_item].cur_alpha, [], [], future_time) return next_item, next_item_act, items_new # Execution DEPENDS on values of arguments # # NOTE: WITHOUT caching, the function is recursively called a total of 2 ^ N times # NOTE: WITH caching, the function is recursively called a total of 1 + N times = base case + N # NOTE: triang_num = factorial, but using ADDITION # # N = len(encounters) # T = 5 // Instructions, when calculating the TIME DIFFERENCE # D = 4 | 5 // Instructions, when calculating the DECAY # A = 1 // Instructions, when APPENDING an encounter's activation to CACHE # S = 1 // Instructions, when SLICING off previous encounters # # B = 2 = [declare activation, return activation] // BASIC instructions, ALWAYS executed by the function # BC = 4 = B + 2 = B + [if, assign activation] // BASIC instructions, ALWAYS executed when the BASE CASE is reached # E_1 = 5 = [if, elif, declare sum, log, assign activation] // BASIC instructions, ALWAYS executed in the FIRST ELSE statement # F = 18|19 = 9 + 5 + 4|5 = [assign enc_idx, assign enc_bunch, // BASIC instructions, ALWAYS executed in the FOR loop # assign enc_time, declare enc_act, # assign time_diff, assign decay, # pow, +, assign sum] + T + D # I_2 = 2 = [if, assign enc_act] // BASIC instructions, ALWAYS executed in the SECOND IF statement # E_2 = 2 = [if, S, assign enc_act, A] // BASIC instructions, ALWAYS executed in the SECOND IF statement # # |=======================================================================================================================| # | CONDITIONS | INSTR COUNT | CUR INSTR LIST | TOTAL INSTR COUNT | # |=======================================================================================================================| # | N != 0 & | B + 3 | [if, elif, | 5 | # | last_enc.time > cur_time | | raise error] | | # |--------------------------|---------------------------------------|----------------------|-----------------------------| # | else | BC + | [] | ((20|21) * triang_num(N)) + | # | | triang_num(N) * (F + I_2) + | | 9*N + 4 | # | | (N * (B + E_1 + S + A)) | | | # |=======================================================================================================================| # def calc_activation(item, cur_alpha, encounters, activations, cur_time): """ Calculates the activation for a given item at a given timestamp. Takes into account all previous encounters of the item through the calculation of decay. Arguments: item -- the item whose activation should be calculated cur_alpha -- the alpha value of the item which should be used in the calculation encounters -- the list of all of the item's encounters activations -- the list of activations corresponding to each encounter (used for caching activation values) cur_time -- the timestamp at which the activation should be calculated Returns: the activation of the item at the given timestamp """ # Stores the item's activation activation = 0.0 # If there are NO previous encounters if len(encounters) == 0: activation = np.NINF # ASSUMING that the encounters are sorted according to their timestamps # If the last encounter happens later than the time of calculation elif encounters[len(encounters)-1].time > cur_time: raise ValueError("Encounters must happen BEFORE the time of activation calculation!") else: # Stores the sum of time differences sum = 0.0 # For each encounter for enc_idx, enc_bunch in enumerate(encounters): # Store the encounter's time enc_time = enc_bunch.time # Stores the item's activation at that encounter enc_act = 0.0 # If the encounter's activation has ALREADY been calculated if enc_idx < len(activations): enc_act = activations[enc_idx] # If the encounter's activation has NOT been calculated yet else: # Calculate the activation of the item at the time of the encounter enc_act = calc_activation(item, cur_alpha, encounters[:enc_idx], activations, enc_time) # Add the current encounter's activation to the list activations.append(enc_act) # Calculate the time difference between the current time and the previous encounter # AND convert it to seconds time_diff = calc_time_diff(cur_time, enc_time) # calculate the item's decay at the encounter enc_decay = calc_decay(enc_act, alpha) # SCALE the difference by the decay and ADD it to the sum sum = sum + np.power(time_diff, -enc_decay) # calculate the activation given the sum of scaled time differences activation = np.log(sum) return activation # Execution DEPENDS on values of arguments # # B = 2 = [declare decay, return decay] // BASIC instructions, ALWAYS executed by the function # # |=========================================================================================| # | CONDITIONS | INSTR COUNT | CUR INSTR LIST | TOTAL INSTR COUNT | # |=========================================================================================| # | is_neg_inf | B + 2 | [if, assign decay] | 4 | # |-------------------------|------------------|----------------------|---------------------| # | else | B + 4 | [if, *, +, | 6 | # | | | assign decay] | | # |=========================================================================================| # def calc_decay(activation, cur_alpha): """ Calculate the activation decay of an item given its activation at the time of an encounter and its alpha. Arguments: activation -- the activation of the item at the given encounter cur_alpha -- the current alpha of the item Returns: the decay value of the item """ decay = 0.0 # if the activation is -infinity (the item hasn't been encountered before) if np.isneginf(activation): # the decay is the default alpha value decay = model_params["alpha_default"] else: # calculate the decay decay = model_params["decay_scale"] * np.exp(activation) + cur_alpha return decay # Executes in CONSTANT time # # B = 5 = [-, /, exp, +, /] // BASIC instructions, ALWAYS executed by the function # def calc_recall_prob(activation): """ Calculates an item's probability of recall given its activation. Arguments: activation -- the activation of the item Returns: the item's probability of recall based on activation """ return 1 / (1 + np.exp(((model_params["threshold"] - activation) / model_params["rec_prob_noise_reduction"]))) # Execution DEPENDS on values of arguments # # B = 3 = [assign time_diff, calc_total_seconds, return time_diff] // BASIC instructions, ALWAYS executed by the function # # |=========================================================================================| # | CONDITIONS | INSTR COUNT | CUR INSTR LIST | TOTAL INSTR COUNT | # |=========================================================================================| # | time_a > time_b | B + 2 | [if, -] | 5 | # |-------------------------|------------------|----------------------|---------------------| # | else | B + 2 | [if, -] | 5 | # |=========================================================================================| # NOTE: This calculation gets more complicated once sessions come into play def calc_time_diff(time_a, time_b): """ Calculates the difference between two timestamp. The time difference is represented in total seconds. Arguments: time_a -- the first timestamp to be considered time_b -- the second timestamp to be considered Returns: the time difference in seconds """ time_diff = (time_a - time_b) if time_a > time_b else (time_b - time_a) return (time_diff).total_seconds() # Executes in CONSTANT time # # B = 1 = [return result] // BASIC instructions, ALWAYS executed by the function # # NOTE: This calculation depends on what the item encounters consist of def encounter_item(item): """ Presents the item to the user and records the outcome of the encounter Arguments: item -- the item to be presented Returns: 'guessed', 'not_guessed' or 'skipped' depending on what the outcome of the encounter was """ return "guessed / not_guessed / skipped" # Execution DEPENDS on values of arguments # # B = 