Dataset Viewer (First 5GB)
Auto-converted to Parquet
seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
37530746951
from django.core.management.base import BaseCommand from assessment.models.assessment_model import AssessmentType class Command(BaseCommand): help = 'Creates initial Assessment Types' def handle(self, *args, **options): # Creating 'Homework' AssessmentType homework, created = AssessmentType.objects.get_or_create( name='Homework' ) if created: self.stdout.write(self.style.SUCCESS('Successfully created Homework AssessmentType')) else: self.stdout.write(self.style.SUCCESS('Homework AssessmentType already exists')) # Creating 'Test' AssessmentType test, created = AssessmentType.objects.get_or_create( name='Test' ) if created: self.stdout.write(self.style.SUCCESS('Successfully created Test AssessmentType')) else: self.stdout.write(self.style.SUCCESS('Test AssessmentType already exists'))
markoco14/student-mgmt
assessment/management/commands/create_assessment_types.py
create_assessment_types.py
py
959
python
en
code
0
github-code
6
[ { "api_name": "django.core.management.base.BaseCommand", "line_number": 4, "usage_type": "name" }, { "api_name": "assessment.models.assessment_model.AssessmentType.objects.get_or_create", "line_number": 9, "usage_type": "call" }, { "api_name": "assessment.models.assessment_model.AssessmentType.objects", "line_number": 9, "usage_type": "attribute" }, { "api_name": "assessment.models.assessment_model.AssessmentType", "line_number": 9, "usage_type": "name" }, { "api_name": "assessment.models.assessment_model.AssessmentType.objects.get_or_create", "line_number": 19, "usage_type": "call" }, { "api_name": "assessment.models.assessment_model.AssessmentType.objects", "line_number": 19, "usage_type": "attribute" }, { "api_name": "assessment.models.assessment_model.AssessmentType", "line_number": 19, "usage_type": "name" } ]
17609833661
# encoding: utf-8 from django.urls import reverse from rest_framework import serializers from mainsite.serializers import StripTagsCharField from mainsite.utils import OriginSetting class ExternalToolSerializerV1(serializers.Serializer): name = StripTagsCharField(max_length=254) client_id = StripTagsCharField(max_length=254) slug = StripTagsCharField(max_length=255, source='entity_id', read_only=True) def to_representation(self, instance): representation = super(ExternalToolSerializerV1, self).to_representation(instance) representation['launchpoints'] = { lp.launchpoint: { "url": "{}{}".format(OriginSetting.HTTP, reverse("v1_api_externaltools_launch", kwargs=dict( launchpoint=lp.launchpoint, slug=lp.cached_externaltool.entity_id ))), "launch_url": lp.launch_url, "label": lp.label, "icon_url": lp.icon_url } for lp in instance.cached_launchpoints() } return representation class ExternalToolLaunchSerializerV1(serializers.Serializer): launch_url = serializers.URLField() def to_representation(self, instance): representation = super(ExternalToolLaunchSerializerV1, self).to_representation(instance) requesting_user = self.context['request'].user if 'request' in self.context else None context_id = self.context.get('tool_launch_context_id', None) representation['launch_data'] = instance.generate_launch_data(user=requesting_user, context_id=context_id) return representation
reedu-reengineering-education/badgr-server
apps/externaltools/serializers_v1.py
serializers_v1.py
py
1,636
python
en
code
2
github-code
6
[ { "api_name": "rest_framework.serializers.Serializer", "line_number": 11, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 11, "usage_type": "name" }, { "api_name": "mainsite.serializers.StripTagsCharField", "line_number": 12, "usage_type": "call" }, { "api_name": "mainsite.serializers.StripTagsCharField", "line_number": 13, "usage_type": "call" }, { "api_name": "mainsite.serializers.StripTagsCharField", "line_number": 14, "usage_type": "call" }, { "api_name": "mainsite.utils.OriginSetting.HTTP", "line_number": 20, "usage_type": "attribute" }, { "api_name": "mainsite.utils.OriginSetting", "line_number": 20, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 20, "usage_type": "call" }, { "api_name": "rest_framework.serializers.Serializer", "line_number": 32, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 32, "usage_type": "name" }, { "api_name": "rest_framework.serializers.URLField", "line_number": 33, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 33, "usage_type": "name" } ]
13131048154
import psycopg2 import datetime import time import sys import requests import scipy.io.wavfile import json import vokaturi.Vokaturi as Vokaturi Vokaturi.load("./vokaturi/OpenVokaturi-3-3-linux64.so") from ms_text_analysis import * from cassandra_test import * MSSp = MSSpeechToText() MST = MSTextAnalysis() MSAD = MSAnomalyDetector() CApi = CassandraAPI() def get_emotions(filename): (sample_rate, samples) = scipy.io.wavfile.read(filename) buffer_length = len(samples) c_buffer = Vokaturi.SampleArrayC(buffer_length) if samples.ndim == 1: c_buffer[:] = samples[:] / 32768.0 else: c_buffer[:] = 0.5 * (samples[:, 0] + samples[:, 1]) / 32768.0 voice = Vokaturi.Voice(sample_rate, buffer_length) voice.fill(buffer_length, c_buffer) quality = Vokaturi.Quality() emotionProbabilities = Vokaturi.EmotionProbabilities() voice.extract(quality, emotionProbabilities) voice.destroy() if quality.valid: return ("%.3f" % emotionProbabilities.neutrality, "%.3f" % emotionProbabilities.happiness, "%.3f" % emotionProbabilities.sadness, "%.3f" % emotionProbabilities.anger, "%.3f" % emotionProbabilities.fear) else: raise RuntimeError('bad quality') DB_NAME = "defaultdb" USER = "avnadmin" PASSWORD = "hq3fi662tthholn2" HOST = "pg-2e774192-dimak24-5fb9.aivencloud.com" PORT = "21756" INFLUXDB_HOST = "influx-1ab60b47-dimak24-5fb9.aivencloud.com" INFLUXDB_PORT = "21756" INFLUXDB_DB_NAME = "defaultdb" INFLUXDB_USER = "avnadmin" INFLUXDB_PASSWORD = "e6gkm3n9bmvcbpfb" def _execute_op(operation): conn = psycopg2.connect( database=DB_NAME, user=USER, password=PASSWORD, host=HOST, port=PORT) cur = conn.cursor() try: res = operation(cur) conn.commit() return res except psycopg2.Error as e: print(e) # raise finally: cur.close() conn.close() def _execute(*args): _execute_op(lambda cur: cur.execute(*args)) def _execute_fetch(*args): def _op(cur): cur.execute(*args) return cur.fetchall() return _execute_op(_op) def _influxdb_query(query): return json.loads(requests.post(f'https://{INFLUXDB_USER}:{INFLUXDB_PASSWORD}@{INFLUXDB_HOST}:{INFLUXDB_PORT}/query?db={INFLUXDB_DB_NAME}', data='q=' + query, headers={'content-type': 'application/x-www-form-urlencoded'}).text) def _influxdb_write(measurement, args): query = ', '.join([','.join([f'{tag["name"]}={tag["value"]}' for tag in arg['tags']]) + f' value={arg["value"]}' for arg in args]) return requests.post(f'https://{INFLUXDB_USER}:{INFLUXDB_PASSWORD}@{INFLUXDB_HOST}:{INFLUXDB_PORT}/write?db={INFLUXDB_DB_NAME}', data=f'{measurement},{query} {int(time.time() * 1e9)}', headers={'content-type': 'application/x-www-form-urlencoded'}).text def cassandra_insert(u_id, timestamp, filename, comment='comment'): with open(filename, 'rb') as file: print(CApi.db_execute("""INSERT INTO cycling.records (u_d,r_time,audio,comment) VALUES(%s,%s,%s,%s)""", (str(u_id), timestamp, file.read(), comment))) def load_record(u_id, timestamp): result_set = CApi.db_query("SELECT * FROM cycling.records where u_d=%s and r_time=%s ALLOW FILTERING;", (u_id, int(timestamp))) for res in result_set: return res.audio def create_tables(): _execute('''CREATE TABLE diary (u_id INT NOT NULL, r_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, script TEXT NOT NULL, score REAL NOT NULL, is_anomaly INT NOT NULL, neutrality REAL NOT NULL, happiness REAL NOT NULL, sadness REAL NOT NULL, anger REAL NOT NULL, fear REAL NOT NULL);''') _execute('''CREATE TABLE users (u_id SERIAL, name CHAR(30) NOT NULL, age INT);''') _execute('''CREATE TABLE avatars (u_id INT NOT NULL, name CHAR(50) NOT NULL, level INT NOT NULL DEFAULT 0);''') CApi.db_execute("""CREATE KEYSPACE cycling WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };""") CApi.db_execute("""CREATE TABLE records ( u_d text PRIMARY KEY, r_time int, audio blob, comment text );""") # debug def drop_tables(): return CApi.db_execute('DROP TABLE records;') _execute('DROP TABLE diary, users, avatars;') _influxdb_query('DROP MEASUREMENT mental_metrics') def create_user(name, age=None, avatar_name=None): if avatar_name is None: avatar_name = f'{name}\'s avatar' assert len(name) <= 30 assert len(avatar_name) <= 50 if age is not None: res = _execute_fetch('''INSERT INTO users (name, age) VALUES (%s, %s) RETURNING u_id;''', (name, age)) else: res = _execute_fetch('''INSERT INTO users (name) VALUES (%s) RETURNING u_id;''', (name,)) u_id = res[0][0] _execute('''INSERT INTO avatars (u_id, name) VALUES (%s, %s);''', (u_id, avatar_name)) return u_id def to_timestamp(influxdb_date): d, t = influxdb_date[:-1].split('T') h, m, s = t.split(':') s = int(s.split('.')[0]) h = int(h) + 3 return int(datetime.datetime(*list(map(int, d.split('-'))), h, int(m), s).strftime("%s")) def to_azure(timestamp): _date = datetime.date.fromtimestamp(timestamp) return f'{_date.year}-{_date.month}-{_date.day}T12:00:00Z' def make_daily_series(series): s, n, last = 0, 0, None res = [] for record in sorted(series, key=lambda _record: to_timestamp(_record[0])) + [(-1, -1)]: timestamp, metric = record if timestamp != -1: date = int(datetime.date.fromtimestamp(to_timestamp(timestamp)).strftime("%s")) else: date = -2 if date != last: if last is not None: s /= n if len(res) > 0: mean = (s + res[-1][1]) / 2 while len(res) > 0 and date - res[-1][0] > 86400 * 2: res.append([res[-1][0] + 86400, mean]) res.append([last, s]) last = date n, s = 0, 0 s += metric n += 1 for i in range(len(res)): res[i][0] = to_azure(res[i][0]) return res def insert_record(u_id, data_file, date=int(time.time())): if date is None: date=int(time.time()) text = MSSp.process(data_file) score = MST.process(text) metrics = get_emotions(data_file) for type, value in zip(['neutrality', 'happiness', 'sadness', 'anger', 'fear', 'score'], metrics + (score,)): _influxdb_write('mental_metrics', [{'tags': [ {'name': 'u_id', 'value': u_id}, {'name': 'type', 'value': type}], 'value': value}]) res = _influxdb_query('SELECT "time","value" FROM "mental_metrics" WHERE u_id=\'%s\' AND type=\'score\''%u_id) try: series = res['results'][0]['series'][0]['values'] series = make_daily_series(series) if len(series) < 12: is_anomaly = 0 else: is_anomaly = MSAD.process(series) except: print(res) raise new_level = _execute_fetch('''UPDATE avatars SET level = level + 1 WHERE u_id = %s RETURNING level;''', (u_id,))[0][0] print(u_id, date) cassandra_insert(u_id, date, data_file) return _execute_fetch('''INSERT INTO diary (u_id, r_time, script, score, is_anomaly, neutrality, happiness, sadness, anger, fear) VALUES (%s, to_timestamp(%s), %s, %s, %s, %s, %s, %s, %s, %s) RETURNING score, is_anomaly, neutrality, happiness, sadness, anger, fear;''', (u_id, date, text, score, is_anomaly, *metrics))[0] + (int(new_level), text) def get_records(u_id, date_from=None, date_to=None, phrase=None): date_range = '' if date_from is not None: date_range += f" AND r_time >= to_timestamp('{date_from}', 'yyyy-mm-dd')" if date_to is not None: date_range += f" AND r_time < to_timestamp('{date_to}', 'yyyy-mm-dd')" if phrase is not None: return _execute_fetch(f"""SELECT r_time, script FROM diary WHERE u_id = {u_id} {date_range} AND data LIKE '%{phrase}%'""") return _execute_fetch(f"""SELECT r_time, script FROM diary WHERE u_id = {u_id} {date_range}""") def get_audio(u_id, timestamp): return load_record(u_id, timestamp)
raid-7/SmartDiary
backend/main.py
main.py
py
9,127
python
en
code
1
github-code
6
[ { "api_name": "vokaturi.Vokaturi.load", "line_number": 10, "usage_type": "call" }, { "api_name": "vokaturi.Vokaturi", "line_number": 10, "usage_type": "name" }, { "api_name": "scipy.io.wavfile.io.wavfile.read", "line_number": 24, "usage_type": "call" }, { "api_name": "scipy.io.wavfile.io", "line_number": 24, "usage_type": "attribute" }, { "api_name": "scipy.io.wavfile", "line_number": 24, "usage_type": "name" }, { "api_name": "vokaturi.Vokaturi.SampleArrayC", "line_number": 27, "usage_type": "call" }, { "api_name": "vokaturi.Vokaturi", "line_number": 27, "usage_type": "name" }, { "api_name": "vokaturi.Vokaturi.Voice", "line_number": 33, "usage_type": "call" }, { "api_name": "vokaturi.Vokaturi", "line_number": 33, "usage_type": "name" }, { "api_name": "vokaturi.Vokaturi.Quality", "line_number": 35, "usage_type": "call" }, { "api_name": "vokaturi.Vokaturi", "line_number": 35, "usage_type": "name" }, { "api_name": "vokaturi.Vokaturi.EmotionProbabilities", "line_number": 36, "usage_type": "call" }, { "api_name": "vokaturi.Vokaturi", "line_number": 36, "usage_type": "name" }, { "api_name": "psycopg2.connect", "line_number": 64, "usage_type": "call" }, { "api_name": "psycopg2.Error", "line_number": 77, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 97, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 97, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 103, "usage_type": "call" }, { "api_name": "time.time", "line_number": 104, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 196, "usage_type": "call" }, { "api_name": "datetime.date.fromtimestamp", "line_number": 199, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 199, "usage_type": "attribute" }, { "api_name": "datetime.date.fromtimestamp", "line_number": 209, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 209, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 226, "usage_type": "call" }, { "api_name": "time.time", "line_number": 227, "usage_type": "call" } ]
42896231712
import math from functools import partial from typing import Any, Callable import jax import jax.numpy as jnp from chex import ArrayTree from jax import tree_map, vmap from jax.scipy.special import logsumexp from ..resamplings import multinomial STATE = Any @partial(jax.jit, static_argnums=(2, 3, 4), donate_argnums=(0, 1)) def operator(inputs_a: STATE, inputs_b: STATE, log_weight_fn: Callable[[ArrayTree, ArrayTree, Any], float], n_samples: int, last_step: bool): """ Operator corresponding to the stitching operation of the conditional dSMC algorithm. Parameters ---------- inputs_a: STATE A tuple of three arguments. First one is the state of the partial dSMC smoother to the left of the current time step. Second are the jax random keys used for resampling at the time steps to the left of the current time step. Third are the parameters used to compute the mixing weights to the left of the current time step. inputs_b: STATE Same as `inputs_a` but to the right of the current time step log_weight_fn: callable Function that computes the un-normalised stitching N^2 weights, first argument is x_{t-1}, second is x_t, and third is the parameters. It will be automatically batched so only needs to be expressed elementwise n_samples: int Number of samples in the resampling last_step: bool Whether we are at the last time step or not. If so, we only need one trajectory. Returns ------- """ # Unpack the states state_a, keys_a, params_a = inputs_a state_b, keys_b, params_b = inputs_b trajectories_a, log_weights_a, origins_a = state_a trajectories_b, log_weights_b, origins_b = state_b weights = get_weights_batch(trajectories_a, log_weights_a, trajectories_b, log_weights_b, params_b, log_weight_fn) if last_step: # If last step idx = jax.random.choice(keys_b[0], n_samples ** 2, p=jnp.ravel(weights)) l_idx, r_idx = jnp.unravel_index(idx, (n_samples, n_samples)) else: idx = multinomial(keys_b[0], jnp.ravel(weights), n_samples) l_idx, r_idx = jax.vmap(jnp.unravel_index, in_axes=[0, None])(idx, (n_samples, n_samples)) return _gather_results(l_idx, r_idx, n_samples, trajectories_a, origins_a, log_weights_a, keys_a, params_a, trajectories_b, origins_b, log_weights_b, keys_b, params_b) def _gather_results(left_idx, right_idx, n_samples, trajectories_a, origins_a, log_weights_a, keys_a, params_a, trajectories_b, origins_b, log_weights_b, keys_b, params_b): # If we are using conditional dSMC, we need to make sure to preserve the first trajectory. # Resample the trajectories trajectories_a = tree_map(lambda z: jnp.take(z, left_idx, 1), trajectories_a) trajectories_b = tree_map(lambda z: jnp.take(z, right_idx, 1), trajectories_b) # Keep track of the trajectories origins for analysis down the line (not used in the algo) origins_a = jnp.take(origins_a, left_idx, 1) origins_b = jnp.take(origins_b, right_idx, 1) # Gather the results keys = jnp.concatenate([keys_a, keys_b]) params = tree_map(lambda a, b: jnp.concatenate([a, b]), params_a, params_b) origins = jnp.concatenate([origins_a, origins_b]) trajectories = tree_map(lambda a, b: jnp.concatenate([a, b]), trajectories_a, trajectories_b) log_weights = jnp.concatenate([jnp.full_like(log_weights_a, -math.log(n_samples)), jnp.full_like(log_weights_b, -math.log(n_samples))]) return (trajectories, log_weights, origins), keys, params def get_weights_batch(trajectories_a, log_weights_a, trajectories_b, log_weights_b, params_b, log_weight_fn: Callable[[ArrayTree, ArrayTree, Any], float]): # House keeping to get the required inputs. params_t = tree_map(lambda z: z[0], params_b) x_t_1 = tree_map(lambda z: z[-1], trajectories_a) x_t = tree_map(lambda z: z[0], trajectories_b) log_w_t_1 = log_weights_a[-1] log_w_t = log_weights_b[0] log_weights = get_log_weights(x_t_1, log_w_t_1, x_t, log_w_t, params_t, log_weight_fn) ell_inc = logsumexp(log_weights) weights = jnp.exp(log_weights - ell_inc) return weights def get_log_weights(x_t_1, log_w_t_1, x_t, log_w_t, params_t, log_weight_fn): # House keeping to get the required inputs. # This nested vmap allows to define log_weight_fn more easily at the API level. This is to create a # (N,N) -> N^2 function while only having to care about elementwise formulas. # if log_weight_fn = lambda a, b: u * v, then this corresponds to np.outer. vmapped_log_weight_fn = vmap(vmap(log_weight_fn, in_axes=[None, 0, None], out_axes=0), in_axes=[0, None, None], out_axes=0) log_weight_increment = vmapped_log_weight_fn(x_t_1, x_t, params_t) # shape = M, N # Take the corresponding time step and reshape to allow for adding residual weights in parallel log_weights = log_weight_increment + log_w_t_1[:, None] + log_w_t[None, :] return log_weights
AdrienCorenflos/aux-ssm-samplers
aux_samplers/_primitives/csmc/pit/operator.py
operator.py
py
5,444
python
en
code
7
github-code
6
