hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
7fc1eaf126fdc8571f5a1aa0495912c04e0c74d3
2,893
py
Python
src/ztc/nginx/timelog.py
magistersart/ZTC_fork
ce72734ea575d9846b5b81f3efbfd14fa1f7e532
[ "PostgreSQL" ]
null
null
null
src/ztc/nginx/timelog.py
magistersart/ZTC_fork
ce72734ea575d9846b5b81f3efbfd14fa1f7e532
[ "PostgreSQL" ]
null
null
null
src/ztc/nginx/timelog.py
magistersart/ZTC_fork
ce72734ea575d9846b5b81f3efbfd14fa1f7e532
[ "PostgreSQL" ]
null
null
null
#!/usr/bin/env python """ Nginx TimeLog check class: calculates min/avg/max upstream response times. Usage: 1. configure time_log log format in nginx config (http section): log_format time_log '$upstream_response_time $request <anything you want>'; 2. Add timelog log to all servers/locations you need to monitor: access_log /var/log/nginx/time.log time_log; 3. Check log path on config file /etc/ztc/nginx.conf 4. Make sure zabbix can execute nginx_reqtime.py script under root (to allow cleaning of the log) 5. It might be good idea to place this log to tmpfs. This file is part of ZTC and distributed under the same license. http://bitbucket.org/rvs/ztc/ Copyright (c) 2011 Vladimir Rusinov <[email protected]> """ from ztc.check import ZTCCheck from ztc.store import ZTCStore class NginxTimeLog(ZTCCheck): """ Nginx upsteam response min/avg/max calculation """ name = 'nginx' OPTPARSE_MIN_NUMBER_OF_ARGS = 1 OPTPARSE_MAX_NUMBER_OF_ARGS = 1 def _get(self, metric=None, *args, **kwargs): return self.get_resptime(metric) def get_resptime(self, metric): """ get min/avg/max response time """ data = None if metric != 'avg': data = self.read_from_store() if not data: data = self.read_timelog() self.save_to_store(data) return data[metric] def read_timelog(self): """ really open timelog and calculate data """ mn = -1.0 mx = -1.0 avg = 0.0 n = 0 fn = self.config.get('timelog', '/var/log/nginx/time.log') try: f = open(fn, 'a+') for l in f.readlines(): if l.startswith('-'): # skip non-upstream lines with no $upstream_response_time continue r = l.split()[0] # response time should be in first col r = float(r) if mn < 0: mn = r else: mn = min(r, mn) mx = max(r, mx) self.logger.debug("step %i: avg=%.2f, max=%.2f, min=%.2f" % (n, avg, mx, mn)) avg += r n += 1 f.truncate(0) f.close() except IOError: self.logger.exception("I/O error on time log") if n > 0: avg = avg / n else: self.logger.warn('there was no new records in time log') # set mn, mx = 0 if no avg data present mn = max(0, mn) mx = max(0, mx) return {'min': mn, 'max': mx, 'avg': avg} def save_to_store(self, data): st = ZTCStore('nginx_reqtime', self.options) st.set(data) def read_from_store(self): st = ZTCStore('nginx_reqtime', self.options) return st.get()
28.93
77
0.555133
3d012978fab5574b4b0eaed49cd7643bab61e117
851
py
Python
frappe-bench/apps/erpnext/erpnext/patches/v9_0/set_schedule_date_for_material_request_and_purchase_order.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
1
2021-04-29T14:55:29.000Z
2021-04-29T14:55:29.000Z
frappe-bench/apps/erpnext/erpnext/patches/v9_0/set_schedule_date_for_material_request_and_purchase_order.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/patches/v9_0/set_schedule_date_for_material_request_and_purchase_order.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
1
2021-04-29T14:39:01.000Z
2021-04-29T14:39:01.000Z
# Copyright (c) 2017, Frappe and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe def execute(): for doctype in ("Material Request", "Purchase Order"): frappe.reload_doctype(doctype) frappe.reload_doctype(doctype + " Item") if not frappe.db.has_column(doctype, "schedule_date"): continue #Update only submitted MR for record in frappe.get_all(doctype, filters= [["docstatus", "=", 1]], fields=["name"]): doc = frappe.get_doc(doctype, record) if doc.items: if not doc.schedule_date: schedule_dates = [d.schedule_date for d in doc.items if d.schedule_date] if len(schedule_dates) > 0: min_schedule_date = min(schedule_dates) frappe.db.set_value(doctype, record, "schedule_date", min_schedule_date, update_modified=False)
35.458333
91
0.726204
3d4551b855902436177ea00924846cf8238891dd
3,201
py
Python
Project Euler Questions 1 - 10/Project Euler Question 8.py
Clayton-Threm/Coding-Practice
6671e8a15f9e797338caa617dae45093f4157bc1
[ "MIT" ]
1
2020-02-11T02:03:02.000Z
2020-02-11T02:03:02.000Z
Project Euler Questions 1 - 10/Project Euler Question 8.py
Clayton-Threm/Coding-Practice
6671e8a15f9e797338caa617dae45093f4157bc1
[ "MIT" ]
null
null
null
Project Euler Questions 1 - 10/Project Euler Question 8.py
Clayton-Threm/Coding-Practice
6671e8a15f9e797338caa617dae45093f4157bc1
[ "MIT" ]
null
null
null
#Project Euler Question 8 #The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. #73167176531330624919225119674426574742355349194934 #96983520312774506326239578318016984801869478851843 #85861560789112949495459501737958331952853208805511 #12540698747158523863050715693290963295227443043557 #66896648950445244523161731856403098711121722383113 #62229893423380308135336276614282806444486645238749 #30358907296290491560440772390713810515859307960866 #70172427121883998797908792274921901699720888093776 #65727333001053367881220235421809751254540594752243 #52584907711670556013604839586446706324415722155397 #53697817977846174064955149290862569321978468622482 #83972241375657056057490261407972968652414535100474 #82166370484403199890008895243450658541227588666881 #16427171479924442928230863465674813919123162824586 #17866458359124566529476545682848912883142607690042 #24219022671055626321111109370544217506941658960408 #07198403850962455444362981230987879927244284909188 #84580156166097919133875499200524063689912560717606 #05886116467109405077541002256983155200055935729725 #71636269561882670428252483600823257530420752963450 #Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? def adjacent(x): long_number = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450 long_number_list = [] long_number_list[:] = str(long_number) result = 1 highest_adjacent = 0 min_range = 0 max_range = x long_number_list = [int(i) for i in long_number_list] for num in long_number_list: adjacent_check = (long_number_list[min_range:max_range]) if 0 not in adjacent_check: for check in adjacent_check: result = result * (check) if (result > highest_adjacent): highest_adjacent = result highest_list = adjacent_check.copy() adjacent_check.clear() result = 1 min_range += 1 max_range += 1 #print (highest_list, "is the highest", x, "adjacent term list.") highest_adjacent = ("{:,}".format(highest_adjacent)) return highest_adjacent print(adjacent(13), "is the greatest product.")
58.2
1,018
0.860356
1840e87be59bd6818b0b1170d5b7b76a9db29ded
1,824
py
Python
python/pyopenGL/ogl1/ogl_8_multiple_plots.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/pyopenGL/ogl1/ogl_8_multiple_plots.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/pyopenGL/ogl1/ogl_8_multiple_plots.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
#// last done till 43 pg no do the graph inequalities the next day. from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import sys #from numpy import * import numpy as np import math def init(): glClearColor(1.0,1.0,1.0,1.0) gluOrtho2D(-5.0,5.0,-5.0,5.0) def plotfunc(): glClear(GL_COLOR_BUFFER_BIT) glColor3f(0.0,0.0,0.0) # color glPointSize(3.0) for x in np.arange(-5.0,5.0,0.01): #y=x*x-2 #y=x**3-3*x-1 #y=x**4-5*x**3+x**2-3*x-1 #y=math.sin(x) #y=math.sin(3*x) a=7*x**2 y=2*math.cos(x)*math.sin(x)#+x**3-x**2 k=math.sqrt(5**2-x**2) # can replace almost any function here! #y=x**2 b=x**3 #y=x**4+7*x #glBegin(GL_POINTS) glBegin(GL_POINTS) glColor3f(0.9,0.0,0.9) # color glVertex2f(x,y) glColor3f(0.3,0.5,0.0) # color glVertex2f(x+0.5,y+0.5) glColor3f(0.4,0.4,0.5) # color glVertex2f(x,a) glColor3f(0.0,5.0,0.7) # color glVertex2f(x,b) glColor3f(0.9,0.5,0.7) # color for circle glVertex2f(x,k) glColor3f(0.0,5.0,0.7) # color glVertex2f(x,-k) glEnd() # adding coordinates glBegin(GL_LINES) glVertex2f(-5.0,0.0) glVertex2f(5.0,0.0) glVertex2f(0.0,5.0) glVertex2f(0.0,-5.0) glEnd() glFlush() def main(): glutInit(sys.argv) # tells the python we are going to be displaying GLUT style graphics glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutCreateWindow("Plot Points") glutInitWindowSize(400,400) glutInitWindowPosition(50,50) glutDisplayFunc(plotfunc) init() glutMainLoop() main()
26.057143
120
0.542215
62fc25c9eb93dfcc9505716fcea3569679a26014
5,230
py
Python
rbac/ledger_sync/inbound/listener.py
akgunkel/sawtooth-next-directory
a88833033ab30e9091479a38947f04c5e396ca46
[ "Apache-2.0" ]
null
null
null
rbac/ledger_sync/inbound/listener.py
akgunkel/sawtooth-next-directory
a88833033ab30e9091479a38947f04c5e396ca46
[ "Apache-2.0" ]
1
2019-07-08T22:32:43.000Z
2019-07-08T22:32:43.000Z
rbac/ledger_sync/inbound/listener.py
akgunkel/sawtooth-next-directory
a88833033ab30e9091479a38947f04c5e396ca46
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Contributors to Hyperledger Sawtooth # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ """ Sawtooth Inbound Transaction Queue Listener """ from rethinkdb import r from sawtooth_sdk.protobuf import batch_pb2 from rbac.common.logs import get_default_logger from rbac.common.sawtooth.client_sync import ClientSync from rbac.common.sawtooth import batcher from rbac.ledger_sync.database import Database LOGGER = get_default_logger(__name__) def process(rec, database): """ Process inbound queue records """ try: if "batch" not in rec or not rec["batch"]: database.run_query( database.get_table("inbound_queue").get(rec["id"]).delete() ) rec["sync_direction"] = "inbound" database.run_query(database.get_table("sync_errors").insert(rec)) return batch = batch_pb2.Batch() batch.ParseFromString(rec["batch"]) batch_list = batcher.batch_to_list(batch=batch) status = ClientSync().send_batches_get_status(batch_list=batch_list) if status[0]["status"] == "COMMITTED": if "metadata" in rec and rec["metadata"]: data = { "address": rec["address"], "object_type": rec["object_type"], "object_id": rec["object_id"], "provider_id": rec["provider_id"], "created_at": r.now(), "updated_at": r.now(), **rec["metadata"], } query = ( database.get_table("metadata") .get(rec["address"]) .replace( lambda doc: r.branch( # pylint: disable=singleton-comparison (doc == None), # noqa r.expr(data), doc.merge( {"metadata": rec["metadata"], "updated_at": r.now()} ), ) ) ) result = database.run_query(query) if (not result["inserted"] and not result["replaced"]) or result[ "errors" ] > 0: LOGGER.warning( "error updating metadata record:\n%s\n%s", result, query ) rec["sync_direction"] = "inbound" database.run_query(database.get_table("changelog").insert(rec)) database.run_query( database.get_table("inbound_queue").get(rec["id"]).delete() ) else: rec["error"] = get_status_error(status) rec["sync_direction"] = "inbound" database.run_query(database.get_table("sync_errors").insert(rec)) database.run_query( database.get_table("inbound_queue").get(rec["id"]).delete() ) except Exception as err: # pylint: disable=broad-except LOGGER.exception( "%s exception processing inbound record:\n%s", type(err).__name__, rec ) LOGGER.exception(err) def get_status_error(status): """ Try to get the error from a transaction status """ try: LOGGER.warning("Error status %s", status) return status[0]["invalid_transactions"][0]["message"] except Exception: # pylint: disable=broad-except return "Unhandled error {}".format(status) def listener(): """ Listener for Sawtooth State changes """ try: database = Database() database.connect() LOGGER.info("Reading queued Sawtooth transactions") while True: feed = database.run_query(database.get_table("inbound_queue")) count = 0 for rec in feed: process(rec, database) count = count + 1 if count == 0: break LOGGER.info("Processed %s records in the inbound queue", count) LOGGER.info("Listening for incoming Sawtooth transactions") feed = database.run_query(database.get_table("inbound_queue").changes()) for rec in feed: if rec["new_val"] and not rec["old_val"]: # only insertions process(rec["new_val"], database) except Exception as err: # pylint: disable=broad-except LOGGER.exception("Inbound listener %s exception", type(err).__name__) LOGGER.exception(err) finally: try: database.disconnect() except UnboundLocalError: pass
38.175182
84
0.555258
9ab3b6ab4175317ba8bba745b86688474420a649
3,900
py
Python
research/nlp/skipgram/src/skipgram.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/nlp/skipgram/src/skipgram.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/nlp/skipgram/src/skipgram.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ skipgram network """ import os import numpy as np import mindspore.common.dtype as mstype import mindspore.nn as nn import mindspore.ops as ops from mindspore.common.initializer import Uniform class SkipGram(nn.Cell): """Skip gram model of word2vec. Attributes: vocab_size: Vocabulary size. emb_dimension: Embedding dimension. c_emb: Embedding for center word. n_emb: Embedding for neighbor word. """ def __init__(self, vocab_size, emb_dimension): """Initialize model parameters. Apply for two embedding layers. Initialize layer weight. Args: vocab_size: Vocabulary size. emb_dimension: Embedding dimension. Returns: None """ super(SkipGram, self).__init__() self.vocab_size = vocab_size self.emb_dimension = emb_dimension self.c_emb = nn.Embedding(vocab_size, emb_dimension, embedding_table=Uniform(0.5/emb_dimension)) self.n_emb = nn.Embedding(vocab_size, emb_dimension, embedding_table=Uniform(0)) # Operators (stateless) self.mul = ops.Mul() self.sum = ops.ReduceSum(keep_dims=False) self.logsigmoid = nn.LogSigmoid() self.expand_dims = ops.ExpandDims() self.squeeze = ops.Squeeze() self.transpose = ops.Transpose() self.perm = (0, 2, 1) self.cast = ops.Cast() def construct(self, center_word, pos_word, neg_words): """Forward network construction. Args: center_word: center word ids. pos_word: positive word ids. neg_words: negative samples' word ids. Returns: loss. """ emb_u = self.c_emb(center_word) # (batch_size, emb_dim) emb_v = self.n_emb(pos_word) score = self.mul(emb_u, emb_v) # (batch_size, emb_dim) score = self.sum(score, 1) # (batch_size, ) score = self.logsigmoid(score) neg_emb_v = self.n_emb(neg_words) # (batch_size, neg_num, emb_dim) neg_emb_v = self.transpose(neg_emb_v, self.perm) # (batch_size, emb_dim, neg_num) emb_u2 = self.expand_dims(emb_u, 2) # (batch_size, emb_dim, 1) neg_score = self.mul(neg_emb_v, emb_u2) # (batch_size, emb_dim, neg_num) neg_score = self.transpose(neg_score, self.perm) # (batch_size, neg_num, emb_dim) neg_score = self.sum(neg_score, 2) # (batch_size, neg_num) neg_score = self.logsigmoid(-1 * neg_score) neg_score = self.sum(neg_score, 1) # (batch_size, ) loss = self.cast(-(score + neg_score), mstype.float32) return loss def save_w2v_emb(self, dir_path, id2word): """Save word2vec embeddings to file. Args: id2word: map wid to word. filename: file name. Returns: None. """ w2v_emb = dict() parameters = [] for item in self.c_emb.get_parameters(): parameters.append(item) emb_mat = parameters[0].asnumpy() for wid, emb in enumerate(emb_mat): word = id2word[wid] w2v_emb[word] = emb np.save(os.path.join(dir_path, 'w2v_emb.npy'), w2v_emb)
33.333333
104
0.623333
49997d7ba1396e63db8a84c1b6ca053ca4b41b0d
809
py
Python
_collections/articles/obstoanki_setup.py
SubZeroX/SubZeroX.github.io
1df9c43d538af7812e68ac07d7591f258c8c1619
[ "MIT" ]
null
null
null
_collections/articles/obstoanki_setup.py
SubZeroX/SubZeroX.github.io
1df9c43d538af7812e68ac07d7591f258c8c1619
[ "MIT" ]
null
null
null
_collections/articles/obstoanki_setup.py
SubZeroX/SubZeroX.github.io
1df9c43d538af7812e68ac07d7591f258c8c1619
[ "MIT" ]
null
null
null
import urllib.request import sys import subprocess import os SCRIPT_URL = "".join( [ "https://github.com/Pseudonium/Obsidian_to_Anki/releases/latest", "/download/obsidian_to_anki.py" ] ) REQUIRE_URL = "".join( [ "https://github.com/Pseudonium/Obsidian_to_Anki/releases/latest", "/download/requirements.txt" ] ) with urllib.request.urlopen(SCRIPT_URL) as script: with open("obsidian_to_anki.py", "wb") as f: f.write(script.read()) with urllib.request.urlopen(REQUIRE_URL) as require: with open("obstoankirequire.txt", "wb") as f: f.write(require.read()) subprocess.check_call( [sys.executable, "-m", "pip", "install", "-r", "obstoankirequire.txt"] ) os.remove("obstoankirequire.txt")