2 = [assign new_alpha, return new_alpha] // BASIC instructions, ALWAYS executed by the function # # |=========================================================================================| # | CONDITIONS | INSTR COUNT | CUR INSTR LIST | TOTAL INSTR COUNT | # |=========================================================================================| # | "skipped" | B + 2 | [if, elif] | 4 | # |=========================================================================================| # | "guessed" & | B + 6 | [if, if, -, /, -, | 8 | # | > alpha_min | | assign new_alpha] | | # |-------------------------|------------------|----------------------|---------------------| # | "guessed" & | B + 2 | [if, if] | 4 | # | < alpha_min | | | | # |=========================================================================================| # | "not_guessed" & | B + 6 | [if, elif, if, /, +, | 8 | # | < alpha_max | | assign new_alpha] | | # |-------------------------|------------------|----------------------|---------------------| # | "not_guessed" & | B + 3 | [if, elif, if] | 5 | # | > alpha_max | | | | # |=========================================================================================| # NOTE: This calculation may get more complicated depending on how the alpha is adjusted def calc_new_alpha(old_alpha, item_recall_prob, last_enc_result): """ Calculates the new alpha value, based on the result of the last encounter with the item and the item's recall_probability Arguments: old_alpha -- the item's old alpha value last_enc_result -- the result of the user's last encounter with the item item_recall_prob -- the item's recall_probability during the last encounter Returns: the item's new alpha value """ new_alpha = old_alpha # If the last encounter was SUCCESSFUL if last_enc_result == "guessed": if old_alpha > model_params["alpha_min"]: new_alpha = new_alpha - 0.05 # If the last encounter was NOT SUCCESSFUL elif last_enc_result == "not_guessed": if old_alpha < model_params["alpha_max"]: new_alpha = new_alpha + 0.05 # NOTE: If the last encounter was SKIPPED, the alpha stays the same return new_alpha
slavov-vili/ba_thesis
activation_code/act_alg_semi_pseudo_old.py
act_alg_semi_pseudo_old.py
py
22,650
python
en
code
0
github-code
50
5936441245
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse,JsonResponse from django.db import connection from django.db import models from .models import Users from django.contrib import auth from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_exempt import json @method_decorator(csrf_exempt) def indexs(request): users=Users.objects.all() users=list(users.values()) return JsonResponse(users,safe=False) @method_decorator(csrf_exempt) def user_register(request): if request.method=='GET': special_user=request.GET.get('user_id',None) if request.method=='POST': special_user = request.POST.get('user_id', None) # client로부터 user_id를 받기 Already = "already joined" NoInput="Not inputed user_id" if not special_user: # 만약 받은 user_id가 없으면 {'success':False}를 json형태로 반환 response = {'success': False, 'reason':NoInput} elif Users.objects.filter(user_id=special_user).exists(): response = {'success': False, 'reason':Already} else: # 만약 유저가 id를 생성했다면 해당 id를 Users라는 모델에 저장하고 {'success':True}를 json형태로 반환 user_name = Users(user_id=special_user) user_name.save() response = {'success': True} return JsonResponse(response, safe=False) @method_decorator(csrf_exempt) def user_remove(request): #유저 삭제 함수 special_user=request.POST.get('user_id',None) #query 값으로 user_id를 받아오기 if not special_user: #해당 data가 없으면 {'success':False}를 json 형태로 반환 response={'success':False} else: try: #해당 데이터가 있다면, 해당 데이터를 삭제하고 {'success':True}를 json 형태로 반환 user_name = Users.objects.get(user_id=special_user) user_name.delete() # 해당 유저의 id를 삭제하는 작업 response = {'success': True} except Users.DoesNotExist: response={'success':False} return JsonResponse(response,safe=False) # Create your views here.
Dongkw324/CodeDokDok_Baekend
User_Function/views.py
views.py
py
2,223
python
ko
code
0
github-code
50
4197431456
def solution(T): """ [73,74] [1, 0] at index i = 0 have to wait 1 day at index i = 1 is the end [73, 74, 75] [1, 1, 0] we could find the # of days but subtracting the index of the warmer day - previous colder day we could process one day by a time in a stack to keep track which has been looked up yet if we find a warmer day than the top index of the stack, then we find the # days that index has to wait, and we keep popping the stack until it is stack or the day in the stack is warmer that current index """ previous_days = [] res = [0] * len(T) for i in range(len(T)): while previous_days and T[i] > T[previous_days[-1]]: colder_day = previous_days.pop() res[colder_day] = i - colder_day previous_days.append(i) return res
Prakort/competitive_programming
daily-temperatures.py
daily-temperatures.py
py
795
python
en
code
0
github-code
50
26563775466
from panpipelines.utils.util_functions import * from panpipelines.scripts.panscript import * import os import glob # TEST #from panpipelines.scripts import * #SCRIPT="fmriprep_panscript" #panscript=eval("{}.{}".format(SCRIPT,SCRIPT)) #labels_dict={"COMM": "ls"} #pancomm = panscript(labels_dict) #pancomm.run() class fmriprep_panscript(panscript): def __init__(self,labels_dict,name='fmriprep_panscript',params="",command="",execution={}): super().__init__(self,labels_dict,name=name,params=params,command=command) self.params = "--participant_label <PARTICIPANT_LABEL>" \ " --output-spaces MNI152NLin6Asym:res-2 MNI152NLin2009cAsym:res-2 fsLR fsaverage anat func"\ " --skip-bids-validation"\ " --mem_mb <BIDSAPP_MEMORY>" \ " --nthreads <BIDSAPP_THREADS>"\ " --fs-license-file <FSLICENSE>"\ " --omp-nthreads <BIDSAPP_THREADS>"\ " -w <OUTPUT_DIR>/fmriwork" self.command = "singularity run --cleanenv --nv --no-home <FMRIPREP_CONTAINER>"\ " <BIDS_DIR>"\ " <OUTPUT_DIR>/fmrioutput"\ " participant" def pre_run(self): print("pre run - setting template flow directory") TEMPLATEFLOW_HOME=getParams(self.labels_dict,"TEMPLATEFLOW_HOME") os.environ["TEMPLATEFLOW_HOME"]=TEMPLATEFLOW_HOME os.environ["SINGULARITYENV_TEMPLATEFLOW_HOME"]=TEMPLATEFLOW_HOME print("Creating output directory") output_dir = getParams(self.labels_dict,"OUTPUT_DIR") if os.path.exists(output_dir): os.makedirs(output_dir) def post_run(self): print("post run") def get_results(self): self.results = {} return self.results
MRIresearch/PANpipelines
src/panpipelines/scripts/fmriprep_panscript.py
fmriprep_panscript.py
py
1,772
python
en
code
0
github-code
50
38297049752
from __future__ import print_function import argparse import os from pprint import pprint import multiprocessing import numpy as np import torch import torch.optim as optim import torch.backends.cudnn as cudnn import torch.nn as nn cudnn.benchmark = True import datasets import util import packing def train(model, train_loader, val_loader, args): criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs) prune_epoch = 0 max_prune_rate = 0.85 max_prune_rate = 0.8 final_prune_epoch = int(0.5*args.epochs) num_prune_epochs = 10 prune_rates = [max_prune_rate*(1 - (1 - (i / num_prune_epochs))**3) for i in range(num_prune_epochs)] prune_rates[-1] = max_prune_rate prune_epochs = np.linspace(0, final_prune_epoch, num_prune_epochs).astype('i').tolist() print("Pruning Epochs: {}".format(prune_epochs)) print("Pruning Rates: {}".format(prune_rates)) curr_weights, num_weights = util.num_nonzeros(model) macs = curr_weights model.stats = {'train_loss': [], 'test_acc': [], 'test_loss': [], 'weight': [], 'lr': [], 'macs': [], 'efficiency': []} best_path = args.save_path.split('.pth')[0] + '.best.pth' best_test_acc = 0 for epoch in range(1, args.epochs + 1): scheduler.step() for g in optimizer.param_groups: lr = g['lr'] break # prune smallest weights up to a set prune_rate if epoch in prune_epochs: util.prune(model, prune_rates[prune_epoch]) curr_weights, num_weights = util.num_nonzeros(model) packing.pack_model(model, args.gamma) macs = np.sum([x*y for x, y in model.packed_layer_size]) curr_weights, num_weights = util.num_nonzeros(model) prune_epoch += 1 if epoch == prune_epochs[-1]: # disable l1 penalty, as target sparsity is reached args.l1_penalty = 0 print(' :: [{}]\tLR {:.4f}\tNonzeros ({}/{})'.format( epoch, lr, curr_weights, num_weights)) train_loss = util.train(train_loader, model, criterion, optimizer, epoch, args) test_loss, test_acc = util.validate(val_loader, model, criterion, epoch, args) is_best = test_acc > best_test_acc best_test_acc = max(test_acc, best_test_acc) model.stats['lr'].append(lr) model.stats['macs'].append(macs) model.stats['weight'].append(curr_weights) model.stats['efficiency'].append(100.0 * (curr_weights / macs)) model.optimizer = optimizer.state_dict() model.epoch = epoch model.cpu() torch.save(model, args.save_path) if is_best: torch.save(model, best_path) model.cuda() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Basic Training Script') parser.add_argument('--dataset-root', default='datasets/', help='dataset root folder') parser.add_argument('--dataset', default='cifar10', help='dataset name') parser.add_argument('--input-size', type=int, help='spatial width/height of input') parser.add_argument('--input-channels', default=3, type=int, help='number of input channels') parser.add_argument('--n-class', type=int, help='number of classes') parser.add_argument('--aug', default='+', help='data augmentation level (`-`, `+`)') parser.add_argument('--save-path', required=True, help='path to save model') parser.add_argument('--batch-size', type=int, default=64, help='input batch size for training (default: 64)') parser.add_argument('--epochs', type=int, default=50, help='number of epochs to train (default: 50)') parser.add_argument('--sample-ratio', type=float, default=1., help='ratio of training data used') parser.add_argument('--lr', type=float, default=0.1, help='learning rate (default: 0.1)') parser.add_argument('--l1-penalty', type=float, default=0.0, help='l1 penalty (default: 0.0)') parser.add_argument('--gamma', type=float, default=1.75, help='column combine gamma parameter (default: 1.75)') parser.add_argument('--momentum', default=0.9, type=float, help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('--print-freq', default=100, type=int, help='printing frequency') parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--load-path', default=None, help='path to load model - trains new model if None') parser.add_argument('--reshape-stride', type=int, default=1, help='checkerboard reshape stride') parser.add_argument('--filters', nargs='+', type=int, help='size of layers in each block') parser.add_argument('--layers', nargs='+', type=int, help='number of layers for each block') parser.add_argument('--strides', nargs='+', type=int, help='stride for each block') parser.add_argument('--groups', nargs='+', type=int, help='number of sparse groups') parser.add_argument('--layer-type', default='shift', choices=['vgg', 'shift'], help='type of layer') parser.add_argument('--dropout', action='store_true') args = parser.parse_args() args.cuda = torch.cuda.is_available() print('Arguments:') pprint(args.__dict__, width=1) #set random seed torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # load dataset data = datasets.get_dataset(args.dataset_root, args.dataset, args.batch_size, args.cuda, args.aug, input_size=args.input_size, sample_ratio=args.sample_ratio) train_dataset, train_loader, test_dataset, test_loader = data # load or create model if args.load_path == None: model = util.build_model(args) else: model = torch.load(args.load_path) if args.cuda: model = model.cuda() print(model) print(util.num_nonzeros(model)) print('Target Nonzeros:', util.target_nonzeros(model)) train(model, train_loader, test_loader, args)
BradMcDanel/column-combine
train.py
train.py
py
6,643
python
en
code
26
github-code
50
73677829594
from django.shortcuts import render from rest_framework import generics, status from django.views.decorators.csrf import csrf_exempt from rest_framework.views import APIView from rest_framework.response import Response #send custom response from view from .serializers import TeamSerializer, CreateTeamSerializer from .models.team import Team class TeamsView(generics.ListAPIView): ## CreateAPIView queryset = Team.objects.all() serializer_class = TeamSerializer # @csrf_exempt # only on method views class CreateTeamView(APIView): ## CreateAPIView # serializer_class = CreateTeamSerializer # define GET POST UPDATE DELETE methods def post(self, request, format=None): # sessions needed? lets try #get access to session ID if not self.request.session.exists(self.request.session.session_key): #create session self.request.session.create() serializer = self.serializer_class(data=request.data) message = 'Invalid request' if (not serializer.is_valid()): resp_status = status.HTTP_406_NOT_ACCEPTABLE return Response({'message':message, 'status':resp_status}, status=resp_status) # message = Bad Request team_name = serializer.data.get('team_name') queryset = Team.objects.filter(team_name=team_name) if (queryset.exists()): resp_status = status.HTTP_409_CONFLICT message = team_name+" already exists" return Response({'message':message, 'status':resp_status}, status=resp_status) # message = Conflict abbr_name = serializer.data.get('abbr_name') division_ind = serializer.data.get('division_ind') try: team = Team(team_name = team_name, abbr_name = abbr_name, division_ind = division_ind) team.save() message = 'New Team, '+team_name+', added' team = TeamSerializer(team).data resp_status = status.HTTP_200_OK except Exception as exp: message = exp team = None resp_status = status.HTTP_500_INTERNAL_SERVER_ERROR response_data = { 'message': message , 'team': team, 'status' : resp_status, } return Response(response_data, status=resp_status) class TeamProfileView(APIView): """ Retrieve, update or delete a snippet instance. """ def get_object(self, team_name): try: print("try: ", team_name) return Team.objects.get(team_name=team_name) except Team.DoesNotExist: print("Team does not exist") message = "Bad Request: "+team_name + " does not exist" return Response({'message': message}, status=status.HTTP_404_NOT_FOUND) def get(self, request, team_name, format=None): team = self.get_object(team_name) serializer = PlayerSerializer(team) return Response(serializer.data) def put(self, request, team_name, format=None): team = self.get_object(team_name) serializer = PlayerSerializer(team, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, team_name, format=None): team = self.get_object(team_name) team.delete() return Response(status=status.HTTP_204_NO_CONTENT)
ivanManzalez/FY3
teams/views.py
views.py
py
3,366
python
en
code
0
github-code
50
34884647599
class Solution: def backspaceCompare(self, s: str, t: str) -> bool: s_list = list(s) t_list = list(t) def f(str_list): stack = [] for item in str_list: if not stack and item == "#": continue else: if item == "#": stack.pop() else: stack.append(item) # stack.append(item) return stack return f(s_list) == f(t_list) if __name__ == "__main__": s = Solution() S ="ab##" T ="c#d#" # S = "ab##" # T = "c#d#" s.backspaceCompare(S, T)
Dong98-code/leetcode
codes/Stack/844.比叫含退格的字符串.py
844.比叫含退格的字符串.py
py
680
python
en
code
0
github-code
50
22361452008
import discord from asyncpraw.models import Submission class Embeds: @staticmethod def post(submission: Submission) -> discord.Embed: embed = discord.Embed() embed.title = submission.title embed.set_author(name=submission.author.name, icon_url=submission.author.icon_img) embed.set_image(url=submission.url) embed.set_footer(text="👍 {0} | 💬 {1}".format(submission.score, submission.num_comments)) return embed
AltF02/fwp-bot
src/embeds.py