[ { "api_name": "typing.Any", "line_number": 13, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 17, "usage_type": "name" }, { "api_name": "chex.ArrayTree", "line_number": 17, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 17, "usage_type": "name" }, { "api_name": "jax.random.choice", "line_number": 55, "usage_type": "call" }, { "api_name": "jax.random", "line_number": 55, "usage_type": "attribute" }, { "api_name": "jax.numpy.ravel", "line_number": 55, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 55, "usage_type": "name" }, { "api_name": "jax.numpy.unravel_index", "line_number": 56, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 56, "usage_type": "name" }, { "api_name": "resamplings.multinomial", "line_number": 58, "usage_type": "call" }, { "api_name": "jax.numpy.ravel", "line_number": 58, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 58, "usage_type": "name" }, { "api_name": "jax.vmap", "line_number": 59, "usage_type": "call" }, { "api_name": "jax.numpy.unravel_index", "line_number": 59, "usage_type": "attribute" }, { "api_name": "jax.numpy", "line_number": 59, "usage_type": "name" }, { "api_name": "functools.partial", "line_number": 16, "usage_type": "call" }, { "api_name": "jax.jit", "line_number": 16, "usage_type": "attribute" }, { "api_name": "jax.tree_map", "line_number": 73, "usage_type": "call" }, { "api_name": "jax.numpy.take", "line_number": 73, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 73, "usage_type": "name" }, { "api_name": "jax.tree_map", "line_number": 74, "usage_type": "call" }, { "api_name": "jax.numpy.take", "line_number": 74, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 74, "usage_type": "name" }, { "api_name": "jax.numpy.take", "line_number": 77, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 77, "usage_type": "name" }, { "api_name": "jax.numpy.take", "line_number": 78, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 78, "usage_type": "name" }, { "api_name": "jax.numpy.concatenate", "line_number": 81, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 81, "usage_type": "name" }, { "api_name": "jax.tree_map", "line_number": 82, "usage_type": "call" }, { "api_name": "jax.numpy.concatenate", "line_number": 82, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 82, "usage_type": "name" }, { "api_name": "jax.numpy.concatenate", "line_number": 83, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 83, "usage_type": "name" }, { "api_name": "jax.tree_map", "line_number": 84, "usage_type": "call" }, { "api_name": "jax.numpy.concatenate", "line_number": 84, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 84, "usage_type": "name" }, { "api_name": "jax.numpy.concatenate", "line_number": 86, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 86, "usage_type": "name" }, { "api_name": "jax.numpy.full_like", "line_number": 86, "usage_type": "call" }, { "api_name": "math.log", "line_number": 86, "usage_type": "call" }, { "api_name": "jax.numpy.full_like", "line_number": 87, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 87, "usage_type": "name" }, { "api_name": "math.log", "line_number": 87, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 94, "usage_type": "name" }, { "api_name": "chex.ArrayTree", "line_number": 94, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 94, "usage_type": "name" }, { "api_name": "jax.tree_map", "line_number": 96, "usage_type": "call" }, { "api_name": "jax.tree_map", "line_number": 97, "usage_type": "call" }, { "api_name": "jax.tree_map", "line_number": 98, "usage_type": "call" }, { "api_name": "jax.scipy.special.logsumexp", "line_number": 106, "usage_type": "call" }, { "api_name": "jax.numpy.exp", "line_number": 107, "usage_type": "call" }, { "api_name": "jax.numpy", "line_number": 107, "usage_type": "name" }, { "api_name": "jax.vmap", "line_number": 119, "usage_type": "call" } ]
21247144104
from datetime import timedelta from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.providers.docker.operators.docker import DockerOperator from airflow.sensors.filesystem import FileSensor from directories import ( VOLUME_PATH, LAST_MODEL_DIR, PREDICTIONS_DIR, RAW_DATA_DIR, PROCESSED_DATA_DIR, START_DATE, PROD_DATE, ) default_args = { "owner": "airflow", "email": ["[email protected]"], "email_on_failure": True, "retries": 1, "retry_delay": timedelta(minutes=5), } with DAG( "predict_daily", default_args=default_args, schedule_interval="@daily", start_date=START_DATE, ) as dag: start_task = DummyOperator(task_id="start-predict") wait_data = FileSensor( task_id="wait-data", filepath="./data/raw/{{ ds }}/data.csv", poke_interval=10, retries=100, ) wait_model = FileSensor( task_id="wait-model", filepath=f"./data/models/{PROD_DATE}/model.pkl", poke_interval=10, retries=100, ) preprocess_cmd = ( f" --input-dir {RAW_DATA_DIR}" f" --output-dir {PROCESSED_DATA_DIR}" f" --mode eval" ) preprocess = DockerOperator( image="airflow-preprocess", task_id="docker-preprocess", command=preprocess_cmd, network_mode="bridge", do_xcom_push=False, volumes=[f"{VOLUME_PATH}:/data"], ) predict_cmd = ( f" --input-dir {PROCESSED_DATA_DIR}" f" --model-dir {LAST_MODEL_DIR}" f" --output-dir {PREDICTIONS_DIR}" ) predict = DockerOperator( image="airflow-predict", task_id="docker-predict", command=predict_cmd, network_mode="bridge", do_xcom_push=False, volumes=[f"{VOLUME_PATH}:/data"], ) end_task = DummyOperator(task_id="end-predict") start_task >> [wait_data, wait_model] >> preprocess >> predict >> end_task
made-ml-in-prod-2021/truengineer
airflow_ml_dags/dags/predict_daily.py
predict_daily.py
py
1,982
python
en
code
0
github-code
6
[ { "api_name": "datetime.timedelta", "line_number": 20, "usage_type": "call" }, { "api_name": "airflow.DAG", "line_number": 24, "usage_type": "call" }, { "api_name": "directories.START_DATE", "line_number": 28, "usage_type": "name" }, { "api_name": "airflow.operators.dummy.DummyOperator", "line_number": 30, "usage_type": "call" }, { "api_name": "airflow.sensors.filesystem.FileSensor", "line_number": 32, "usage_type": "call" }, { "api_name": "airflow.sensors.filesystem.FileSensor", "line_number": 39, "usage_type": "call" }, { "api_name": "directories.PROD_DATE", "line_number": 41, "usage_type": "name" }, { "api_name": "directories.RAW_DATA_DIR", "line_number": 47, "usage_type": "name" }, { "api_name": "directories.PROCESSED_DATA_DIR", "line_number": 48, "usage_type": "name" }, { "api_name": "airflow.providers.docker.operators.docker.DockerOperator", "line_number": 52, "usage_type": "call" }, { "api_name": "directories.VOLUME_PATH", "line_number": 58, "usage_type": "name" }, { "api_name": "directories.PROCESSED_DATA_DIR", "line_number": 62, "usage_type": "name" }, { "api_name": "directories.LAST_MODEL_DIR", "line_number": 63, "usage_type": "name" }, { "api_name": "directories.PREDICTIONS_DIR", "line_number": 64, "usage_type": "name" }, { "api_name": "airflow.providers.docker.operators.docker.DockerOperator", "line_number": 67, "usage_type": "call" }, { "api_name": "directories.VOLUME_PATH", "line_number": 73, "usage_type": "name" }, { "api_name": "airflow.operators.dummy.DummyOperator", "line_number": 76, "usage_type": "call" } ]
37598101859
import pytz from sqlalchemy.orm import Session import models import schemas def create_module_build(db: Session, build: schemas.ModuleBuild): print(build) db_build = models.ModuleBuild( module=build.module, build_time=build.build_time, result=build.result, finished_at=build.finished_at.astimezone(pytz.utc), maven_opts=build.maven_opts, uname=build.uname, uuid=str(build.uuid), cpu=build.cpu, mem=build.mem, ) db.add(db_build) db.flush() return db_build
fresch/maven-build-tracker
crud/CreateBuild.py
CreateBuild.py
py
555
python
en
code
0
github-code
6
[ { "api_name": "sqlalchemy.orm.Session", "line_number": 9, "usage_type": "name" }, { "api_name": "schemas.ModuleBuild", "line_number": 9, "usage_type": "attribute" }, { "api_name": "models.ModuleBuild", "line_number": 11, "usage_type": "call" }, { "api_name": "pytz.utc", "line_number": 15, "usage_type": "attribute" } ]
17609874011
# encoding: utf-8 from django.core.management import BaseCommand from issuer.models import BadgeClass class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument( '--limit', type=int, help='Number of model instances to process in a batch', default=1000 ) def handle(self, *args, **options): model = BadgeClass processed_count = 0 limit = options['limit'] queryset = model.objects.filter(image_hash='').exclude(image='') processing = True while processing: active_set = queryset[0:limit] self.stdout.write(str(active_set.query)) if active_set.exists(): for instance in active_set: instance.save() self.stdout.write("Calculated initial image_hash for {} #{}: {}".format( instance.__class__.__name__, instance.pk, instance.image_hash) ) processed_count += 1 else: processing = False self.stdout.write("Finished processing populate_image_hashes for model {}. {} records updated.".format( model.__name__, processed_count) )
reedu-reengineering-education/badgr-server
apps/issuer/management/commands/populate_image_hashes.py
populate_image_hashes.py
py
1,279
python
en
code
2
github-code
6
[ { "api_name": "django.core.management.BaseCommand", "line_number": 7, "usage_type": "name" }, { "api_name": "issuer.models.BadgeClass", "line_number": 17, "usage_type": "name" } ]
70818525948
import speech_recognition as sr import multiprocessing as mp import os import time def func(n): print("Task {} convert successfully".format(n)) speechToText() time.sleep(2) #simulate processing or server return time print("Task {} has been done now.".format(n)) def speechToText(): r = sr.Recognizer() # Reading Audio file as source # listening the audio file and store in audio_text variable # The path should be correct with sr.AudioFile('Sample.wav') as source: audio = r.listen(source) # Using exception handling in case the api could not be acceessed successfully. try: # using google speech recognition text = r.recognize_google(audio) print(text) except: print('Could not access API, please run it again.') if __name__ == '__main__': nums_core = mp.cpu_count() print("There are {} cores being used now.".format(nums_core)) pool = mp.Pool(nums_core) #use all available cores for i in range(0, 16): pool.apply_async(func, args=(i,)) pool.close() pool.join()
CHAODENG/Project4
project4.py
project4.py
py
1,144
python
en
code
0
github-code
6
[ { "api_name": "time.sleep", "line_number": 11, "usage_type": "call" }, { "api_name": "speech_recognition.Recognizer", "line_number": 16, "usage_type": "call" }, { "api_name": "speech_recognition.AudioFile", "line_number": 22, "usage_type": "call" }, { "api_name": "multiprocessing.cpu_count", "line_number": 37, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 39, "usage_type": "call" } ]
40087266458
import os from meteo_ist.models import meteo_data, range_data from django.utils.dateparse import parse_date def upload_db(data): for i in range(0, len(data['datetime'])): date = parse_date(data['datetime'][i]) # parse string do date format pp = data['data']['pp'][i] pres = data['data']['pres'][i] rad = data['data']['rad'][i] rh = data['data']['rh'][i] temp = data['data']['temp'][i] wd = data['data']['wd'][i] wg = data['data']['wg'][i] ws = data['data']['ws'][i] b = meteo_data(date, pp, pres, rad, rh, temp, wd, wg, ws) b.save()
sandroferreira97/meteo_ist
meteo_ist/services.py
services.py
py
632
python
tr
code
0
github-code
6
[ { "api_name": "django.utils.dateparse.parse_date", "line_number": 7, "usage_type": "call" }, { "api_name": "meteo_ist.models.meteo_data", "line_number": 18, "usage_type": "call" } ]
74341979708
from collections import deque count = int(input()) dataDeque = deque(list(range(1, count+1))) while True: if len(dataDeque) == 1: print(dataDeque[0]) break dataDeque.popleft() dataDeque.append(dataDeque.popleft())
KingPiggy/PS
Baekjoon/큐, 덱/2164번 카드2.py
2164번 카드2.py
py
255
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 4, "usage_type": "call" } ]
197603537
from time import sleep import pygame from bullet import Bullet from alien import Alien import aliens_functions as af # 检测精灵碰撞 def check_bullet_alien_collisions(ai_settings, screen, stats, sb, ship, aliens, bullets): """响应子弹和外星人的碰撞""" # 检查是否有子弹击中了外星人 # 如果是这样,就删除相应的子弹和外星人 collisions = pygame.sprite.groupcollide(bullets, aliens, True, True) if collisions: for aliens in collisions.values(): stats.score += ai_settings.alien_points * len(aliens) sb.prep_score() check_high_score(stats, sb) # 如果外星人全部被消灭,难度提升一个等级 start_new_level(ai_settings, screen, stats, sb, ship, aliens, bullets) def ship_hit(ai_settings, stats, sb, screen, ship, aliens, bullets): """响应被外星人撞到飞船""" if stats.ships_left > 0: # 将ships_left减1 stats.ships_left -= 1 # 更新记分牌 sb.prep_ships() # 清空外星人列表和子弹列表 aliens.empty() bullets.empty() # 创建一群新的外星人,并将飞船放到屏幕底端中央 af.create_fleet(ai_settings, screen, ship, aliens) ship.center_ship() # 暂停 sleep(0.5) else: stats.game_active = False pygame.mouse.set_visible(True) # 其他检查 def check_high_score(stats, sb): """检查是否诞生了新的最高分""" if stats.score > stats.high_score: stats.high_score = stats.score sb.prep_high_score() def start_new_level(ai_settings, screen, stats, sb, ship, aliens, bullets): """提升游戏难度等级""" if len(aliens) == 0: # 如果整群外星人都被消灭,提高一个等级 bullets.empty() ai_settings.increase_speed() # 提高等级 stats.level += 1 sb.prep_level() af.create_fleet(ai_settings, screen, ship, aliens)
wanwan2qq/alien_invasion
collisions_functions.py
collisions_functions.py
py
2,042
python
en
code
0
github-code
6
[ { "api_name": "pygame.sprite.groupcollide", "line_number": 15, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 15, "usage_type": "attribute" }, { "api_name": "aliens_functions.create_fleet", "line_number": 42, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 46, "usage_type": "call" }, { "api_name": "pygame.mouse.set_visible", "line_number": 49, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 49, "usage_type": "attribute" }, { "api_name": "aliens_functions.create_fleet", "line_number": 70, "usage_type": "call" } ]
16312390211
from typing import NamedTuple import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds class LanguageDataset(NamedTuple): records: tf.data.Dataset vocab_size: int def load(batch_size: int, sequence_length: int) -> LanguageDataset: """Load LM1B dataset, returning it and vocab_size.""" ds, ds_info = tfds.load( 'lm1b/subwords32k', split=tfds.Split.TRAIN, shuffle_files=True, with_info=True) crop_size = sequence_length + 1 ds = ds.repeat() # Convert the dataset to constant-size int32 tensors. ds = ds.map(lambda d: tf.cast(d['text'], tf.int32)) ds = ds.map(lambda t: _crop_or_pad(t, crop_size, pad_token=0)) ds = ds.shuffle(batch_size * 10) # Create the language modeling observation/target pairs and batch them up. ds = ds.map(lambda t: dict(obs=t[:-1], target=t[1:])) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.prefetch(tf.data.experimental.AUTOTUNE) ds = tfds.as_numpy(ds) return LanguageDataset(ds, ds_info.features['text'].encoder.vocab_size) def _crop_or_pad(value, size, pad_token): """Either crop or pad value to be of size size.""" val_size = tf.size(value) pad = lambda: tf.pad(value, [[0, size - val_size]], 'CONSTANT', constant_values=pad_token) return tf.cond(val_size < size, pad, lambda: value[:size])
ChrisWaites/data-deletion
src/adaptive_deletion/nlp/transformer/dataset.py
dataset.py
py
1,313
python
en
code
5
github-code
6
[ { "api_name": "typing.NamedTuple", "line_number": 7, "usage_type": "name" }, { "api_name": "tensorflow.compat.v2.data", "line_number": 8, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v2", "line_number": 8, "usage_type": "name" }, { "api_name": "tensorflow_datasets.load", "line_number": 14, "usage_type": "call" }, { "api_name": "tensorflow_datasets.Split", "line_number": 16, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v2.cast", "line_number": 23, "usage_type": "call" }, { "api_name": "tensorflow.compat.v2", "line_number": 23, "usage_type": "name" }, { "api_name": "tensorflow.compat.v2.int32", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v2.data", "line_number": 29, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v2", "line_number": 29, "usage_type": "name" }, { "api_name": "tensorflow_datasets.as_numpy", "line_number": 30, "usage_type": "call" }, { "api_name": "tensorflow.compat.v2.size", "line_number": 36, "usage_type": "call" }, { "api_name": "tensorflow.compat.v2", "line_number": 36, "usage_type": "name" }, { "api_name": "tensorflow.compat.v2.pad", "line_number": 37, "usage_type": "call" }, { "api_name": "tensorflow.compat.v2", "line_number": 37, "usage_type": "name" }, { "api_name": "tensorflow.compat.v2.cond", "line_number": 38, "usage_type": "call" }, { "api_name": "tensorflow.compat.v2", "line_number": 38, "usage_type": "name" } ]
43566450593
import requests from pprint import pprint import os SHEET_ENDPOINT = "https://api.sheety.co/a65d37e4e4c4751b050905bbc69d2c13/myFlightDeals/prices" HEADERS = { "Authorization":os.environ.get("AUTH"), "Content-Type":"application/json", } USR_ENDPOINT = os.environ.get("SHEET_ENd") class DataManager: #This class is responsible for talking to the Google Sheet. def __init__(self): self.response = requests.get(url=SHEET_ENDPOINT, headers=HEADERS) self.response.raise_for_status() def get_info(self): data = self.response.json()["prices"] return data def update(self,row_id,iata): changes = { "price": { "iataCode":iata, } } edit = requests.put(url=f"{SHEET_ENDPOINT}/{row_id}",json=changes,headers=HEADERS) edit.raise_for_status() def get_emails(self): mail_response = requests.get(url=USR_ENDPOINT,headers=HEADERS) mail_response.raise_for_status() mail_data = mail_response.json()["users"] return mail_data
HazorTremz/FlightDealFinder
data_manager.py
data_manager.py
py
1,077
python
en
code
0
github-code
6
[ { "api_name": "os.environ.get", "line_number": 7, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 7, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 10, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 10, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 15, "usage_type": "call" }, { "api_name": "requests.put", "line_number": 29, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 33, "usage_type": "call" } ]
44018209186
import numpy as np from modAL.models import ActiveLearner from modAL.multilabel import SVM_binary_minimum from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC n_samples = 500 X = np.random.normal(size=(n_samples, 2)) y = np.array([[int(x1 > 0), int(x2 > 0)] for x1, x2 in X]) n_initial = 10 initial_idx = np.random.choice(range(len(X)), size=n_initial, replace=False) X_initial, y_initial = X[initial_idx], y[initial_idx] X_pool, y_pool = np.delete(X, initial_idx, axis=0), np.delete(y, initial_idx, axis=0) learner = ActiveLearner( estimator=OneVsRestClassifier(LinearSVC()), query_strategy=SVM_binary_minimum, X_training=X_initial, y_training=y_initial ) n_queries = 10 for idx in range(n_queries): query_idx, query_inst = learner.query(X_pool) learner.teach(X_pool[query_idx].reshape(1, -1), y_pool[query_idx].reshape(1, -1)) X_pool, y_pool = np.delete(X_pool, query_idx, axis=0), np.delete(y_pool, query_idx, axis=0)
modAL-python/modAL
tests/example_tests/multilabel_svm.py
multilabel_svm.py
py
981
python
en
code
2,058
github-code
6
[ { "api_name": "numpy.random.normal", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 12, "usage_type": "attribute" }, { "api_name": "numpy.delete", "line_number": 14, "usage_type": "call" }, { "api_name": "modAL.models.ActiveLearner", "line_number": 16, "usage_type": "call" }, { "api_name": "sklearn.multiclass.OneVsRestClassifier", "line_number": 17, "usage_type": "call" }, { "api_name": "sklearn.svm.LinearSVC", "line_number": 17, "usage_type": "call" }, { "api_name": "modAL.multilabel.SVM_binary_minimum", "line_number": 18, "usage_type": "name" }, { "api_name": "numpy.delete", "line_number": 26, "usage_type": "call" } ]
20615061350