26.096774
79
0.631644
91f26782088d79019bc4f02ecd720aa9fc815596
2,626
py
Python
Assembler/tests/test_labels_beta.py
Laegluin/mikrorechner
7e5e878072c941e422889465c43dea838b83e5fd
[ "MIT" ]
1
2019-01-28T01:53:20.000Z
2019-01-28T01:53:20.000Z
Assembler/tests/test_labels_beta.py
Laegluin/mikrorechner
7e5e878072c941e422889465c43dea838b83e5fd
[ "MIT" ]
null
null
null
Assembler/tests/test_labels_beta.py
Laegluin/mikrorechner
7e5e878072c941e422889465c43dea838b83e5fd
[ "MIT" ]
null
null
null
from tests import test import labels as lb def test_is_datastring(): test.assertTrue(lb.is_datastring('0xFfA')) test.assertTrue(lb.is_datastring('-123645')) test.assertTrue(lb.is_datastring('235')) test.assertTrue(lb.is_datastring('0b0101001')) test.assertFalse(lb.is_datastring('0xFfg')) test.assertFalse(lb.is_datastring('-0xFfA')) test.assertFalse(lb.is_datastring('-0b1')) test.assertFalse(lb.is_datastring('')) def test_necessary_byte_storage(): test.assertEquals(lb.necessary_byte_storage('R4 = R5 + R6'), 4) test.assertEquals(lb.necessary_byte_storage('\t'), 0) test.assertEquals(lb.necessary_byte_storage('0xFFFFFF'), 3) test.assertEquals(lb.necessary_byte_storage('0'), 1) test.assertEquals(lb.necessary_byte_storage('256'), 2) test.assertEquals(lb.necessary_byte_storage('255'), 1) def test_cut_labels(): test.assertEquals(lb.cut_labels(['hallo welt _sdf']), ['hallo welt']) test.assertEquals(lb.cut_labels(['hallo welt_sdf']), ['hallo welt_sdf']) test.assertEquals(lb.cut_labels(['hallo_welt _sdf']), ['hallo_welt']) test.assertEquals(lb.cut_labels(['hallo welt _sdf usw ']), ['hallo welt _sdf usw ']) test.assertEquals(lb.cut_labels(['hallo welt _??']), ['hallo welt _??']) test.assertEquals(lb.cut_labels(['']), ['']) def test_cut_comments(): test.assertEquals(lb.cut_comments(['hallo welt _sdf #hier erst cutten']), ['hallo welt _sdf ']) test.assertEquals(lb.cut_comments(['hallo welt _sdf#hier erst cutten']), ['hallo welt _sdf']) test.assertEquals(lb.cut_comments(['hallo welt #hier erst cutten _keine_labels_mitzählen']), ['hallo welt ']) test.assertEquals(lb.cut_comments(['#hallo welt _sdf #hier erst cutten']), ['']) def test_cut_whitespace_lines(): test.assertEquals(lb.cut_whitespace_lines(['']), []) test.assertEquals(lb.cut_whitespace_lines(['\t', 'a']), ['a']) test.assertEquals(lb.cut_whitespace_lines(['\n']), []) test.assertEquals(lb.cut_whitespace_lines(['hallo', '', 'hallo']), ['hallo', 'hallo']) def test_get_label_values_dictionary(): test.assertEquals(lb.get_label_values_dictionary(['R4 = R5 _label']), {'label': 'R4 = R5 '}) test.assertEquals(lb.get_label_values_dictionary(['R4 = R5 _label #hier nicht']), {}) test.assertEquals(lb.get_label_values_dictionary([' _label']), {'label': ' '}) test.assertEquals(lb.get_label_values_dictionary(['R4 = R5 _?']), {}) def test_all(): test_is_datastring() test_necessary_byte_storage() test_cut_labels() test_cut_comments() test_get_label_values_dictionary() test_cut_whitespace_lines()
45.275862
113
0.706778
626e6c09f08958d78e1a96c9b4eba4f98fb25e05
1,578
py
Python
PYTHON/Regex_and_Parsing/validating_uid.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
PYTHON/Regex_and_Parsing/validating_uid.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
PYTHON/Regex_and_Parsing/validating_uid.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import re for _ in range(int(input())): m = re.match(r'(?!([a-zA-Z0-9]){1,}.*?\1)(?=(.*\d+){3,})(?=(.*[A-Z]+){2,})(?=^[\d\w]{10}$)', input()) if m is None: print('Invalid') else: print('Valid') # TEST # m = re.match(r'(?=^[\d\w]{10}$)(?=.*[0-9]{3,})(?=.*[A-Z]{2,})(?=^(?:([\s\w\d])(?!.*\1))*$)', input()) # m = re.match(r'(?=(.*\d+){3,})', n) # m = re.match(r'(?=(.*\d+){3,})(?=(.*[A-Z]+){2,})(?=^[\d\w]{10}$)', n) # m = re.match(r'([a-zA-Z0-9]).*?\1', n) # m = re.match(r'([a-zA-Z0-9]).*?\1+', n) # m = re.match(r'([a-zA-Z0-9]){1,}.*?\1+', n) ''' m = re.match(r'(?=(.*\d+){3,})(?=(.*[A-Z]+){2,})(?=^[\d\w]{10}$)', n) m = re.match(r'(?!([a-zA-Z0-9]){1,}.*?\1)', n) m = re.match(r'(?!([a-zA-Z0-9]){1,}.*?\1+)', n) m = re.match(r'(?=(.*\d+){3,})(?=(.*[A-Z]+){2,})(?=^[\d\w]{10}$)(?!([a-zA-Z0-9]){1,}.*?\1+)', n) m = re.match(r'(?=(.*\d+){3,})(?=(.*[A-Z]+){2,})(?=^[\d\w]{10}$)(?!([a-zA-Z0-9]){1,}.*?\1)', n) ''' # n = input() # m = re.match(r'(?=^[\d\w]{10}$)(?=.*[0-9]{3,})(?=.*[A-Z]{2,})(?=^(?:([\s\w\d])(?!.*\1))*$)', n) # print(m, n) # m = re.match(r'(?=.*[0-9]){3,}(?=.*[A-Z]){2,}', input()) # m = re.match(r'(?=^[\d\w]{10}$)(?=.*[0-9]{3,})(?=.*[A-Z]{2,})(?=(.)\1)', input()) # m = re.match(r'(?=^[\d\w]{10}$)(?=.*[0-9]{3,})(?=.*[A-Z]{2,})(?:([\s\w\d])(?!.*\1))', input()) # m = re.match(r'(?=^[\d\w]{10}$)(?=.*[0-9]{3,})(?=.*[A-Z]{2,})', n) # m = re.match(r'(?=^[\d\w]{10}$)(?=.*[0-9]{3,})(?=.*[A-Z]{2,})(?:([\s\w\d])(?!.*\1))', n)
41.526316
107
0.308619
628dca7eafeadab9b0364001a2b436c3a726d50b
2,997
py
Python
Co-Simulation/Sumo/sumo-1.7.0/tools/build/history.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
4
2020-11-13T02:35:56.000Z
2021-03-29T20:15:54.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/build/history.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
9
2020-12-09T02:12:39.000Z
2021-02-18T00:15:28.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/build/history.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
1
2020-11-20T19:31:26.000Z
2020-11-20T19:31:26.000Z
#!/usr/bin/env python # Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo # Copyright (C) 2011-2020 German Aerospace Center (DLR) and others. # This program and the accompanying materials are made available under the # terms of the Eclipse Public License 2.0 which is available at # https://www.eclipse.org/legal/epl-2.0/ # This Source Code may also be made available under the following Secondary # Licenses when the conditions for such availability set forth in the Eclipse # Public License 2.0 are satisfied: GNU General Public License, version 2 # or later which is available at # https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html # SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later # @file history.py # @author Michael Behrisch # @date 2014-06-21 """ This script builds all sumo versions in a certain revision range and tries to eliminate duplicates afterwards. """ from __future__ import absolute_import import subprocess import optparse import shutil import os import sys import traceback sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import sumolib # noqa optParser = optparse.OptionParser() optParser.add_option("-b", "--begin", default="v1_3_0", help="first revision to build") optParser.add_option("-e", "--end", default="HEAD", help="last revision to build") options, args = optParser.parse_args() LOCK = "../history.lock" if os.path.exists(LOCK): sys.exit("History building is still locked!") open(LOCK, 'w').close() try: subprocess.call(["git", "checkout", "-q", "master"]) subprocess.call(["git", "pull"]) commits = {} for line in subprocess.check_output(["git", "log", "%s..%s" % (options.begin, options.end)]).splitlines(): if line.startswith("commit "): h = line.split()[1] commits[h] = sumolib.version.gitDescribe(h) haveBuild = False for h, desc in sorted(commits.items(), key=lambda x: x[1]): if not os.path.exists('../bin%s' % desc): ret = subprocess.call(["git", "checkout", "-q", h]) if ret != 0: continue os.chdir("build/cmake-build") subprocess.call('make clean; make -j32', shell=True) os.chdir("../..") haveBuild = True shutil.copytree('bin', '../bin%s' % desc, ignore=shutil.ignore_patterns('Makefile*', '*.bat', '*.jar')) subprocess.call('strip -R .note.gnu.build-id ../bin%s/*' % desc, shell=True) subprocess.call("sed -i 's/%s/%s/' ../bin%s/*" % (desc, len(desc) * "0", desc), shell=True) if haveBuild: for line in subprocess.check_output('fdupes -1 -q ../binv*', shell=True).splitlines(): dups = line.split() for d in dups[1:]: subprocess.call('ln -sf %s %s' % (dups[0], d), shell=True) subprocess.call(["git", "checkout", "-q", "master"]) except Exception: traceback.print_exc() os.remove(LOCK)
39.96
110
0.644311
b8242ba9873540a3dbca15f727f6c96c2a8fc842
467
py
Python
bind/pyevt/pyevt/evt_data.py
harrywong/evt
95985384619e0f5ff4021e8838d421ac4b4b946d
[ "BSD-3-Clause" ]
1,411
2018-04-23T03:57:30.000Z
2022-02-13T10:34:22.000Z
bind/pyevt/pyevt/evt_data.py
Zhang-Zexi/evt
e90fe4dbab4b9512d120c79f33ecc62791e088bd
[ "Apache-2.0" ]
27
2018-06-11T10:34:42.000Z
2019-07-27T08:50:02.000Z
bind/pyevt/pyevt/evt_data.py
Zhang-Zexi/evt
e90fe4dbab4b9512d120c79f33ecc62791e088bd
[ "Apache-2.0" ]
364
2018-06-09T12:11:53.000Z
2020-12-15T03:26:48.000Z
from io import StringIO from . import evt_exception, libevt class EvtData: def __init__(self, data): self.data = data self.evt = libevt.check_lib_init() def __del__(self): ret = self.evt.lib.evt_free(self.data) evt_exception.evt_exception_raiser(ret) def to_hex_string(self): hstr = StringIO() for i in range(self.data.sz): hstr.write(self.data.buf[i].hex()) return hstr.getvalue()
23.35
47
0.627409
b257a9e52146db719e997ed8872a96d99f210459
4,000
py
Python
research/nlp/dscnn/eval.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/nlp/dscnn/eval.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/nlp/dscnn/eval.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========================================================================== """DSCNN eval.""" import os import datetime import glob import numpy as np from mindspore import context from mindspore import Tensor, Model from mindspore.common import dtype as mstype from src.log import get_logger from src.dataset import audio_dataset from src.ds_cnn import DSCNN from src.models import load_ckpt from src.model_utils.config import config from src.model_utils.moxing_adapter import moxing_wrapper from src.model_utils.device_adapter import get_device_id def get_top5_acc(top5_arg, gt_class): sub_count = 0 for top5, gt in zip(top5_arg, gt_class): if gt in top5: sub_count += 1 return sub_count def val(args, model, test_de): '''Eval.''' eval_dataloader = test_de.create_tuple_iterator() img_tot = 0 top1_correct = 0 top5_correct = 0 for data, gt_classes in eval_dataloader: output = model.predict(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] gt_classes = gt_classes.asnumpy() t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += output.shape[0] results = [[top1_correct], [top5_correct], [img_tot]] results = np.array(results) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot if acc1 > args.best_acc: args.best_acc = acc1 args.best_index = args.index args.logger.info('Eval: top1_cor:{}, top5_cor:{}, tot:{}, acc@1={:.2f}%, acc@5={:.2f}%' \ .format(top1_correct, top5_correct, img_tot, acc1, acc5)) @moxing_wrapper(pre_process=None) def main(): context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id()) # Logger config.outputs_dir = os.path.join(config.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) config.logger = get_logger(config.outputs_dir) # show args config.logger.save_args(config) # find model path if os.path.isdir(config.model_dir): models = list(glob.glob(os.path.join(config.model_dir, '*.ckpt'))) print(models) f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[0].split('epoch')[-1]) config.models = sorted(models, key=f) else: config.models = [config.model_dir] config.best_acc = 0 config.index = 0 config.best_index = 0 for model_path in config.models: test_de = audio_dataset(config.eval_feat_dir, 'testing', config.model_setting_spectrogram_length, config.model_setting_dct_coefficient_count, config.per_batch_size) network = DSCNN(config, config.model_size_info) load_ckpt(network, model_path, False) network.set_train(False) model = Model(network) config.logger.info('load model %s success', model_path) val(config, model, test_de) config.index += 1 config.logger.info('Best model:{} acc:{:.2f}%'.format(config.models[config.best_index], config.best_acc)) if __name__ == "__main__": main()
35.714286
114
0.6725
a23603b7b843cb11a99579993e200710f7f70f18
9,071
py
Python
test/test_npu/test_network_ops/test_bitwise_xor.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_bitwise_xor.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_bitwise_xor.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import sys import copy from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor import random class TestBitwiseXor(TestCase): def generate_data(self, min, max, shape_x, shape_y, dtype): input1 = np.random.randint(min, max, shape_x).astype(dtype) input2 = np.random.randint(min, max, shape_y).astype(dtype) #can't convert np.uint16 to pytoch tensor, so convert np.uint16 to np.int32 first if input1.dtype == np.uint16: input1 = input1.astype(np.int32) input2 = input2.astype(np.int32) # modify from numpy.ndarray to torch.tensor npu_input1 = torch.from_numpy(input1) npu_input2 = torch.from_numpy(input2) return npu_input1, npu_input2 def cpu_op_exec(self, input1, input2): output = torch.bitwise_xor(input1, input2) if output.dtype not in [torch.int32, torch.bool]: output = output.to(torch.int32) output = output.numpy() return output def npu_op_exec(self, input1, input2): input1 = input1.to("npu") input2 = input2.to("npu") output = torch.bitwise_xor(input1, input2) output = output.to("cpu") if output.dtype not in [torch.int32, torch.bool]: output = output.to(torch.int32) output = output.numpy() return output def cpu_op_exec_scalar(self, input1, scalar): output = torch.bitwise_xor(input1, scalar) if output.dtype not in [torch.int32, torch.bool]: output = output.to(torch.int32) output = output.numpy() return output def npu_op_exec_scalar(self, input1, input2): input1 = input1.to("npu") output = torch.bitwise_xor(input1, input2) output = output.to("cpu") if output.dtype not in [torch.int32, torch.bool]: output = output.to(torch.int32) output = output.numpy() return output def npu_op_exec_scalar_out(self, input1, scalar, output): input1 = input1.to("npu") output = output.to("npu") output = torch.bitwise_xor(input1, scalar, out = output) output = output.to("cpu") if output.dtype not in [torch.int32, torch.bool]: output = output.to(torch.int32) output = output.numpy() return output def npu_op_exec_out(self, input1, input2, input3): input1 = input1.to("npu") input2 = input2.to("npu") output = input3.to("npu") torch.bitwise_xor(input1, input2, out=output) output = output.to("cpu") if output.dtype not in [torch.int32, torch.bool]: output = output.to(torch.int32) output = output.numpy() return output def bitwise_xor_tensor_out_result(self, shape_format): for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 0, 100) cpu_input2, npu_input2 = create_common_tensor(item[0], 0, 100) cpu_input3, npu_input3 = create_common_tensor(item[1], 0, 100) cpu_output_out = self.cpu_op_exec(cpu_input1, cpu_input2) npu_output_out = self.npu_op_exec_out(npu_input1, npu_input2, npu_input3) cpu_output_out = cpu_output_out.astype(npu_output_out.dtype) self.assertRtolEqual(cpu_output_out, npu_output_out) def test_bitwise_xor_tensor_out(self, device): shape_format = [ [[np.int16, 0, [128, 3, 224, 224]], [np.int16, 0, [3, 3, 3]]], [[np.int16, 0, [128, 116, 14, 14]], [np.int16, 0, [128, 116, 14, 14]]], [[np.int32, 0, [256, 128, 7, 7]], [np.int32, 0, [128, 256, 3, 3]]], [[np.int32, 0, [2, 3, 3, 3]], [np.int32, 0, [3, 1, 3]]], [[np.int32, 0, [128, 232, 7, 7]], [np.int32, 0, [128, 232, 7, 7]]], ] self.bitwise_xor_tensor_out_result(shape_format) def bitwise_xor_scalar_out_result(self, shape_format): for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 0, 100) cpu_input2, npu_input2 = create_common_tensor(item[1], 0, 100) scalar = np.random.randint(1, 5) cpu_output_out = self.cpu_op_exec_scalar(cpu_input1, scalar) npu_output_out = self.npu_op_exec_scalar_out(npu_input1, scalar, npu_input2) cpu_output_out = cpu_output_out.astype(npu_output_out.dtype) self.assertRtolEqual(cpu_output_out, npu_output_out) def test_bitwise_xor_scalar_out(self, device): shape_format = [ [[np.int16, 0, [16, 3, 1111, 1212]], [np.int16, 0, [3, 3, 3]]], [[np.int16, 0, [128, 116, 14, 14]], [np.int16, 0, [128, 116, 14, 14]]], [[np.int32, 0, [1313, 3, 3, 3]], [np.int32, 0, [3, 1, 3]]], [[np.int32, 0, [128, 232, 7, 7]], [np.int32, 0, [128, 232, 7, 7]]], ] self.bitwise_xor_scalar_out_result(shape_format) def