embeds.py
py
475
python
en
code
0
github-code
50
20025439990
import datetime from enum import IntEnum from typing import List from pydantic import validator from .base import BaseScheduleObject from .lesson import Lesson __all__ = ['Day', 'Weekday'] class Weekday(IntEnum): monday = 0 tuesday = 1 wednesday = 2 thursday = 3 friday = 4 saturday = 5 sunday = 6 class Day(BaseScheduleObject): weekday: Weekday date: datetime.date lessons: List[Lesson] @property def iso_weekday(self): return self.weekday + 1 def __iter__(self): for lesson in self.lessons: yield lesson @validator('weekday', pre=True) def _format_weekday(cls, weekday): return weekday - 1 @validator('lessons', pre=True, whole=True) def _filter_lessons_duplicates(cls, lessons: list): filtered_lessons = [] is_duplicate = False for next_lesson_index, lesson in enumerate(lessons, start=1): if is_duplicate: is_duplicate = False continue next_lesson = lessons[next_lesson_index] if next_lesson_index < len(lessons) else None is_duplicate = (next_lesson and next_lesson['subject'] == lesson['subject'] and lesson['time_start'] == next_lesson['time_start'] and lesson['typeObj']['id'] == next_lesson['typeObj']['id']) if is_duplicate: if lesson['auditories'] and next_lesson['auditories']: lesson['auditories'] += [audit for audit in next_lesson['auditories'] if audit not in lesson['auditories']] if lesson['teachers'] and next_lesson['teachers']: lesson['teachers'] += [teacher for teacher in next_lesson['teachers'] if teacher not in lesson['teachers']] elif next_lesson['teachers']: lesson['teachers'] = next_lesson['teachers'] if lesson['additional_info'] != next_lesson['additional_info']: lesson['additional_info'] += '\n' + next_lesson['additional_info'] filtered_lessons.append(lesson) return filtered_lessons
Bobronium/aiospbstu
aiospbstu/types/day.py
day.py
py
2,252
python
en
code
0
github-code
50
34733859527
class Solution(object): def duplicateZeros(self, arr): """ :type arr: List[int] :rtype: None Do not return anything, modify arr in-place instead. """ # Store old length oldLen = len(arr) i = 0 while i < oldLen : # Insert 0 into list if arr[i] == 0 : arr.insert(i+1 , 0) i += 1 i += 1 # Snip arr to old length arr[:] = arr[:oldLen]
nabbott98/LeetCode
duplicate-zeros/duplicate-zeros.py
duplicate-zeros.py
py
492
python
en
code
0
github-code
50
31069762113
#!/bin/python import math import os import random import re import sys ''' Given a set of distinct integers, print the size of a maximal subset of S where the sum of any 2 numbers in S' is not evenly divisible by K. For example, the array [19,10,12,10,24,25,22] and k=4. One of the arrays that can be created is [10,12,25]. Another is [19,22,24]; After testing all permutations, the maximum length solution array has 3 elements. ''' # Complete the nonDivisibleSubset function below. def nonDivisibleSubset(k, S): r = [0] * k for value in S: r[value%k] += 1 result = 0 for a in range(1, (k+1)//2): result += max(r[a], r[k-a]) # single them out if k % 2 == 0 and r[k//2]: # odd number of the median, count one result += 1 if r[0]: # result += 1 return result S = [19,10,12,10,24,25,22] k = 4 r = nonDivisibleSubset(k, S) print (r)
haroldmei/GeneralProgramming
interview/nonDivisibleSubset.py
nonDivisibleSubset.py
py
932
python
en
code
2
github-code
50
7619208294
""" FludServer.py (c) 2003-2006 Alen Peacock. This program is distributed under the terms of the GNU General Public License (the GPL), version 3. flud server operations """ import threading, binascii, time, os, stat, httplib, gc, re, sys, logging, sets from twisted.web import server, resource, client from twisted.web.resource import Resource from twisted.internet import reactor, threads, defer from twisted.web import http from twisted.python import threadable, failure from flud.FludCrypto import FludRSA import flud.FludkRouting from ServerPrimitives import * from ServerDHTPrimitives import * from LocalPrimitives import * from FludCommUtil import * threadable.init() class FludServer(threading.Thread): """ This class runs the webserver, responding to all requests. """ def __init__(self, node, port): threading.Thread.__init__(self) self.port = port self.node = node self.clientport = node.config.clientport self.logger = node.logger self.root = ROOT(self) self.root.putChild('ID', ID(self)) # GET (node identity) self.root.putChild('file', FILE(self)) # POST, GET, and DELETE (files) self.root.putChild('hash', HASH(self)) # GET (verify op) self.root.putChild('proxy', PROXY(self)) # currently noop self.root.putChild('nodes', NODES(self)) self.root.putChild('meta', META(self)) self.site = server.Site(self.root) reactor.listenTCP(self.port, self.site) reactor.listenTCP(self.clientport, LocalFactory(node), interface="127.0.0.1") #print "FludServer will listen on port %d, local client on %d"\ # % (self.port, self.clientport) self.logger.log(logging.INFO,\ "FludServer will listen on port %d, local client on %d" % (self.port, self.clientport)) def run(self): self.logger.log(logging.INFO, "FludServer starting") return reactor.run(installSignalHandlers=0) def stop(self): self.logger.log(logging.INFO, "FludServer stopping") reactor.stop()
alenpeacock/flud
flud/protocol/FludServer.py
FludServer.py
py
2,131
python
en
code
12
github-code
50
21542368532
from os import P_WAIT import openpyxl import random import docx from docx.enum.text import WD_PARAGRAPH_ALIGNMENT from docx.shared import Pt, RGBColor wb = openpyxl.load_workbook('工资统计.xlsx') sheet = wb['工作量汇总'] lst = [] for index, values in enumerate(sheet.rows, 1): t = list(map(lambda x: x.value, values)) lst.append(t) doc = docx.Document() p = doc.add_paragraph('工资表') p.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER p.runs[0].font.size = Pt(30) p.runs[0].font.bold = True table = doc.add_table(rows=13, cols=6, style='Table Grid') for i in range(13): for j in range(6): value = lst[i][j] if type(value) == int: value = str(value) elif type(value) == float: value = '{:.2f}'.format(value) cell = table.cell(i, j) cell.text = value cell.paragraphs[0].alignment = WD_PARAGRAPH_ALIGNMENT.CENTER color = (random.randint(0, 255)for i in range(3)) cell.paragraphs[0].runs[0].font.color.rgb = RGBColor(*color) doc.save('table.docx')
hurttttr/MyPythonCode
文件操作/2906-制作word表格.py
2906-制作word表格.py
py
1,057
python
en
code
3
github-code
50
26082749703
def get_loop_size(public_key: int) -> int: initial_subject_number = 7 divider = 20201227 value = 1 loop = 0 while value != public_key: value *= initial_subject_number value %= divider loop += 1 return loop def calculate_encryption_key(card_public_key: int, door_public_key: int) -> int: card_loop_size = get_loop_size(card_public_key) divider = 20201227 value = 1 for _ in range(0, card_loop_size): value *= door_public_key value %= divider return value if __name__ == '__main__': print(calculate_encryption_key(2448427, 6929599))
tosoba/Grind
advent_of_code_2020/d25_encryption_key.py
d25_encryption_key.py
py
623
python
en
code
0
github-code
50
1812305371