'''test conf''' import os import datetime from tokenleaderclient.rbac import wfc from flexflow.configs.config_handler import Configs from flexflow.dbengines.sqlchemy.models import dbdriver test_data_path = os.path.join(os.path.dirname(__file__), os.pardir, 'tests', 'testdata') test_client_conf_file = os.path.join(test_data_path, 'test_client_configs.yml') conf_file= os.path.join(test_data_path,'test_flexflow_configs.yml') print(test_client_conf_file, conf_file) # must_have_keys_in_yml = {'host_name', # 'host_port', # 'ssl', # 'ssl_settings', # 'database', # 'secrets' # 'celery' # } must_have_keys_in_yml = {} testconf = Configs('flexflow', conf_file=conf_file, must_have_keys_in_yml=must_have_keys_in_yml) yml = testconf.yml con_string = dbdriver.get_connection_settings(testconf) print('con_string', con_string) test_db_conf = { 'SQLALCHEMY_DATABASE_URI': con_string, 'SQLALCHEMY_TRACK_MODIFICATIONS': False } testwfc= wfc.WorkFuncContext() testwfc.username = 'user1' testwfc.org = 'ITC' testwfc.orgunit = 'ou1' testwfc.department = 'dept1' testwfc.roles = ['role1', ] testwfc.name = 'wfc1' testwfc.email = '[email protected]' testwfc.request_id = 'hhihihhh-890809-jklkk;k-ytfty' testwfc.time_stamp = datetime.datetime.utcnow() testwfc.client_address = '10.10.10.10' tspwfc= wfc.WorkFuncContext() tspwfc.username = 'TSP1user1' tspwfc.org = 'TSP1' tspwfc.orgunit = 'TSP1ou1' tspwfc.department = 'TSP1dept1' tspwfc.roles = ['role1', ] tspwfc.name = 'TSP1wfc1' tspwfc.email = '[email protected]' tspwfc.request_id = 'TSP1ihhh-890809-jklkk;k-ytfty' tspwfc.time_stamp = datetime.datetime.utcnow() tspwfc.client_address = '10.10.10.10' ITSSwfc= wfc.WorkFuncContext() ITSSwfc.username = 'ITSSuser1' ITSSwfc.org = 'ITC' ITSSwfc.orgunit = 'ITSS' ITSSwfc.department = 'ITSSept1' ITSSwfc.roles = ['role1', ] ITSSwfc.name = 'ITSSSwfc1' ITSSwfc.email = '[email protected]' ITSSwfc.request_id = 'ITSSihhh-890809-jklkk;k-ytfty' ITSSwfc.time_stamp = datetime.datetime.utcnow() ITSSwfc.client_address = '10.10.10.10' MISwfc= wfc.WorkFuncContext() MISwfc.username = 'MISuser1' MISwfc.org = 'ITC' MISwfc.orgunit = 'MIS1' MISwfc.department = 'MISept1' MISwfc.roles = ['role1', ] MISwfc.name = 'MISwfc1' MISwfc.email = '[email protected]' MISwfc.request_id = 'MISihhh-890809-jklkk;k-ytfty' MISwfc.time_stamp = datetime.datetime.utcnow() MISwfc.client_address = '10.10.10.10'
BhujayKumarBhatta/flexflow
flexflow/configs/testconf.py
testconf.py
py
2,682
python
en
code
1
github-code
6
[ { "api_name": "os.path.join", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 7, "usage_type": "call" }, { "api_name": "os.pardir", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "flexflow.configs.config_handler.Configs", "line_number": 21, "usage_type": "call" }, { "api_name": "flexflow.dbengines.sqlchemy.models.dbdriver.get_connection_settings", "line_number": 23, "usage_type": "call" }, { "api_name": "flexflow.dbengines.sqlchemy.models.dbdriver", "line_number": 23, "usage_type": "name" }, { "api_name": "tokenleaderclient.rbac.wfc.WorkFuncContext", "line_number": 29, "usage_type": "call" }, { "api_name": "tokenleaderclient.rbac.wfc", "line_number": 29, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 38, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 38, "usage_type": "attribute" }, { "api_name": "tokenleaderclient.rbac.wfc.WorkFuncContext", "line_number": 42, "usage_type": "call" }, { "api_name": "tokenleaderclient.rbac.wfc", "line_number": 42, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "attribute" }, { "api_name": "tokenleaderclient.rbac.wfc.WorkFuncContext", "line_number": 54, "usage_type": "call" }, { "api_name": "tokenleaderclient.rbac.wfc", "line_number": 54, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 63, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 63, "usage_type": "attribute" }, { "api_name": "tokenleaderclient.rbac.wfc.WorkFuncContext", "line_number": 67, "usage_type": "call" }, { "api_name": "tokenleaderclient.rbac.wfc", "line_number": 67, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 76, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 76, "usage_type": "attribute" } ]
17215982737
# coding: utf-8 import cv2 import dlib import sys import face_recognition import numpy as np import os def getdemo(face_file_path): # 导入人脸检测模型 print("当前检测图片为:",face_file_path) predicter_path ='shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() # 导入检测人脸特征点的模型 sp = dlib.shape_predictor(predicter_path) # 读入图片 bgr_img=cv2.imdecode(np.fromfile(face_file_path,dtype=np.int8),-1) # bgr_img = cv2.imread(face_file_path) if bgr_img is None: print("Sorry, we could not load '{}' as an image".format(face_file_path)) return # opencv的颜色空间是BGR,需要转为RGB才能用在dlib中 rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) # bgr_img = cv2.imread(face_file_path) if(rgb_img.shape[0]<2000): scale = 3000.0/rgb_img.shape[1] rgb_img = cv2.resize(rgb_img,(3000,int(rgb_img.shape[0]/(rgb_img.shape[1])*3000))) # opencv的颜色空间是BGR,需要转为RGB才能用在dlib中 # rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) # 检测图片中的人脸 dets = detector(rgb_img, 1) # (top, right, bottom, left) 803 982 892 892 # (left,top, right, bottom) 892 803 982 892 # 检测到的人脸数量 faceNum = len(dets) print(faceNum) if faceNum == 0: print("Sorry, there were no faces found in '{}'".format(face_file_path)) return face_locations = [] for det in dets: face_locations.append((det.top(),det.right(),det.bottom(),det.left())) faceDic = {} faceDic['faceNum'] = faceNum face_landmarks = face_recognition.face_landmarks(rgb_img,face_locations) #72个点 face_encodings = face_recognition.face_encodings(rgb_img,face_locations) # 识别人脸特征点,并保存下来 faces = dlib.full_object_detections() for det in dets: faces.append(sp(rgb_img, det)) # 人脸对齐 images = dlib.get_face_chips(rgb_img, faces, size=320) # 显示计数,按照这个计数创建窗口 image_cnt = 0 # 显示对齐结果 for image in images: image_cnt += 1 cv_rgb_image = np.array(image).astype(np.uint8)# 先转换为numpy数组 cv_bgr_image = cv2.cvtColor(cv_rgb_image, cv2.COLOR_RGB2BGR)# opencv下颜色空间为bgr,所以从rgb转换为bgr print("正在保存图片 :" + str(image_cnt)+'.jpg') cv2.imwrite('./'+str(image_cnt)+'.jpg',cv_bgr_image) # face_file_path = 'D:/py/My_work/6_27_facebook/mtcnn-keras-master/img1/M/静.jpg'# 要使用的图片,图片放在当前文件夹中 # face_file_path = '../face/d/静.jpg'# 要使用的图片,图片放在当前文件夹中 face_file_path = '../face/9.jpg'# 要使用的图片,图片放在当前文件夹中 getdemo(face_file_path) print("写入完毕..")
u19900101/ImgManage
pythonModule/python/saveFace.py
saveFace.py
py
2,892
python
en
code
2
github-code
6
[ { "api_name": "dlib.get_frontal_face_detector", "line_number": 13, "usage_type": "call" }, { "api_name": "dlib.shape_predictor", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.imdecode", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.fromfile", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.int8", "line_number": 17, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 23, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 27, "usage_type": "call" }, { "api_name": "face_recognition.face_landmarks", "line_number": 48, "usage_type": "call" }, { "api_name": "face_recognition.face_encodings", "line_number": 49, "usage_type": "call" }, { "api_name": "dlib.full_object_detections", "line_number": 53, "usage_type": "call" }, { "api_name": "dlib.get_face_chips", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 64, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 65, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 65, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 67, "usage_type": "call" } ]
70777898428
import torch import numpy as np from sklearn.preprocessing import MinMaxScaler, StandardScaler from torch import optim, nn from DQN import DQN import torch.nn.functional as F class Agent: def __init__(self, input_size, output_size, device='cpu', learning_rate= 0.001, gamma=0.99, epsilon=0.6, epsilon_min=0.01, epsilon_decay=0.9995,batch_size=32,memory_size=100): self.device = device self.output_size = output_size self.policy_net = DQN(input_size, output_size).to(device) self.target_net = DQN(input_size, output_size).to(device) self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() self.optimizer = optim.Adam(self.policy_net.parameters(), lr=learning_rate, weight_decay=0.0001) self.memory = [] self.batch_size = batch_size self.memory_size = memory_size self.gamma = gamma self.epsilon = epsilon self.epsilon_min = epsilon_min self.epsilon_decay = epsilon_decay self.lossfn = nn.MSELoss() self.history = {'loss':[]} def make_action(self, state): if np.random.rand() < self.epsilon: return np.random.choice(self.output_size) with torch.no_grad(): state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device) q_values = self.policy_net(state_tensor) best_action, best_action_index = torch.max(q_values[0], 1) action = best_action_index.item() return action def make_eval_action(self,state): with torch.no_grad(): state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device) q_values = self.policy_net(state_tensor) best_action, best_action_index = torch.max(q_values[0], 1) action = best_action_index.item() return action def add_experience(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) if len(self.memory) > self.memory_size: self.memory.pop(0) def split_batch(self,batch): states = [] actions = [] rewards = [] next_states = [] dones = [] for experience in batch: states.append(self.memory[experience][0]) actions.append(self.memory[experience][1]) rewards.append(self.memory[experience][2]) next_states.append(self.memory[experience][3]) dones.append(self.memory[experience][4]) return np.array(states),np.array(actions),np.array(rewards),np.array(next_states),np.array(dones) def update_policy(self): self.policy_net.train() if len(self.memory) < self.batch_size: return batch = np.random.choice(len(self.memory), self.batch_size, replace=False) states,actions,rewards,next_states,dones = self.split_batch(batch) state_batch = torch.FloatTensor(states).to(self.device) action_batch = torch.LongTensor(actions).to(self.device) reward_batch = torch.FloatTensor(rewards).to(self.device) next_state_batch = torch.FloatTensor(next_states).to(self.device) done_batch = torch.FloatTensor(dones).to(self.device) q_values = self.policy_net(state_batch).squeeze(1).gather(1, action_batch.unsqueeze(1)).squeeze(1) with torch.no_grad(): next_q_values = self.target_net(next_state_batch).squeeze(1) next_q_values,_ = torch.max(next_q_values,1) expected_q_values = (next_q_values * self.gamma) * (1 - done_batch) + reward_batch loss = self.lossfn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay self.history['loss'].append(loss.item()) def update_target(self): self.target_net.load_state_dict(self.policy_net.state_dict()) def store_transition(self, transition): self.memory.append(transition) def __len__(self): return len(self.memory) def save_model(self): self.policy_net.save_model() def update_target_model(self): self.target_net.load_state_dict(self.policy_net.state_dict()) def set_mode_eval(self): self.policy_net.eval() def set_mode_train(self): self.policy_net.train()
stefanos50/DQN-Trading-Agent
Agent.py
Agent.py
py
4,449
python
en
code
0
github-code
6
[ { "api_name": "DQN.DQN", "line_number": 12, "usage_type": "call" }, { "api_name": "DQN.DQN", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.MSELoss", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "numpy.random.rand", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 28, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 29, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 69, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.LongTensor", "line_number": 74, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 82, "usage_type": "call" } ]
33208629801
from django.shortcuts import render from django.views.generic.base import View from .models import course from pure_pagination import Paginator, PageNotAnInteger, EmptyPage # Create your views here. class CourseListView(View): def get(self, request): all_course = course.objects.all() fav_course = all_course.order_by('-fav_numbers')[:2] try: page = request.GET.get('page', 1) except PageNotAnInteger: page = 1 # sort page sort = request.GET.get('sort', '') if sort: if sort == 'hot': all_course = all_course.order_by('-fav_numbers') print('all orgs by students', all_course) if sort == 'students': all_course = all_course.order_by('-students') else: all_course = all_course.order_by('-add_time') # page seprate p = Paginator(all_course, 5, request=request) courses_by_page = p.page(page) course_number = all_course.count() return render(request, 'course-list.html', { 'all_course': courses_by_page, 'fav_course': fav_course, 'course_number': course_number, 'sort': sort }) def post(self, request): pass class CourseDetailView(View): def get(self, request, course_id): course_info = course.objects.filter(id=course_id)[0] tag = course_info.tag print('what tag is ', tag) course_org = course_info.courseOrg teacher_num = course_org.teacher_set.all().count() all_related_courses = course.objects.filter(tag=tag)[:1] print('all related courses %s' % all_related_courses) return render(request, 'course-detail.html', { 'course_info': course_info, 'course_org': course_org, 'teacher_num': teacher_num, 'related_courses': all_related_courses })
LittleBirdLiu/MXonline_Task
apps/course/views.py
views.py
py
1,955
python
en
code
0
github-code
6
[ { "api_name": "django.views.generic.base.View", "line_number": 8, "usage_type": "name" }, { "api_name": "models.course.objects.all", "line_number": 10, "usage_type": "call" }, { "api_name": "models.course.objects", "line_number": 10, "usage_type": "attribute" }, { "api_name": "models.course", "line_number": 10, "usage_type": "name" }, { "api_name": "pure_pagination.PageNotAnInteger", "line_number": 15, "usage_type": "name" }, { "api_name": "pure_pagination.Paginator", "line_number": 29, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 33, "usage_type": "call" }, { "api_name": "django.views.generic.base.View", "line_number": 44, "usage_type": "name" }, { "api_name": "models.course.objects.filter", "line_number": 46, "usage_type": "call" }, { "api_name": "models.course.objects", "line_number": 46, "usage_type": "attribute" }, { "api_name": "models.course", "line_number": 46, "usage_type": "name" }, { "api_name": "models.course.objects.filter", "line_number": 51, "usage_type": "call" }, { "api_name": "models.course.objects", "line_number": 51, "usage_type": "attribute" }, { "api_name": "models.course", "line_number": 51, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 53, "usage_type": "call" } ]
18842937658
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import random from collections import deque import gym from gym.envs.registration import register import math import DQN as dqn register( id='CartPole-v1565', entry_point='gym.envs.classic_control:CartPoleEnv', # 'wrapper_config.TimeLimit.max_episode_steps' limits maximum step tags={'wrapper_config.TimeLimit.max_episode_steps': 10001}, reward_threshold=-100 ) env = gym.make('CartPole-v1565') # input_size = 4, output_size = 2 input_size = env.observation_space.shape[0] output_size = env.action_space.n dis = 0.9 REPLAY_MEMORY = 50000 epsilon = 1.0 epsilon_min = 0.01 epsilon_decay = 0.995 def replay_train(mainDQN, targetDQN, train_batch): x_stack = np.empty(0).reshape(0, input_size) y_stack = np.empty(0).reshape(0, output_size) for state, action, reward, next_state, done in train_batch: Q = mainDQN.predict(state) if done: Q[0, action] = reward else: Q[0, action] = reward + dis * np.max(targetDQN.predict(next_state)) y_stack = np.vstack([y_stack, Q]) x_stack = np.vstack([x_stack, state]) return mainDQN.update(x_stack, y_stack) def get_copy_var_ops(*, dest_scope_name="target", src_scope_name="main"): op_holder = [] src_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=src_scope_name) dest_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=dest_scope_name) for src_var, dest_var in zip(src_vars, dest_vars): op_holder.append(dest_var.assign(src_var.value())) return op_holder def get_epsilon(t): return max(epsilon_min, min(epsilon, 1.0 - math.log10((t+1) * epsilon_decay))) def bot_play(mainDQN): s = env.reset() reward_sum = 0 done = False while not done: env.render() a = np.argmax(mainDQN.predict(s)) s, reward, done, _ = env.step(a) reward_sum += reward print("Total score: {}".format(reward_sum)) def main(): max_episodes = 5000 replay_buffer = deque() epsilon = 1.0 with tf.Session() as sess: mainDQN = dqn.DQN(sess, input_size, output_size, name="main") targetDQN = dqn.DQN(sess, input_size, output_size, name="target") tf.global_variables_initializer().run() copy_ops = get_copy_var_ops(dest_scope_name="target", src_scope_name="main") sess.run(copy_ops) steps = [] for episode in range(max_episodes): e = get_epsilon(episode) done = False step_count = 0 state = env.reset() while not done: if np.random.rand(1) < e: action = env.action_space.sample() else: action = np.argmax(mainDQN.predict(state)) next_state, reward, done, _ = env.step(action) replay_buffer.append((state, action, reward, next_state, done)) if len(replay_buffer) > REPLAY_MEMORY: # popleft : return left value and pop it replay_buffer.popleft() state = next_state step_count += 1 if epsilon > epsilon_min: epsilon *= epsilon_decay if step_count > 10000: break print("Episode: {} steps: {}".format(episode, step_count)) steps.append(step_count) # if recent 10 episodes' steps mean > 300, break -> success if len(steps) > 10: steps.pop(0) if np.mean(steps, axis=0) > 300: break if episode % 10 == 1: for _ in range(50): minibatch = random.sample(replay_buffer, 10) loss, _ = replay_train(mainDQN, targetDQN, minibatch) print("Loss: ", loss) sess.run(copy_ops) mainDQN.save() targetDQN.save() for _ in range(10): bot_play(mainDQN) if __name__ == "__main__": main()
craclog/DQN_Cartpole
DQN_Cartpole.py
DQN_Cartpole.py
py
4,122
python
en
code
1
github-code
6
[ { "api_name": "gym.envs.registration.register", "line_number": 11, "usage_type": "call" }, { "api_name": "gym.make", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 44, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 52, "usage_type": "call" }, { "api_name": "tensorflow.GraphKeys", "line_number": 53, "usage_type": "attribute" }, { "api_name": "tensorflow.get_collection", "line_number": 54, "usage_type": "call" }, { "api_name": "tensorflow.GraphKeys", "line_number": 55, "usage_type": "attribute" }, { "api_name": "math.log10", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 73, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 81, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 84, "usage_type": "call" }, { "api_name": "DQN.DQN", "line_number": 85, "usage_type": "call" }, { "api_name": "DQN.DQN", "line_number": 86, "usage_type": "call" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 100, "usage_type": "attribute" }, { "api_name": "numpy.argmax", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 124, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 129, "usage_type": "call" } ]
30918805074