test_bitwise_xor_int16_3d(self, device): npu_input1, npu_input2 = self.generate_data(0, 100, (3, 3, 3), (3, 3, 3), np.int16) cpu_output = self.cpu_op_exec(npu_input1, npu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) cpu_output = cpu_output.astype(np.float32) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_int16_1_1(self, device): npu_input1, npu_input2 = self.generate_data(0, 100, (3, 3, 3), (1, 1), np.int16) cpu_output = self.cpu_op_exec(npu_input1, npu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) cpu_output = cpu_output.astype(np.float32) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_int16_1(self, device): npu_input1, npu_input2 = self.generate_data(0, 100, (3, 3, 3), 1, np.int16) cpu_output = self.cpu_op_exec(npu_input1, npu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) cpu_output = cpu_output.astype(np.float32) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_int16(self, device): npu_input1, npu_input2 = self.generate_data(0, 100, (3, 3, 3), (), np.int16) cpu_output = self.cpu_op_exec(npu_input1, npu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) cpu_output = cpu_output.astype(np.float32) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_int32(self, device): npu_input1, npu_input2 = self.generate_data(0, 2, (1, 3), (1, 3), np.int32) cpu_output = self.cpu_op_exec(npu_input1, True) npu_output = self.npu_op_exec_scalar(npu_input1, True) cpu_output = cpu_output.astype(np.float32) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_bool(self, device): npu_input1, npu_input2 = self.generate_data(0, 2, (1, 3), (1, 3), np.bool) cpu_output = self.cpu_op_exec(npu_input1, True) npu_output = self.npu_op_exec_scalar(npu_input1, True) cpu_output = cpu_output.astype(np.float32) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_uint16(self, device): npu_input1, npu_input2 = self.generate_data(0, 100, (3, 3, 3), (3, 3, 3), np.uint16) cpu_output = self.cpu_op_exec(npu_input1, npu_input2) cpu_output = cpu_output.astype(np.float32) npu_output = self.npu_op_exec(npu_input1, npu_input2) npu_output = npu_output.astype(np.float32) self.assertRtolEqual(cpu_output, npu_output) def test_bitwise_xor_mix_dtype(self, device): npu_input1, npu_input3 = self.generate_data(0, 100, (3, 3, 3), (), np.uint16) npu_input2, npu_input4 = self.generate_data(0, 100, (3, 3, 3), (), np.int32) cpu_output = self.cpu_op_exec(npu_input1, npu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) self.assertRtolEqual(cpu_output, npu_output) instantiate_device_type_tests(TestBitwiseXor, globals(), except_for='cpu') if __name__ == "__main__": run_tests()
44.684729
92
0.653732
ac3300de7f3aefafe8411e87cbf809699c355a6f
258
py
Python
marsyas-vamp/marsyas/scripts/Python/batchPeakClustering.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
marsyas-vamp/marsyas/scripts/Python/batchPeakClustering.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
marsyas-vamp/marsyas/scripts/Python/batchPeakClustering.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
import os from glob import glob beginCommand = "./peakClustering " endCommand = " -a -s -p 2 -c 3 -o ~/output -N music "; for name in glob("../../../Database/*V.wav"): command = beginCommand+name+endCommand print command os.system(command)
25.8
56
0.643411
ce009968e8640e6d1c77e4d902dc078249782d25
2,330
py
Python
src/onegov/form/extensions.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/form/extensions.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/form/extensions.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
form_extensions = {} class FormExtension(object): """ Enables the extension of form definitions/submissions. When either of those models create a form class they will take the 'extensions' key in the meta dictionary to extend those formcode based forms. This allows for specialised behaviour of formcode forms with the drawback that those definitions/submissions are more tightly bound to the code. That is to say code in module A could not use submissions defined by module B unless module B is also present in the path. To create and register a form extension subclass as follows:: class MyExtension(FormExtension, name='my-extension'): def create(self): return self.form_class Note that you *should not* change the form_class provided to you. Instead you should subclass it. If you need to change the form class, you need to clone it:: class MyExtension(FormExtension, name='my-extension'): def create(self): return self.form_class.clone() class MyExtension(FormExtension, name='my-extension'): def create(self): class ExtendedForm(self.form_class): pass return ExtendedForm Also, names must be unique and can only be registered once. """ def __init__(self, form_class): self.form_class = form_class def __init_subclass__(cls, name, **kwargs): super().__init_subclass__(**kwargs) assert name not in form_extensions, ( f"A form extension named {name} already exists" ) form_extensions[name] = cls def create(self): raise NotImplementedError class Extendable(object): """ Models extending their form classes use this mixin to create the extended forms. It also serves as a marker to possibly keep track of all classes that use extended forms. """ def extend_form_class(self, form_class, extensions): if not extensions: return form_class for extension in extensions: if extension not in form_extensions: raise KeyError(f"Unknown form extension: {extension}") form_class = form_extensions[extension](form_class).create() return form_class
31.066667
79
0.663519
ce3502f5079fa6852e13265b391e01e6ac109b62
967
py
Python
rivercam.py
OrrinEdenfield/RiverCam
207f8c623bbcb9dc0cdbbefe91e1fd33bdb0b84e
[ "MIT" ]
null
null
null
rivercam.py
OrrinEdenfield/RiverCam
207f8c623bbcb9dc0cdbbefe91e1fd33bdb0b84e
[ "MIT" ]
null
null
null
rivercam.py
OrrinEdenfield/RiverCam
207f8c623bbcb9dc0cdbbefe91e1fd33bdb0b84e
[ "MIT" ]
null
null
null
#!/usr/bin/python import os import datetime from picamera import PiCamera from time import sleep from azure.storage.blob import BlobClient # Path to temporary local image file localpic = '/home/pi/rivercam/image.jpg' # Take photo camera = PiCamera() sleep(5) camera.capture(localpic) # Create the variable to use for the filename dt = str(datetime.datetime.now()) newdt = dt.replace(":", "-") newdt = newdt.replace(" ", "-") newdt = newdt.replace(".", "-") newdt = newdt[0:16] newname = newdt+'.jpg' # Upload to local IoT Edge Blob Service blob = BlobClient.from_connection_string(conn_str="DefaultEndpointsProtocol=http;BlobEndpoint=http://192.168.0.201:11002/azurepistorage;AccountName=azurepistorage;AccountKey=[LOCAL-IOT-EDGE-BLOB-KEY]", container_name="pisynccontainer", blob_name=newname) with open(localpic, "rb") as data: blob.upload_blob(data) # Delete the local file now that it's been uploaded os.remove(localpic)
30.21875
255
0.730093
02007348627f4ef13c1bf7f02eefb74e199a2762
7,788
py
Python
python/oneflow/test/graph/test_graph_lr_scheduler.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
python/oneflow/test/graph/test_graph_lr_scheduler.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
python/oneflow/test/graph/test_graph_lr_scheduler.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math import unittest import os import numpy as np import oneflow as flow import oneflow.unittest from oneflow.nn.parameter import Parameter def _test_linear_graph_train_with_lr_sch( test_case, iter_num, device, get_opt_and_lr_sch ): def train_with_module(iter_num=3): linear = flow.nn.Linear(3, 8) linear = linear.to(device) flow.nn.init.constant_(linear.weight, -0.68758) flow.nn.init.constant_(linear.bias, 0.23) opt, lr_sch = get_opt_and_lr_sch(linear.parameters()) x = flow.Tensor( [ [-0.94630778, -0.83378579, -0.87060891], [2.0289922, -0.28708987, -2.18369248], [0.35217619, -0.67095644, -1.58943879], [0.08086036, -1.81075924, 1.20752494], [0.8901075, -0.49976737, -1.07153746], [-0.44872912, -1.07275683, 0.06256855], [-0.22556897, 0.74798368, 0.90416439], [0.48339456, -2.32742195, -0.59321527], ], device=device, requires_grad=False, ) def one_iter(): of_out = linear(x) of_out = of_out.sum() of_out.backward() opt.step() if lr_sch is not None: lr_sch.step() opt.zero_grad() return of_out.numpy(), linear.weight.numpy() check_list = [] for i in range(iter_num): check_list.append(one_iter()) return check_list def train_with_graph(iter_num=3): linear = flow.nn.Linear(3, 8) linear = linear.to(device) flow.nn.init.constant_(linear.weight, -0.68758) flow.nn.init.constant_(linear.bias, 0.23) opt, lr_sch = get_opt_and_lr_sch(linear.parameters()) x = flow.Tensor( [ [-0.94630778, -0.83378579, -0.87060891], [2.0289922, -0.28708987, -2.18369248], [0.35217619, -0.67095644, -1.58943879], [0.08086036, -1.81075924, 1.20752494], [0.8901075, -0.49976737, -1.07153746], [-0.44872912, -1.07275683, 0.06256855], [-0.22556897, 0.74798368, 0.90416439], [0.48339456, -2.32742195, -0.59321527], ], device=device, requires_grad=False, ) class LinearTrainGraph(flow.nn.Graph): def __init__(self): super().__init__() self.linear = linear if lr_sch is None: self.add_optimizer(opt) else: self.add_optimizer(opt, lr_sch=lr_sch) def build(self, x): out = self.linear(x) out = out.sum() out.backward() return out linear_t_g = LinearTrainGraph() def one_iter(): of_graph_out = linear_t_g(x) return of_graph_out.numpy(), linear_t_g.linear.weight.origin.numpy() check_list = [] for i in range(iter_num): check_list.append(one_iter()) return check_list module_check_list = train_with_module(iter_num) graph_check_list = train_with_graph(iter_num) for i in range(iter_num): # check equal on loss test_case.assertTrue( np.allclose( module_check_list[i][0], graph_check_list[i][0], rtol=0.00001, atol=0.00001, ) ) # check equal on weight test_case.assertTrue( np.allclose( module_check_list[i][1], graph_check_list[i][1], rtol=0.00001, atol=0.00001, ) ) def _sgd_cosine_fn(parameters): of_sgd = flow.optim.SGD(parameters, lr=0.001) alpha = 0.5 steps = 10 cosine_annealing_lr = flow.optim.lr_scheduler.CosineAnnealingLR( of_sgd, steps=steps, alpha=alpha ) return of_sgd, cosine_annealing_lr def _sgd_cosine_constant_fn(parameters): of_sgd = flow.optim.SGD(parameters, lr=0.001) alpha = 0.5 steps = 10 cosine_annealing_lr = flow.optim.lr_scheduler.CosineAnnealingLR( of_sgd, steps=steps, alpha=alpha ) constant_warmup_cosine_lr = flow.optim.lr_scheduler.WarmUpLR( cosine_annealing_lr, warmup_factor=0.5, warmup_iters=5, warmup_method="constant" ) return of_sgd, constant_warmup_cosine_lr def _sgd_constant_fn(parameters): of_sgd = flow.optim.SGD(parameters, lr=0.001) alpha = 0.5 steps = 10 constant_warmup_lr = flow.optim.lr_scheduler.WarmUpLR( of_sgd, warmup_factor=0.5, warmup_iters=5, warmup_method="constant" ) return of_sgd, constant_warmup_lr def _sgd_cosine_linear_fn(parameters): of_sgd = flow.optim.SGD(parameters, lr=0.001) alpha = 0.5 steps = 10 cosine_annealing_lr = flow.optim.lr_scheduler.CosineAnnealingLR( of_sgd, steps=steps, alpha=alpha ) linear_warmup_cosine_lr = flow.optim.lr_scheduler.WarmUpLR( cosine_annealing_lr, warmup_factor=0.5, warmup_iters=5, warmup_method="linear" ) return of_sgd, linear_warmup_cosine_lr def _sgd_linear_fn(parameters): of_sgd = flow.optim.SGD(parameters, lr=0.001) alpha = 0.5 steps = 10 linear_warmup_lr = flow.optim.lr_scheduler.WarmUpLR( of_sgd, warmup_factor=0.5, warmup_iters=5, warmup_method="linear" ) return of_sgd, linear_warmup_lr @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") @flow.unittest.skip_unless_1n1d() class TestLinearGraphTrainWithCosineLrScheduler(flow.unittest.TestCase): def test_graph_cosine(test_case): _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cuda"), _sgd_cosine_fn ) _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cpu"), _sgd_cosine_fn ) def test_graph_cosine_constant(test_case): _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cuda"), _sgd_cosine_constant_fn ) _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cpu"), _sgd_cosine_constant_fn ) def test_graph_constant(test_case): _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cuda"), _sgd_constant_fn ) _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cpu"), _sgd_constant_fn ) def test_graph_cosine_linear(test_case): _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cuda"), _sgd_cosine_linear_fn ) _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cpu"), _sgd_cosine_linear_fn ) def test_graph_linear(test_case): _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cuda"), _sgd_linear_fn ) _test_linear_graph_train_with_lr_sch( test_case, 21, flow.device("cpu"), _sgd_linear_fn ) if __name__ == "__main__": unittest.main()
32.049383
88
0.616846
cec82a491e48e098ad32e60bf03ec9fd31eb84bc
696
py
Python
py/jpy/src/test/python/jpy_obj_test.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
55
2021-05-11T16:01:59.000Z
2022-03-30T14:30:33.000Z
py/jpy/src/test/python/jpy_obj_test.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
943
2021-05-10T14:00:02.000Z
2022-03-31T21:28:15.000Z
py/jpy/src/test/python/jpy_obj_test.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
29
2021-05-10T11:33:16.000Z
2022-03-30T21:01:54.000Z
import unittest import jpyutil jpyutil.init_jvm(jvm_maxmem='32M', jvm_classpath=['target/test-classes']) import jpy class TestJavaArrays(unittest.TestCase): def setUp(self): self.Fixture = jpy.get_type('org.jpy.fixtures.ConstructionTestFixture') self.assertIsNotNone(self.Fixture) def test_large_obj_by_constructor_alloc(self): # 100 * 1MB for _ in range(100): fixture = self.Fixture(1000000) # 1MB def test_large_obj_by_static_alloc(self): # 100 * 1MB for _ in range(100): fixture = self.Fixture.viaStatic(1000000) # 1MB if __name__ == '__main__': print('\nRunning ' + __file__) unittest.main()
24.857143
79
0.668103
65146ef8dc35caec09ada8e0674533c36180a7c2
4,469
py
Python
Packs/Dig/Scripts/Dig/Dig.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Dig/Scripts/Dig/Dig.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Dig/Scripts/Dig/Dig.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import re import subprocess import traceback from typing import Any, Dict import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 ''' STANDALONE FUNCTION ''' # Run Dig command on the server and get A record for the specified host def dig_result(server: str, name: str): try: if server: server = f"@{server}" dig_output = subprocess.check_output( ['dig', server, name, '+short', '+identify'], stderr=subprocess.STDOUT, universal_newlines=True ) if not dig_output: raise ValueError("Couldn't find A record for:\n" + name) resolved_addresses, dns_server = regex_result(dig_output, reverse_lookup=False) return {"name": name, "resolvedaddresses": resolved_addresses, "nameserver": dns_server} else: dig_output = subprocess.check_output( ['dig', name, '+short', '+identify'], stderr=subprocess.STDOUT, universal_newlines=True ) if not dig_output: raise ValueError("Couldn't find A record for:\n" + name) resolved_addresses, dns_server = regex_result(dig_output, reverse_lookup=False) return {"name": name, "resolvedaddresses": resolved_addresses, "nameserver": dns_server} except subprocess.CalledProcessError as e: return_error(e.output) # Run Dig command on the server and get PTR record for the specified IP def reverse_dig_result(server: str, name: str): try: if server: server = f"@{server}" dig_output = subprocess.check_output( ['dig', server, '+answer', '-x', name, '+short', '+identify'], stderr=subprocess.STDOUT, universal_newlines=True ) if not dig_output: raise ValueError("Couldn't find PTR record for:\n" + name) resolved_addresses, dns_server = regex_result(dig_output, reverse_lookup=True) return {"name": name, "resolveddomain": resolved_addresses, "nameserver": dns_server} else: dig_output = subprocess.check_output( ['dig', '+answer', '-x', name, '+short', '+identify'], stderr=subprocess.STDOUT, universal_newlines=True ) if not dig_output: raise ValueError("Couldn't find PTR record for:\n" + name) resolved_addresses, dns_server = regex_result(dig_output, reverse_lookup=True) return {"name": name, "resolveddomain": resolved_addresses, "nameserver": dns_server} except subprocess.CalledProcessError as e: return_error(e.output) def regex_result(dig_output: str, reverse_lookup: bool): # regex phrase to catch a number between 0 to 255 num_0_255 = r'(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])' try: if not reverse_lookup: regex_results_ip = re.findall(rf'\b(?:{num_0_255}(?:\[\.\]|\.)){{3}}{num_0_255}\b', dig_output) if not regex_results_ip: raise ValueError("Couldn't find results:\n") resolved_addresses = regex_results_ip[::2] dns_server = regex_results_ip[1] else: regex_results_domain = re.findall( rf'\b^[\S]+|(?:{num_0_255}(?:\[\.\]|\.)){{3}}{num_0_255}\b', dig_output) if not regex_results_domain: raise ValueError("Couldn't find results:\n") resolved_addresses = regex_results_domain[0] dns_server = regex_results_domain[1] except Exception as e: return_error(str(e)) return resolved_addresses, dns_server ''' COMMAND FUNCTION ''' def dig_command(args: Dict[str, Any]) -> CommandResults: server = args.get('server', None) name = args.get('name', None) reverse_lookup = argToBoolean(args.get("reverseLookup")) if reverse_lookup: result = reverse_dig_result(server, name) else: result = dig_result(server, name) return CommandResults( outputs_prefix='digresults', outputs=result, ignore_auto_extract=True ) ''' MAIN FUNCTION ''' def main(): try: return_results(dig_command(demisto.args())) except Exception as ex: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute Dig. Error: {str(ex)}') ''' ENTRY POINT ''' if __name__ in ('__main__', '__builtin__', 'builtins'): main()