import functools from typing import Tuple import chex import jax import jax.numpy as jnp from jumanji import specs from jumanji.env import Environment from jumanji.types import TimeStep, restart, termination, transition from matrax.types import Observation, State class MatrixGame(Environment[State]): """JAX implementation of the 2-player matrix game environment: https://github.com/uoe-agents/matrix-games A matrix game is a two-player game where each player has a set of actions and a payoff matrix. The payoff matrix is a 2D array where the rows correspond to the actions of player 1 and the columns correspond to the actions of player 2. The entry at row i and column j for player 1 is the reward given to player 1 when playing action i and player 2 plays action j. Similarly, the entry at row i and column j for player 2 is the reward given to player 2 when playing action j and player 1 plays action i. ```python from matrax import MatrixGame payoff_matrix = jnp.array([[1, -1], [-1, 1]]) env = MatrixGame(payoff_matrix) key = jax.random.PRNGKey(0) state, timestep = jax.jit(env.reset)(key) action = env.action_spec().generate_value() state, timestep = jax.jit(env.step)(state, action) ``` """ def __init__( self, payoff_matrix: chex.Array, keep_state: bool = True, time_limit: int = 500, ): """Instantiates a `MatrixGame` environment. Args: payoff_matrix: a 2D array of shape (num_agents, num_agents) containing the payoff matrix of the game. keep_state: whether to keep state by giving agents the actions of all players in the previous round as observations. Defaults to True. time_limit: the maximum step limit allowed within the environment. Defaults to 500. """ self.payoff_matrix = payoff_matrix self.keep_state = keep_state self.num_agents = self.payoff_matrix.shape[0] self.num_actions = self.payoff_matrix.shape[1] self.time_limit = time_limit def __repr__(self) -> str: return f"MatrixGame(\n" f"\tpayoff_matrix={self.payoff_matrix!r},\n" ")" def reset(self, key: chex.PRNGKey) -> Tuple[State, TimeStep[Observation]]: """Resets the environment. Args: key: random key used to reset the environment since it is stochastic. Returns: state: State object corresponding to the new state of the environment. timestep: TimeStep object corresponding the first timestep returned by the environment. """ # create environment state state = State( step_count=jnp.array(0, int), key=key, ) dummy_actions = jnp.ones((self.num_agents,), int) * -1 # collect first observations and create timestep agent_obs = jax.vmap( functools.partial(self._make_agent_observation, dummy_actions) )(jnp.arange(self.num_agents)) observation = Observation( agent_obs=agent_obs, step_count=state.step_count, ) timestep = restart(observation=observation) return state, timestep def step( self, state: State, actions: chex.Array, ) -> Tuple[State, TimeStep[Observation]]: """Perform an environment step. Args: state: State object containing the dynamics of the environment. actions: Array containing actions of each agent. Returns: state: State object corresponding to the next state of the environment. timestep: TimeStep object corresponding the timestep returned by the environment. """ def compute_reward( actions: chex.Array, payoff_matrix_per_agent: chex.Array ) -> chex.Array: reward_idx = tuple(actions) return payoff_matrix_per_agent[reward_idx] rewards = jax.vmap(functools.partial(compute_reward, actions))( self.payoff_matrix ) # construct timestep and check environment termination steps = state.step_count + 1 done = steps >= self.time_limit # compute next observation agent_obs = jax.vmap(functools.partial(self._make_agent_observation, actions))( jnp.arange(self.num_agents) ) next_observation = Observation( agent_obs=agent_obs, step_count=steps, ) timestep = jax.lax.cond( done, termination, transition, rewards, next_observation, ) # create environment state next_state = State( step_count=steps, key=state.key, ) return next_state, timestep def _make_agent_observation( self, actions: chex.Array, agent_id: int, ) -> chex.Array: return jax.lax.cond( self.keep_state, lambda: actions, lambda: jnp.zeros(self.num_agents, int), ) def observation_spec(self) -> specs.Spec[Observation]: """Specification of the observation of the MatrixGame environment. Returns: Spec for the `Observation`, consisting of the fields: - agent_obs: BoundedArray (int32) of shape (num_agents, num_agents). - step_count: BoundedArray (int32) of shape (). """ obs_shape = (self.num_agents, self.num_agents) low = jnp.zeros(obs_shape) high = jnp.ones(obs_shape) * self.num_actions agent_obs = specs.BoundedArray(obs_shape, jnp.int32, low, high, "agent_obs") step_count = specs.BoundedArray((), jnp.int32, 0, self.time_limit, "step_count") return specs.Spec( Observation, "ObservationSpec", agent_obs=agent_obs, step_count=step_count, ) def action_spec(self) -> specs.MultiDiscreteArray: """Returns the action spec. Since this is a multi-agent environment, the environment expects an array of actions. This array is of shape (num_agents,). """ return specs.MultiDiscreteArray( num_values=jnp.array([self.num_actions] * self.num_agents, jnp.int32), name="action", )
instadeepai/matrax
matrax/env.py
env.py
py
6,417
python
en
code
5
github-code
50
17264620320
''' Created on 27 Dec 2016 @author: af ''' ''' Created on 22 Apr 2016 @author: af ''' import pdb import numpy as np import sys from os import path import scipy as sp import theano import theano.tensor as T import lasagne from lasagne.regularization import regularize_layer_params_weighted, l2, l1 from lasagne.regularization import regularize_layer_params import theano.sparse as S from lasagne.layers import DenseLayer, DropoutLayer import logging import json import codecs import pickle import gzip from collections import OrderedDict from _collections import defaultdict logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) ''' These sparse classes are copied from https://github.com/Lasagne/Lasagne/pull/596/commits ''' class SparseInputDenseLayer(DenseLayer): def get_output_for(self, input, **kwargs): if not isinstance(input, (S.SparseVariable, S.SparseConstant, S.sharedvar.SparseTensorSharedVariable)): raise ValueError("Input for this layer must be sparse") activation = S.structured_dot(input, self.W) if self.b is not None: activation = activation + self.b.dimshuffle('x', 0) return self.nonlinearity(activation) class SparseInputDropoutLayer(DropoutLayer): def get_output_for(self, input, deterministic=False, **kwargs): if not isinstance(input, (S.SparseVariable, S.SparseConstant, S.sharedvar.SparseTensorSharedVariable)): raise ValueError("Input for this layer must be sparse") if deterministic or self.p == 0: return input else: # Using Theano constant to prevent upcasting one = T.constant(1, name='one') retain_prob = one - self.p if self.rescale: input = S.mul(input, one/retain_prob) input_shape = self.input_shape if any(s is None for s in input_shape): input_shape = input.shape return input * self._srng.binomial(input_shape, p=retain_prob, dtype=input.dtype) #copied from a tutorial that I don't rememmber! # ############################# Batch iterator ############################### # This is just a simple helper function iterating over training data in # mini-batches of a particular size, optionally in random order. It assumes # data is available as numpy arrays. For big datasets, you could load numpy # arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your # own custom data iteration function. For small datasets, you can also copy # them to GPU at once for slightly improved performance. This would involve # several changes in the main program, though, and is not demonstrated here. def iterate_minibatches(inputs, targets, batchsize, shuffle=False): assert inputs.shape[0] == targets.shape[0] if shuffle: indices = np.arange(inputs.shape[0]) np.random.shuffle(indices) for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt], targets[excerpt] class MLP(): def __init__(self, n_epochs=10, batch_size=1000, init_parameters=None, complete_prob=False, add_hidden=True, regul_coefs=[5e-5, 5e-5], save_results=False, hidden_layer_size=None, drop_out=False, drop_out_coefs=[0.5, 0.5], early_stopping_max_down=100000, loss_name='log', nonlinearity='rectify'): self.n_epochs = n_epochs self.batch_size = batch_size self.init_parameters = init_parameters self.complete_prob = complete_prob self.add_hidden = add_hidden self.regul_coefs = regul_coefs self.save_results = save_results self.hidden_layer_size = hidden_layer_size self.drop_out = drop_out self.drop_out_coefs = drop_out_coefs self.early_stopping_max_down = early_stopping_max_down self.loss_name = loss_name self.nonlinearity = 'rectify' def fit(self, X_train, Y_train, X_dev, Y_dev): logging.info('building