""" Template for generic Benchmark Test Case Workflow """ import sys import json import copy from datetime import datetime import pandas as pd def build_iterator(**kwargs): """ For building the iterator of the benchmark """ iterator = [(2,'dummy'), (2, 'dummy2'), (4, 'dummy'), (2, 'dummy4')] return iterator def run_code(iterator_step, repetitions, stage_bench, **kwargs): """ For configuration and execution of the benchmark kernel. Parameters ---------- iterator_step : tuple tuple with elements from iterator built from build_iterator. repetitions : list number of repetitions for each execution stage_bench : str benchmark stage. Only: benchmark, pre-benchamrk kwargs : keyword arguments for configuration of the benchmark kernel Returns _______ metrics : pandas DataFrame DataFrame with the desired metrics obtained for the integral computation save_name : string Desired name for saving the results of the execution """ # if n_qbits is None: # raise ValueError("n_qbits CAN NOT BE None") if stage_bench not in ['benchmark', 'pre-benchmark']: raise ValueError( "Valid values for stage_bench: benchmark or pre-benchmark'") if repetitions is None: raise ValueError("samples CAN NOT BE None") #Here the code for configuring and execute the benchmark kernel variable_0 = iterator_step[0] variable_1 = iterator_step[1] # Loop over the BTC step repetitions for i in range(repetitions): continue metrics = pd.DataFrame() # Deals with the file names for storing metrics if stage_bench == 'pre-benchmark': # Name for storing Pre-Benchmark results save_name = "pre_benchmark.csv" if stage_bench == 'benchmark': # Name for storing Benchmark results save_name = kwargs.get('csv_results') #save_name = "pre_benchmark_step_{}.csv".format(n_qbits) return metrics, save_name def compute_samples(**kwargs): """ This functions computes the number of executions of the benchmark for assure an error r with a confidence of alpha Parameters ---------- kwargs : keyword arguments For configuring the sampling computation Returns _______ samples : pandas DataFrame DataFrame with the number of executions for each integration interval """ #Configuration for sampling computations #Desired Confidence level alpha = kwargs.get("alpha", 0.05) #Code for computing the number of samples for getting the desired #statististical significance. Depends on benchmark kernel samples_ = pd.Series([100, 100]) samples_.name = "samples" #If user wants limit the number of samples #Minimum and Maximum number of samples min_meas = kwargs.get("min_meas", 5) max_meas = kwargs.get("max_meas", None) samples_.clip(upper=max_meas, lower=min_meas, inplace=True) return list(samples_) def summarize_results(**kwargs): """ Create summary with statistics """ folder = kwargs.get("saving_folder") csv_results = kwargs.get("csv_results") #Code for summarize the benchamark results. Depending of the #kernel of the benchmark results = pd.DataFrame() return results class KERNEL_BENCHMARK: """ Class for execute a Kernerl benchmark """ def __init__(self, **kwargs): """ Method for initializing the class """ #Configurtion of benchmarked algorithm or routine self.kwargs = kwargs #Benchmark Configuration #Repetitions for pre benchmark step self.pre_samples = self.kwargs.get("pre_samples", 10) #Saving pre benchmark step results self.pre_save = self.kwargs.get("pre_save", True) #For executing or not the benchmark step self.pre_benchmark = self.kwargs.get("pre_benchmark", True) #Name for saving the pre benchmark step results self.save_name = self.kwargs.get("save_name", None) #NNumber of qbits self.list_of_qbits = self.kwargs.get("list_of_qbits", [4]) save_type = self.kwargs.get("save_append", True) if save_type: self.save_type = 'a' else: self.save_type = 'w' #Create the iterator self.iterator = build_iterator(**self.kwargs) #Configure names for CSV files self.saving_folder = self.kwargs.get("saving_folder") self.benchmark_times = self.saving_folder + \ self.kwargs.get("benchmark_times") self.csv_results = self.saving_folder + \ self.kwargs.get("csv_results") self.summary_results = self.saving_folder + \ self.kwargs.get("summary_results") #Attributes for metrics self.pre_metrics = None self.metrics = None def save(self, save, save_name, input_pdf, save_mode): """ For saving panda DataFrames to csvs Parameters ---------- save: bool For saving or not save_nam: str name for file input_pdf: pandas DataFrame save_mode: str saving mode: overwrite (w) or append (a) """ if save: with open(save_name, save_mode) as f_pointer: input_pdf.to_csv( f_pointer, mode=save_mode, header=f_pointer.tell() == 0, sep=';' ) def exe(self): """ Execute complete Benchmark WorkFlow """ start_time = datetime.now().astimezone().isoformat() for step_iterator in self.iterator: #print("n_qbits: {}".format(n_qbits)) if self.pre_benchmark: print("\t Executing Pre-Benchmark") #Pre benchmark step pre_metrics, pre_save_name = run_code( step_iterator, self.pre_samples, 'pre-benchmark', **self.kwargs ) #For saving pre-benchmark step results pre_save_name = self.saving_folder + pre_save_name self.save(self.pre_save, pre_save_name, pre_metrics, "w") #Using pre benchmark results for computing the number of #repetitions self.kwargs.update({"pre_metrics": pre_metrics}) #Compute needed samples for desired #statistical significance samples_ = compute_samples(**self.kwargs) print("\t Executing Benchmark Step") print("\t step samples: {}".format(samples_)) metrics, save_name = run_code( step_iterator, samples_, 'benchmark', **self.kwargs ) save_name = self.saving_folder + save_name self.save(self.save, save_name, metrics, self.save_type) end_time = datetime.now().astimezone().isoformat() pdf_times = pd.DataFrame( [start_time, end_time], index=["StartTime", "EndTime"] ).T #Saving Time Info pdf_times.to_csv(self.benchmark_times) #Summarize Results results = summarize_results(**self.kwargs) results.to_csv(self.summary_results) if __name__ == "__main__": import os import shutil benchmark_arguments = { #Pre benchmark sttuff "pre_benchmark": False, "pre_samples": 10, "pre_save": True, #Saving stuff "saving_folder": "./Results/", "benchmark_times": "kernel_times_benchmark.csv", "csv_results": "kernel_benchmark.csv", "summary_results": "kernel_SummaryResults.csv", #Computing Repetitions stuff "alpha": 0.05, "min_meas": 5, "max_meas": 10, #List number of qubits tested "list_of_qbits": [4],#, 6, 8], } kernel_bench = KERNEL_BENCHMARK(**benchmark_arguments) kernel_bench.exe()
NEASQC/WP3_Benchmark
tnbs/templates/my_benchmark_execution.py
my_benchmark_execution.py
py
8,070
python
en
code
0
github-code
6
[ { "api_name": "pandas.DataFrame", "line_number": 64, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 103, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 125, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 210, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 210, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 238, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 238, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 239, "usage_type": "call" } ]
5792679797
import json import os import magic from io import BytesIO from django.conf import settings from django.core.exceptions import ValidationError from django.core.files.base import ContentFile from django.core.files.storage import default_storage as storage from django.db import models from django.db.models.fields.related import ForeignObjectRel from ..fields import JSONField from django.db.models.signals import post_save, pre_delete from django.dispatch import receiver from django.utils.safestring import mark_safe from django.utils.translation import gettext_lazy as _ from hvad.models import TranslatableModel, TranslatedFields from PIL import Image class BaseMediaFolder(TranslatableModel): translations = TranslatedFields( description=models.CharField(max_length=200, blank=True, null=True), title=models.CharField(max_length=200, blank=True, null=True), ) slug = models.SlugField() creation_date = models.DateTimeField(auto_now_add=True) last_modified = models.DateTimeField(auto_now=True) icon = models.ForeignKey( "camomilla.Media", on_delete=models.SET_NULL, null=True, blank=True, verbose_name=_("Image cover"), ) path = models.TextField(blank=True, null=True) updir = models.ForeignKey( "self", on_delete=models.CASCADE, related_name="child_folders", null=True, blank=True, ) class Meta: abstract = True def update_childs(self): for folder in self.child_folders.all(): folder.save() def save(self, *args, **kwargs): if self.updir: if self.updir.id == self.id: raise ValidationError({"updir": "Unvalid parent"}) self.path = "{0}/{1}".format(self.updir.path, self.slug) else: self.path = "/{0}".format(self.slug) super(BaseMediaFolder, self).save(*args, **kwargs) self.update_childs() def __str__(self): to_string = self.slug if self.title: to_string += " - " + self.title return to_string class MediaFolder(BaseMediaFolder): translations = TranslatedFields() class Media(TranslatableModel): translations = TranslatedFields( alt_text=models.CharField(max_length=200, blank=True, null=True), title=models.CharField(max_length=200, blank=True, null=True), description=models.TextField(blank=True, null=True), ) file = models.FileField() thumbnail = models.ImageField( upload_to=getattr(settings, "THUMB_FOLDER", "thumbnails"), max_length=500, null=True, blank=True, ) created = models.DateTimeField(auto_now=True) name = models.CharField(max_length=200, blank=True, null=True) size = models.IntegerField(default=0, blank=True, null=True) mime_type = models.CharField(max_length=128, blank=True, null=True) image_props = JSONField(default=dict, blank=True) folder = models.ForeignKey( MediaFolder, null=True, blank=True, related_name="media_folder", on_delete=models.CASCADE, ) @property def path(self): return "%s/%s" % (self.folder.path, self.name) @property def is_image(self): return self.mime_type and self.mime_type.startswith("image") def image_preview(self): if self.file: return mark_safe('<img src="{0}" />'.format(self.file.url)) def image_thumb_preview(self): if self.thumbnail: return mark_safe('<img src="{0}" />'.format(self.thumbnail.url)) image_preview.short_description = _("Preview") image_thumb_preview.short_description = _("Thumbnail") class Meta: ordering = ["-pk"] def regenerate_thumbnail(self): if self.file: self._make_thumbnail() def get_foreign_fields(self): return [ field.get_accessor_name() for field in self._meta.get_fields() if issubclass(type(field), ForeignObjectRel) ] @property def json_repr(self): json_r = { "id": self.pk, "thumbnail": "" if not self.is_image else self.thumbnail.url, "label": self.__str__(), } return json.dumps(json_r) def _make_thumbnail(self): try: fh = storage.open(self.file.name, "rb") self.mime_type = magic.from_buffer(fh.read(2048), mime=True) except FileNotFoundError as ex: print(ex) self.image_props = {} self.mime_type = "" return False try: orig_image = Image.open(fh) image = orig_image.copy() self.image_props = { "width": orig_image.width, "height": orig_image.height, "format": orig_image.format, "mode": orig_image.mode, } except Exception as ex: print(ex) return False try: image.thumbnail( ( getattr(settings, "CAMOMILLA_THUMBNAIL_WIDTH", 50), getattr(settings, "CAMOMILLA_THUMBNAIL_HEIGHT", 50), ), Image.ANTIALIAS, ) fh.close() # Path to save to, name, and extension thumb_name, thumb_extension = os.path.splitext(self.file.name) thumb_extension = thumb_extension.lower() thumb_filename = thumb_name + "_thumb" + thumb_extension temp_thumb = BytesIO() image.save(temp_thumb, "PNG", optimize=True) temp_thumb.seek(0) # Load a ContentFile into the thumbnail field so it gets saved self.thumbnail.save( thumb_filename, ContentFile(temp_thumb.read()), save=False ) temp_thumb.close() except Exception: return False return True def _remove_file(self): if self.file: file_to_remove = os.path.join(settings.MEDIA_ROOT, self.file.name) if os.path.isfile(file_to_remove): os.remove(file_to_remove) def _remove_thumbnail(self): if self.thumbnail: file_to_remove = os.path.join(settings.MEDIA_ROOT, self.thumbnail.name) if os.path.isfile(file_to_remove): os.remove(file_to_remove) def _get_file_size(self): if self.file: file_to_calc = os.path.join(settings.MEDIA_ROOT, self.file.name) if os.path.isfile(file_to_calc): return self.file.size else: return 0 def __str__(self): if self.name: return self.name return self.file.name @receiver(post_save, sender=Media, dispatch_uid="make thumbnails") def update_media(sender, instance, **kwargs): instance._remove_thumbnail() instance._make_thumbnail() Media.objects.filter(pk=instance.pk).update( size=instance._get_file_size(), thumbnail=instance.thumbnail, mime_type=instance.mime_type, image_props=instance.image_props, ) @receiver(pre_delete, sender=Media, dispatch_uid="make thumbnails") def delete_media_files(sender, instance, **kwargs): instance._remove_thumbnail() instance._remove_file()
lotrekagency/camomilla
camomilla/models/media.py
media.py
py
7,378
python
en
code
8
github-code
6
[ { "api_name": "hvad.models.TranslatableModel", "line_number": 21, "usage_type": "name" }, { "api_name": "hvad.models.TranslatedFields", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models.CharField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.models.SlugField", "line_number": 26, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 26, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 27, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 27, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 28, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 28, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 29, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 29, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 31, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext_lazy", "line_number": 34, "usage_type": "call" }, { "api_name": "django.db.models.TextField", "line_number": 36, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 36, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 37, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 37, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 39, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 39, "usage_type": "name" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 55, "usage_type": "call" }, { "api_name": "hvad.models.TranslatedFields", "line_number": 72, "usage_type": "call" }, { "api_name": "hvad.models.TranslatableModel", "line_number": 75, "usage_type": "name" }, { "api_name": "hvad.models.TranslatedFields", "line_number": 76, "usage_type": "call" }, { "api_name": "django.db.models.CharField", "line_number": 77, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 77, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 78, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 78, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 79, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 79, "usage_type": "name" }, { "api_name": "django.db.models.FileField", "line_number": 81, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 81, "usage_type": "name" }, { "api_name": "django.db.models.ImageField", "line_number": 82, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 82, "usage_type": "name" }, { "api_name": "django.conf.settings", "line_number": 83, "usage_type": "argument" }, { "api_name": "django.db.models.DateTimeField", "line_number": 88, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 88, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 89, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 89, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 90, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 90, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 91, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 91, "usage_type": "name" }, { "api_name": "fields.JSONField", "line_number": 92, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 93, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 93, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 98, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 98, "usage_type": "name" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 111, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 115, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext_lazy", "line_number": 117, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext_lazy", "line_number": 118, "usage_type": "call" }, { "api_name": "django.db.models.fields.related.ForeignObjectRel", "line_number": 131, "usage_type": "argument" }, { "api_name": "json.dumps", "line_number": 141, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.open", "line_number": 145, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 145, "usage_type": "name" }, { "api_name": "magic.from_buffer", "line_number": 146, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 153, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 153, "usage_type": "name" }, { "api_name": "django.conf.settings", "line_number": 168, "usage_type": "argument" }, { "api_name": "django.conf.settings", "line_number": 169, "usage_type": "argument" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 171, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 171, "usage_type": "name" }, { "api_name": "os.path.splitext", "line_number": 176, "usage_type": "call" }, { "api_name": "os.path", "line_number": 176, "usage_type": "attribute" }, { "api_name": "io.BytesIO", "line_number": 181, "usage_type": "call" }, { "api_name": "django.core.files.base.ContentFile", "line_number": 187, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 197, "usage_type": "call" }, { "api_name": "os.path", "line_number": 197, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 197, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 197, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 198, "usage_type": "call" }, { "api_name": "os.path", "line_number": 198, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 199, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 203, "usage_type": "call" }, { "api_name": "os.path", "line_number": 203, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 203, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 203, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 204, "usage_type": "call" }, { "api_name": "os.path", "line_number": 204, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 205, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 209, "usage_type": "call" }, { "api_name": "os.path", "line_number": 209, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 209, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 209, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 210, "usage_type": "call" }, { "api_name": "os.path", "line_number": 210, "usage_type": "attribute" }, { "api_name": "django.dispatch.receiver", "line_number": 221, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 221, "usage_type": "argument" }, { "api_name": "django.dispatch.receiver", "line_number": 233, "usage_type": "call" }, { "api_name": "django.db.models.signals.pre_delete", "line_number": 233, "usage_type": "argument" } ]
31180641489