33.103704
128
0.620944
6525e20fd56f57771ac5fa7fed4aacac1e11f0bb
11,933
py
Python
train.py
quanghona/SOLO_tf2
4aab0fc9115d210f08e694ec59b5f093ade8ce91
[ "MIT" ]
8
2021-03-07T10:25:21.000Z
2022-02-20T23:57:24.000Z
train.py
quanghona/SOLO_tf2
4aab0fc9115d210f08e694ec59b5f093ade8ce91
[ "MIT" ]
null
null
null
train.py
quanghona/SOLO_tf2
4aab0fc9115d210f08e694ec59b5f093ade8ce91
[ "MIT" ]
null
null
null
from model.model import SOLO from train.loss import SOLOLoss from data.tfrecord_decode import Parser from config import * import argparse from datetime import datetime import time import os import tensorflow as tf from tensorflow.keras.utils import Progbar tf.config.run_functions_eagerly(False) # for debugging @tf.function def train_step(model, loss_fn, optimizer, images, cat_true, mask_true, cat_metric, mask_metric): with tf.GradientTape() as tape: cat_pred, mask_pred = model(image, training=True) total_loss, l_cate, l_mask = loss_fn((cat_true, mask_true), (cat_pred, mask_pred)) gradients = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) cat_metric.update_state(cat_true, cat_pred) mask_metric.update_state(mask_true, mask_pred) return total_loss, l_cate, l_mask @tf.function def test_step(model, loss_fn, images, cat_true, mask_true, cat_metric, mask_metric): cat_pred, mask_pred = model(image, training=False) total_loss, l_cate, l_mask = loss_fn(cat_true, mask_true, cat_pred, mask_pred) cat_metric.update_state(cat_true, cat_pred) mask_metric.update_state(mask_true, mask_pred) return total_loss, l_cate, l_mask if __name__ == "__main__": parser = argparse.ArgumentParser(description='SOLO network training script') parser.add_argument("--dataset_train", type=str, help="path to training dataset tfrecord BASE path") parser.add_argument("--dataset_val", type=str, help="path to validation dataset tfrecord BASE path") args = parser.parse_args() print("Training SOLO network") display_config("train") # Load model model = SOLO(**MODEL_HYPERPARAMETERS) # add weight decay for layer in model.layers: if isinstance(layer, tf.keras.layers.Conv2D) or isinstance(layer, tf.keras.layers.Dense): layer.add_loss(lambda: tf.keras.regularizers.l2(TRAINING_PARAMETERS['weight_decay'])(layer.kernel)) if hasattr(layer, 'bias_regularizer') and layer.use_bias: layer.add_loss(lambda: tf.keras.regularizers.l2(TRAINING_PARAMETERS['weight_decay'])(layer.bias)) # Training scheme lr_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(boundaries=tf.math.multiply(TRAINING_PARAMETERS['epochs'], TRAINING_PARAMETERS['steps_per_epoch']), values=tf.constant(TRAINING_PARAMETERS['learning_rates'])) optimizer = tf.keras.optimizers.SGD(learning_rate=lr_schedule, momentum=TRAINING_PARAMETERS['momentum']) loss_fn = SOLOLoss() # Load data train_parser = Parser(MODEL_HYPERPARAMETERS['input_size'], MODEL_HYPERPARAMETERS['grid_sizes'][0], MODEL_HYPERPARAMETERS['num_class'], mode='train') val_parser = Parser(MODEL_HYPERPARAMETERS['input_size'], MODEL_HYPERPARAMETERS['grid_sizes'][0], MODEL_HYPERPARAMETERS['num_class'], mode='val') train_dataset = train_parser.build_dataset(args.dataset_train, batch_size=TRAINING_PARAMETERS['batch_size'], num_epoch=TRAINING_PARAMETERS['num_epoch']) val_dataset = val_parser.build_dataset(args.dataset_val) """Training using built-in method tb_callback = tf.keras.callbacks.TensorBoard(log_dir=os.path.join('logs', model.model_name), update_freq='batch') ckpt_callback = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join('weights', model.model_name, 'weight_' + model.model_name + '.h5'), save_best_only=True, save_weights_only=True) model.compile(optimizer=optimizer, loss=[loss_fn.get_category_loss(), loss_fn.get_mask_loss()], loss_weights=loss_fn.weights, metrics=[tf.keras.metrics.CategoricalAccuracy(), tf.keras.metrics.MeanIoU(num_classes=MODEL_HYPERPARAMETERS['num_class'])]) model.fit(x=train_dataset, batch_size=TRAINING_PARAMETERS['batch_size'], epochs=TRAINING_PARAMETERS['num_epoch'], shuffle=True, steps_per_epoch=TRAINING_PARAMETERS['steps_per_epoch'], validation_data=val_dataset, validation_batch_size=TRAINING_PARAMETERS['batch_size'], verbose=1, callbacks=[tb_callback, ckpt_callback]) """ # Training using low-level API # Load/create Checkpoint ckpt = tf.train.Checkpoint(step=tf.Variable(-1, trainable=False, dtype=tf.int64), optimizer=optimizer, model=model, metric=tf.Variable(1000, trainable=False, dtype=tf.float32)) manager = tf.train.CheckpointManager(ckpt, os.path.join('checkpoints', model.model_name), max_to_keep=5) ckpt.restore(manager.latest_checkpoint) if manager.latest_checkpoint: print("Restored from {}".format(manager.latest_checkpoint)) else: print("Initializing from scratch.") # Define Losses train_loss = tf.keras.metrics.Mean(name='train_loss', dtype=tf.float32) train_cat_loss = tf.keras.metrics.Mean(name='train_cat_loss', dtype=tf.float32) train_mask_loss = tf.keras.metrics.Mean(name='train_mask_loss', dtype=tf.float32) val_loss = tf.keras.metrics.Mean(name='val_loss', dtype=tf.float32) val_cat_loss = tf.keras.metrics.Mean(name='val_cat_loss', dtype=tf.float32) val_mask_loss = tf.keras.metrics.Mean(name='val_mask_loss', dtype=tf.float32) # Define metrics train_acc = tf.keras.metrics.CategoricalAccuracy(name='train_acc', dtype=tf.float32) train_meaniou = tf.keras.metrics.MeanIoU(num_classes=2, name='train_meaniou', dtype=tf.float32) val_acc = tf.keras.metrics.CategoricalAccuracy(name='val_acc', dtype=tf.float32) val_meaniou = tf.keras.metrics.MeanIoU(num_classes=2, name='val_meaniou', dtype=tf.float32) # Create logger log_dir = os.path.join('logs', model.model_name, datetime.now().strftime("%Y%m%d%H%M%S")) summary_writer = tf.summary.create_file_writer(log_dir) step = ckpt.step.numpy() val_metric = ckpt.metric.numpy() total_val_sample = 5000 progbar = None start_time = time.perf_counter() # Start training for image, cat_true, mask_true in train_dataset: ckpt.step.assign_add(1) step += 1 # On epoch start epoch_step = (step % TRAINING_PARAMETERS['steps_per_epoch']) + 1 if epoch_step == 1: print("Epoch {}/{}".format((step // TRAINING_PARAMETERS['steps_per_epoch']) + 1, TRAINING_PARAMETERS['num_epoch'])) progbar = Progbar(TRAINING_PARAMETERS['steps_per_epoch'], interval=1, stateful_metrics=['train_acc', 'train_meaniou']) total_loss, l_cate, l_mask = train_step(model, optimizer, loss_fn, image, cat_true, mask_true, train_acc, train_meaniou) values = [('train_loss', total_loss), ('train_cat_loss', l_cate), ('train_mask_loss', l_mask), ('train_acc', train_acc.result()), ('train_meaniou', train_meaniou.result())] progbar.update(epoch_step, values) train_loss.update_state(total_loss) train_cat_loss.update_state(l_cate) train_mask_loss.update_state(l_mask) with summary_writer.as_default(): tf.summary.scalar('train loss', train_loss.result(), step=step) tf.summary.scalar('train category loss', train_cat_loss.result(), step=step) tf.summary.scalar('train mask loss', train_mask_loss.result(), step=step) tf.summary.scalar('train accuracy', train_acc.result(), step=step) tf.summary.scalar('train mean IoU', train_meaniou.result(), step=step) # On epoch end if epoch_step == TRAINING_PARAMETERS['steps_per_epoch']: # Save checkpoint (weights, optimizer states) save_path = manager.save() print("Saved checkpoint: {}. Loss: {:1.2f}, acc: {:1.2f}, meanIoU: {:1.2f}".format(save_path, train_loss.result(), train_acc.result(), train_meaniou.result())) # Validation print("Start validation...") val_progbar = Progbar(total_val_sample, interval=1, stateful_metrics=['val_acc', 'val_meaniou']) val_step = 0 for image, cat_true, mask_true in val_dataset: val_step += 1 total_loss, l_cate, l_mask = test_step(model, loss_fn, image, cat_true, mask_true, val_acc, val_meaniou) values = [('val_loss', total_loss), ('val_cat_loss', l_cate), ('val_mask_loss', l_mask), ('val_acc', val_acc.result()), ('val_meaniou', val_meaniou.result())] progbar.update(val_step, values) val_loss.update_state(total_loss) val_cat_loss.update_state(l_cate) val_mask_loss.update_state(l_mask) with summary_writer.as_default(): tf.summary.scalar('validation loss', val_loss.result(), step=step) tf.summary.scalar('validation category loss', val_cat_loss.result(), step=step) tf.summary.scalar('validation mask loss', val_mask_loss.result(), step=step) tf.summary.scalar('validation accuracy', val_acc.result(), step=step) tf.summary.scalar('validation mean IoU', val_meaniou.result(), step=step) # Save new best weight new_metric = (val_acc.result() + val_meaniou.result()) / 2 if val_metric < new_metric: val_metric = new_metric ckpt.metric.assign(new_metric) weight_path = os.path.join('weights', model.model_name, 'weight_{}_{}_{}_{}_{}_{}_{}_{}.h5'.format(model.model_name, model.num_class, model.input_size, '_'.join([str(i) for i in model.grid_sizes]), model.head_style, model.head_depth, model.fpn_channel, new_metric)) print("Val acc: {}, Val meaniou: {}. Saving weight to {}...".format(val_acc.result(), val_meaniou.result(), weight_path)) model.save_weights(weight_path) total_val_sample = val_step # Reset metrics state train_loss.reset_states() train_cat_loss.reset_states() train_mask_loss.reset_states() val_loss.reset_states() val_cat_loss.reset_states() val_mask_loss.reset_states() train_acc.reset_states() val_acc.reset_states() train_meaniou.reset_states() val_meaniou.reset_states() train_time = int(time.perf_counter() - start_time) train_hour = train_time // 3600 train_time = train_time % 3600 train_minute = train_time // 60 train_second = train_time % 60 print("Total training time: {} h {} m {} s".format(train_hour, train_minute, train_second))
50.138655
281
0.611162
9be16ad025272fbd89cb45d3e090102853d8024d
799
py
Python
algorithms/ar-kmp/python3/knuth_morris_pratt.py
NuclearCactus/FOSSALGO
eb66f3bdcd6c42c66e8fc7110a32ac021596ca66
[ "MIT" ]
59
2018-09-11T17:40:25.000Z
2022-03-03T14:40:39.000Z
algorithms/ar-kmp/python3/knuth_morris_pratt.py
RitvikDayal/FOSSALGO
ae225a5fffbd78d0dff83fd7b178ba47bfd7a769
[ "MIT" ]
468
2018-08-28T17:04:29.000Z
2021-12-03T15:16:34.000Z
algorithms/ar-kmp/python3/knuth_morris_pratt.py
RitvikDayal/FOSSALGO
ae225a5fffbd78d0dff83fd7b178ba47bfd7a769
[ "MIT" ]
253
2018-08-28T17:08:51.000Z
2021-11-01T12:30:39.000Z
#Python program for KMP Algorithm def LPSArray(pat, M, lps): lenn = 0 i = 1 while i < M: if pat[i]== pat[lenn]: lenn += 1 lps[i] = lenn i += 1 else: if lenn != 0: lenn = lps[lenn-1] else: lps[i] = 0 i += 1 def KMP(pat, txt): M = len(pat) N = len(txt) # create lps[] that will hold the longest prefix suffix values for pattern lps = [0]*M j = 0 # Preprocess the pattern (calculate lps[] array) LPSArray(pat, M, lps) i = 0 # index for txt[] while i < N: if pat[j] == txt[i]: i += 1 j += 1 if j == M: print ("Found pattern at index " + str(i-j)) j = lps[j-1] # mismatch after j matches elif i < N and pat[j] != txt[i]: if j != 0: j = lps[j-1] else: i += 1 txt = "ABABDABACDABABCABAB" pat = "ABABCABAB" KMP(pat, txt)
15.98
75
0.545682
500302a6edbc0f78c26797058326cae2f1dd7b5b
2,624
py
Python
test/test_npu/test_network_ops/test_dropout.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_dropout.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_dropout.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') import torch import numpy as np from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestDropOutDoMask(TestCase): def cpu_op_exec(self, input): out = torch.nn.Dropout(0.5)(input) out = out.numpy() return out def npu_op_exec(self, input): out = torch.nn.Dropout(0.5)(input) out = out.to("cpu") out = out.numpy() return out def dropout_list_exec(self, list): epsilon = 1e-3 for item in list: cpu_input1, npu_input1 = create_common_tensor(item, 0, 100) if cpu_input1.dtype == torch.float16: cpu_input1 = cpu_input1.to(torch.float32) cpu_output = self.cpu_op_exec(cpu_input1) npu_output = self.npu_op_exec(npu_input1) cpu_output = cpu_output.astype(npu_output.dtype) # 该算子随机结果的比较方式 for a, b in zip(cpu_output.flatten(), npu_output.flatten()): if abs(a) > 0 and abs(b) > 0 and abs(a - b) > epsilon: print(f'input = {item}, ERROR!') break else: print(f'input = {item}, Successfully!') def test_op_shape_format_fp16(self, device): format_list = [0, 3, 29] shape_list = [1, (256, 1280), (32, 3, 3), (256, 2048, 7, 7)] shape_format = [ [np.float16, i, j] for i in format_list for j in shape_list ] self.dropout_list_exec(shape_format) def test_op_shape_format_fp32(self, device): format_list = [0, 3, 29] shape_list = [1, (256, 1280), (32, 3, 3), (256, 2048, 7, 7)] shape_format = [ [np.float32, i, j] for i in format_list for j in shape_list ] self.dropout_list_exec(shape_format) instantiate_device_type_tests(TestDropOutDoMask, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
37.485714
77
0.640625
a844b552f292190f3c5fa040f3621afb025f7afe
7,164
py
Python
solutions/block_demo/.utility/python/transymodem.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
null
null
null
solutions/block_demo/.utility/python/transymodem.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
null
null
null