the network...' + ' hidden:' + str(self.add_hidden)) in_size = X_train.shape[1] drop_out_hid, drop_out_in = self.drop_out_coefs if self.complete_prob: out_size = Y_train.shape[1] else: out_size = len(set(Y_train.tolist())) logging.info('output size is %d' %out_size) if self.hidden_layer_size: pass else: self.hidden_layer_size = min(5 * out_size, int(in_size / 20)) logging.info('input layer size: %d, hidden layer size: %d, output layer size: %d' %(X_train.shape[1], self.hidden_layer_size, out_size)) # Prepare Theano variables for inputs and targets if not sp.sparse.issparse(X_train): logging.info('input matrix is not sparse!') self.X_sym = T.matrix() else: self.X_sym = S.csr_matrix(name='inputs', dtype='float32') if self.complete_prob: self.y_sym = T.matrix() else: self.y_sym = T.ivector() l_in = lasagne.layers.InputLayer(shape=(None, in_size), input_var=self.X_sym) if self.nonlinearity == 'rectify': nonlinearity = lasagne.nonlinearities.rectify elif self.nonlinearity == 'sigmoid': nonlinearity = lasagne.nonlinearities.sigmoid elif self.nonlinearity == 'tanh': nonlinearity = lasagne.nonlinearities.tanh else: nonlinearity = lasagne.nonlinearities.rectify if self.drop_out: l_in = lasagne.layers.dropout(l_in, p=drop_out_in) if self.add_hidden: if not sp.sparse.issparse(X_train): l_hid1 = lasagne.layers.DenseLayer( l_in, num_units=self.hidden_layer_size, nonlinearity=nonlinearity, W=lasagne.init.GlorotUniform()) else: l_hid1 = SparseInputDenseLayer( l_in, num_units=self.hidden_layer_size, nonlinearity=nonlinearity, W=lasagne.init.GlorotUniform()) if self.drop_out: self.l_hid1 = lasagne.layers.dropout(l_hid1, drop_out_hid) self.l_out = lasagne.layers.DenseLayer( l_hid1, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax) else: if not sp.sparse.issparse(X_train): self.l_out = lasagne.layers.DenseLayer( l_in, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax) if self.drop_out: l_hid1 = lasagne.layers.dropout(l_hid1, drop_out_hid) else: self.l_out = SparseInputDenseLayer( l_in, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax) if self.drop_out: l_hid1 = SparseInputDropoutLayer(l_hid1, drop_out_hid) if self.add_hidden: self.embedding = lasagne.layers.get_output(l_hid1, self.X_sym, deterministic=True) self.f_get_embeddings = theano.function([self.X_sym], self.embedding) self.output = lasagne.layers.get_output(self.l_out, self.X_sym, deterministic=False) self.pred = self.output.argmax(-1) self.eval_output = lasagne.layers.get_output(self.l_out, self.X_sym, deterministic=True) self.eval_pred = self.eval_output.argmax(-1) eval_loss = lasagne.objectives.categorical_crossentropy(self.eval_output, self.y_sym) eval_loss = eval_loss.mean() if self.loss_name == 'log': loss = lasagne.objectives.categorical_crossentropy(self.output, self.y_sym) elif self.loss_name == 'hinge': loss = lasagne.objectives.multiclass_hinge_loss(self.output, self.y_sym) loss = loss.mean() l1_share_out = 0.5 l1_share_hid = 0.5 regul_coef_out, regul_coef_hid = self.regul_coefs logging.info('regul coefficient for output and hidden lasagne_layers are ' + str(self.regul_coefs)) l1_penalty = lasagne.regularization.regularize_layer_params(self.l_out, l1) * regul_coef_out * l1_share_out l2_penalty = lasagne.regularization.regularize_layer_params(self.l_out, l2) * regul_coef_out * (1-l1_share_out) if self.add_hidden: l1_penalty += lasagne.regularization.regularize_layer_params(l_hid1, l1) * regul_coef_hid * l1_share_hid l2_penalty += lasagne.regularization.regularize_layer_params(l_hid1, l2) * regul_coef_hid * (1-l1_share_hid) loss = loss + l1_penalty + l2_penalty eval_loss = eval_loss + l1_penalty + l2_penalty if self.complete_prob: self.y_sym_one_hot = self.y_sym.argmax(-1) self.acc = T.mean(T.eq(self.pred, self.y_sym_one_hot)) self.eval_ac = T.mean(T.eq(self.eval_pred, self.y_sym_one_hot)) else: self.acc = T.mean(T.eq(self.pred, self.y_sym)) self.eval_acc = T.mean(T.eq(self.eval_pred, self.y_sym)) if self.init_parameters: lasagne.layers.set_all_param_values(self.l_out, self.init_parameters) parameters = lasagne.layers.get_all_params(self.l_out, trainable=True) #print(params) #updates = lasagne.updates.nesterov_momentum(loss, parameters, learning_rate=0.01, momentum=0.9) #updates = lasagne.updates.sgd(loss, parameters, learning_rate=0.01) #updates = lasagne.updates.adagrad(loss, parameters, learning_rate=0.1, epsilon=1e-6) #updates = lasagne.updates.adadelta(loss, parameters, learning_rate=0.1, rho=0.95, epsilon=1e-6) updates = lasagne.updates.adam(loss, parameters, learning_rate=0.002, beta1=0.9, beta2=0.999, epsilon=1e-8) self.f_train = theano.function([self.X_sym, self.y_sym], [loss, self.acc], updates=updates) self.f_val = theano.function([self.X_sym, self.y_sym], [eval_loss, self.eval_acc]) self.f_predict = theano.function([self.X_sym], self.eval_pred) self.f_predict_proba = theano.function([self.X_sym], self.eval_output) X_train = X_train.astype('float32') X_dev = X_dev.astype('float32') if self.complete_prob: Y_train = Y_train.astype('float32') Y_dev = Y_dev.astype('float32') else: Y_train = Y_train.astype('int32') Y_dev = Y_dev.astype('int32') logging.info('training (n_epochs, batch_size) = (' + str(self.n_epochs) + ', ' + str(self.batch_size) + ')' ) best_params = None best_val_loss = sys.maxint best_val_acc = 0.0 n_validation_down = 0 for n in xrange(self.n_epochs): for batch in iterate_minibatches(X_train, Y_train, self.batch_size, shuffle=True): x_batch, y_batch = batch l_train, acc_train = self.f_train(x_batch, y_batch) l_val, acc_val = self.f_val(X_dev, Y_dev) if acc_val > best_val_acc: best_val_loss = l_val best_val_acc = acc_val best_params = lasagne.layers.get_all_param_values(self.l_out) n_validation_down = 0 else: #early stopping n_validation_down += 1 logging.info('epoch ' + str(n) + ' ,train_loss ' + str(l_train) + ' ,acc ' + str(acc_train) + ' ,val_loss ' + str(l_val) + ' ,acc ' + str(acc_val) + ',best_val_acc ' + str(best_val_acc)) if n_validation_down > self.early_stopping_max_down: logging.info('validation results went down. early stopping ...') break lasagne.layers.set_all_param_values(self.l_out, best_params) logging.info('***************** final results based on best validation **************') l_val, acc_val = self.f_val(X_dev, Y_dev) logging.info('Best dev acc: %f' %(acc_val)) def predict(self, X_test): X_test = X_test.astype('float32') return self.f_predict(X_test) def predict_proba(self, X_test): X_test = X_test.astype('float32') return self.f_predict_proba(X_test) def accuracy(self, X_test, Y_test): X_test = X_test.astype('float32') if self.complete_prob: Y_test = Y_test.astype('float32') else: Y_test = Y_test.astype('int32') test_loss, test_acc = self.f_val(X_test, Y_test) return test_acc def score(self, X_test, Y_test): return self.accuracy(X_test, Y_test) def get_embedding(self, X): return self.f_get_embeddings(X) class MLPDense(): def __init__(self, input_sparse, in_size, out_size, architecture, batch_size=1000, regul=1e-6, dropout=0.0, lr=3e-4, batchnorm=False): self.in_size = in_size self.out_size = out_size self.architecture = architecture self.regul = regul self.dropout = dropout self.input_sparse = input_sparse self.lr = lr self.batchnorm = batchnorm self.fitted = False def build(self, seed=77): np.random.seed(seed) logging.info('Building model with in_size {} out size {} batchnorm {} regul {} dropout {} and architecture {}'.format(self.in_size, self.out_size, str(self.batchnorm), self.regul, self.dropout, str(self.architecture))) if self.input_sparse: X_sym = S.csr_matrix(name='sparse_input') else: X_sym = T.matrix('dense input') y_sym = T.ivector() l_in = lasagne.layers.InputLayer(shape=(None, self.in_size), input_var=X_sym) l_hid = l_in nonlinearity = lasagne.nonlinearities.rectify #W = lasagne.init.HeNormal() #for selu W = lasagne.init.GlorotUniform(gain='relu') for i, hid_size in