import dash import math from flask import Markup from flask import render_template import matplotlib.pyplot as plt from flask import Flask, jsonify, request from dash.dependencies import Output, Event, Input import dash_core_components as dcc import dash_html_components as html import plotly import random import plotly.graph_objs as go from collections import deque import sqlite3 import pandas as pd app=Flask(__name__) @app.route('/alltrends',methods=['GET']) def all_list(): print("inter") conn = sqlite3.connect('twitter4.db') c = conn.cursor() df = pd.read_sql("SELECT * FROM world_trend_data", conn) out = df.to_json(orient='records')[1:-1].replace('},{', '} {') print("compl") print(out) return out @app.route('/<string:name>',methods=['GET']) def bar(name): conn=sqlite3.connect('twitter4.db') c=conn.cursor() pf=pd.read_sql("SELECT name,tweet_volume FROM "+name,conn) name=list(pf.name) tweet_volume=list(pf.tweet_volume) labels=[] values=[] #print(tweet_volume) for x in range(0,len(name)): if math.isnan(tweet_volume[x])==False: labels.append(name[x]) values.append(tweet_volume[x]) print(labels) print(values) #labels = ["January","February","March","April","May","June","July","August"] #values = [10,9,8,7,6,4,7,8] return render_template('bar.html', values=values, labels=labels) @app.route('/place/<string:name>',methods=['GET']) def all_data(name): conn=sqlite3.connect('twitter4.db') c=conn.cursor() df=pd.read_sql("SELECT name,query,tweet_volume FROM "+name,conn) out = df.to_json(orient='records')[1:-1].replace('},{', '} {') return out if __name__=='__main__': app.run(debug=True,port=8080)
ravirajsingh-knit/real-time-twitter-sentiment-analysis
main task/api2.py
api2.py
py
1,656
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 16, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.read_sql", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 32, "usage_type": "call" }, { "api_name": "pandas.read_sql", "line_number": 34, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 41, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 48, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 52, "usage_type": "call" }, { "api_name": "pandas.read_sql", "line_number": 54, "usage_type": "call" } ]
22426413086
from flask import Flask, request, jsonify import requests import json import os import feedparser from dotenv import load_dotenv import random from datetime import date load_dotenv() app = Flask(__name__) @app.route("/", methods=["GET", "POST"]) def root_post(): print(request) return jsonify(text="リクエスト成功") @app.route("/listening", methods=["GET", "POST"]) def hear(): # https://werkzeug.palletsprojects.com/en/0.15.x/wrappers/#werkzeug.wrappers.json.JSONMixin.get_json request_obj = request.get_json() if request_obj is None: return jsonify({}) if "challenge" in request_obj: challenge_token = request_obj["challenge"] return jsonify(challenge=challenge_token) if "event" in request_obj: event = request_obj["event"] print(event) bot_id = event.get("bot_id") if bot_id == "B010WR2FE2C": return jsonify({}) endpoint = os.environ["SLACK_WEBHOOK"] if "text" not in request_obj["event"]: return jsonify({}) text = request_obj["event"]["text"] if "<@U010KB4S65R>" not in text: # メンションじゃない場合は無視する return jsonify({}) if "占い" in text or "うらない" in text or "うらなって" in text or "占って": request_date = date.today().isoformat().replace("-", "/") fortune_endpoint = ( f"http://api.jugemkey.jp/api/horoscope/free/{request_date}" ) fortune_res = requests.get(fortune_endpoint) fortune = fortune_res.json() if fortune_res.status_code != 200 or fortune is None: payload = {"text": f"<@{user}> 占いに失敗しました"} requests.post(endpoint, data=json.dumps(payload)) return jsonify({}) # fortune["horoscope"]["2020/03/28"] をするコード sign_list = fortune.get("horoscope", {}).get(request_date, {}) if sign_list == {}: payload = {"text": f"<@{user}> 占いに失敗しました"} requests.post(endpoint, data=json.dumps(payload)) return jsonify({}) messages = [sign["sign"] + ": " + sign["content"] for sign in sign_list] messages.append("powerd by JugemKey 【PR】原宿占い館 塔里木") payload = {"text": "\n".join(messages)} res = requests.post(endpoint, data=json.dumps(payload)) return jsonify({}) user = event["user"] RSS_URL = "https://b.hatena.ne.jp/hotentry/it.rss" d = feedparser.parse(RSS_URL) text = "\n".join( [f"{entry.title}: {entry.link}" for entry in random.sample(d.entries, 3)] ) payload = {"text": f"<@{user}> {text}"} res = requests.post(endpoint, data=json.dumps(payload)) return jsonify({})
tamanobi/benri-slackbot
index.py
index.py
py
2,926
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 11, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 16, "usage_type": "argument" }, { "api_name": "flask.jsonify", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 23, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 23, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 29, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 36, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 37, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 39, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 43, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 45, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 45, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 49, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 53, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 54, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 60, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 60, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 61, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 67, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 67, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 68, "usage_type": "call" }, { "api_name": "feedparser.parse", "line_number": 73, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 75, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 78, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 78, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 80, "usage_type": "call" } ]
23561493561
import scipy import datetime import matplotlib.pyplot as plt import sys from loader import DataLoader import numpy as np import os from keras.datasets import mnist from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam from models.refiner import build_refiner from models.classifier import build_classifier from models.discriminator import build_discriminator, build_feature_discriminator from models.encoder import build_encoder class CGAN(): def __init__(self): self.img_rows = 128 self.img_cols = 128 self.channels = 3 self.n_features = 128 self.n_classes = 31 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.data_loader = DataLoader(img_res=(self.img_rows, self.img_cols), n_classes=self.n_classes) optimizer = Adam(0.0002, 0.5) self.D_R = build_discriminator(self.img_shape) self.D_F = build_feature_discriminator(self.n_features) self.D_R.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.D_F.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.Refiner = build_refiner(self.img_shape, self.channels) self.Feature = build_encoder(self.img_shape, self.n_features) self.Classifier = build_classifier(self.n_features, self.n_classes) self.D_R.trainable = False self.D_F.trainable = False self.Classifier.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.Classifier.trainable = False self.GAN_1 = Sequential() self.GAN_1.add(self.Refiner) self.GAN_1.add(self.D_R) self.GAN_1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.GAN_2 = Sequential() self.GAN_2.add(self.Refiner) self.GAN_2.add(self.Feature) self.GAN_2.add(self.D_F) self.GAN_2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.GAN_3 = Sequential() self.GAN_3.add(self.Refiner) self.GAN_3.add(self.Feature) self.GAN_3.add(self.Classifier) self.GAN_3.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) def train(self, epochs, batch_size=1, interval=50): start_time = datetime.datetime.now() valid = np.ones((batch_size,)) refined = np.zeros((batch_size,)) for epoch in range(epochs): for batch_i, (imgs_sim, imgs_target, classes) in enumerate(self.data_loader.load_batch(batch_size)): imgs_refined = self.Refiner.predict(imgs_sim) feature_sim = self.Feature.predict(imgs_sim) feature_target = self.Feature.predict(imgs_target) feature_refined = self.Feature.predict(imgs_refined) dimg_loss_real = self.D_R.train_on_batch(imgs_target, valid) dimg_loss_refined = self.D_R.train_on_batch(imgs_refined, refined) dimg_loss = 0.5 * np.add(dimg_loss_real, dimg_loss_refined) dfeature_loss_real = self.D_F.train_on_batch(feature_target, valid) dfeature_loss_refined = self.D_F.train_on_batch(feature_refined, refined) dfeature_loss = 0.5 * np.add(dfeature_loss_real, dfeature_loss_refined) class_loss = self.Classifier.train_on_batch(feature_sim, classes) gan1_loss = self.GAN_1.train_on_batch(imgs_sim, valid) gan2_loss = self.GAN_2.train_on_batch(imgs_sim, valid) gan3_loss = self.GAN_3.train_on_batch(imgs_sim, classes) elapsed_time = datetime.datetime.now() - start_time print ("[Epoch %d/%d] [targetatch %d/%d] [DR loss: %f] [DF loss: %f] [C loss: %f] [GAN_1 loss %f] [GAN_2 loss %f] [GAN_3 loss %f] time: %s " \ % ( epoch, epochs, batch_i, self.data_loader.n_batches, dimg_loss[0], dfeature_loss[0], class_loss[0], gan1_loss[0], gan2_loss[0], gan3_loss[0], elapsed_time)) if batch_i % interval == 0: self.sample_images(epoch, batch_i) def sample_images(self, epoch, batch_i): os.makedirs('output/', exist_ok=True) r, c = 1, 3 imgs_sim = self.data_loader.load_data(domain="sim", batch_size=1, is_testing=True) imgs_target = self.data_loader.load_data(domain="target", batch_size=1, is_testing=True) imgs_refined = self.Refiner.predict(imgs_sim) gen_imgs = np.concatenate([imgs_sim, imgs_refined, imgs_target]) gen_imgs = 0.5 * gen_imgs + 0.5 titles = ['Simulated', 'Refined','Target'] fig, axs = plt.subplots(r, c) axs[0].imshow(gen_imgs[0]) axs[0].set_title(titles[0]) axs[0].axis('off') axs[1].imshow(gen_imgs[1]) axs[1].set_title(titles[1]) axs[1].axis('off') axs[2].imshow(gen_imgs[2]) axs[2].set_title(titles[2]) axs[2].axis('off') fig.savefig("output/%d_%d.png" % (epoch, batch_i)) plt.close() if __name__ == '__main__': cgan = CGAN() cgan.train(epochs=100, batch_size=8, interval=50)
faniyamokhayyeri/C-GAN
cgan.py
cgan.py
py
6,395
python
en
code
12
github-code
6
[ { "api_name": "loader.DataLoader", "line_number": 30, "usage_type": "call" }, { "api_name": "keras.optimizers.Adam", "line_number": 32, "usage_type": "call" }, { "api_name": "models.discriminator.build_discriminator", "line_number": 34, "usage_type": "call" }, { "api_name": "models.discriminator.build_feature_discriminator", "line_number": 35, "usage_type": "call" }, { "api_name": "models.refiner.build_refiner", "line_number": 44, "usage_type": "call" }, { "api_name": "models.encoder.build_encoder", "line_number": 45, "usage_type": "call" }, { "api_name": "models.classifier.build_classifier", "line_number": 46, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 56, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 61, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 67, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 75, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 75, "usage_type": "attribute" }, { "api_name": "numpy.ones", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.add", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.add", "line_number": 94, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 102, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 102, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 119, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 131, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 131, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 146, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 146, "usage_type": "name" } ]
12772858510
import argparse import os import logging import numpy as np import pandas as pd import tensorflow as tf from .model import ( rnn_regression_model, rnn_classification_model, compile_regression_model, compile_classification_model, ) from .transform import ( sequence_embedding, normalize, denormalize, make_dataset_balanced, one_hot_encode_classes, split_train_test_set, ) from .load import load_rna_structure_dataset, load_rna_nucleotides_dataset logger = logging.getLogger(__name__) def main(): logging.basicConfig(level=logging.INFO, format="%(asctime)s (%(levelname)s) %(message)s") parser = argparse.ArgumentParser() parser.add_argument('learning_type', choices=['regression', 'classification']) parser.add_argument('rna_type', choices=['mrna', 'trna', 'rrna']) parser.add_argument('alphabet', choices=['nucleotides', '2d_structure']) parser.add_argument('--resume', type=int, default=0) parser.add_argument('--learning_rate', type=float, default=1e-4) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--n_epochs', type=int, default=10) parser.add_argument('--seed', type=int, default=444) args = parser.parse_args() learning_type = args.learning_type rna_type = args.rna_type alphabet_type = args.alphabet learning_rate = args.learning_rate batch_size = args.batch_size n_epochs = args.n_epochs resume = args.resume seed = args.seed np.random.seed(seed) if alphabet_type == 'nucleotides': alphabet = ['A', 'T', 'G', 'C'] else: alphabet = ['.', '(', ')'] if learning_type == 'regression': regression(rna_type, alphabet, learning_rate, batch_size, n_epochs, resume, seed) else: classification(rna_type, alphabet, learning_rate, batch_size, n_epochs, resume, seed) def regression(rna_type, alphabet, learning_rate, batch_size, n_epochs, resume, seed): alphabet_size = len(alphabet) metadata_path = f'data/tab/{rna_type}.tab' sequences_folder = 'data/seq/' output_folder = os.path.join(os.getcwd(), 'saved_models_rnatemp', f'seed_{seed}') output_path = os.path.join(output_folder, f'{rna_type}_regression.h5') try: os.makedirs(output_folder) except FileExistsError: pass log_dir = os.path.join(os.getcwd(), 'summary_log', f'seed_{seed}', 'regression') try: os.makedirs(log_dir) except FileExistsError: pass logger.info('Building model') model = rnn_regression_model(alphabet_size=alphabet_size, n_lstm=2) compile_regression_model(model, learning_rate=learning_rate) if resume > 0: logger.info(f'Resuming from {output_path}') model.load_weights(output_path) logger.info('Loading data') metadata = pd.read_csv(metadata_path, delimiter='\t') metadata['category'] = metadata['temp.cat'] y, metadata = make_dataset_balanced( metadata, output_col='temp', ) y = y.astype(np.float32) if 'A' in alphabet: sequences = load_rna_nucleotides_dataset(metadata, sequences_folder) else: sequences = load_rna_structure_dataset(metadata, sequences_folder) x = sequence_embedding(sequences, alphabet) logger.info('Split train and test set') x_train, y_train, x_test, y_test = split_train_test_set(x, y, test_ratio=0.2) mean, std = np.mean(y), np.std(y) y_test_norm = normalize(y_test, mean, std) y_train_norm = normalize(y_train, mean, std) initial_epoch = 0 epochs = n_epochs if resume > 0: initial_epoch = resume epochs += initial_epoch logger.info('Training') model.fit( x_train, y_train_norm, validation_data=(x_test, y_test_norm), batch_size=batch_size, epochs=epochs, initial_epoch=initial_epoch, verbose=1, callbacks=[ tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=0, write_graph=False, update_freq='epoch', embeddings_freq=0, ), ], ) model.save(output_path) logger.info(f'Model saved to {output_path}') def classification(rna_type, alphabet, learning_rate, batch_size, n_epochs, resume, seed): alphabet_size = len(alphabet) classes = ['psychrophile', 'mesophile', 'thermophile', 'hyperthermophile'] n_classes = len(classes) metadata_path = f'data/tab/{rna_type}.tab' sequences_folder = 'data/seq/' output_folder = os.path.join(os.getcwd(), 'saved_models_rnatemp', f'seed_{seed}') output_path = os.path.join(output_folder, f'{rna_type}_classification.h5') try: os.makedirs(output_folder) except FileExistsError: pass log_dir = os.path.join(os.getcwd(), 'summary_log', f'seed_{seed}', 'classification') try: os.makedirs(log_dir) except FileExistsError: pass logger.info('Building model') model = rnn_classification_model(alphabet_size=alphabet_size, n_classes=n_classes, n_lstm=2) compile_classification_model(model, learning_rate=learning_rate) if resume > 0: logger.info(f'Resuming from {output_path}') model.load_weights(output_path) logger.info('Loading data') metadata = pd.read_csv(metadata_path, delimiter='\t') metadata['category'] = metadata['temp.cat'] n_entries_per_class = 153 y_str, metadata = make_dataset_balanced(metadata) y = one_hot_encode_classes(y_str, classes) if 'A' in alphabet: sequences = load_rna_nucleotides_dataset(metadata, sequences_folder) else: sequences = load_rna_structure_dataset(metadata, sequences_folder) x = sequence_embedding(sequences, alphabet) logger.info('Split train and test set') x_train, y_train, x_test, y_test = split_train_test_set(x, y, test_ratio=0.2) initial_epoch = 0 epochs = n_epochs if resume > 0: initial_epoch = resume epochs += initial_epoch logger.info('Training') model.fit( x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=epochs, initial_epoch=initial_epoch, verbose=1, callbacks=[ tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=0, write_graph=False, update_freq='epoch', embeddings_freq=0, ), ], ) model.save(output_path) logger.info(f'Model saved to {output_path}') if __name__ == '__main__': main()
srom/rna_learn
rna_learn/archive/rnatemp_main.py
rnatemp_main.py
py
6,687
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 29, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 51, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 70, "usage_type": "call" }, { "api_name": "os.path", "line_number": 70, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 70, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path", "line_number": 71, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path", "line_number": 78, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 78, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 80, "usage_type": "call" }, { "api_name": "model.rnn_regression_model", "line_number": 85, "usage_type": "call" }, { "api_name": "model.compile_regression_model", "line_number": 86, "usage_type": "call" }, { "api_name": "model.load_weights", "line_number": 90, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 93, "usage_type": "call" }, { "api_name": "transform.make_dataset_balanced", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 100, "usage_type": "attribute" }, { "api_name": "load.load_rna_nucleotides_dataset", "line_number": 103, "usage_type": "call" }, { "api_name": "load.load_rna_structure_dataset", "line_number": 105, "usage_type": "call" }, { "api_name": "transform.sequence_embedding", "line_number": 107, "usage_type": "call" }, { "api_name": "transform.split_train_test_set", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 112, "usage_type": "call" }, { "api_name": "transform.normalize", "line_number": 114, "usage_type": "call" }, { "api_name": "transform.normalize", "line_number": 115, "usage_type": "call" }, { "api_name": "model.fit", "line_number": 124, "usage_type": "call" }, { "api_name": "tensorflow.keras.callbacks.TensorBoard", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 133, "usage_type": "attribute" }, { "api_name": "model.save", "line_number": 143, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 155, "usage_type": "call" }, { "api_name": "os.path", "line_number": 155, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 155, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 156, "usage_type": "call" }, { "api_name": "os.path", "line_number": 156, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 158, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 162, "usage_type": "call" }, { "api_name": "os.path", "line_number": 162, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 162, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 164, "usage_type": "call" }, { "api_name": "model.rnn_classification_model", "line_number": 169, "usage_type": "call" }, { "api_name": "model.compile_classification_model", "line_number": 170, "usage_type": "call" }, { "api_name": "model.load_weights", "line_number": 174, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 177, "usage_type": "call" }, { "api_name": "transform.make_dataset_balanced", "line_number": 181, "usage_type": "call" }, { "api_name": "transform.one_hot_encode_classes", "line_number": 182, "usage_type": "call" }, { "api_name": "load.load_rna_nucleotides_dataset", "line_number": 185, "usage_type": "call" }, { "api_name": "load.load_rna_structure_dataset", "line_number": 187, "usage_type": "call" }, { "api_name": "transform.sequence_embedding", "line_number": 189, "usage_type": "call" }, { "api_name": "transform.split_train_test_set", "line_number": 192, "usage_type": "call" }, { "api_name": "model.fit", "line_number": 201, "usage_type": "call" }, { "api_name": "tensorflow.keras.callbacks.TensorBoard", "line_number": 210, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 210, "usage_type": "attribute" }, { "api_name": "model.save", "line_number": 220, "usage_type": "call" } ]