solutions/block_demo/.utility/python/transymodem.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # version 1.0.1 import os import sys import re import codecs import time import json import argparse import inspect from ymodemfile import YModemfile try: import serial from serial.tools import miniterm from serial.tools.list_ports import comports except: print("\n\nNot found pyserial, please install: \nsudo pip install pyserial") sys.exit(0) def read_json(json_file): data = None if os.path.isfile(json_file): with open(json_file, 'r') as f: data = json.load(f) return data def write_json(json_file, data): with open(json_file, 'w') as f: f.write(json.dumps(data, indent=4, separators=(',', ': '))) def ymodemTrans(serialport, filename): def sender_getc(size): return serialport.read(size) or None def sender_putc(data, timeout=15): return serialport.write(data) sender = YModemfile(sender_getc, sender_putc) sent = sender.send_file(filename) def send_check_recv_data(serialport, pattern, timeout): """ receive serial data, and check it with pattern """ matcher = re.compile(pattern) tic = time.time() buff = serialport.read(128) while (time.time() - tic) < timeout: buff += serialport.read(128) if matcher.search(buff): return True return False def download_file(portnum, baudrate, filepath): # open serial port first serialport = serial.Serial() serialport.port = portnum serialport.baudrate = baudrate serialport.parity = "N" serialport.bytesize = 8 serialport.stopbits = 1 serialport.timeout = 0.05 try: serialport.open() except Exception as e: raise Exception("Failed to open serial port: %s!" % portnum) # send handshark world for check amp boot mode mylist = [0xA5] checkstatuslist = [0x5A] bmatched = False shakehand = False count = 0 reboot_count = 0 # step 1: check system status for i in range(300): serialport.write(serial.to_bytes(checkstatuslist)) time.sleep(0.1) buff = serialport.read(2) print(buff) # case 1: input == output is cli or repl mode if((buff) == b'Z'): # print('Read data OK'); reboot_count += 1 else: # not cli or repl mode is running mode print("Please reboot the board manually.") break if(reboot_count >= 4): # need reboot system print("Please reboot the board manually.") break # step 2: wait reboot and hand shakend cmd time.sleep(1) bmatched = send_check_recv_data(serialport, b'amp shakehand begin...', 10) # print(buff) if bmatched: print('amp shakehand begin...') for i in range(300): serialport.write(serial.to_bytes(mylist)) time.sleep(0.1) buff = serialport.read(2) print(buff) if((buff) == b'Z'): # print('Read data OK'); count += 1 if(count >= 4): shakehand = True if shakehand: break if i > 5: print("Please reboot the board manually.") break else: print("Please reboot the board manually, and try it again.") serialport.close() return # start send amp boot cmd time.sleep(0.1) print("start to send amp_boot cmd") cmd = 'amp_boot' serialport.write(cmd.encode()) # serialport.write(b'amp_boot') # send file transfer cmd time.sleep(0.1) # print("start to send file cmd") # cmd = 'cmd_file_transfer\n' # serialport.write(cmd.encode()) bmatched = send_check_recv_data(serialport, b'amp shakehand success', 2) # serialport.write(b'cmd_flash_js\n') # send file if bmatched: print("start to send file cmd") cmd = 'cmd_file_transfer\n' serialport.write(cmd.encode()) print('amp shakehand success') time.sleep(0.1) ymodemTrans(serialport, filepath) print("Ymodem transfer file finish") # send file transfer cmd time.sleep(0.1) print("send cmd exit") cmd = 'cmd_exit\n' serialport.write(cmd.encode()) else: print('amp shakehand failed, please reboot the boaard manually') # close serialport serialport.close() def get_downloadconfig(): """ get configuration from .config_burn file, if it is not existed, generate default configuration of chip_haas1000 """ configs = {} configs['chip_haas1000'] = {} configs['chip_haas1000']['serialport'] = '' configs['chip_haas1000']['baudrate'] = '' configs['chip_haas1000']['filepath'] = '' return configs['chip_haas1000'] def main2(): cmd_parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='''Run and transfer file to system.''',) cmd_parser.add_argument('-d', '--device', default='', help='the serial device or the IP address of the pyboard') cmd_parser.add_argument( '-b', '--baudrate', default=115200, help='the baud rate of the serial device') cmd_parser.add_argument('files', nargs='*', help='input transfer files') args = cmd_parser.parse_args() print(args) # download file # step 1: set config downloadconfig = get_downloadconfig() # step 2: get serial port if not downloadconfig["serialport"]: downloadconfig["serialport"] = args.device if not downloadconfig["serialport"]: downloadconfig["serialport"] = miniterm.ask_for_port() if not downloadconfig["serialport"]: print("no specified serial port") return else: needsave = True # step 3: get baudrate if not downloadconfig["baudrate"]: downloadconfig["baudrate"] = args.baudrate if not downloadconfig["baudrate"]: downloadconfig["baudrate"] = "115200" # step 4: get transfer file if not downloadconfig["filepath"]: downloadconfig["filepath"] = args.files if not downloadconfig["filepath"]: print('no file wait to transfer') return if os.path.isabs("".join(downloadconfig["filepath"])): filepath = "".join(downloadconfig["filepath"]) print('the filepath is abs path') else: basepath = os.path.abspath('.') filepath = basepath + '/' + "".join(downloadconfig["filepath"]) print('the filepath is not abs path') print("serial port is %s" % downloadconfig["serialport"]) print("transfer baudrate is %s" % downloadconfig["baudrate"]) # print(base_path(downloadconfig["filepath"])) print("filepath is %s" % filepath) # print("the settings were restored in the file %s" % os.path.join(os.getcwd(), '.config_burn')) # step 3: download file download_file(downloadconfig["serialport"], downloadconfig['baudrate'], filepath) if __name__ == "__main__": main2()
28.887097
100
0.61139
a85d442ed83636a731ffbcfcd4c75ba8be7db01f
6,710
py
Python
src/onegov/swissvotes/views/votes.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/views/votes.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/swissvotes/views/votes.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from morepath.request import Response from onegov.core.security import Private from onegov.core.security import Public from onegov.core.security import Secret from onegov.form import Form from onegov.swissvotes import _ from onegov.swissvotes import SwissvotesApp from onegov.swissvotes.collections import SwissVoteCollection from onegov.swissvotes.external_resources import MfgPosters from onegov.swissvotes.external_resources import SaPosters from onegov.swissvotes.forms import SearchForm from onegov.swissvotes.forms import UpdateDatasetForm from onegov.swissvotes.forms import UpdateExternalResourcesForm from onegov.swissvotes.forms import UpdateMetadataForm from onegov.swissvotes.layouts import DeleteVotesLayout from onegov.swissvotes.layouts import UpdateExternalResourcesLayout from onegov.swissvotes.layouts import UpdateMetadataLayout from onegov.swissvotes.layouts import UpdateVotesLayout from onegov.swissvotes.layouts import VotesLayout from translationstring import TranslationString @SwissvotesApp.form( model=SwissVoteCollection, permission=Public, form=SearchForm, template='votes.pt' ) def view_votes(self, request, form): if not form.errors: form.apply_model(self) return { 'layout': VotesLayout(self, request), 'form': form } @SwissvotesApp.form( model=SwissVoteCollection, permission=Private, form=UpdateDatasetForm, template='form.pt', name='update' ) def update_votes(self, request, form): self = self.default() layout = UpdateVotesLayout(self, request) if form.submitted(request): added, updated = self.update(form.dataset.data) request.message( _( "Dataset updated (${added} added, ${updated} updated)", mapping={'added': added, 'updated': updated} ), 'success' ) # Warn if descriptor labels are missing missing = set() for vote in self.query(): for policy_area in vote.policy_areas: missing |= set( path for path in policy_area.label_path if not isinstance(path, TranslationString) ) if missing: request.message( _( "The dataset contains unknown descriptors: ${items}.", mapping={'items': ', '.join(sorted(missing))} ), 'warning' ) return request.redirect(layout.votes_url) return { 'layout': layout, 'form': form, 'cancel': request.link(self), 'button_text': _("Update"), } @SwissvotesApp.form( model=SwissVoteCollection, permission=Private, form=UpdateMetadataForm, template='form.pt', name='update-metadata' ) def update_metadata(self, request, form): self = self.default() layout = UpdateMetadataLayout(self, request) if form.submitted(request): added, updated = self.update_metadata(form.metadata.data) request.message( _( "Metadata updated (${added} added, ${updated} updated)", mapping={'added': added, 'updated': updated} ), 'success' ) return request.redirect(layout.votes_url) return { 'layout': layout, 'form': form, 'cancel': request.link(self), 'button_text': _("Update"), } @SwissvotesApp.form( model=SwissVoteCollection, permission=Private, form=UpdateExternalResourcesForm, template='form.pt', name='update-external-resources' ) def update_external_resources(self, request, form): self = self.default() layout = UpdateExternalResourcesLayout(self, request) if form.submitted(request): added_total = 0 updated_total = 0 removed_total = 0 failed_total = set() for resource, cls in ( ('mfg', MfgPosters(request.app.mfg_api_token)), ('sa', SaPosters()) ): if resource in form.resources.data: added, updated, removed, failed = cls.fetch(request.session) added_total += added updated_total += updated removed_total += removed failed_total |= failed request.message( _( 'External resources updated (${added} added, ' '${updated} updated, ${removed} removed)', mapping={ 'added': added_total, 'updated': updated_total, 'removed': removed_total } ), 'success' ) if failed_total: failed_total = ', '.join(( layout.format_bfs_number(item) for item in sorted(failed_total) )) request.message( _( 'Some external resources could not be updated: ${failed}', mapping={'failed': failed_total} ), 'warning' ) return request.redirect(layout.votes_url) return { 'layout': layout, 'form': form, 'cancel': request.link(self), 'button_text': _("Update external resources"), } @SwissvotesApp.view( model=SwissVoteCollection, permission=Public, name='csv' ) def export_votes_csv(self, request): return Response( request.app.get_cached_dataset('csv'), content_type='text/csv', content_disposition='inline; filename=dataset.csv' ) @SwissvotesApp.view( model=SwissVoteCollection, permission=Public, name='xlsx' ) def export_votes_xlsx(self, request): return Response( request.app.get_cached_dataset('xlsx'), content_type=( 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' ), content_disposition='inline; filename=dataset.xlsx' ) @SwissvotesApp.form( model=SwissVoteCollection, permission=Secret, form=Form, template='form.pt', name='delete' ) def delete_votes(self, request, form): self = self.default() layout = DeleteVotesLayout(self, request) if form.submitted(request): for vote in self.query(): request.session.delete(vote) request.message(_("All votes deleted"), 'success') return request.redirect(layout.votes_url) return { 'layout': layout, 'form': form, 'message': _("Do you really want to delete all votes?!"), 'button_text': _("Delete"), 'button_class': 'alert', 'cancel': request.link(self) }
28.432203
79
0.609836
766491d3189d2ce4581c010a835c2c7cde8bdabf
12,034
py
Python
frappe-bench/apps/erpnext/erpnext/healthcare/doctype/lab_test/lab_test.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/healthcare/doctype/lab_test/lab_test.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/healthcare/doctype/lab_test/lab_test.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, ESS and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document import json from frappe.utils import getdate from erpnext.healthcare.doctype.healthcare_settings.healthcare_settings import get_receivable_account from frappe import _ class LabTest(Document): def on_submit(self): frappe.db.set_value(self.doctype,self.name,"submitted_date", getdate()) insert_lab_test_to_medical_record(self) frappe.db.set_value("Lab Test", self.name, "status", "Completed") def on_cancel(self): delete_lab_test_from_medical_record(self) frappe.db.set_value("Lab Test", self.name, "status", "Cancelled") self.reload() def on_update(self): if(self.sensitivity_test_items): sensitivity = sorted(self.sensitivity_test_items, key=lambda x: x.antibiotic_sensitivity) for i, item in enumerate(sensitivity): item.idx = i+1 self.sensitivity_test_items = sensitivity def after_insert(self): if(self.prescription): frappe.db.set_value("Lab Prescription", self.prescription, "test_created", 1) if not self.test_name and self.template: self.load_test_from_template() self.reload() def load_test_from_template(self): lab_test = self create_test_from_template(lab_test) self.reload() def create_test_from_template(lab_test): template = frappe.get_doc("Lab Test Template", lab_test.template) patient = frappe.get_doc("Patient", lab_test.patient) lab_test.test_name = template.test_name lab_test.result_date = getdate() lab_test.department = template.department lab_test.test_group = template.test_group lab_test = create_sample_collection(lab_test, template, patient, None) lab_test = load_result_format(lab_test, template, None, None) @frappe.whitelist() def update_status(status, name): frappe.db.sql("""update `tabLab Test` set status=%s, approved_date=%s where name = %s""", (status, getdate(), name)) @frappe.whitelist() def update_lab_test_print_sms_email_status(print_sms_email, name): frappe.db.set_value("Lab Test",name,print_sms_email,1) def create_lab_test_doc(invoice, consultation, patient, template): #create Test Result for template, copy vals from Invoice lab_test = frappe.new_doc("Lab Test") if(invoice): lab_test.invoice = invoice if(consultation): lab_test.physician = consultation.physician lab_test.patient = patient.name lab_test.patient_age = patient.get_age() lab_test.patient_sex = patient.sex lab_test.email = patient.email lab_test.mobile = patient.mobile lab_test.department = template.department lab_test.test_name = template.test_name lab_test.template = template.name lab_test.test_group = template.test_group lab_test.result_date = getdate() lab_test.report_preference = patient.report_preference return lab_test def create_normals(template, lab_test): lab_test.normal_toggle = "1" normal = lab_test.append("normal_test_items") normal.test_name = template.test_name normal.test_uom = template.test_uom normal.normal_range = template.test_normal_range normal.require_result_value = 1 normal.template = template.name def create_compounds(template, lab_test, is_group): lab_test.normal_toggle = "1" for normal_test_template in template.normal_test_templates: normal = lab_test.append("normal_test_items") if is_group: normal.test_event = normal_test_template.test_event else: normal.test_name = normal_test_template.test_event normal.test_uom = normal_test_template.test_uom normal.normal_range = normal_test_template.normal_range normal.require_result_value = 1 normal.template = template.name def create_specials(template, lab_test): lab_test.special_toggle = "1" if(template.sensitivity): lab_test.sensitivity_toggle = "1" for special_test_template in template.special_test_template: special = lab_test.append("special_test_items") special.test_particulars = special_test_template.particulars special.require_result_value = 1 special.template = template.name def create_sample_doc(template, patient, invoice): if(template.sample): sample_exist = frappe.db.exists({ "doctype": "Sample Collection", "patient": patient.name, "docstatus": 0, "sample": template.sample}) if sample_exist : #Update Sample Collection by adding quantity sample_collection = frappe.get_doc("Sample Collection",sample_exist[0][0]) quantity = int(sample_collection.sample_quantity)+int(template.sample_quantity) if(template.sample_collection_details): sample_collection_details = sample_collection.sample_collection_details+"\n==============\n"+"Test :"+template.test_name+"\n"+"Collection Detials:\n\t"+template.sample_collection_details frappe.db.set_value("Sample Collection", sample_collection.name, "sample_collection_details",sample_collection_details) frappe.db.set_value("Sample Collection", sample_collection.name, "sample_quantity",quantity) else: #create Sample Collection for template, copy vals from Invoice sample_collection = frappe.new_doc("Sample Collection") if(invoice): sample_collection.invoice = invoice sample_collection.patient = patient.name sample_collection.patient_age = patient.get_age() sample_collection.patient_sex = patient.sex sample_collection.sample = template.sample sample_collection.sample_uom = template.sample_uom sample_collection.sample_quantity = template.sample_quantity if(template.sample_collection_details): sample_collection.sample_collection_details = "Test :"+template.test_name+"\n"+"Collection Detials:\n\t"+template.sample_collection_details sample_collection.save(ignore_permissions=True) return sample_collection @frappe.whitelist() def create_lab_test_from_desk(patient, template, prescription, invoice=None): lab_test_exist = frappe.db.exists({ "doctype": "Lab Test", "prescription": prescription }) if lab_test_exist: return template = frappe.get_doc("Lab Test Template", template) #skip the loop if there is no test_template for Item if not (template): return patient = frappe.get_doc("Patient", patient) consultation_id = frappe.get_value("Lab Prescription", prescription, "parent") consultation = frappe.get_doc("Consultation", consultation_id) lab_test = create_lab_test(patient, template, prescription, consultation, invoice) return lab_test.name def create_sample_collection(lab_test, template, patient, invoice): if(frappe.db.get_value("Healthcare Settings", None, "require_sample_collection") == "1"): sample_collection = create_sample_doc(template, patient, invoice) if(sample_collection): lab_test.sample = sample_collection.name return lab_test def