enumerate(self.architecture): if i == 0 and self.input_sparse: l_hid = SparseInputDenseLayer(l_hid, num_units=hid_size, nonlinearity=nonlinearity, W=W) if self.batchnorm: l_hid = lasagne.layers.batch_norm(l_hid) else: l_hid = lasagne.layers.DenseLayer(l_hid, num_units=hid_size, nonlinearity=nonlinearity, W=W) if self.batchnorm: l_hid = lasagne.layers.batch_norm(l_hid) l_hid = lasagne.layers.dropout(l_hid, p=self.dropout) l_out = lasagne.layers.DenseLayer(l_hid, num_units=self.out_size, nonlinearity=lasagne.nonlinearities.softmax) self.l_out = l_out output = lasagne.layers.get_output(l_out, X_sym, deterministic=False) eval_output = lasagne.layers.get_output(l_out, X_sym, deterministic=True) pred = output.argmax(-1) eval_pred = eval_output.argmax(-1) acc = T.mean(T.eq(pred, y_sym)) eval_acc = T.mean(T.eq(eval_pred, y_sym)) loss = lasagne.objectives.categorical_crossentropy(output, y_sym).mean() regul_loss = lasagne.regularization.regularize_network_params(l_out, penalty=l2) * self.regul regul_loss += lasagne.regularization.regularize_network_params(l_out, penalty=l1) * self.regul eval_loss = loss loss += regul_loss parameters = lasagne.layers.get_all_params(self.l_out, trainable=True) updates = lasagne.updates.adam(loss, parameters, learning_rate=self.lr, beta1=0.9, beta2=0.999, epsilon=1e-8) self.f_train = theano.function([X_sym, y_sym], [eval_loss, acc], updates=updates) self.f_val = theano.function([X_sym, y_sym], [eval_pred, eval_loss, eval_acc]) self.f_predict = theano.function([X_sym], eval_pred) self.init_params = lasagne.layers.get_all_param_values(self.l_out) def predict(self, X): return self.f_predict(X) def fit(self, X_train, y_train, X_dev, y_dev, n_epochs=100, early_stopping_max_down=5, verbose=True, batch_size=1000, seed=77): np.random.seed(seed) best_params = None best_val_loss = sys.maxint best_val_acc = 0.0 n_validation_down = 0 for epoch in xrange(n_epochs): l_train_batches = [] acc_train_batches = [] for batch in iterate_minibatches(X_train, y_train, batch_size, shuffle=True): l_train, acc_train = self.f_train(batch[0], batch[1]) l_train, acc_train = l_train.item(), acc_train.item() l_train_batches.append(l_train) acc_train_batches.append(acc_train) l_train = np.mean(l_train_batches) acc_train = np.mean(acc_train_batches) pred_val, l_val, acc_val = self.f_val(X_dev, y_dev) l_val, acc_val = l_val.item(), acc_val.item() if l_val < best_val_loss: best_val_loss = l_val best_val_acc = acc_val best_params = lasagne.layers.get_all_param_values(self.l_out) n_validation_down = 0 else: #early stopping n_validation_down += 1 #logging.info('epoch {} train loss {} acc {} val loss {} acc {}'.format(epoch, l_train, acc_train, l_val, acc_val)) if verbose: logging.info('epoch {} train loss {:.2f} acc {:.2f} val loss {:.2f} acc {:.2f} best acc {:.2f} maxdown {}'.format(epoch, l_train, acc_train, l_val, acc_val, best_val_acc, n_validation_down)) if n_validation_down > early_stopping_max_down: logging.info('validation results went down. early stopping ...') break lasagne.layers.set_all_param_values(self.l_out, best_params) self.fitted = True def reset(self): lasagne.layers.set_all_param_values(self.l_out, self.init_params) if __name__ == '__main__': pass
afshinrahimi/geographconv
mlp.py
mlp.py
py
18,612
python
en
code
67
github-code
50
34025219462
import sys import os import pytest sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "..")) from cvxpy import installed_solvers from hysut.utils.defaults import ModelSettings def test_ModelSettings(): settings = ModelSettings() # wrong solver output = settings.validate_solver("dummy") expected_output = { "value": settings.solver, "warning": [ f"dummy is not a valid solver or not installed on your machine. Default solver ({settings.solver}) is used." ], } assert output == expected_output # wrong log_path output = settings.validate_log_path(12) expected_output = { "value": settings.log_path, "warning": [ f"log_path should be str. Default log_path ({settings.log_path}) is used." ], }
HySUT/hysut
tests/test_defaults.py
test_defaults.py
py
833
python
en
code
0
github-code
50
27386073504
from tkinter import * def submit(): print("It is " + str(scale.get()) + " degrees C.") window = Tk() #placed at top hotImage = PhotoImage(file = "GUI_Icon.png") #placeholder for fire image hotLabel = Label(image=hotImage) hotLabel.pack() scale = Scale(window, from_=100, #sets range for scale to=0, length=600, #length of scale orient=VERTICAL, #scale orientation font = ("Consolas",20), tickinterval = 10, #adds indicator for values #showvalue = 0, #Hide current numeric value of slider troughcolor= "green", #changes color of slider fg = "#FF1C00", bg = "Black" ) scale.set(50) #has the scale start at 50 \\\\ ((scale["from"]-scale["to"])/2)+scale("to") will always start at the middle scale.pack() #placed at bottom coldImage = PhotoImage(file = "GUI_Icon.png") #placeholder for snowflake image coldLabel = Label(image=hotImage) coldLabel.pack() button = Button(window, text = "submit", command = submit) button.pack() window.mainloop()
18gwoo/Python-Practice
BroCode70_GUI_Scale.py
BroCode70_GUI_Scale.py
py
1,136
python
en
code
0
github-code
50
38189202195
import re from SymbolTable import SymbolTable class CodeWriter: CONVERT_KIND = { 'ARG': 'ARG', 'STATIC': 'STATIC', 'VAR': 'LOCAL', 'FIELD': 'THIS' } ARITHMETIC = { '+': 'ADD', '-': 'SUB', '=': 'EQ', '>': 'GT', '<': 'LT', '&': 'AND', '|': 'OR' } ARITHMETIC_UNARY = { '-': 'NEG', '~': 'NOT' } if_index = -1 while_index = -1 def __init__(self, tokenizer, output_file): self.output = output_file self.tokenizer = tokenizer self.symbol_table = SymbolTable() self.buffer = [] def compile_class(self): self.get_token() self.class_name = self.get_token() self.get_token() while self.is_class_var_dec(): self.compile_classVarDec() while self.is_subroutine_dec(): self.compile_subroutineDec() self.close() def compile_classVarDec(self): kind = self.get_token() type = self.get_token() name = self.get_token() self.symbol_table.define(name, type, kind.upper()) while self.peek() != ';': self.get_token() name = self.get_token() self.symbol_table.define(name, type, kind.upper()) self.get_token() def compile_subroutineDec(self): subroutine_kind = self.get_token() self.get_token() subroutine_name = self.get_token() self.symbol_table.start_subroutine() if subroutine_kind == 'method': self.symbol_table.define('instance', self.class_name, 'ARG') self.get_token() self.compile_parameterList() self.get_token() self.get_token() while self.peek() == 'var': self.compile_var_dec() function_name = '{}.{}'.format(self.class_name, subroutine_name) num_locals = self.symbol_table.var_count('VAR') self.write_function(function_name, num_locals) if subroutine_kind == 'constructor': num_fields = self.symbol_table.var_count('FIELD') self.write_push('CONST', num_fields) self.write_call('Memory.alloc', 1) self.write_pop('POINTER', 0) elif subroutine_kind == 'method': self.write_push('ARG', 0) self.write_pop('POINTER', 0) self.compile_statements() self.get_token() def write_push(self, segment, index): if segment == 'CONST': segment = 'constant' elif segment == 'ARG': segment = 'argument' self.output.write('push {} {}\n'.format(segment.lower(), index)) def write_pop(self, segment, index): if segment == 'CONST': segment = 'constant' elif segment == 'ARG': segment = 'argument' self.output.write('pop {} {}\n'.format(segment.lower(), index)) def write_arithmetic(self, command): self.output.write(command.lower() + '\n') def write_label(self, label): self.output.write('label {}'.format(label)) def write_goto(self, label): self.output.write('goto {}'.format(label)) def write_if(self, label): self.output.write('if-goto {}'.format(label)) def write_call(self, name, nArgs): self.output.write('call {} {}\n'.format(name, nArgs)) def write_function(self, name, nLocals): self.output.write('function {} {}\n'.format(name, nLocals)) def