path
stringlengths
13
14
screenshot_names
sequencelengths
1
11
code
stringlengths
1
7.42k
cell_type
stringclasses
1 value
325101\cell_7
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier from sklearn.svm import SVC """ Boiler-Plate/Feature-Engineering to get frame into a testable format """ used_downs = [1, 2, 3] df = df[df['down'].isin(used_downs)] valid_plays = ['Pass', 'Run', 'Sack'] df = df[df['PlayType'].isin(valid_plays)] pass_plays = ['Pass', 'Sack'] df['is_pass'] = df['PlayType'].isin(pass_plays).astype('int') df = df[['down', 'yrdline100', 'ScoreDiff', 'ydstogo', 'TimeSecs', 'is_pass']] (X, test) = train_test_split(df, test_size=0.2) y = X.pop('is_pass') test_y = test.pop('is_pass') rf = RandomForestClassifier(n_estimators=10) gb = GradientBoostingClassifier(n_estimators=10) sv = SVC() rf.fit(X, y) gb.fit(X, y) sv.fit(X, y) sv.score(test, test_y)
code
325602\cell_2
[ "application_vnd.jupyter.stderr_output_1.png", "text_plain_output_2.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn import grid_search from sklearn.preprocessing import LabelEncoder df = pd.read_csv('../input/nflplaybyplay2015.csv', low_memory=False) df.columns
code
325602\cell_5
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier """ Boiler-Plate/Feature-Engineering to get frame into a testable format """ used_downs = [1, 2, 3] df = df[df['down'].isin(used_downs)] valid_plays = ['Pass', 'Run', 'Sack'] df = df[df['PlayType'].isin(valid_plays)] pass_plays = ['Pass', 'Sack'] df['is_pass'] = df['PlayType'].isin(pass_plays).astype('int') df = df[['down', 'yrdline100', 'ScoreDiff', 'PosTeamScore', 'DefTeamScore', 'ydstogo', 'TimeSecs', 'ydsnet', 'is_pass', 'Drive']] (X, test) = train_test_split(df, test_size=0.2) y = X.pop('is_pass') test_y = test.pop('is_pass') parameters = {} clf = RandomForestClassifier(n_jobs=-1, oob_score=True, n_estimators=100, min_samples_leaf=12, max_features=0.8) clf.fit(X, y)
code
325602\cell_6
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier """ Boiler-Plate/Feature-Engineering to get frame into a testable format """ used_downs = [1, 2, 3] df = df[df['down'].isin(used_downs)] valid_plays = ['Pass', 'Run', 'Sack'] df = df[df['PlayType'].isin(valid_plays)] pass_plays = ['Pass', 'Sack'] df['is_pass'] = df['PlayType'].isin(pass_plays).astype('int') df = df[['down', 'yrdline100', 'ScoreDiff', 'PosTeamScore', 'DefTeamScore', 'ydstogo', 'TimeSecs', 'ydsnet', 'is_pass', 'Drive']] (X, test) = train_test_split(df, test_size=0.2) y = X.pop('is_pass') test_y = test.pop('is_pass') parameters = {} clf = RandomForestClassifier(n_jobs=-1, oob_score=True, n_estimators=100, min_samples_leaf=12, max_features=0.8) clf.fit(X, y) clf.score(test, test_y)
code
325674\cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) from matplotlib import pyplot as plt
code
325674\cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) print(global_temperatures.info())
code
325674\cell_4
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures[global_temperatures.index.year > 2000]['LandAverageTemperature'].plot(figsize=(13, 7))
code
325674\cell_6
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures.groupby(global_temperatures.index.year)['LandAverageTemperature'].mean().plot(figsize=(13, 7))
code
326100\cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) from matplotlib import pyplot as plt import seaborn as sbn
code
326100\cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) print(global_temperatures.info())
code
326100\cell_4
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures[global_temperatures.index.year > 2000]['LandAverageTemperature'].plot(figsize=(13, 7))
code
326100\cell_6
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures.groupby(global_temperatures.index.year)['LandAverageTemperature'].mean().plot(figsize=(13, 7))
code
326100\cell_8
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures.groupby(global_temperatures.index.year)['LandAverageTemperatureUncertainty'].mean().plot(figsize=(13, 7))
code
326306\cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas import seaborn import matplotlib.pyplot as plot seaborn.set(style='darkgrid', palette='husl')
code
326306\cell_10
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png" ]
import matplotlib.pyplot as plot import pandas import seaborn data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time] seaborn.boxplot(x='race', y='leveling_time', data=characters_no_slowpokes)
code
326306\cell_2
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp']
code
326306\cell_3
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime)
code
326306\cell_4
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char')
code
326306\cell_5
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') characters['leveling_time'] = characters['ding80time'] - characters['last70time']
code
326306\cell_6
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time]
code
326306\cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') characters[characters['leveling_time'].isin(characters['leveling_time'].nsmallest(10))].sort_values('leveling_time')
code
326306\cell_8
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_5.png" ]