load_result_format(lab_test, template, prescription, invoice): if(template.test_template_type == 'Single'): create_normals(template, lab_test) elif(template.test_template_type == 'Compound'): create_compounds(template, lab_test, False) elif(template.test_template_type == 'Descriptive'): create_specials(template, lab_test) elif(template.test_template_type == 'Grouped'): #iterate for each template in the group and create one result for all. for test_group in template.test_groups: #template_in_group = None if(test_group.test_template): template_in_group = frappe.get_doc("Lab Test Template", test_group.test_template) if(template_in_group): if(template_in_group.test_template_type == 'Single'): create_normals(template_in_group, lab_test) elif(template_in_group.test_template_type == 'Compound'): normal_heading = lab_test.append("normal_test_items") normal_heading.test_name = template_in_group.test_name normal_heading.require_result_value = 0 normal_heading.template = template_in_group.name create_compounds(template_in_group, lab_test, True) elif(template_in_group.test_template_type == 'Descriptive'): special_heading = lab_test.append("special_test_items") special_heading.test_name = template_in_group.test_name special_heading.require_result_value = 0 special_heading.template = template_in_group.name create_specials(template_in_group, lab_test) else: normal = lab_test.append("normal_test_items") normal.test_name = test_group.group_event normal.test_uom = test_group.group_test_uom normal.normal_range = test_group.group_test_normal_range normal.require_result_value = 1 normal.template = template.name if(template.test_template_type != 'No Result'): if(prescription): lab_test.prescription = prescription if(invoice): frappe.db.set_value("Lab Prescription", prescription, "invoice", invoice) lab_test.save(ignore_permissions=True) # insert the result return lab_test def create_lab_test(patient, template, prescription, consultation, invoice): lab_test = create_lab_test_doc(invoice, consultation, patient, template) lab_test = create_sample_collection(lab_test, template, patient, invoice) lab_test = load_result_format(lab_test, template, prescription, invoice) return lab_test @frappe.whitelist() def get_employee_by_user_id(user_id): emp_id = frappe.db.get_value("Employee",{"user_id":user_id}) employee = frappe.get_doc("Employee",emp_id) return employee def insert_lab_test_to_medical_record(doc): subject = str(doc.test_name) if(doc.test_comment): subject += ", "+str(doc.test_comment) medical_record = frappe.new_doc("Patient Medical Record") medical_record.patient = doc.patient medical_record.subject = subject medical_record.status = "Open" medical_record.communication_date = doc.result_date medical_record.reference_doctype = "Lab Test" medical_record.reference_name = doc.name medical_record.reference_owner = doc.owner medical_record.save(ignore_permissions=True) def delete_lab_test_from_medical_record(self): medical_record_id = frappe.db.sql("select name from `tabPatient Medical Record` where reference_name=%s",(self.name)) if(medical_record_id[0][0]): frappe.delete_doc("Patient Medical Record", medical_record_id[0][0]) def create_item_line(test_code, sales_invoice): if test_code: item = frappe.get_doc("Item", test_code) if item: if not item.disabled: sales_invoice_line = sales_invoice.append("items") sales_invoice_line.item_code = item.item_code sales_invoice_line.item_name = item.item_name sales_invoice_line.qty = 1.0 sales_invoice_line.description = item.description @frappe.whitelist() def create_invoice(company, patient, lab_tests, prescriptions): test_ids = json.loads(lab_tests) line_ids = json.loads(prescriptions) if not test_ids and not line_ids: return sales_invoice = frappe.new_doc("Sales Invoice") sales_invoice.customer = frappe.get_value("Patient", patient, "customer") sales_invoice.due_date = getdate() sales_invoice.is_pos = '0' sales_invoice.debit_to = get_receivable_account(company) for line in line_ids: test_code = frappe.get_value("Lab Prescription", line, "test_code") create_item_line(test_code, sales_invoice) for test in test_ids: template = frappe.get_value("Lab Test", test, "template") test_code = frappe.get_value("Lab Test Template", template, "item") create_item_line(test_code, sales_invoice) sales_invoice.set_missing_values() sales_invoice.save() #set invoice in lab test for test in test_ids: frappe.db.set_value("Lab Test", test, "invoice", sales_invoice.name) prescription = frappe.db.get_value("Lab Test", test, "prescription") if prescription: frappe.db.set_value("Lab Prescription", prescription, "invoice", sales_invoice.name) #set invoice in prescription for line in line_ids: frappe.db.set_value("Lab Prescription", line, "invoice", sales_invoice.name) return sales_invoice.name @frappe.whitelist() def get_lab_test_prescribed(patient): return frappe.db.sql("""select cp.name, cp.test_code, cp.parent, cp.invoice, ct.physician, ct.consultation_date from tabConsultation ct, `tabLab Prescription` cp where ct.patient=%s and cp.parent=ct.name and cp.test_created=0""", (patient))
40.655405
190
0.781951
4f933cca9a376532a3bc93f78b79788387ab7bbc
7,565
py
Python
GZP_GTO_ArcMap/scripts/SCR_PFLICHT_Layer.py
msgis/swwat-gzp-template
080afbe9d49fb34ed60ba45654383d9cfca01e24
[ "MIT" ]
3
2019-06-18T15:28:09.000Z
2019-07-11T07:31:45.000Z
GZP_GTO_ArcMap/scripts/SCR_PFLICHT_Layer.py
msgis/swwat-gzp-template
080afbe9d49fb34ed60ba45654383d9cfca01e24
[ "MIT" ]
2
2019-07-11T14:03:25.000Z
2021-02-08T16:14:04.000Z
GZP_GTO_ArcMap/scripts/SCR_PFLICHT_Layer.py
msgis/swwat-gzp-template
080afbe9d49fb34ed60ba45654383d9cfca01e24
[ "MIT" ]
1
2019-06-12T11:07:37.000Z
2019-06-12T11:07:37.000Z
# -*- coding: utf-8 -*- """ @author: ms.gis, June 2020 Script for ArcGIS GTO for Modul GZP """ ## import arcpy import pythonaddins ## ------------------------- # Open progress dialog with pythonaddins.ProgressDialog as dialog: dialog.title = "PRUEFUNG PFLICHTDATENSAETZE" dialog.description = "Pruefe Pflichtdatensaetze ... Bitte warten..." dialog.animation = "Spiral" # --- Identify compulsory layers without entries/ features --- # Create List for Message Content lyrList = [] countBGef = 0 countObj = 0 # domainvalues of DOM_FG_V_KLASSE and DOM_WT_T_KLASSE list_NOE_STM = { 1, 2, 3, 4, 5, 6, 7, 8, 9} # BWV regional NOE_STM list_B_O_K_S_T_V_W = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19} # BWV regional B_O_K_ST_V_W list_AT_2021 = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} # BWV national AT_2021 # Access current map document mxd = arcpy.mapping.MapDocument("CURRENT") # --- Check TABLES # Clear all previous selections for tbl in arcpy.mapping.ListTableViews(mxd): arcpy.SelectLayerByAttribute_management(tbl.name, "CLEAR_SELECTION") # Query tables for tbl in arcpy.mapping.ListTableViews(mxd): tblSrcName = tbl.datasetName if tblSrcName in ["TBGEN", "TBGGN", "TBGZP", "TBPRJ"]: result = arcpy.GetCount_management(tbl) count = int(result.getOutput(0)) if count == 0: lyrList.append(tblSrcName) # --- Check FEATURE LAYERS # Clear all previous selections for lyr in arcpy.mapping.ListLayers(mxd): if lyr.isFeatureLayer: arcpy.SelectLayerByAttribute_management(lyr.name, "CLEAR_SELECTION") # Eliminate multiple listed layers in TOC lyr_set = set() for feat in arcpy.mapping.ListLayers(mxd): if feat.isFeatureLayer: lyr_set.add((feat.datasetName, feat)) # Query tables for (lyrSrcName, lyr) in sorted(lyr_set): if lyrSrcName in ["FLUSS", "GSCHUTZ", "LPAKT", "MODEL", "PLGBT"]: result = arcpy.GetCount_management(lyr) count = int(result.getOutput(0)) if count == 0: lyrList.append(lyrSrcName) elif lyrSrcName == "BWERT": listKat = [] with arcpy.da.SearchCursor(lyr, ["SZENARIO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that all szenarios (30, 100, 300) present if not {30, 100, 300}.issubset(listKat): lyrList.append(lyrSrcName) elif lyrSrcName == "FG": listKat = set() with arcpy.da.SearchCursor(lyr, ["V_KLASSE"]) as cursor: for row in cursor: listKat.add(row[0]) # check if listKat are in only one group available is_valid = False if listKat.issubset(list_NOE_STM): is_valid = True if listKat.issubset(list_B_O_K_S_T_V_W): is_valid = True if listKat.issubset(list_AT_2021): is_valid = True if not is_valid: lyrList.append(lyrSrcName) elif lyrSrcName == "FUNKT": listKat = [] with arcpy.da.SearchCursor(lyr, ["L_KATEGO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that category "Rot-Gelb-schraffierter Funktionsbereich" (1) present if 1 not in set(listKat): lyrList.append(lyrSrcName) elif lyrSrcName in ["GFPKT", "GFLIN", "GFFLA"]: result = arcpy.GetCount_management(lyr) countBGef += int(result.getOutput(0)) elif lyrSrcName == "GPLBAU": listKat = [] with arcpy.da.SearchCursor(lyr, ["L_KATEGO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that category "beplant od. verbaut" (1) present if 1 not in set(listKat): lyrList.append(lyrSrcName) elif lyrSrcName == "GZ100": # Access unfiltered source layer SrcLayer = lyr.dataSource listKat = [] with arcpy.da.SearchCursor(SrcLayer, ["L_KATEGO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that categories (1, 2) present if not {1, 2}.issubset(listKat): lyrList.append(lyrSrcName) elif lyrSrcName == "GZ300": listKat = [] with arcpy.da.SearchCursor(lyr, ["L_KATEGO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that category "Gelb-schraffierte Zone" (2) present if 2 not in set(listKat): lyrList.append(lyrSrcName) elif lyrSrcName == "KNTPKT": listKat = [] with arcpy.da.SearchCursor(lyr, ["SZENARIO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that all szenarios (30, 100, 300) present if not {30, 100, 300}.issubset(listKat): lyrList.append(lyrSrcName) elif lyrSrcName in ["OBPKT", "OBLIN", "OBFLA"]: result = arcpy.GetCount_management(lyr) countObj += int(result.getOutput(0)) elif lyrSrcName == "QPLIN": listKat = [] with arcpy.da.SearchCursor(lyr, ["L_KATEGO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that at least categories 1 & 2 present if not {1,2}.issubset(listKat): lyrList.append(lyrSrcName) elif lyrSrcName in ["UFHQN", "UFHQNLIN"]: listKat = [] with arcpy.da.SearchCursor(lyr, ["L_KATEGO"]) as cursor: for row in cursor: listKat.append(row[0]) # Check that all scenario categories (1,2,3) present if not {1, 2, 3}.issubset(listKat): lyrList.append(lyrSrcName) elif lyrSrcName == "WT": listKat = set() with arcpy.da.SearchCursor(lyr, ["T_KLASSE"]) as cursor: for row in cursor: listKat.add(row[0]) # check if listKat are in only one group available is_valid = False if listKat.issubset(list_NOE_STM): is_valid = True if listKat.issubset(list_B_O_K_S_T_V_W): is_valid = True if listKat.issubset(list_AT_2021): is_valid = True if not is_valid: lyrList.append(lyrSrcName) # Test if at least one feature of Besondere Gefährdungen or Objekte present if countBGef == 0: lyrList.append("GFPKT, GFLIN oder GFFLA") if countObj == 0: lyrList.append("OBPKT, OBLIN oder OBFLA") ## MessageContent = "" for l in lyrList: MessageContent += "\n{}".format(l) ## # Define Message if len(lyrList) == 0: pythonaddins.MessageBox("Pruefung erfolgreich.\nAlle Pflichtdatensaetze befuellt.", "INFORMATION", 0) else: MessageFinal = "Folgende Pflichtdatensaetze sind nicht (ausreichend) befuellt:\n" + MessageContent + "\n\nBitte korrigieren! \n" pythonaddins.MessageBox(MessageFinal, "FEHLERMELDUNG", 0) del lyrList
35.186047
132
0.556642
8c31138dac71ba403f727368ec698d659c9472d2
724
py
Python
Contrib-Inspur/openbmc/poky/meta/lib/oeqa/core/decorator/oetag.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
5
2019-11-11T07:57:26.000Z
2022-03-28T08:26:53.000Z
Contrib-Inspur/openbmc/poky/meta/lib/oeqa/core/decorator/oetag.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
3
2019-09-05T21:47:07.000Z
2019-09-17T18:10:45.000Z
Contrib-Inspur/openbmc/poky/meta/lib/oeqa/core/decorator/oetag.py
opencomputeproject/Rack-Manager
e1a61d3eeeba0ff655fe9c1301e8b510d9b2122a
[ "MIT" ]
11
2019-07-20T00:16:32.000Z
2022-01-11T14:17:48.000Z
# # Copyright (C) 2016 Intel Corporation # # SPDX-License-Identifier: MIT # from . import OETestFilter, registerDecorator from oeqa.core.utils.misc import strToList def _tagFilter(tags, filters): return False if set(tags) & set(filters) else True @registerDecorator class OETestTag(OETestFilter): attrs = ('oetag',) def bind(self, registry, case): super(OETestTag, self).bind(registry, case) self.oetag = strToList(self.oetag, 'oetag') def filtrate(self, filters): if filters.get('oetag'): filterx = strToList(filters['oetag'], 'oetag') del filters['oetag'] if _tagFilter(self.oetag, filterx): return True return False
25.857143
58
0.64779
50732a571e7539bcf8baed6e3621eb01035feddf
494
py
Python
transonic/_version.py
fluiddyn/transonic
a460e9f6d1139f79b668cb3306d1e8a7e190b72d
[ "BSD-3-Clause" ]
88
2019-01-08T16:39:08.000Z
2022-02-06T14:19:23.000Z
transonic/_version.py
fluiddyn/transonic
a460e9f6d1139f79b668cb3306d1e8a7e190b72d
[ "BSD-3-Clause" ]
13
2019-06-20T15:53:10.000Z
2021-02-09T11:03:29.000Z
transonic/_version.py
fluiddyn/transonic
a460e9f6d1139f79b668cb3306d1e8a7e190b72d
[ "BSD-3-Clause" ]
1
2019-11-05T03:03:14.000Z
2019-11-05T03:03:14.000Z
__version__ = "0.4.11" try: from pyfiglet import figlet_format __about__ = figlet_format("transonic", font="big") except ImportError: __about__ = r""" _ _ | | (_) | |_ _ __ __ _ _ __ ___ ___ _ __ _ ___ | __| '__/ _` | '_ \/ __|/ _ \| '_ \| |/ __| | |_| | | (_| | | | \__ \ (_) | | | | | (__ \__|_| \__,_|_| |_|___/\___/|_| |_|_|\___| """ __about__ = __about__.rstrip() + f"{17 * ' '} v. {__version__}\n"
26
65
0.44332
50dab888c31c96d59e83e825951242229f8cf7db
1,316
py
Python
app/username/views.py
IoTServ/FlaskSimpleCMS
db0fc4464c6d514db14972156ca3e002a60a4876
[ "MIT" ]
null
null
null
app/username/views.py
IoTServ/FlaskSimpleCMS
db0fc4464c6d514db14972156ca3e002a60a4876
[ "MIT" ]
4
2020-08-29T16:11:12.000Z
2022-03-12T00:47:03.000Z
app/username/views.py
IoTServ/FlaskSimpleCMS
db0fc4464c6d514db14972156ca3e002a60a4876
[ "MIT" ]
null
null
null
# coding: utf-8 from StringIO import StringIO from flask import send_file,redirect,url_for,flash from . import username from flask import render_template,request from flask_login import login_required from ..models import User,Article @username.route('/<int:id>') def detials(id): user=User.query.get_or_404(id) if user.confirmed==False: flash('用户未确认邮箱!','danger') return redirect(url_for('main.index')) if user.banded==True: flash('用户由于某种原因处于禁止状态!','danger') return redirect(url_for('main.index')) page = request.args.get('page', 1, type=int) pagination = Article.query.filter_by(author_id=id).order_by(Article.update_time.desc()).paginate( page, per_page=3, error_out=False) articles = pagination.items return render_template('username/user_info.html', user=user, articles=articles, pagination=pagination, endpoint='.detials',id=id) @username.route('/qrcode/<int:id>') def qrcode(id): import qrcode img = qrcode.make("http://www.jiakaozuche.com/zhuye/"+str(id)) #img.save("./test.png") return _serve_pil_image(img) def _serve_pil_image(pil_img): img_io = StringIO() pil_img.save(img_io, 'PNG') img_io.seek(0) return send_file(img_io, mimetype='image/png', cache_timeout=0)
32.097561
101
0.68997
ba2119f32355417c2644809bb5d6b273bb820282
1,876
py
Python
ppyt/decorators.py
yusukemurayama/ppytrading
9804d0de870d77bf8a1c847736a636b1342d4600
[ "MIT" ]
4
2016-08-16T07:47:15.000Z
2017-12-11T10:08:47.000Z
ppyt/decorators.py
yusukemurayama/ppytrading
9804d0de870d77bf8a1c847736a636b1342d4600
[ "MIT" ]
null
null
null
ppyt/decorators.py
yusukemurayama/ppytrading
9804d0de870d77bf8a1c847736a636b1342d4600
[ "MIT" ]
2
2018-06-15T04:43:15.000Z
2020-05-02T07:47:15.000Z