7029192101
import argparse import time import os import cv2 import numpy as np from tqdm import tqdm import torch import torch.nn as nn from torchvision.utils import save_image from torch.utils.data import DataLoader from torch.autograd import Variable import models_x class ImageAdaptive3DModel(nn.Module): def __init__(self, dim=33): super().__init__() self.classifier = models_x.Classifier() self.lut_0 = models_x.Generator3DLUT_identity() self.lut_1 = models_x.Generator3DLUT_zero() self.lut_2 = models_x.Generator3DLUT_zero() self.trilinear_ = models_x.TrilinearInterpolation() def load_weights(self, lut_weights="pretrained_models/sRGB/LUTs.pth", classifier_weights="pretrained_models/sRGB/classifier.pth"): assert os.path.exists(lut_weights), "Unable to find lut weights" assert os.path.exists(classifier_weights), "Unable to find classifier weights" classifier_state_dict = torch.load(classifier_weights) self.classifier.load_state_dict(classifier_state_dict) luts_state_dict = torch.load(lut_weights) self.lut_0.load_state_dict(luts_state_dict["0"]) self.lut_1.load_state_dict(luts_state_dict["1"]) self.lut_2.load_state_dict(luts_state_dict["2"]) def forward(self, image_input): pred = self.classifier(image_input).squeeze() final_lut = pred[0] * self.lut_0.LUT + pred[1] * self.lut_1.LUT + pred[2] * self.lut_2.LUT combine_A = image_input.new(image_input.size()) combine_A = self.trilinear_(final_lut, image_input) return combine_A class ImageAdaptive3DUnpairedModel(nn.Module): def __init__(self, dim=33): super().__init__() self.classifier = models_x.Classifier_unpaired() self.lut_0 = models_x.Generator3DLUT_identity() self.lut_1 = models_x.Generator3DLUT_zero() self.lut_2 = models_x.Generator3DLUT_zero() def load_weights(self, lut_weights="pretrained_models/sRGB/LUTs_unpaired.pth", classifier_weights="pretrained_models/sRGB/classifier_unpaired.pth"): assert os.path.exists(lut_weights), "Unable to find lut weights" assert os.path.exists(classifier_weights), "Unable to find classifier weights" classifier_state_dict = torch.load(classifier_weights) self.classifier.load_state_dict(classifier_state_dict) luts_state_dict = torch.load(lut_weights) self.lut_0.load_state_dict(luts_state_dict["0"]) self.lut_1.load_state_dict(luts_state_dict["1"]) self.lut_2.load_state_dict(luts_state_dict["2"]) def forward(self, image_input): pred = self.classifier(image_input).squeeze() combine_A = pred[0] * self.lut_0(image_input) + pred[1] * self.lut_1(image_input) + pred[2] * self.lut_2(image_input) # Standardize because paired model returns (LUT, output) return None, combine_A def pre_process(image: np.array, device: str) -> torch.tensor: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = image.astype(np.float32) / 255. image = torch.from_numpy(np.ascontiguousarray(np.transpose(image, (2, 0, 1)))).float().unsqueeze(0) # image = torch.stack([image]) image = image.to(device) return image def post_process(output_tensor): image_rgb = output_tensor.cpu().squeeze().permute(1, 2, 0).numpy() image_rgb = (image_rgb * 255.0).clip(0, 255).astype(np.uint8) image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR) return image_bgr if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input_dir", type=str, required=True, help="Path to input folder containing images") parser.add_argument("--output_dir", type=str, required=True, help="Path to output folder") parser.add_argument("--device", type=str, default="cuda:0", help="Device to use e.g. 'cuda:0', 'cuda:1', 'cpu'") parser.add_argument("--unpaired", action="store_true", help="Evaluate model trained with unpaired data") args = parser.parse_args() # Prepare output directory if it doesn't exist os.makedirs(args.output_dir, exist_ok=True) # Load model and weights model = ImageAdaptive3DModel() if not args.unpaired else ImageAdaptive3DUnpairedModel() model.load_weights() model.eval() model.to(args.device) # Prepare images image_paths = [os.path.join(args.input_dir, img_path) for img_path in os.listdir(args.input_dir) if img_path[0] != "."] # Model inference with torch.no_grad(): description = "Running 3D-LUT..." if not args.unpaired else "Running 3D-LUT(unpaired)..." for img_path in tqdm(image_paths, total=len(image_paths), desc=description): in_image = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) model_input = pre_process(in_image, args.device) _, model_output = model(model_input) enhanced_image = post_process(model_output) output_path = os.path.join(args.output_dir, os.path.basename(img_path)) cv2.imwrite(output_path, enhanced_image)
shaunhwq/Image-Adaptive-3DLUT
demo_3dlut.py
demo_3dlut.py
py
5,091
python
en
code
null
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 17, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "models_x.Classifier", "line_number": 20, "usage_type": "call" }, { "api_name": "models_x.Generator3DLUT_identity", "line_number": 22, "usage_type": "call" }, { "api_name": "models_x.Generator3DLUT_zero", "line_number": 23, "usage_type": "call" }, { "api_name": "models_x.Generator3DLUT_zero", "line_number": 24, "usage_type": "call" }, { "api_name": "models_x.TrilinearInterpolation", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 50, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 50, "usage_type": "name" }, { "api_name": "models_x.Classifier_unpaired", "line_number": 53, "usage_type": "call" }, { "api_name": "models_x.Generator3DLUT_identity", "line_number": 55, "usage_type": "call" }, { "api_name": "models_x.Generator3DLUT_zero", "line_number": 56, "usage_type": "call" }, { "api_name": "models_x.Generator3DLUT_zero", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path", "line_number": 60, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 79, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 80, "usage_type": "attribute" }, { "api_name": "numpy.float32", "line_number": 81, "usage_type": "attribute" }, { "api_name": "torch.from_numpy", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.ascontiguousarray", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 82, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 79, "usage_type": "attribute" }, { "api_name": "numpy.uint8", "line_number": 90, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 91, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 91, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 96, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 113, "usage_type": "call" }, { "api_name": "os.path", "line_number": 113, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 116, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 118, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 119, "usage_type": "call" }, { "api_name": "cv2.IMREAD_UNCHANGED", "line_number": 119, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 126, "usage_type": "call" }, { "api_name": "os.path", "line_number": 126, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 126, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 127, "usage_type": "call" } ]
43969738146
#!/usr/bin/env python import argparse import sys from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio.SeqFeature import FeatureLocation from CPT_GFFParser import gffSeqFeature, gffWrite bottomFeatTypes = ["exon", "RBS", "CDS"] def makeGffFeat(inFeat, num, recName, identifier): if inFeat.type == "RBS" or (inFeat.type == "regulatory" and "regulatory_class" in inFeat.qualifiers.keys() and inFeat.qualifiers["regulatory_class"][0] == "ribosome_binding_site"): inFeat.type = "Shine_Dalgarno_sequence" if "codon_start" in inFeat.qualifiers.keys(): shift = int(inFeat.qualifiers["codon_start"][0]) - 1 else: shift = "." if identifier in inFeat.qualifiers.keys(): name = inFeat.qualifiers[identifier][0] + "." + inFeat.type if num > 0: name += "." + str(num) else: name = recName + "." + inFeat.type + "." + str(num) outFeat = gffSeqFeature(inFeat.location, inFeat.type, '', inFeat.strand, name, inFeat.qualifiers, None, None, None, shift, 0, "GbkToGff") outFeat.qualifiers["ID"] = [name] return outFeat def main(inFile, makeMRNA, makeGene, identifier, fastaFile, outFile): ofh = sys.stdout if outFile: ofh = outFile outRec = [] failed = 0 for rec in SeqIO.parse(inFile, "genbank"): recID = rec.name if len(str(rec.seq)) > 0: seqs_pending_writes = True outSeq = str(rec.seq) seqLen = len(outSeq) locBucket = {} outFeats = [] topTypeDict = {} seekingParent = [] geneNum = 0 autoGeneNum = 0 for feat in rec.features: if identifier not in feat.qualifiers.keys(): #Allow metadata features and other features with no ID (Output warning?) - AJC if feat.type in bottomFeatTypes: seekingParent.append([feat, [], []]) # [Feature, all parent candidates, strongest parent candidates] continue elif feat.type not in topTypeDict.keys(): topTypeDict[feat.type] = 1 else: topTypeDict[feat.type] += 1 outFeats.append(makeGffFeat(feat, topTypeDict[feat.type], recID, identifier)) continue elif feat.qualifiers[identifier][0] not in locBucket.keys(): locBucket[feat.qualifiers[identifier][0]] = [] locBucket[feat.qualifiers[identifier][0]].append(feat) for locus in locBucket.keys(): minLoc = locBucket[locus][0].location.start maxLoc = locBucket[locus][0].location.end for feat in locBucket[locus]: minLoc = min(minLoc, feat.location.start) maxLoc = max(maxLoc, feat.location.end) for x in seekingParent: if x[0].location.start >= minLoc and x[0].location.end <= maxLoc: x[1].append(locus) if x[0].location.start == minLoc or x[0].location.end == maxLoc: x[2].append(locus) for x in seekingParent: #Reformat to [Feature, Locus, Unused/Free] if len(x[2]) == 1: finList = "" if len(x[1]) > 1: for loc in x[1]: if loc != x[2][0]: finList += loc + ", " finList = str(x[0].type) + " had no locus tag set in .gbk file, automatically derived. Other, weaker candidate(s) were " + finList[0:-2] + "." else: finList = str(x[0].type) + " had no locus tag set in .gbk file, automatically derived." if "Notes" not in x[0].qualifiers.keys(): x[0].qualifiers["Notes"] = [] x[0].qualifiers["Notes"].append(finList) x[1] = x[2][0] elif len(x[2]) > 1: candidate = x[2][0] #Arbitrarily choose first one finList = "" strongList = "" for loc in x[2]: if loc != candidate: finList += loc + ", " strongList += loc + ", " for loc in x[1]: if loc not in x[2]: finList += loc + ", " finList = str(x[0].type) + " had no locus tag set in .gbk file, automatically derived. Other candidate(s) were " + finList[0:-2] + " (Equally strong candidate(s): " + strongList[0:-2] + ")." if "Notes" not in x[0].qualifiers.keys(): x[0].qualifiers["Notes"] = [] x[0].qualifiers["Notes"].append(finList) x[1] = candidate elif len(x[1]) == 1: x[1] = x[1][0] if "Notes" not in x[0].qualifiers.keys(): x[0].qualifiers["Notes"] = [] finList = str(x[0].type) + " had no locus tag set in .gbk file, automatically derived." x[0].qualifiers["Notes"].append(finList) elif len(x[1]) > 1: candidate = x[1][0] #Arbitrarily choose first one finList = "" for loc in x[1]: if loc != candidate: finList += loc + ", " finList = str(x[0].type) + " had no locus tag set in .gbk file, automatically derived. Other candidates were " + finList[0:-2] + "." if "Notes" not in x[0].qualifiers.keys(): x[0].qualifiers["Notes"] = [] x[0].qualifiers["Notes"].append(finList) x[1] = candidate else: if makeGene: sys.stderr.write("Warning: Unable to find potential parent for feature with no " + identifier + " of type " + str(x[0].type) + " at location [" + str(x[0].location.start + 1) + ", " + str(x[0].location.end) + "], creating standalone gene.\n") autoGeneNum += 1 x[0].source = "GbkToGff" x[0].score = 0 x[0].shift = 0 if "ID" not in x[0].qualifiers.keys(): x[0].qualifiers["ID"] = [recID + ".standalone_" + x[0].type + "." + str(autoGeneNum)] tempName = recID + ".derived_Gene." + str(autoGeneNum) tempQuals = {"ID" : [tempName], "Notes" : ["Gene feature automatically generated by Gbk to GFF conversion"]} tempGene = gffSeqFeature(FeatureLocation(x[0].location.start, x[0].location.end, x[0].location.strand), 'gene', '', x[0].strand, tempName, tempQuals, None, None, None, ".", 0, "GbkToGff") if makeMRNA: tempName = recID + ".derived_mRNA." + str(autoGeneNum) tempQuals = {"ID" : [tempName], "Notes" : ["mRNA feature automatically generated by Gbk to GFF conversion"]} tempGene.sub_features.append(gffSeqFeature(FeatureLocation(x[0].location.start, x[0].location.end, x[0].location.strand), 'mRNA', '', x[0].strand, tempName, tempQuals, None, None, None, ".", 0, "GbkToGff")) tempGene.sub_features[-1].sub_features.append(x[0]) else: tempGene.sub_features.append(x[0]) outFeats.append(tempGene) else: sys.stderr.write("Warning: Unable to find potential parent for feature with no " + identifier + " of type " + str(x[0].type) + " at location [" + str(x[0].location.start + 1) + ", " + str(x[0].location.end) + "].\n") if x[0].type not in topTypeDict.keys(): topTypeDict[x[0].type] = 1 else: topTypeDict[x[0].type] += 1 outFeats.append(makeGffFeat(x[0], topTypeDict[x[0].type], recID, identifier)) for locus in locBucket.keys(): if len(locBucket[locus]) == 1: # No heirarchy to be made outFeats.append(makeGffFeat(locBucket[locus][0], 0, recID, identifier)) continue topFeat = None midFeat = None bottomFeats = [] typeDict = {} minLoc = locBucket[locus][0].location.start maxLoc = locBucket[locus][0].location.end geneNum += 1 for feat in locBucket[locus]: # If we want to make our own top-level feat? minLoc = min(minLoc, feat.location.start) maxLoc = max(maxLoc, feat.location.end) # Gene->mRNA->CDS included as example, to add other feature-heirarchys in the appropriate slot if feat.type in ['gene']: if not topFeat: topFeat = feat # Else handle multiple top features elif feat.type in ['mRNA', 'tRNA', 'rRNA']: if not midFeat: midFeat = feat # Else handle multiple mid feats (May need another elif type-in-list statement if we actually expect a list of mid feats) else: if feat.type not in typeDict.keys(): typeDict[feat.type] = 1 else: typeDict[feat.type] += 1 bottomFeats.append(feat) for x in seekingParent: if type(x[1]) != "list" and locus == x[1]: x[0].qualifiers[identifier] = [locus] bottomFeats.append(x[0]) if x[0].type not in typeDict.keys(): typeDict[x[0].type] = 1 else: typeDict[x[0].type] += 1 #if not topFeat: # Make our own top-level feature based off minLoc, maxLoc bounds for x in typeDict.keys(): # If only 1, set it to 0 so we don't append a number to the name if typeDict[x] == 1: # Else, set to 1 so that we count up as we encounter the features typeDict[x] = 0 else: typeDict[x] = 1 if not topFeat: if makeGene: if midFeat: possibleStrand = midFeat.strand else: possibleStrand = bottomFeats[0].strand tempName = recID + ".gene." + str(geneNum) tempQuals = {identifier : [locus], "ID" : [tempName], "Notes" : ["Gene feature automatically generated by Gbk to GFF conversion"]} topFeat = gffSeqFeature(FeatureLocation(minLoc, maxLoc, possibleStrand), 'gene', '', possibleStrand, tempName, tempQuals, None, None, None, ".", 0, "GbkToGff") else: sys.stderr.write("Unable to create a feature heirarchy at location [%d, %d] with features: \n" % (minLoc, maxLoc)) for x in locBucket[locus]: sys.stderr.write(str(x)) sys.stderr.write('\n') failed = 1 continue outFeats.append(makeGffFeat(topFeat, 0, recID, identifier)) if not midFeat and topFeat.type == "gene" and makeMRNA: if identifier in topFeat.qualifiers.keys(): tempName = topFeat.qualifiers[identifier][0] + ".mRNA" tempQuals = {identifier : topFeat.qualifiers[identifier], "ID" : [tempName], "Notes" : ["mRNA feature automatically generated by Gbk to GFF conversion"]} else: tempName = outFeats[-1].ID + ".mRNA" tempQuals = {identifier : topFeat.qualifiers[identifier], "ID" : [tempName], "Notes" : ["mRNA feature automatically generated by Gbk to GFF conversion"]} midFeat = gffSeqFeature(FeatureLocation(minLoc, maxLoc, topFeat.strand), 'mRNA', '', topFeat.strand, tempName, tempQuals, None, None, None, ".", 0, "GbkToGff") if midFeat: # Again, need a new if statement if we want to handle multiple mid-tier features outFeats[-1].sub_features.append(makeGffFeat(midFeat, 0, recID, identifier)) outFeats[-1].sub_features[-1].qualifiers["Parent"] = [outFeats[-1].id] for x in bottomFeats: typeDict[x.type] += 1 outFeats[-1].sub_features[-1].sub_features.append(makeGffFeat(x, typeDict[x.type], recID, identifier)) outFeats[-1].sub_features[-1].sub_features[-1].qualifiers["Parent"] = [outFeats[-1].sub_features[-1].id] else: # No midFeat, append bottom feats directly to top feats for x in bottomFeats: typeDict[x.type] += 1 outFeats[-1].sub_features.append(makeGffFeat(x, typeDict[x.type], recID, identifier)) outFeats[-1].sub_features[-1].qualifiers["Parent"] = [outFeats[-1].id] outRec.append(SeqRecord(rec.seq, recID, rec.name, rec.description, rec.dbxrefs, sorted(outFeats, key=lambda x: x.location.start), rec.annotations, rec.letter_annotations)) SeqIO.write([outRec[-1]], fastaFile, "fasta") gffWrite(outRec, ofh) exit(failed) # 0 if all features handled, 1 if unable to handle some if __name__ == '__main__': parser = argparse.ArgumentParser( description='Biopython solution to Gbk to GFF conversion') parser.add_argument('inFile', type=argparse.FileType("r"), help='Path to an input GBK file' ) parser.add_argument('--makeMRNA', action="store_true", required=False, help="Automatically create mRNA features") parser.add_argument('--makeGene', action="store_true", required=False, help="Automatically create missing Gene features") parser.add_argument('--identifier', type=str, default="locus_tag", required=False, help="Qualifier to derive ID property from") parser.add_argument('--fastaFile', type=argparse.FileType("w"), help='Fasta output for sequences' ) parser.add_argument('--outFile', type=argparse.FileType("w"), help='GFF feature output' ) args = parser.parse_args() main(**vars(args))
TAMU-CPT/galaxy-tools
tools/gbk/gbk_to_gff3.py
gbk_to_gff3.py
py
13,589
python
en
code
5
github-code
6