import pandas import seaborn data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time] seaborn.boxplot(x='charclass', y='leveling_time', data=characters_no_slowpokes)
code
326306\cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png" ]
import matplotlib.pyplot as plot import pandas import seaborn data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time] plot.figure(figsize=(45, 10)) seaborn.boxplot(x='guild', y='leveling_time', data=characters_no_slowpokes)
code
326551\cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes print(crashes.describe())
code
326551\cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
326551\cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes
code
326551\cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes crashes.head()
code
326551\cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes crashes['Date'][1].split('/')
code
326551\cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes set(crashes['Operator'].tolist())
code
327075\cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/Indicators.csv') Indicator_array = df[['IndicatorName', 'IndicatorCode']].drop_duplicates().values modified_indicators = [] unique_indicator_codes = [] for ele in Indicator_array: indicator = ele[0] indicator_code = ele[1].strip() if indicator_code not in unique_indicator_codes: new_indicator = re.sub('[,()]', '', indicator).lower() new_indicator = re.sub('-', ' to ', new_indicator).lower() modified_indicators.append([new_indicator, indicator_code]) unique_indicator_codes.append(indicator_code) Indicators = pd.DataFrame(modified_indicators, columns=['IndicatorName', 'IndicatorCode']) Indicators = Indicators.drop_duplicates() key_word_dict = {} key_word_dict['Demography'] = ['population', 'birth', 'death', 'fertility', 'mortality', 'expectancy'] key_word_dict['Food'] = ['food', 'grain', 'nutrition', 'calories'] key_word_dict['Trade'] = ['trade', 'import', 'export', 'good', 'shipping', 'shipment'] key_word_dict['Health'] = ['health', 'desease', 'hospital', 'mortality', 'doctor'] key_word_dict['Economy'] = ['income', 'gdp', 'gni', 'deficit', 'budget', 'market', 'stock', 'bond', 'infrastructure'] key_word_dict['Energy'] = ['fuel', 'energy', 'power', 'emission', 'electric', 'electricity'] key_word_dict['Education'] = ['education', 'literacy'] key_word_dict['Employment'] = ['employed', 'employment', 'umemployed', 'unemployment'] key_word_dict['Rural'] = ['rural', 'village'] key_word_dict['Urban'] = ['urban', 'city'] feature = 'Health' for indicator_ele in Indicators.values: for ele in key_word_dict[feature]: word_list = indicator_ele[0].split() if ele in word_list or ele + 's' in word_list: print(indicator_ele) break
code
327075\cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/Indicators.csv') Indicator_array = df[['IndicatorName', 'IndicatorCode']].drop_duplicates().values modified_indicators = [] unique_indicator_codes = [] for ele in Indicator_array: indicator = ele[0] indicator_code = ele[1].strip() if indicator_code not in unique_indicator_codes: new_indicator = re.sub('[,()]', '', indicator).lower() new_indicator = re.sub('-', ' to ', new_indicator).lower() modified_indicators.append([new_indicator, indicator_code]) unique_indicator_codes.append(indicator_code) Indicators = pd.DataFrame(modified_indicators, columns=['IndicatorName', 'IndicatorCode']) Indicators = Indicators.drop_duplicates() print(Indicators.shape)
code
327240\cell_10
[ "text_plain_output_1.png" ]
import matplotlib import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') matplotlib.rcParams['figure.figsize'] = (10, 5) ops = fileR['Operator'].value_counts()[:20] fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] matplotlib.rcParams['figure.figsize'] = (10, 5) fileR[['Fatalities', 'year_group']].groupby('year_group').count().plot(kind='bar', fontsize=14, legend=True, color='g', title='Fatalities based on decades')
code
327240\cell_12
[ "image_output_1.png", "text_plain_output_1.png" ]
from matplotlib import cm import matplotlib.pyplot as plt import numpy as np import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] labels = ['1900-1910', '1910-1920', '1920-1930', '1930-1940', '1940-1950', '1950-1960', '1960-1970', '1970-1980', '1980-1990', '1990-2000', '2000-2010'] sizes = fileR[['Fatalities', 'year_group']].groupby('year_group').sum() explode = (0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0) colors = cm.Set1(np.arange(20) / 30.0) plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=45) plt.axis('equal') plt.show()
code
327240\cell_17
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] subfile2 = fileR[['Aboard', 'Fatalities', 'year', 'Operator', 'Type']].groupby('Operator').sum() subfile2['survived'] = subfile2['Aboard'] - subfile2['Fatalities'] subfile2['percentageSurvived'] = subfile2['survived'] / subfile2['Aboard'] subfile3 = subfile2[subfile2['year'] > max(fileR['year'])] highSurvive = subfile3.sort_values(by='percentageSurvived', ascending=False)[:20] highSurvive
code
327240\cell_19