# coding: utf-8 import logging from functools import wraps from ppyt.exceptions import NoDataError logger = logging.getLogger(__name__) def handle_nodataerror(nodata_return): """NoDataErrorを処理するデコレータです。 このデコレータをつけておくと、内部でNoDataErrorが発生したときに[nodata_return]が返るようになります。 Args: nodata_return: NoDataError発生時に返る値 Retusn: 関数・メソッドの実行結果 ※関数・メソッドでNoDataErrorが発生したら、nodata_returnが返ります。 """ def wrapper(func): @wraps(func) def inner(*args, **kwds): try: return func(*args, **kwds) except NoDataError: # NoDataErrorが投げられたらnodata_returnを返します。 return nodata_return return inner return wrapper class cached_property(object): """プロパティの値をキャッシュします。それにより、2回目以降のアクセス時の負荷を下げます。 評価されたプロパティの結果は、そのプロパティが定義されているインスタンス自身に格納されます。""" def __init__(self, func): """コンストラクタ Args: func: cache_propertyでデコレートされたメソッド ※cached_propertyをつけたときは、プロパティのように ()なしでメソッドが走るようになります。 """ self._func = func def __get__(self, obj, klass): # プロパティが定義されているインスタンス自身から、cache_keyを使って辞書型の属性を取得します。 cache_key = '__CACHED_PROPERTY_DICT' # キャッシュデータ用のインスタンス変数名 cache = getattr(obj, cache_key, None) if cache is None: # まだ辞書型の属性がない場合は、インスタンスに追加しておきます。 cache = {} setattr(obj, cache_key, cache) propname = self._func.__name__ # プロパティの名前を取得します。 if propname not in cache: # キャッシュされていない場合はメソッドを実行し、その結果をキャッシュします。 cache[propname] = self._func(obj) logger.debug('propname[{}]をキャッシュしました。'.format(propname)) else: # キャッシュにヒットしたことをログに書き込んでおきます。 logger.debug('propname[{}]をキャッシュから取得します。'.format(propname)) return cache[propname]
28
71
0.632196
e8b1cc345188ec2513c3e78f2624627d00892d95
3,585
py
Python
sentence_parser.py
hch-NLP/LTP
4eaba8d33c20127a5cf75e17c6bbcc62574dcfb1
[ "Apache-2.0" ]
1
2020-11-23T05:04:18.000Z
2020-11-23T05:04:18.000Z
sentence_parser.py
hch-NLP/LTP
4eaba8d33c20127a5cf75e17c6bbcc62574dcfb1
[ "Apache-2.0" ]
null
null
null
sentence_parser.py
hch-NLP/LTP
4eaba8d33c20127a5cf75e17c6bbcc62574dcfb1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 # File: sentence_parser.py # Author: HKH<[email protected]> # Date: 18-3-10 import os from pyltp import Segmentor, Postagger, Parser, NamedEntityRecognizer, SementicRoleLabeller class LtpParser: def __init__(self): LTP_DIR = "F:\\LTP\\ltp_data_v3.4.0\\" self.segmentor = Segmentor() self.segmentor.load(os.path.join(LTP_DIR, "cws.model")) self.postagger = Postagger() self.postagger.load(os.path.join(LTP_DIR, "pos.model")) self.parser = Parser() self.parser.load(os.path.join(LTP_DIR, "parser.model")) self.recognizer = NamedEntityRecognizer() self.recognizer.load(os.path.join(LTP_DIR, "ner.model")) self.labeller = SementicRoleLabeller() self.labeller.load(os.path.join(LTP_DIR, 'pisrl_win.model')) def release(self): self.segmentor.release() self.postagger.release() self.recognizer.release() self.parser.release() self.labeller.release() '''语义角色标注''' def format_labelrole(self, words, postags): arcs = self.parser.parse(words, postags) roles = self.labeller.label(words, postags, arcs) roles_dict = {} for role in roles: roles_dict[role.index] = {arg.name:[arg.name,arg.range.start, arg.range.end] for arg in role.arguments} return roles_dict '''句法分析---为句子中的每个词语维护一个保存句法依存儿子节点的字典''' def build_parse_child_dict(self, words, postags, arcs): child_dict_list = [] format_parse_list = [] for index in range(len(words)): child_dict = dict() for arc_index in range(len(arcs)): if arcs[arc_index].head == index+1: #arcs的索引从1开始 if arcs[arc_index].relation in child_dict: child_dict[arcs[arc_index].relation].append(arc_index) else: child_dict[arcs[arc_index].relation] = [] child_dict[arcs[arc_index].relation].append(arc_index) child_dict_list.append(child_dict) rely_id = [arc.head for arc in arcs] # 提取依存父节点id relation = [arc.relation for arc in arcs] # 提取依存关系 heads = ['Root' if id == 0 else words[id - 1] for id in rely_id] # 匹配依存父节点词语 for i in range(len(words)): # ['ATT', '李克强', 0, 'nh', '总理', 1, 'n'] a = [relation[i], words[i], i, postags[i], heads[i], rely_id[i]-1, postags[rely_id[i]-1]] format_parse_list.append(a) return child_dict_list, format_parse_list '''parser主函数''' def parser_main(self, sentence): words = list(self.segmentor.segment(sentence)) postags = list(self.postagger.postag(words)) arcs = self.parser.parse(words, postags) child_dict_list, format_parse_list = self.build_parse_child_dict(words, postags, arcs) roles_dict = self.format_labelrole(words, postags) return words, postags, child_dict_list, roles_dict, format_parse_list if __name__ == '__main__': parse = LtpParser() sentence = '书房里有电脑、有音响。'#《离开》是由张宇谱曲,演唱。 words, postags, child_dict_list, roles_dict, format_parse_list = parse.parser_main(sentence) print(words, len(words)) print(postags, len(postags)) print(child_dict_list, len(child_dict_list)) print(roles_dict) print(format_parse_list, len(format_parse_list)) # for data in format_parse_list: # if data[0]=='HED': # print(data[1])
42.176471
116
0.614226
a8fd55aaa3ed3b16b9a4ac6ecf440894a3b0fc20
7,186
py
Python
skaffold-STABLE/webapp/hello.py
LennartFertig/BigData
e74761b16812fd034519c06897329ea9ba9968df
[ "Apache-2.0" ]
null
null
null
skaffold-STABLE/webapp/hello.py
LennartFertig/BigData
e74761b16812fd034519c06897329ea9ba9968df
[ "Apache-2.0" ]
null
null
null
skaffold-STABLE/webapp/hello.py
LennartFertig/BigData
e74761b16812fd034519c06897329ea9ba9968df
[ "Apache-2.0" ]
1
2021-10-19T07:45:12.000Z
2021-10-19T07:45:12.000Z
from flask import Flask, render_template, request, redirect, url_for, flash import emoji import socket import psycopg2 from pymemcache.client.base import Client from essential_generators import DocumentGenerator from kafka import KafkaProducer # Lennart, 26.8 # from flask_caching import Cache client = Client('memcached-service') app=Flask(__name__) # Test Zugriff auf den Webserver @app.route('/') def Index(): return render_template('index.html') # Test Cacheserver, Lennart, 26.08. # Die Verbindung zur Datenbank steht bereits. @app.route('/deployment') def depl(): ## Datenabfrage aus Cacheserver cache_result = client.get('flights') ## Wenn keine Daten im Cache, ziehe aus der Datenbank if cache_result is None: #flights nicht verfügbar con = psycopg2.connect("host=postgres port=5432 dbname=kranichairline_db user=postgres password=postgres") cur = con.cursor() cur.execute("select * from flights") data = cur.fetchall() cur.close() client.set('flights', data) return render_template('index3.html', data=data) else: #### TODO: Ausgabeformat ist noch nicht schön # Wenn verfügbar, nehme die Daten aus dem Cache data=cache_result return render_template('index3.html', data=data) # except Exception as e: # data=e # return emoji.emojize('Cacheserver ist :poop:', use_aliases=True) # Funktion zum Senden der Daten an das Kafka-Topic, die bei Klick des Buttons aufgerufen wird @app.route('/kafka') def your_flask_funtion(): # Senden Bei Klick producer = KafkaProducer(bootstrap_servers='my-cluster-kafka-bootstrap:9092') next_click = "KLICK GEHT" # print(f"Sending message: {next_click}") future = producer.send("1337datascience", next_click.encode()) result = future.get(timeout=5) # print(f"Result: {result}") return emoji.emojize(':thumbsup:', use_aliases=True) ###### Entwurf ### Alternativ könnte man eine seite bauen, die solange der user sich darauf befindet nachrichten in das Topic sendet # und so das Interesse der Nutzer abschätzen und dementsprechen die Preise erhöhen @app.route('/zeitbasiert') def timed_producer(): producer = KafkaProducer(bootstrap_servers='my-cluster-kafka-bootstrap:9092') while True: next_msg = "nochda" print(f"Sending message: {next_msg}") future = producer.send("1337datascience", next_msg.encode()) result = future.get(timeout=10) print(f"Result: {result}") time.sleep(5) ############### Ab hier sind alles Testseiten ################ # Test des Datenbankzugriffs @app.route('/cachetest') def test(): ## Datenabfrage aus Cacheserver cache_result = client.get('flights') ## Wenn keine Daten im Cache, ziehe aus der Datenbank if cache_result is None: #flights nicht verfügbar con = psycopg2.connect("host=postgres port=5432 dbname=kranichairline_db user=postgres password=postgres") cur = con.cursor() cur.execute("select * from flights") data = cur.fetchall() cur.close() client.set('flights', data) return emoji.emojize('Daten waren nicht im Cacheserver :thumbsdown:', use_aliases=True) else: # Wenn verfügbar, nehme die Daten aus dem Cache data=cache_result return emoji.emojize('Daten waren im Cacheserver :thumbsup:', use_aliases=True) # except Exception as e: # data=e # return emoji.emojize('Cacheserver ist :poop:', use_aliases=True) # Test des Datenbankzugriffs @app.route('/dbtest') def dbtest(): con = psycopg2.connect("host=postgres port=5432 dbname=kranichairline_db user=postgres password=postgres") cur = con.cursor() cur.execute("select * from flights") data = cur.fetchall() cur.close() return render_template('index3.html', data=data) # Test ob der service mit DNS erreichbar ist - aktuelle IP einfügen # UPDATE 24.08. # Fehler bei der DNS-Erreichbarkeit lag an "k delete --all --all-namespaces", was auch den DNS-Pod löscht @app.route('/servicetest') def servicetest(): try: con = psycopg2.connect("host=10.101.162.210 port=5432 dbname=kranichairline_db user=postgres password=postgres") print('+=========================+') print('| CONNECTED TO DATABASE |') print('+=========================+') # cursor = conn.cursor() # print("test") # print(cursor.execute("SELECT * FROM flights")) cur = con.cursor() cur.execute("select * from flights") data = cur.fetchall() cur.close() return render_template('index3.html', data=data) except Exception as e: data=e return emoji.emojize('Datenbank :poop:', use_aliases=True) # Test ob der Postgres-Pod mit IP erreichbar ist, aktuelle IP einfügen @app.route('/podtest') def podtest(): try: con = psycopg2.connect("host=172.17.0.5 port=5432 dbname=kranichairline_db user=postgres password=postgres") print('+=========================+') print('| CONNECTED TO DATABASE |') print('+=========================+') # cursor = conn.cursor() # print("test") # print(cursor.execute("SELECT * FROM flights")) cur = con.cursor() cur.execute("select * from flights") data = cur.fetchall() cur.close() return render_template('index3.html', data=data) except Exception as e: data=e return emoji.emojize('Datenbank :poop:', use_aliases=True) # test ob sich die preise ändern lassen @app.route('/changedb') def changetest(): try: con = psycopg2.connect("host=postgres port=5432 dbname=kranichairline_db user=postgres password=postgres") cur = con.cursor() cur.execute("UPDATE flights SET price= price + (price * 10 / 100) ") cur.execute("select * from flights") data = cur.fetchall() cur.close() return render_template('index3.html', data=data) except Exception as e: data=e return emoji.emojize('Datenbank-Schreiben :poop:', use_aliases=True) @app.route('/kafkaread') # Test ob sich Messages lesen lassen def kafkaread(): from kafka import KafkaConsumer # The bootstrap server to connect to bootstrap = 'my-cluster-kafka-kafka-bootstrap:9092' # Create a comsumer instance # cf. print('Starting KafkaConsumer') consumer = KafkaConsumer('1337datascience', # <-- topics bootstrap_servers=bootstrap) # Print out all received messages data=[] for msg in consumer: data.append(msg) return render_template('index3.html', data=data) @app.route('/kafkaread2') def kafkaread2(): from kafka import KafkaConsumer # The bootstrap server to connect to bootstrap = 'my-cluster-kafka-kafka-bootstrap:9092' # Create a comsumer instance # cf. print('Starting KafkaConsumer') consumer = KafkaConsumer('1337datascience', # <-- topics bootstrap_servers=bootstrap) # Print out all received messages data=[] for msg in consumer: data.append(msg) return data
34.883495
120
0.655998
0f2110fe2a5c2a18715a941c83b81ee45eb98923
320
py
Python
udacity course code/01-03-numpyarrayattributes.py
bluemurder/mlfl
b895b2f1d01b0f6418a5bcee2f204dd7916062f0
[ "MIT" ]
1
2021-03-22T22:25:54.000Z
2021-03-22T22:25:54.000Z
udacity course code/01-03-numpyarrayattributes.py
bluemurder/mlfl
b895b2f1d01b0f6418a5bcee2f204dd7916062f0
[ "MIT" ]
6
2017-01-16T09:53:21.000Z
2017-01-18T12:20:09.000Z
udacity course code/01-03-numpyarrayattributes.py
bluemurder/mlfl
b895b2f1d01b0f6418a5bcee2f204dd7916062f0
[ "MIT" ]
null
null
null
"""Array attributes.""" import numpy as np def test_run(): # Generate an array full of random numbers, uniformly distributed from [0.0, 1.0) a = np.random.random((5, 4)) print a print a.shape print len(a,shape) print a.size print a.dtype if __name__ == "__main__": test_run()
18.823529
85
0.61875
0f3d9e11e63c47d832dad04123d10ac7e6934e64
2,065
py
Python
private_sdk/signature.py
teambge/bge-private-sdk
b27d4a6caf35bcb89a260938260fd75dba173311
[ "MIT" ]
null
null
null
private_sdk/signature.py
teambge/bge-private-sdk
b27d4a6caf35bcb89a260938260fd75dba173311
[ "MIT" ]
null
null
null
private_sdk/signature.py
teambge/bge-private-sdk
b27d4a6caf35bcb89a260938260fd75dba173311
[ "MIT" ]
null
null
null
#-*- coding: utf-8 -*- from base64 import b64encode from datetime import datetime, timezone, timedelta from uuid import uuid4 try: from urllib import quote, quote_plus except ImportError: from urllib.parse import quote, quote_plus import string import hmac class Signature(object): salt = string.ascii_letters def __init__(self, client_secret, expiration_time=300): self.client_secret = client_secret self.expiration_time = expiration_time def get_timestamp(self): return datetime.now(tz=timezone.utc).strftime('%Y-%m-%dT%H:%M:%SZ') def is_expired(self, timestamp): now = datetime.now(tz=timezone.utc) timestamp = datetime.strptime( timestamp, '%Y-%m-%dT%H:%M:%SZ').replace(tzinfo=timezone.utc) return now > (timestamp + timedelta(seconds=self.expiration_time)) def get_sign_nonce(self): return uuid4().hex def _get_stringtosign(self, params): t = [] items = list(params.items()) items.sort(key=lambda i: i[0]) for key, value in items: if value is None: continue key = quote_plus(key) value = quote_plus(str(value)) value = value.replace('%7E', '~').replace('+', '%20') t.append('%s=%s' % (key, value)) qs = '&'.join(t) qs = quote_plus(qs).replace('%7E', '~').replace('+', '%20') return qs def _make_signed_string(self, params): text = self._get_stringtosign(params) message = '&'.join([self.salt, text]) key = (self.client_secret + '&').encode('utf-8') message = message.encode('utf-8') h = hmac.new(key, message, digestmod='sha1') return b64encode(h.digest()).decode('utf-8') def sign(self, params): return self._make_signed_string(params) def verify(self, params, signed_string): timestamp = params['timestamp'] if self.is_expired(timestamp): return False return self._make_signed_string(params) == signed_string
31.287879
75
0.614528
0e3290b35fe588287504328fa4f6b276bb7421d0
911
py
Python
jumeaux/addons/final/json.py
ihatov08/jumeaux
7d983474df4b6dcfa57ea1a66901fbc99ebababa
[ "MIT" ]
11
2017-10-02T01:29:12.000Z
2022-03-31T08:37:22.000Z
jumeaux/addons/final/json.py
ihatov08/jumeaux
7d983474df4b6dcfa57ea1a66901fbc99ebababa
[ "MIT" ]
79
2017-07-16T14:47:17.000Z
2022-03-31T08:49:14.000Z
jumeaux/addons/final/json.py
ihatov08/jumeaux
7d983474df4b6dcfa57ea1a66901fbc99ebababa
[ "MIT" ]
2
2019-01-28T06:11:58.000Z
2021-01-25T07:21:21.000Z
# -*- coding:utf-8 -*- from owlmixin import OwlMixin, TOption from jumeaux.addons.final import FinalExecutor from jumeaux.models import FinalAddOnPayload, FinalAddOnReference from jumeaux.logger import Logger logger: Logger = Logger(__name__) class Config(OwlMixin): sysout: bool = False indent: TOption[int] class Executor(FinalExecutor): def __init__(self, config: dict): self.config: Config = Config.from_dict(config or {}) def exec(self, payload: FinalAddOnPayload, reference: FinalAddOnReference) -> FinalAddOnPayload: if self.config.sysout: print(payload.report.to_json(indent=self.config.indent.get())) else: payload.report.to_jsonf( f"{payload.result_path}/report.json", encoding=payload.output_summary.encoding, indent=self.config.indent.get(), ) return payload
29.387097
100
0.675082
0e9efacad3b0ff51bec1249b715d4eda1c1e68af
5,962
py
Python
pvtool/routes/_measurement.py
schmocker/pv-FHNW
5066e0bc7ce76be5d1a930b50034c746b232a9f8
[ "MIT" ]
1
2019-10-31T13:34:12.000Z
2019-10-31T13:34:12.000Z
pvtool/routes/_measurement.py
schmocker/pv-FHNW
5066e0bc7ce76be5d1a930b50034c746b232a9f8
[ "MIT" ]
1
2019-05-27T13:03:25.000Z
2019-05-27T13:03:25.000Z
pvtool/routes/_measurement.py
schmocker/pv-FHNW
5066e0bc7ce76be5d1a930b50034c746b232a9f8
[ "MIT" ]
null
null
null