write_return(self): self.output.write('return\n') def close(self): self.output.close() def write(self, stuff): self.output.write(stuff) def compile_parameterList(self): if ')' != self.peek(): type = self.get_token() name = self.get_token() self.symbol_table.define(name, type, 'ARG') while ')' != self.peek(): self.get_token() type = self.get_token() name = self.get_token() self.symbol_table.define(name, type, 'ARG') def compile_var_dec(self): self.get_token() type = self.get_token() name = self.get_token() self.symbol_table.define(name, type, 'VAR') while self.peek() != ';': self.get_token() name = self.get_token() self.symbol_table.define(name, type, 'VAR') self.get_token() def compile_statements(self): while self.is_statement(): token = self.get_token() if token == 'let': self.compile_letStatement() elif token == 'if': self.compile_ifStatement() elif token == 'while': self.compile_whileStatement() elif token == 'do': self.compile_doStatement() elif token == 'return': self.compile_returnStatement() def compile_doStatement(self): self.compile_subroutine_call() self.write_pop('TEMP', 0) self.get_token() def compile_letStatement(self): var_name = self.get_token() var_kind = self.CONVERT_KIND[self.symbol_table.kind_of(var_name)] var_index = self.symbol_table.index_of(var_name) if self.peek() == '[': self.get_token() self.compile_expression() self.get_token() self.write_push(var_kind, var_index) self.write_arithmetic('ADD') self.write_pop('TEMP', 0) self.get_token() self.compile_expression() self.get_token() self.write_push('TEMP', 0) self.write_pop('POINTER', 1) self.write_pop('THAT', 0) else: self.get_token() self.compile_expression() self.get_token() self.write_pop(var_kind, var_index) def compile_whileStatement(self): self.while_index += 1 while_index = self.while_index self.write_label('WHILE{}\n'.format(while_index)) self.get_token() self.compile_expression() self.write_arithmetic('NOT') self.get_token() self.get_token() self.write_if('WHILE_END{}\n'.format(while_index)) self.compile_statements() self.write_goto('WHILE{}\n'.format(while_index)) self.write_label('WHILE_END{}\n'.format(while_index)) self.get_token() def compile_returnStatement(self): if self.peek() != ';': self.compile_expression() else: self.write_push('CONST', 0) self.write_return() self.get_token() def compile_ifStatement(self): self.if_index += 1 if_index = self.if_index self.get_token() self.compile_expression() self.get_token() self.get_token() self.write_if('IF_TRUE{}\n'.format(if_index)) self.write_goto('IF_FALSE{}\n'.format(if_index)) self.write_label('IF_TRUE{}\n'.format(if_index)) self.compile_statements() # statements self.write_goto('IF_END{}\n'.format(if_index)) self.get_token() # '}' self.write_label('IF_FALSE{}\n'.format(if_index)) if self.peek() == 'else': self.get_token() self.get_token() self.compile_statements() self.get_token() self.write_label('IF_END{}\n'.format(if_index)) def compile_expression(self): self.compile_term() while self.is_op(): op = self.get_token() self.compile_term() if op in self.ARITHMETIC.keys(): self.write_arithmetic(self.ARITHMETIC[op]) elif op == '*': self.write_call('Math.multiply', 2) elif op == '/': self.write_call('Math.divide', 2) def compile_term(self): if self.is_unary_op_term(): unary_op = self.get_token() # unaryOp self.compile_term() # term self.write_arithmetic(self.ARITHMETIC_UNARY[unary_op]) elif self.peek() == '(': self.get_token() # '(' self.compile_expression() # expression self.get_token() # ')' elif self.peek_type() == 'INT_CONST': # integerConstant self.write_push('CONST', self.get_token()) elif self.peek_type() == 'STRING_CONST': # stringConstant self.compile_string() elif self.peek_type() == 'KEYWORD': # keywordConstant self.compile_keyword() else: # first is a var or subroutine if self.is_array(): array_var = self.get_token() # varName self.get_token() # '[' self.compile_expression() # expression self.get_token() # ']' array_kind = self.symbol_table.kind_of(array_var) array_index = self.symbol_table.index_of(array_var) self.write_push(self.CONVERT_KIND[array_kind], array_index) self.write_arithmetic('ADD') self.write_pop('POINTER', 1) self.write_push('THAT', 0) elif self.is_subroutine_call(): self.compile_subroutine_call() else: var = self.get_token() var_kind = self.CONVERT_KIND[self.symbol_table.kind_of(var)] var_index = self.symbol_table.index_of(var) self.write_push(var_kind, var_index) def compile_expression_list(self): number_args = 0 if self.peek() != ')': number_args += 1 self.compile_expression() while self.peek() != ')': number_args += 1 self.get_token() # ',' self.compile_expression() return number_args def compile_keyword(self): keyword = self.get_token() # keywordConstant if keyword == 'this': self.write_push('POINTER', 0) else: self.write_push('CONST', 0) if keyword == 'true': self.write_arithmetic('NOT') def compile_subroutine_call(self): identifier = self.get_token() function_name = identifier number_args = 0 if self.peek() == '.': self.get_token() subroutine_name = self.get_token() type = self.symbol_table.type_of(identifier) if type != 'NONE': instance_kind = self.symbol_table.kind_of(identifier) instance_index = self.symbol_table.index_of(identifier) self.write_push(self.CONVERT_KIND[instance_kind], instance_index) function_name = '{}.{}'.format(type, subroutine_name) number_args += 1 else: # it's a class class_name = identifier function_name = '{}.{}'.format(class_name, subroutine_name) elif self.peek() == '(': subroutine_name = identifier function_name = '{}.{}'.format(self.class_name, subroutine_name) number_args += 1 self.write_push('POINTER', 0) self.get_token() # '(' number_args += self.compile_expression_list() self.get_token() # ')' self.write_call(function_name, number_args) def compile_string(self): string = self.get_token() self.write_push('CONST', len(string)) self.write_call('String.new', 1) for char in string: self.write_push('CONST', ord(char)) self.write_call('String.appendChar', 2) def is_subroutine_call(self): token = self.get_token() subroutine_call = self.peek() in ['.', '('] self.unget_token(token) return subroutine_call def is_array(self): token = self.get_token() array = self.peek() == '[' self.unget_token(token) return array def is_class_var_dec(self): return self.peek() in ['static', 'field'] def is_subroutine_dec(self): return self.peek() in ['constructor', 'function', 'method'] def is_statement(self): return self.peek() in ['let', 'if', 'while', 'do', 'return'] def is_op(self): return self.peek() in ['+', '-', '*', '/', '&', '|', '<', '>', '='] def is_unary_op_term(self): return self.peek() in ['~', '-'] def peek(self): return self.peek_info()[0] def peek_type(self): return self.peek_info()[1] def peek_info(self): token_info = self.get_token_info() self.unget_token_info(token_info) return token_info def get_token(self): return self.get_token_info()[0] def get_token_info(self): if self.buffer: return self.buffer.pop(0) else: return self.get_next_token() def unget_token(self, token): self.unget_token_info((token, 'UNKNOWN')) def unget_token_info(self, token): self.buffer.insert(0, token) def get_next_token(self): if self.tokenizer.has_more_tokens(): self.tokenizer.advance() if self.tokenizer.token_type() is 'KEYWORD': return self.tokenizer.key_word().lower(), self.tokenizer.token_type() elif self.tokenizer.token_type() is 'SYMBOL': return self.tokenizer.symbol(), self.tokenizer.token_type() elif self.tokenizer.token_type() is 'IDENTIFIER': return self.tokenizer.identifier(), self.tokenizer.token_type() elif self.tokenizer.token_type() is 'INT_CONST': return self.tokenizer.int_val(), self.tokenizer.token_type() elif self.tokenizer.token_type() is 'STRING_CONST': return self.tokenizer.string_val(), self.tokenizer.token_type()
abarat256/JACK_Compiler
CodeWriter.py
CodeWriter.py
py
14,451
python
en
code
0
github-code
50