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] subfile2 = fileR[['Aboard', 'Fatalities', 'year', 'Operator', 'Type']].groupby('Operator').sum() subfile2['survived'] = subfile2['Aboard'] - subfile2['Fatalities'] subfile2['percentageSurvived'] = subfile2['survived'] / subfile2['Aboard'] subfile3 = subfile2[subfile2['year'] > max(fileR['year'])] highSurvive = subfile3.sort_values(by='percentageSurvived', ascending=False)[:20] highSurvive highSurvive['percentageSurvived'].plot(kind='bar', color='g', fontsize=14, title='Operators with high percentage of survivers')
code
327240\cell_21
[ "image_output_1.png" ]
import pandas as ps import pylab import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] subfile = fileR[['Aboard', 'Fatalities', 'year']].groupby('year').sum() subfile['survived'] = subfile['Aboard'] - subfile['Fatalities'] pylab.plot(subfile['Aboard'], label='Aboard') pylab.plot(subfile['Fatalities'], label='Fatalities') pylab.plot(subfile['survived'], label='Survived') pylab.legend(loc='upper left')
code
327240\cell_25
[ "text_html_output_1.png" ]
import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] countrySub = fileR.groupby('countries').sum() dangerousCountries = countrySub.sort_values('Fatalities', ascending=False) dangerousCountries['Fatalities'][:20].plot(kind='bar', color='g', fontsize=14, title='Highest fatalities based on the location')
code
327240\cell_4
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as ps fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') print(fileR.head())
code
327240\cell_6
[ "image_output_1.png", "text_plain_output_1.png" ]
import matplotlib import pandas as ps fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') matplotlib.rcParams['figure.figsize'] = (10, 5) ops = fileR['Operator'].value_counts()[:20] ops.plot(kind='bar', legend='Operator', color='g', fontsize=10, title='Operators with Highest Crashes')
code
327240\cell_7
[ "image_output_1.png", "text_plain_output_1.png" ]
import pandas as ps fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') types = fileR['Type'].value_counts()[:20] types.plot(kind='bar', legend='Types', color='g', fontsize=10, title='Types with Highest Crashes')
code
327702\cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
327702\cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/pitching.csv') df
code
327702\cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
X
code
327702\cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import svm import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/pitching.csv') df df_sg = df[df.gs == df.g] Y = df_sg.w / df_sg.gs Y_class = np.floor(Y) clf = svm.SVC() clf.fit(X, Y_class)
code
328194\cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts dfResults = pd.read_csv('../input/201608-SanFracisco-HydrofoilProTour.csv') def doRating(numRaces, dfResults): for raceCol in range(1, numRaces + 1): dfResults['Rating'] = ts.rate(list(zip(dfResults['Rating'].T.values.tolist())), ranks=dfResults['R' + raceCol].T.values.tolist()) dfResults = doRating(16, dfResults) dfResults['Rating'] = ts.Rating() ts.rate([ts.Rating(), ts.Rating()], ranks=[1, 0])
code
328194\cell_12
[ "text_plain_output_1.png" ]
r1
code
328194\cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts dfResults = pd.read_csv('../input/201608-SanFracisco-HydrofoilProTour.csv') def doRating(numRaces, dfResults): for raceCol in range(1, numRaces + 1): dfResults['Rating'] = ts.rate(list(zip(dfResults['Rating'].T.values.tolist())), ranks=dfResults['R' + raceCol].T.values.tolist()) dfResults = doRating(16, dfResults)
code
328194\cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts dfResults = pd.read_csv('../input/201608-SanFracisco-HydrofoilProTour.csv') def doRating(numRaces, dfResults): for raceCol in range(1, numRaces + 1): dfResults['Rating'] = ts.rate(list(zip(dfResults['Rating'].T.values.tolist())), ranks=dfResults['R' + raceCol].T.values.tolist()) dfResults = doRating(16, dfResults) dfResults['Rating']
code
328714\cell_1
[ "application_vnd.jupyter.stderr_output_1.png", "text_plain_output_2.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd names_data = pd.read_csv('../input/NationalNames.csv') frequent_names = names_data[names_data['Count'] > 1000] indexed_names = frequent_names.set_index(['Year', 'Name'])['Count'] def ambiguity_measure(grouped_frame): return 2 * (1 - grouped_frame.max() / grouped_frame.sum()) ambiguity_data = ambiguity_measure(indexed_names.groupby(level=['Year', 'Name'])) yearly_ambiguity = ambiguity_data.groupby(level='Year')
code
328714\cell_2
[ "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_8.png", "text_plain_output_1.png", "text_plain_output_11.png", "text_plain_output_2.png", "text_plain_output_3.png", "text_plain_output_5.png", "text_plain_output_7.png", "text_plain_output_9.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd names_data = pd.read_csv('../input/NationalNames.csv') frequent_names = names_data[names_data['Count'] > 1000] indexed_names = frequent_names.set_index(['Year', 'Name'])['Count'] def ambiguity_measure(grouped_frame): return 2 * (1 - grouped_frame.max() / grouped_frame.sum()) ambiguity_data = ambiguity_measure(indexed_names.groupby(level=['Year', 'Name'])) yearly_ambiguity = ambiguity_data.groupby(level='Year') print('Average ambiguity: %s\n' % str(ambiguity_data.mean())) print('Average by year: %s\n' % str(yearly_ambiguity.mean())) print('Most ambiguous by year: %s' % str(yearly_ambiguity.idxmax().apply(lambda x: x[1])))
code