[ { "api_name": "CPT_GFFParser.gffSeqFeature", "line_number": 27, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 33, "usage_type": "attribute" }, { "api_name": "Bio.SeqIO.parse", "line_number": 39, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 39, "usage_type": "name" }, { "api_name": "sys.stderr.write", "line_number": 129, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 129, "usage_type": "attribute" }, { "api_name": "CPT_GFFParser.gffSeqFeature", "line_number": 138, "usage_type": "call" }, { "api_name": "Bio.SeqFeature.FeatureLocation", "line_number": 138, "usage_type": "call" }, { "api_name": "CPT_GFFParser.gffSeqFeature", "line_number": 142, "usage_type": "call" }, { "api_name": "Bio.SeqFeature.FeatureLocation", "line_number": 142, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 150, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 150, "usage_type": "attribute" }, { "api_name": "CPT_GFFParser.gffSeqFeature", "line_number": 218, "usage_type": "call" }, { "api_name": "Bio.SeqFeature.FeatureLocation", "line_number": 218, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 220, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 220, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 222, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 222, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 223, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 223, "usage_type": "attribute" }, { "api_name": "CPT_GFFParser.gffSeqFeature", "line_number": 235, "usage_type": "call" }, { "api_name": "Bio.SeqFeature.FeatureLocation", "line_number": 235, "usage_type": "call" }, { "api_name": "Bio.SeqRecord.SeqRecord", "line_number": 250, "usage_type": "call" }, { "api_name": "Bio.SeqIO.write", "line_number": 251, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 251, "usage_type": "name" }, { "api_name": "CPT_GFFParser.gffWrite", "line_number": 252, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 257, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 259, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 263, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 264, "usage_type": "call" } ]
31235810811
from django.urls import path, include from rest_framework import routers from aluraflix.views import VideoViewSet, CategoriaViewSet, CategoriaVideosViewSet, VideosFreeViewSet router = routers.DefaultRouter() router.register('videos', VideoViewSet, basename='videos') router.register('categorias', CategoriaViewSet, basename='categorias') urlpatterns = [ path('videos/free/', VideosFreeViewSet.as_view(), name='videos_free_list'), path('categorias/<int:id>/videos/', CategoriaVideosViewSet.as_view(), name='videos_categoria_list'), path('', include(router.urls)), ]
diegoamferreira/challange_alura_be1
aluraflix/urls.py
urls.py
py
580
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.routers.DefaultRouter", "line_number": 6, "usage_type": "call" }, { "api_name": "rest_framework.routers", "line_number": 6, "usage_type": "name" }, { "api_name": "aluraflix.views.VideoViewSet", "line_number": 7, "usage_type": "argument" }, { "api_name": "aluraflix.views.CategoriaViewSet", "line_number": 8, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "aluraflix.views.VideosFreeViewSet.as_view", "line_number": 11, "usage_type": "call" }, { "api_name": "aluraflix.views.VideosFreeViewSet", "line_number": 11, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "aluraflix.views.CategoriaVideosViewSet.as_view", "line_number": 12, "usage_type": "call" }, { "api_name": "aluraflix.views.CategoriaVideosViewSet", "line_number": 12, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 13, "usage_type": "call" } ]
3919544072
# standard python libraries import os import re import csv import json import operator import statistics import collections from operator import itemgetter # custom libraries from webxray.Analyzer import Analyzer from webxray.Utilities import Utilities class Reporter: """ Manages the production of a number of CSV reports. """ def __init__(self, db_name, db_engine, num_tlds, num_results, tracker_threshold = None, flush_domain_owners = True, start_date = False, end_date = False): """ This performs a few start-up tasks: - sets up some useful global variables - makes sure we have a directory to store the reports - flushes the existing domain_owner mappings (this can be disabled) - if we want to do per-tld reports, figures out the most common - if we want to filter against a given tracker threshold, sets it up here (see documentation below for tracker threshold) """ # set various global vars self.db_name = db_name self.num_tlds = num_tlds self.num_results = num_results self.tracker_threshold = tracker_threshold # pass utilities the database info self.utilities = Utilities(db_name, db_engine) # set up the analyzer we will be using throughout self.analyzer = Analyzer(db_name, db_engine) # number of decimal places to round to in reports self.num_decimals = 2 # set up global db connection if db_engine == 'sqlite': from webxray.SQLiteDriver import SQLiteDriver self.sql_driver = SQLiteDriver(db_name) elif db_engine == 'postgres': from webxray.PostgreSQLDriver import PostgreSQLDriver self.sql_driver = PostgreSQLDriver(db_name) else: print('INVALID DB ENGINE FOR %s, QUITTING!' % db_engine) quit() print('\t=============================') print('\t Checking Output Directories ') print('\t=============================') # creates a new directory if it doesn't exist already self.report_path = self.utilities.setup_report_dir(self.db_name) # this is used in various places to get owner information self.domain_owners = self.utilities.get_domain_owner_dict() # if we want to get sub-reports for the most frequent tlds we find # them here if self.num_tlds: print('\t=====================') print('\t Getting top %s tlds' % self.num_tlds) print('\t=====================') print('\t\tProcessing...', end='', flush=True) self.top_tlds = self.analyzer.get_top_tlds(self.num_tlds) print('done!') print('\t\tThe top tlds are:') for tld in self.top_tlds: if tld: print('\t\t |- %s' % tld) else: self.top_tlds = [None] # __init__ ##################### # REPORT GENERATORS # ##################### def generate_db_summary_report(self,print_to_cli=True): """ outputs and stores report of basic data about how many records in db, etc. """ print('\t================') print('\t General Summary') print('\t================') # get the relevant db summary data db_summary = self.analyzer.get_db_summary() # print to cli if print_to_cli: print("\t\tTotal Crawls:\t\t\t%s" % db_summary['total_crawls_ok']) print("\t\tTotal Pages:\t\t\t%s" % db_summary['total_pages_ok']) print("\t\tTotal Tasks Fail:\t\t%s" % db_summary['total_tasks_fail']) print("\t\tTotal Tasks Attempted:\t\t%s" % db_summary['total_tasks_attempted']) print("\t\t%% Pages OK:\t\t\t%.2f%%" % db_summary['percent_tasks_ok']) print("\t\tTotal Errors:\t\t\t%s" % db_summary['total_errors']) print("\t\tTotal Cookies:\t\t\t%s" % db_summary['total_cookies']) print("\t\tTotal 3P Cookies:\t\t%s" % db_summary['total_3p_cookies']) print("\t\tTotal Dom Storage:\t\t%s" % db_summary['total_dom_storage']) print("\t\tTotal Websockets:\t\t%s" % db_summary['total_websockets']) print("\t\tTotal Websocket Events:\t\t%s" % db_summary['total_websocket_events']) print("\t\tTotal Requests:\t\t\t%s" % db_summary['total_requests']) print("\t\tTotal Responses:\t\t%s" % db_summary['total_responses']) print('\t\t%% Requests Received:\t\t%.2f%%' % db_summary['percent_requests_received']) print("\t\t3P Requests:\t\t\t%s" % db_summary['total_3p_requests']) print("\t\t3P Responses:\t\t\t%s" % db_summary['total_3p_responses']) print('\t\t%% 3P Requests Received:\t\t%.2f%%' % db_summary['percent_3p_requests_received']) print('\t\t'+'-'*40) # write results to csv csv_rows = [] csv_rows.append(('total_crawls_ok', db_summary['total_crawls_ok'])) csv_rows.append(('total_pages_ok', db_summary['total_pages_ok'])) csv_rows.append(('total_tasks_fail', db_summary['total_tasks_fail'])) csv_rows.append(('total_tasks_attempted', db_summary['total_tasks_attempted'])) csv_rows.append(('percent_pages_ok', db_summary['percent_tasks_ok'])) csv_rows.append(('total_errors', db_summary['total_errors'])) csv_rows.append(('total_cookies', db_summary['total_cookies'])) csv_rows.append(('total_3p_cookies', db_summary['total_3p_cookies'])) csv_rows.append(('total_dom_storage', db_summary['total_dom_storage'])) csv_rows.append(('total_websockets', db_summary['total_websockets'])) csv_rows.append(('total_websocket_events', db_summary['total_websocket_events'])) csv_rows.append(('total_requests', db_summary['total_requests'])) csv_rows.append(('total_responses', db_summary['total_responses'])) csv_rows.append(('percent_requests_received', db_summary['percent_requests_received'])) csv_rows.append(('total_3p_requests', db_summary['total_3p_requests'])) csv_rows.append(('total_3p_responses', db_summary['total_3p_responses'])) csv_rows.append(('percent_3p_requests_received', db_summary['percent_3p_requests_received'])) self.utilities.write_csv(self.report_path,'db_summary.csv', csv_rows) # generate_db_summary_report def generate_stats_report(self): """ High level stats """ print('\t=============================') print('\t Processing High-Level Stats ') print('\t=============================') for tld_filter in self.top_tlds: csv_rows = [] if tld_filter: stats = self.analyzer.get_high_level_stats(tld_filter) else: stats = self.analyzer.get_high_level_stats() if self.tracker_threshold: filter_depth = self.tracker_threshold else: filter_depth = 'no_filter_used' csv_rows.append(('n_pages', stats['total_pages'])) csv_rows.append(('n_crawls', stats['total_crawls'])) csv_rows.append(('%_pages_ssl', stats['percent_pages_ssl'])) csv_rows.append(('n_requests_received', stats['total_requests_received'])) csv_rows.append(('%_requests_received_ssl', stats['percent_requests_ssl'])) csv_rows.append(('n_1p_requests_received', stats['total_requests_received_1p'])) csv_rows.append(('%_1p_requests_received_ssl', stats['percent_1p_requests_ssl'])) csv_rows.append(('n_3p_requests_received', stats['total_requests_received_3p'])) csv_rows.append(('%_3p_requests_received_ssl', stats['percent_3p_requests_ssl'])) csv_rows.append(('average_page_load_time', stats['average_page_load_time'])) csv_rows.append(('%_w/3p_request', stats['percent_w_3p_request'])) csv_rows.append(('%_w/3p_cookie', stats['percent_w_3p_cookie'])) csv_rows.append(('%_w/3p_script', stats['percent_w_3p_script'])) csv_rows.append(('mean_3p_domains', stats['3p_domains_mean'])) csv_rows.append(('median_3p_domains', stats['3p_domains_median'])) csv_rows.append(('mode_3p_domains', stats['3p_domains_mode'])) csv_rows.append(('mean_3p_cookies', stats['3p_cookies_mean'])) csv_rows.append(('median_3p_cookies', stats['3p_cookies_median'])) csv_rows.append(('mode_3p_cookies', stats['3p_cookies_mode'])) if tld_filter: self.utilities.write_csv(self.report_path,tld_filter+'-stats.csv',csv_rows) else: self.utilities.write_csv(self.report_path,'stats.csv',csv_rows) # generate_stats_report def generate_aggregated_tracking_attribution_report(self): """ generates ranked list of which entities collect data from the greatest number of crawls ('aggregated_tracking_attribution.csv') - entities which have subsidiaries are ranked according to the crawls their subsidiaries get data from as well - however, parent entities only get one hit on a crawl which has multiple subsidiaries present - for example, if a crawl has 'google analytics' and 'doubleclick' that is only one hit for 'google' """ print('\t======================================') print('\t Processing Aggregated Tracking Report ') print('\t======================================') for tld_filter in self.top_tlds: csv_rows = [] # write out data to csv for item in self.analyzer.get_aggregated_tracking_attribution(tld_filter): csv_rows.append(( item['percent_crawls'], item['owner_name'], item['owner_country'], self.utilities.get_domain_owner_lineage_combined_string(item['owner_id']) ) ) # we want to first sort by owner name and then by percentage # to account for cases where two owners have the same percentage value csv_rows.sort(key=lambda x: x[1].lower()) csv_rows.sort(key=lambda x: x[0],reverse=True) # insert header row after sort csv_rows.insert(0, ('percentage_crawls_tracked','owner','owner_country','owner_lineage')) # write out csv with tld prefix if applicable if tld_filter: self.utilities.write_csv(self.report_path,tld_filter+'-aggregated_tracking_attribution.csv',csv_rows) else: self.utilities.write_csv(self.report_path,'aggregated_tracking_attribution.csv',csv_rows) # generate_aggregated_tracking_attribution_report def generate_aggregated_3p_ssl_use_report(self): """ this report tells us the percentage of requests made to a given third-party are encrypted """ print('\t=========================================') print('\t Processing Aggregated 3P SSL Use Report ') print('\t=========================================') for tld_filter in self.top_tlds: csv_rows = [] for item in self.analyzer.get_aggregated_3p_ssl_use(tld_filter): csv_rows.append(( item['ssl_use'], item['owner_name'], item['owner_country'], self.utilities.get_domain_owner_lineage_combined_string(item['owner_id']) )) # we want to first sort by owner name and then by percentage # to account for cases where two owners have the same percentage value csv_rows.sort(key=lambda x: x[1].lower()) csv_rows.sort(key=lambda x: x[0],reverse=True) # insert header row after sort csv_rows.insert(0, ('percent_requests_encrypted','owner','owner_country','owner_lineage')) # write out csv with tld prefix if applicable if tld_filter: self.utilities.write_csv(self.report_path,tld_filter+'-3p_ssl_use.csv',csv_rows) else: self.utilities.write_csv(self.report_path,'3p_ssl_use.csv',csv_rows) # generate_aggregated_3p_ssl_use_report def generate_3p_domain_report(self): """ This report tells us the most commonly occuring third-party domains. """ print('\t==============================') print('\t Processing 3P Domains Report ') print('\t==============================') for tld_filter in self.top_tlds: csv_rows = [] csv_rows.append(('percent_total','domain','owner','owner_country', 'owner_lineage')) # get_3p_domain_percentages returns a list, we slice it to get only desired num_results for item in self.analyzer.get_3p_domain_percentages(tld_filter)[:self.num_results]: # figure out the lineage string if we know who owns the domain if item['owner_id'] != None: lineage_string = self.utilities.get_domain_owner_lineage_combined_string(item['owner_id']) else: lineage_string = None csv_rows.append(( item['percent_crawls'], item['domain'], item['owner_name'], item['owner_country'], lineage_string )) if tld_filter: self.utilities.write_csv(self.report_path,tld_filter+'-3p_domains.csv',csv_rows) else: self.utilities.write_csv(self.report_path,'3p_domains.csv',csv_rows) # generate_3p_domain_report def generate_3p_request_report(self,request_type=None): """ this queries the db to get all requests, domains, or domain owners next they are counted to find the most common and formatted to csv rows and returned """ if request_type == 'script': print('\t=============================') print('\t Processing 3P Script Report ') print('\t=============================') else: print('\t==============================') print('\t Processing 3P Request Report ') print('\t==============================') for tld_filter in self.top_tlds: csv_rows = [] csv_rows.append(('percent_total','request','type','domain','owner','owner_country','owner_lineage')) # get_3p_domain_percentages returns a list, we slice it to get only desired num_results for item in self.analyzer.get_3p_request_percentages(tld_filter,request_type)[:self.num_results]: # figure out the lineage string if we know who owns the domain if item['request_owner_id'] != None: lineage_string = self.utilities.get_domain_owner_lineage_combined_string(item['request_owner_id']) else: lineage_string = None csv_rows.append(( item['percent_crawls'], item['request_url'], item['request_type'], item['request_domain'], item['request_owner_name'], item['request_owner_country'], lineage_string )) if tld_filter: if request_type: self.utilities.write_csv(self.report_path,tld_filter+'-3p_'+request_type+'.csv',csv_rows) else: self.utilities.write_csv(self.report_path,tld_filter+'-3p_request.csv',csv_rows) else: if request_type: self.utilities.write_csv(self.report_path,'3p_'+request_type+'.csv',csv_rows) else: self.utilities.write_csv(self.report_path,'3p_request.csv',csv_rows) # generate_3p_request_report def generate_data_transfer_report(self): """ These reports tell us how much data was transferred across several dimensions """ print('\t==================================') print('\t Processing Data Transfer Reports ') print('\t==================================') for tld_filter in self.top_tlds: # set up filter and file names if tld_filter: summary_file_name = tld_filter+'-data_xfer_summary.csv' domain_file_name = tld_filter+'-data_xfer_by_domain.csv' aggregated_file_name = tld_filter+'-data_xfer_aggregated.csv' else: summary_file_name = 'data_xfer_summary.csv' domain_file_name = 'data_xfer_by_domain.csv' aggregated_file_name = 'data_xfer_aggregated.csv' # get the data from db, tuple of (response_domain, size, is_3p (boolean), domain_owner_id) response_sizes = self.sql_driver.get_response_sizes() # initialize vars first_party_data = 0 third_party_data = 0 total_data = 0 # need Counter object, allows sorting later domain_data = collections.Counter() owner_data = collections.Counter() # process each row for item in response_sizes: response_domain = item[0] response_size = item[1] response_is_3p = item[2] domain_owner_id = item[3] # this is the measure of all data downloaded total_data += response_size # measures for third and first party data if response_is_3p: third_party_data += response_size else: first_party_data += response_size # data by domain, increment if already in there, otherwise new entry if response_domain in domain_data: domain_data[response_domain] += response_size else: domain_data[response_domain] = response_size # only if we know the owner, increment if domain_owner_id: for lineage_id in self.utilities.get_domain_owner_lineage_ids(domain_owner_id): if lineage_id in owner_data: owner_data[lineage_id] += response_size else: owner_data[lineage_id] = response_size # avoid divide-by-zero if total_data == 0: print('\t\tTotal data is zero, no report') return # output data to csv summary_data_csv = [] summary_data_csv.append(('party','percent_total','data_transfered_bytes')) summary_data_csv.append(('all','100',total_data)) summary_data_csv.append(( 'First', round((first_party_data/total_data)*100, self.num_decimals), first_party_data)) summary_data_csv.append(( 'Third', round((third_party_data/total_data)*100, self.num_decimals), third_party_data)) self.utilities.write_csv(self.report_path,summary_file_name, summary_data_csv) # sort and output ranked data domain_data = domain_data.most_common() domain_data.sort() domain_data.sort(reverse=True, key=lambda item:item[1]) # for csv data domain_data_csv = [] domain_data_csv.append(('percent_total','domain','data_transfered_bytes')) # if num_results is None we get everything, otherwise stops at limit for item in domain_data[:self.num_results]: domain_data_csv.append(( round((item[1]/total_data)*100,self.num_decimals), item[0], item[1])) self.utilities.write_csv(self.report_path,domain_file_name, domain_data_csv) owner_data = self.utilities.get_most_common_sorted(owner_data) owner_data_csv = [] owner_data_csv.append(('percent_total','owner','owner_country','owner_lineage','data_transfered_bytes')) # get results for all known owners for item in owner_data: owner_data_csv.append(( round((item[1]/total_data)*100,self.num_decimals), self.domain_owners[item[0]]['owner_name'], self.domain_owners[item[0]]['country'], self.utilities.get_domain_owner_lineage_combined_string(item[0]), item[1] )) self.utilities.write_csv(self.report_path,aggregated_file_name, owner_data_csv) # generate_data_transfer_report def generate_use_report(self): """ This function handles the process of generating a csv report which details what percentage of pages use third-party content for specific uses, the number of requests made for a given type of use on a per-page basis, and the percentage of such requests which correspond to a third-party cookie. """ print('\t==========================') print('\t Processing 3P Use Report ') print('\t==========================') for tld_filter in self.top_tlds: use_data = self.analyzer.get_3p_use_data(tld_filter) all_uses = use_data['all_uses'] percentage_by_use = use_data['percentage_by_use'] average_use_occurance_per_page = use_data['average_use_occurance_per_crawl'] percentage_use_w_cookie = use_data['percentage_use_w_cookie'] percentage_use_ssl = use_data['percentage_use_ssl'] csv_rows = [] csv_rows.append(('use_category','percent_crawls_w_use','ave_occurances_per_page','percentage_of_use_w_cookie', 'percentage_of_use_ssl')) for use in sorted(all_uses): if percentage_by_use[use] != None: csv_rows.append(( use, percentage_by_use[use], average_use_occurance_per_page[use], percentage_use_w_cookie[use], percentage_use_ssl[use] )) else: csv_rows.append((use,None,None,None,None)) # write out csv with tld prefix if applicable if tld_filter: self.utilities.write_csv(self.report_path,tld_filter+'-3p_uses.csv',csv_rows) else: self.utilities.write_csv(self.report_path,'3p_uses.csv',csv_rows) # generate_use_report def generate_per_page_network_report(self): """ this report generates data necessary for graph/network analysis by outputting a list of page domains and the requests/owners they connect to on a per-page basis """ print('\t====================================') print('\t Processing Per-Page Network Report ') print('\t====================================') # put output here csv_rows = [] # header row for csv csv_rows.append(('page_start_url','page_final_url','page_accessed','3p_request_domain','3p_domain_owner','3p_domain_owner_country')) # process all records for item in self.analyzer.get_page_to_3p_network(): csv_rows.append(( item['page_start_url'], item['page_final_url'], item['page_accessed'], item['request_domain'], item['request_owner_name'], item['request_owner_country'] )) self.utilities.write_csv(self.report_path,'per_page_network_report.csv', csv_rows) # generate_per_page_network_report def generate_per_site_network_report(self): """ this report generates data necessary for graph/network analysis by outputting a list of page domains and the requests/owners they connect to aggregated on a per-site basis (eg combining all pages) """ print('\t================================') print('\t Processing Site Network Report ') print('\t================================') # put output here csv_rows = [] # header row for csv csv_rows.append(('page_domain','3p_request_domain','3p_domain_owner','3p_domain_owner_country')) for item in self.analyzer.get_site_to_3p_network(): csv_rows.append(( item['page_domain'], item['request_domain'], item['request_owner_name'], item['request_owner_country'] )) self.utilities.write_csv(self.report_path,'per_site_network_report.csv', csv_rows) # generate_per_site_network_report def generate_all_pages_request_dump(self): """ Full dump of all requests loaded by all pages across all load times. Default is 3p only, can be overridden. """ print('\t===================================') print('\t Processing All Pages request Dump ') print('\t===================================') # put output here csv_rows = [] # header row for csv csv_rows.append(( 'accessed', 'start_url', 'final_url', 'request_url', 'request_domain', 'domain_owner' )) # process all records for item in self.analyzer.get_all_pages_requests(): csv_rows.append(( item['accessed'], item['start_url'], item['final_url'], item['request_url'], item['request_domain'], item['request_domain_owner'] )) self.utilities.write_csv(self.report_path,'all_pages_request_dump.csv', csv_rows) # generate_all_pages_request_dump def generate_all_pages_cookie_dump(self): """ Full dump of all cookies loaded by all pages across all load times. Default is 1p and 3p, can be overridden to 3p only. """ print('\t==================================') print('\t Processing All Pages Cookie Dump ') print('\t==================================') # put output here csv_rows = [] # header row for csv csv_rows.append(( 'accessed', 'start_url', 'final_url', 'cookie_domain', 'cookie_owner', 'cookie_name', 'cookie_value' )) # process all records for item in self.analyzer.get_all_pages_cookies(): csv_rows.append(( item['accessed'], item['start_url'], item['final_url'], item['cookie_domain'], item['cookie_owner'], item['cookie_name'], item['cookie_value'] )) self.utilities.write_csv(self.report_path,'all_pages_cookie_dump.csv', csv_rows) # generate_all_pages_request_dump def generate_site_host_report(self): """ First, we update the domain table with the owners of the various ip addresses which gives us a mapping of pages to hosts. Second, we generate a network report for site domains to hosts. """ print('\t=====================') print('\t Updating Site Hosts ') print('\t=====================') self.analyzer.update_site_hosts() print('\t==============================') print('\t Generating Site Host Network ') print('\t==============================') site_host_data = self.analyzer.get_site_host_network() if len(site_host_data) == 0: print('\t\tNo site host data, skipping report.') return # put output here csv_rows = [] # header row for csv csv_rows.append(( 'page_domain', 'host_name' )) for item in site_host_data: csv_rows.append(( item['site_domain'], item['host_name'] )) self.utilities.write_csv(self.report_path,'site_hosts-network.csv', csv_rows) print('\t============================================') print('\t Generating Aggregate Host Ownership Report ') print('\t============================================') owner_occurances = [] for owner, in self.sql_driver.get_ip_owners(): owner_occurances.append(owner) csv_rows = [('owner','percent_sites_w_owner')] for item in self.utilities.get_most_common_sorted(owner_occurances): csv_rows.append((item[0],100*(item[1]/len(owner_occurances)))) self.utilities.write_csv(self.report_path,'site_hosts-aggregated.csv', csv_rows) # generate_site_host_report ############## # POLICYXRAY # ############## def initialize_policy_reports(self): """ Run various pre-production steps. """ print('\t====================================') print('\t Updating 3p Domain Disclosure Data ') print('\t====================================') #self.analyzer.update_request_disclosure() self.analyzer.update_crawl_disclosure() print('\t\t...done!') print('\t======================================') print('\t Getting Policy Types List and Counts ') print('\t======================================') # pre-populate with 'None' which gives all policies self.policy_types = [ { 'type' : None, 'count' : self.analyzer.get_policy_count() } ] for policy_type, in self.sql_driver.get_available_policy_types(): self.policy_types.append({ 'type': policy_type, 'count': self.analyzer.get_policy_count(policy_type=policy_type) }) print('\t\t...done!') # initialize_policy_reports def generate_policy_summary_report(self): """ Conducts prelminary analysis steps, determines what types of policies we have, and then initiates the pertinent reports. """ print('\t==================================') print('\t Generating Policy Summary Report ') print('\t==================================') # header row csv_rows = [('Type','N','Word Count','FK Grade','FRE', '% 3P Disclosed')] # get results for each policy_type for policy_type in self.policy_types: # makes reports clearer than 'None' if policy_type['type'] == None: this_policy_type = 'all' else: this_policy_type = policy_type['type'] print('\t\tProcessing %s...' % this_policy_type, end='', flush=True) # fetch results readability_scores = self.analyzer.get_readability_scores(policy_type=policy_type['type']) csv_rows.append(( this_policy_type, policy_type['count'], self.analyzer.get_average_policy_word_count(policy_type=policy_type['type']), readability_scores['ave_fkg'], readability_scores['ave_fre'], self.analyzer.get_percent_crawl_3p_domains_disclosed(policy_type=policy_type['type']) )) print('done!') self.utilities.write_csv(self.report_path,'policy-summary.csv', csv_rows) # generate_policy_summary_report def generate_policy_owner_disclosure_reports(self): """ Determines what types of policies we have, and then initiates the pertinent reports. """ print('\t======================================') print('\t Generating Company Disclosure Report ') print('\t======================================') # header row csv_rows = [('Type','N','%% 3P Disclosed')] print('\t\tProcessing ...', end='', flush=True) company_results = self.analyzer.get_disclosure_by_request_owner() csv_rows = [('Domain Owner','Total Occurances','Total Disclosures','Percent Disclosed')] for item in company_results: csv_rows.append((item,company_results[item][0],company_results[item][1],round(company_results[item][2],2))) print('done!') self.utilities.write_csv(self.report_path,'policy-owner_disclosure.csv',csv_rows) # generate_policy_owner_disclosure_reports def generate_policy_gdpr_report(self): """ Determine percentage of all policy types that contain gdpr article 9 terms. """ print('\t==============================') print('\t Generating GDPR Term Report ') print('\t==============================') term_list = [ 'racial or ethnic origin', 'political opinions', 'religious or philosophical beliefs', 'trade union membership', 'genetic data', 'biometric data', 'data concerning health', 'sex life', 'sexual orientation' ] self.generate_terms_report('policy-gdpr_terms.csv',term_list) # generate_policy_gdpr_report def generate_policy_pacification_report(self): """ Determine percentage of all policy types that contain pacification terms. """ print('\t=====================================') print('\t Generating Pacification Term Report ') print('\t=====================================') term_list = ['we value', 'we respect', 'important to us', 'help you', 'we care', 'committed to protecting', 'cares about', 'transparency'] self.generate_terms_report('policy-pacification_terms.csv',term_list) # generate_policy_pacification_report def generate_policy_pii_report(self): """ Determine percentage of all policy types that contain pacification terms. """ print('\t============================') print('\t Generating PII Term Report ') print('\t============================') term_list = ['ip address','internet protocol address', 'browser type', 'operating system'] self.generate_terms_report('policy-pii_terms.csv',term_list) # generate_policy_pacification_report def generate_terms_report(self,report_name,term_list): """ Generic function to generate reports on how often terms appear in policies. """ # set up header row csv_rows = [] header_row = ('Type','any term') for term in term_list: header_row = header_row + (term,) csv_rows.append(header_row) # get results for each policy_type for policy_type in self.policy_types: # makes reports clearer than 'None' if policy_type['type'] == None: this_policy_type = 'all' else: this_policy_type = policy_type['type'] print('\t\tProcessing %s...' % this_policy_type, end='', flush=True) this_csv_row = (this_policy_type,) this_csv_row = this_csv_row + (self.analyzer.get_terms_percentage(term_list,policy_type=policy_type['type'],policy_type_count=policy_type['count']),) for term in term_list: this_csv_row = this_csv_row + (self.analyzer.get_terms_percentage([term],policy_type=policy_type['type'],policy_type_count=policy_type['count']),) csv_rows.append(this_csv_row) print('done!') self.utilities.write_csv(self.report_path,report_name,csv_rows) # generate_policy_gdpr_report # Reporter
thezedwards/webXray
webxray/Reporter.py
Reporter.py
py
30,709
python
en
code
1
github-code
6
[ { "api_name": "webxray.Utilities.Utilities", "line_number": 38, "usage_type": "call" }, { "api_name": "webxray.Analyzer.Analyzer", "line_number": 41, "usage_type": "call" }, { "api_name": "webxray.SQLiteDriver.SQLiteDriver", "line_number": 49, "usage_type": "call" }, { "api_name": "webxray.PostgreSQLDriver.PostgreSQLDriver", "line_number": 52, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 383, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 384, "usage_type": "call" } ]
1741943302
import typing from typing import Optional, Tuple, Any, Type, Dict import numpy as np from .mode import Q from piquasso.core import _mixins from piquasso.api.exceptions import PiquassoException, InvalidProgram if typing.TYPE_CHECKING: from piquasso.api.program import Program class Instruction(_mixins.DictMixin, _mixins.RegisterMixin, _mixins.CodeMixin): """ Base class for all instructions. Args: params: Mapping of parameters specified by the users. extra_params: Mapping of extra parameters, typically calculated ones. """ NUMBER_OF_MODES: Optional[int] = None _subclasses: Dict[str, Type["Instruction"]] = {} def __init__( self, *, params: Optional[dict] = None, extra_params: Optional[dict] = None ) -> None: self._params: dict = params or dict() self._extra_params: dict = extra_params or dict() @property def params(self) -> dict: return self._params @property def _all_params(self) -> dict: return {**self._params, **self._extra_params} @property def modes(self) -> Tuple[int, ...]: return getattr(self, "_modes", tuple()) @modes.setter def modes(self, value: Tuple[int, ...]) -> None: self._validate_modes(value) self._modes = value def _as_code(self) -> str: if hasattr(self, "modes"): mode_string = ", ".join([str(mode) for mode in self.modes]) else: mode_string = "" if hasattr(self, "params"): params_string = "{}".format( ", ".join( [ f"{key}={self._param_repr(value)}" for key, value in self.params.items() ] ) ) else: params_string = "" return f"pq.Q({mode_string}) | pq.{self.__class__.__name__}({params_string})" @staticmethod def _param_repr(value: Any) -> str: if isinstance(value, np.ndarray): return "np." + repr(value) return value def on_modes(self, *modes: int) -> "Instruction": if modes is not tuple(): self.modes: Tuple[int, ...] = modes return self def _apply_to_program_on_register(self, program: "Program", register: Q) -> None: program.instructions.append(self.on_modes(*register.modes)) @classmethod def from_dict(cls, dict_: dict) -> "Instruction": """Creates an :class:`Instruction` instance from a dict specified. Args: dict_ (dict): The desired :class:`Instruction` instance in the format of a `dict`. Returns: Instruction: An :class:`Instruction` initialized using the specified `dict`. """ class_ = cls.get_subclass(dict_["type"]) instruction = class_(**dict_["attributes"]["constructor_kwargs"]) instruction.modes = dict_["attributes"]["modes"] return instruction @classmethod def set_subclass(cls, instruction: Type["Instruction"]) -> None: """Registers a class in the instruction subclass map. This is meaningful in contexts when one has multiple instructions with the same name. Example: When one creates a custom beamsplitter with name `Beamsplitter` and subclasses :class:`~piquasso.instructions.gates.Beamsplitter`, then for e.g. executing a Blackbird code will be performed with the custom one, not the original one. When one wants to use the original one in this case, one can reset it with this method. Args: instruction (Type[Instruction]): The instruction class to be registered. Raises: PiquassoException: When the class is not actually an instance of :class:`Insruction`. """ if not issubclass(instruction, Instruction): raise PiquassoException( f"The instruction '{instruction}' needs to be a subclass of " "'pq.Instruction'." ) cls._subclasses[instruction.__name__] = instruction @classmethod def get_subclass(cls, name: str) -> Type["Instruction"]: """Returns the instruction subclass specified by its name. Returns: Type[Instruction]: The instruction class. """ return cls._subclasses[name] def __repr__(self) -> str: if hasattr(self, "modes"): modes = "modes={}".format(self.modes) else: modes = "" if getattr(self, "params") != {}: params = "{}, ".format( ", ".join([f"{key}={value}" for key, value in self.params.items()]) ) else: params = "" classname = self.__class__.__name__ return f"<pq.{classname}({params}{modes})>" def __eq__(self, other: object) -> bool: if not isinstance(other, Instruction): return False return self.modes == other.modes and self.params == other.params def __init_subclass__(cls) -> None: super().__init_subclass__() cls.set_subclass(cls) def _validate_modes(self, modes): if self.NUMBER_OF_MODES is not None and len(modes) != self.NUMBER_OF_MODES: raise InvalidProgram( f"The modes '{modes}' got specifed for the instruction '{self}', but " f"exactly '{self.NUMBER_OF_MODES}' mode needs to be specified. " f"Concretely, the total number of modes specified for this instruction " f"is 'len(modes) == len({modes}) == {len(modes)} != " f"{self.NUMBER_OF_MODES}'." ) class Preparation(Instruction): """Base class for preparations.""" class Gate(Instruction): """Base class for gates.""" class Measurement(Instruction): r"""Base class for measurements."""
Budapest-Quantum-Computing-Group/piquasso
piquasso/api/instruction.py
instruction.py
py
5,969
python
en
code
19
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 10, "usage_type": "attribute" }, { "api_name": "piquasso.core._mixins.DictMixin", "line_number": 14, "usage_type": "attribute" }, { "api_name": "piquasso.core._mixins", "line_number": 14, "usage_type": "name" }, { "api_name": "piquasso.core._mixins.RegisterMixin", "line_number": 14, "usage_type": "attribute" }, { "api_name": "piquasso.core._mixins.CodeMixin", "line_number": 14, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.Type", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 28, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 43, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 47, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 72, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 73, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 80, "usage_type": "name" }, { "api_name": "mode.Q", "line_number": 84, "usage_type": "name" }, { "api_name": "typing.Type", "line_number": 109, "usage_type": "name" }, { "api_name": "piquasso.api.exceptions.PiquassoException", "line_number": 131, "usage_type": "call" }, { "api_name": "typing.Type", "line_number": 139, "usage_type": "name" }, { "api_name": "piquasso.api.exceptions.InvalidProgram", "line_number": 177, "usage_type": "call" } ]
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
135