"""Overview of all Measurements and linked functions such as uploading removing and single view of measurement""" import os from werkzeug.utils import secure_filename from flask import Blueprint, render_template, request, redirect, flash, g, current_app, url_for from flask_login import current_user, login_required from ..db import db, Measurement, PvModule, MeasurementValues from ..forms import MeasurementForm from ..file_upload import UPLOAD_FOLDER, allowed_file, process_data_file, InvalidFileType,\ process_multiple_measurements_file from ._users import add_timestamp, requires_access_level measurement_routes = Blueprint('measurement', __name__, template_folder='templates') @measurement_routes.route('/measurements') def measurements(): """Display all measurements as table with clickable individual measurements""" measurements_for_displaying = db.session.query(Measurement).all() return render_template('measurement/measurements.html', measurements=measurements_for_displaying) @measurement_routes.route('/measurement') def measurement(): """Display a single measurement with link to removal, plot and returning to all measurements""" try: meas_id = request.args.get('id', type=int) if meas_id is None: raise Exception(f'no valid id for pv module') meas = db.session.query(Measurement).get(meas_id) meas_values = db.session.query(MeasurementValues).filter(MeasurementValues.measurement_id == meas_id).all() print(meas_values) if meas is None: raise Exception(f'no measurement with id {meas_id} exists') return render_template('measurement/measurement.html', measurement=meas, measurement_values=meas_values) except Exception as e: flash(str(e), category='danger') return redirect('measurements') @measurement_routes.route('/measurement/remove') @requires_access_level('Admin') def remove_measurement(): """Remove the individual measurement and its corresponding measurement values, does not affect the user""" meas_id = request.args.get('id', type=int) if meas_id is not None: db.session.query(Measurement).filter(Measurement.id == meas_id).delete() db.session.commit() return redirect('/measurements') @measurement_routes.route('/add_measurement', methods=['GET', 'POST']) @login_required def add_measurement(): """Form to add measurement with populated pvmodules field""" form = MeasurementForm() modules = db.session.query(PvModule).all() current_user_data = current_user.__dict__ user = {'students': current_user_data['student1'] + ', ' + current_user_data['student2'] + ', ' + current_user_data['student3'], 'meas_series': current_user_data['user_name']} form.pv_modul.choices = [] # Every user can only insert one measurement if db.session.query(Measurement).filter(Measurement.measurement_series == user['meas_series']).first() is not None\ and user['meas_series'] != 'admin': print(db.session.query(Measurement).filter(Measurement.measurement_series == user['meas_series']).first()) flash('Sie haben bereits eine Messung hinzugefügt.', category='danger') return redirect(url_for('measurement.measurements')) # populate select field with available distinct modules for module in modules: if (module.model, str(module.manufacturer) + ' ' + str(module.model)) not in form.pv_modul.choices: form.pv_modul.choices.append((module.model, str(module.manufacturer) + ' ' + str(module.model))) if request.method == 'POST': chosen_module = db.session.query(PvModule).filter(PvModule.model == form.pv_modul.data).first() # noinspection PyArgumentList new_measurement = Measurement(date=form.mess_datum.data, measurement_series=user['meas_series'], producer=user['students'], ) # save file that was uploaded # if form.validate_on_submit(): f = form.messungen.data filename = secure_filename(f.filename) if not allowed_file(filename): flash('Ungültiges Dateiformat.', category='danger') return redirect(url_for('measurement.measurements')) f.save(os.path.join(UPLOAD_FOLDER, filename)) chosen_module.measurements.append(new_measurement) try: process_data_file(filename, new_measurement) except InvalidFileType: flash('Messung hochladen fehlgeschlagen!', category='danger') return redirect(url_for('measurement.measurements')) db.session.add(chosen_module) db.session.commit() add_timestamp() flash('Messung erfolgreich hinzugefügt.', category='success') return redirect(url_for('measurement.measurements')) # flash current user flash('Angemeldet als:', ) flash(current_user_data['user_name'], category='primary') return render_template('measurement/add_measurement.html', form=form, user=user) @measurement_routes.route('/add_measurements', methods=['GET', 'POST']) @requires_access_level('Admin') def add_measurements(): """Form to add measurement from excel, multiple measurements possible""" form = MeasurementForm() if request.method == 'POST': f = form.messungen.data filename = secure_filename(f.filename) if not allowed_file(filename): flash('Ungültiges Dateiformat.', category='danger') return redirect(url_for('measurement.measurements')) path_to_file = os.path.join(UPLOAD_FOLDER, filename) f.save(path_to_file) process_multiple_measurements_file(filename) return redirect(url_for('measurement.measurements')) return render_template('measurement/add_measurements.html', form=form)
43.202899
119
0.69423
383966bec51a678c93133bca8d324981bf23e90d
7,526
py
Python
sdd-db/cronjobs/db_upload_energy.py
socialdistancingdashboard/virushack
6ef69d26c5719d0bf257f4594ed2488dd73cdc40
[ "Apache-2.0" ]
29
2020-03-21T00:47:51.000Z
2021-07-17T15:50:33.000Z
sdd-db/cronjobs/db_upload_energy.py
socialdistancingdashboard/virushack
6ef69d26c5719d0bf257f4594ed2488dd73cdc40
[ "Apache-2.0" ]
7
2020-03-21T14:04:26.000Z
2022-03-02T08:05:40.000Z
sdd-db/cronjobs/db_upload_energy.py
socialdistancingdashboard/virushack
6ef69d26c5719d0bf257f4594ed2488dd73cdc40
[ "Apache-2.0" ]
13
2020-03-21T01:08:08.000Z
2020-04-08T17:21:11.000Z
""" Uploads Corona data from Zeit online Note: infected numbers are known infections on a particular day. Dead and Recovered numbers were summed up until today. """ import os import pandas as pd from datetime import datetime, timedelta import pytz # compatibility with ipython try: __IPYTHON__ os.chdir(os.path.dirname(__file__)) except: pass import json import pymysql from pymysql.constants import CLIENT from sqlalchemy import create_engine from sqlalchemy.pool import NullPool import requests from hashlib import md5 # connect to aws database with sqlalchemy (used for pandas connections) config = json.load(open("../../credentials/credentials-aws-db.json", "r")) aws_engine = create_engine( ("mysql+pymysql://" + config["user"] + ":" + config["password"] + "@" + config["host"] + ":" + str(config["port"]) + "/" + config["database"]), poolclass=NullPool, # dont maintain a pool of connections pool_recycle=3600 # handles timeouts better, I think... ) # aws database connection used for normal queries because sqlalchemy doesnt support on duplicate key queries pymysql_con = pymysql.connect( config["host"], config["user"], config["password"], config["database"], client_flag=CLIENT.MULTI_STATEMENTS) charts_whitelist = [ "import balance", "load", "day ahead auction", "intraday continuous average price", "intraday continuous id3 price", "intraday continuous id1 price" ] description_lookup = { "import balance": { "desc_short": "Netto Stromimporte", "desc_long": "Netto Stromimporte", "unit": "Gigawatt", "unit_agg": "Gigawatt", "agg_mode": "sum" }, "load": { "desc_short": "Stromverbrauch", "desc_long": "Stromverbrauch", "unit": "Gigawatt", "unit_agg": "Gigawatt", "agg_mode": "sum" }, "day ahead auction": { "desc_short": "Day-ahead Strompreis", "desc_long": "Day-ahead Strompreise", "unit": "EUR/MWh", "unit_agg": "Prozent", "agg_mode": "avg-percentage-of-normal" }, "intraday continuous average price": { "desc_short": "Strompreis Index IDFull", "desc_long": "The IDFull index is the weighted average price of all continuous trades executed during the full trading session of any EPEX SPOT continuous contract. This index includes the entire market liquidity and thus represents the obvious continuous market price references for each contract.", "unit": "EUR/MWh", "unit_agg": "Prozent", "agg_mode": "avg-percentage-of-normal" }, "intraday continuous id3 price": { "desc_short": "Strompreis Index ID3", "desc_long": "The ID3 index is the weighted average price of all continuous trades executed within the last 3 trading hours of a contract (up to 30min before delivery start).This index focuses on the most liquid timeframe of a continuous contract trading session. As such, this index presents large business interest for EPEX SPOT customers to market their offers or challenge their trading activity.", "unit": "EUR/MWh", "unit_agg": "Prozent", "agg_mode": "avg-percentage-of-normal" }, "intraday continuous id1 price": { "desc_short": "Strompreis Index ID1", "desc_long": "The ID1 index is the weighted average price of all continuous trades executed within the last trading hour of a contract up to 30min before delivery start. This index catches the market last minute imbalance needs, reflecting amongst other the increasing REN breakthrough and system balancing flexibility.", "unit": "EUR/MWh", "unit_agg": "Prozent", "agg_mode": "avg-percentage-of-normal" } } # retrieve data from fraunhofer ise def upload_week(week): url = f"https://www.energy-charts.de/price/week_2020_{week}.json" r = requests.get(url) data = r.json() for chart in data: chart_key = chart["key"][0]["en"].lower().replace("-", " ") if not chart_key in charts_whitelist: continue print(f"current chart_key {chart_key}") source_id = ("score fraunhofer " + chart_key).replace(" ", "_") source = { "id": source_id, "desc_short": description_lookup[chart_key]["desc_short"], "desc_long": description_lookup[chart_key]["desc_long"] , "contributors": "Fraunhofer ISI, 50 Hertz, Amprion, Tennet, TransnetBW, EEX, EPEX SPOT", "unit": description_lookup[chart_key]["unit"], "unit_long": description_lookup[chart_key]["unit"], "unit_agg_long": description_lookup[chart_key]["unit_agg"], "sample_interval": "hourly", "agg_mode": description_lookup[chart_key]["agg_mode"], "has_reference_values": 0, "spatial_level": "country" } q = """ REPLACE INTO sources ( id, desc_short, desc_long, contributors, unit, unit_long, unit_agg_long, sample_interval, agg_mode, has_reference_values, spatial_level ) VALUES ( %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """ with pymysql_con.cursor() as cur: cur.execute(q, list(source.values())) pymysql_con.commit() country_id = "DE" unique_index = source_id + country_id station = { "source_id": source_id, "description": "country-level data", "source_station_id": "country-level data", "country_id": country_id, "unique_index": md5(unique_index.encode("utf-8")).hexdigest() } q = """ INSERT INTO stations ( source_id, description, source_station_id, country_id, unique_index ) VALUES ( %s, %s, %s, %s, %s ) ON DUPLICATE KEY UPDATE source_id = VALUES(source_id), description = VALUES(description), source_station_id = VALUES(source_station_id), country_id = VALUES(country_id) """ with pymysql_con.cursor() as cur: cur.execute(q, list(station.values())) pymysql_con.commit() q = """ SELECT id AS station_id FROM stations WHERE source_id = '%s' """ % source_id scores_stations_foreign_key = pd.read_sql(q, aws_engine)["station_id"].iloc[0] # remove trailing zeros drop_index = len(chart["values"]) while chart["values"][drop_index-1][1] == 0: drop_index = drop_index - 1 df_scores = pd.DataFrame(chart["values"][:drop_index], columns=["dt", "score_value"]) df_scores.dropna(inplace=True) df_scores.dt = df_scores.dt.apply(lambda x: datetime.fromtimestamp(x / 1000)) df_scores['dt'] = df_scores['dt'].astype(str) df_scores["source_id"] = source_id df_scores["station_id"] = scores_stations_foreign_key q = """ INSERT INTO scores ( dt, score_value, source_id, station_id ) VALUES (%s, %s, %s, %s) ON DUPLICATE KEY UPDATE score_value = VALUES(score_value) """ with pymysql_con.cursor() as cur: cur.executemany(q, df_scores[["dt", "score_value", "source_id", "station_id"]].values.tolist()) pymysql_con.commit() print("uploaded week %s done" % week) def upload_all(): """ Drop all fraunhofer data before reuploading """ q = """ DELETE FROM sources WHERE id LIKE '%fraunhofer%'; DELETE FROM stations WHERE source_id LIKE '%fraunhofer%'; DELETE FROM scores WHERE source_id LIKE '%fraunhofer%'; """ with pymysql_con.cursor() as cur: cur.execute(q) pymysql_con.commit() start = datetime(2020,1,1) week = start.isocalendar()[1] current_week = datetime.now().isocalendar()[1] while week <= current_week: upload_week(str(week).zfill(2)) week = week + 1 upload_all() # upload for today #current_week = datetime.now().isocalendar()[1] #upload_week(str(week).zfill(2)) pymysql_con.close()
34.054299
406
0.680973
69afcb6111e2b727f9b4db4fba7fb9a04892dfe5
1,099
py
Python
time/plot.py
gray0018/Normal-integration-benchmark
3f4fff86e659ae2a3588c0960ebb0af39e4a1e21
[ "MIT" ]
null
null
null
time/plot.py
gray0018/Normal-integration-benchmark
3f4fff86e659ae2a3588c0960ebb0af39e4a1e21
[ "MIT" ]
null
null
null
time/plot.py
gray0018/Normal-integration-benchmark
3f4fff86e659ae2a3588c0960ebb0af39e4a1e21
[ "MIT" ]
null
null
null
import numpy as np import operator import matplotlib.pyplot as plt import json import os # directory = '.' # d = {} # for filename in os.listdir(directory): # if filename.endswith(".npy"): # t = np.load(filename) # d[filename[:-4]] = float(t) # j = json.dumps(d) # f = open("woloop.json","w") # f.write(j) # f.close() plt.style.use(['science','no-latex']) with open('withloop.json') as json_file: d_w = json.load(json_file) d_w = dict(sorted(d_w.items(), key=operator.itemgetter(1))) with open('woloop.json') as json_file: d_wo = json.load(json_file) d_wo = dict(sorted(d_wo.items(), key=operator.itemgetter(1))) fig, axes = plt.subplots(figsize=(5,5)) axes.scatter(d_w.keys(), d_w.values()) axes.scatter(d_wo.keys(), d_wo.values()) axes.legend(['With nested loops','W/O nested loops']) axes.set_ylabel('Time (s)', fontsize=16) axes.set_xlabel('Model-resolution', fontsize=16) chartBox = axes.get_position() axes.set_position([chartBox.x0, chartBox.y0*2, chartBox.width, chartBox.height]) plt.xticks(rotation=90) plt.show()
24.422222
61
0.658781
69ecdf48286aae4a1eb103b7ce4eaaa1dafeab2e
6,300
py
Python
src/onegov/fsi/views/course.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/fsi/views/course.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/fsi/views/course.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.html import html_to_text from onegov.core.security import Private, Secret, Personal from onegov.core.templates import render_template from onegov.fsi import FsiApp from onegov.fsi.collections.course import CourseCollection from onegov.fsi.collections.course_event import CourseEventCollection from onegov.fsi.forms.course import CourseForm, InviteCourseForm from onegov.fsi import _ from onegov.fsi.layouts.course import CourseCollectionLayout, CourseLayout, \ AddCourseLayout, EditCourseLayout, InviteCourseLayout, \ CourseInviteMailLayout from onegov.fsi.models import CourseAttendee from onegov.fsi.models.course import Course from onegov.fsi.models.course_notification_template import \ CourseInvitationTemplate, CourseNotificationTemplate from onegov.user import User def handle_send_invitation_email( self, course, request, recipients, cc_to_sender=True): """Recipients must be a list of emails""" if not recipients: request.alert(_("There are no recipients matching the selection")) else: att = request.attendee if cc_to_sender and att.id not in recipients: recipients = list(recipients) recipients.append(att.id) mail_layout = CourseInviteMailLayout(course, request) errors = [] for email in recipients: attendee = request.session.query( CourseAttendee).filter_by(_email=email).first() if not attendee: user = request.session.query(User).filter_by( username=email).first() if not user: errors.append(email) continue attendee = user.attendee if not attendee: # This is a case that should not happen except in testing errors.append(email) continue content = render_template('mail_notification.pt', request, { 'layout': mail_layout, 'title': self.subject, 'notification': self.text_html, 'attendee': attendee, }) plaintext = html_to_text(content) request.app.send_marketing_email( receivers=(attendee.email,), subject=self.subject, content=content, plaintext=plaintext, ) request.success(_( "Successfully sent the e-mail to ${count} recipients", mapping={ 'count': len(recipients) - len(errors) } )) if errors: request.warning( _('Following emails were unknown: ${mail_list}', mapping={'mail_list': ', '.join(errors)}) ) return request @FsiApp.html( model=Course, template='mail_notification.pt', permission=Private, name='embed') def view_email_preview_for_course(self, request): mail_layout = CourseInviteMailLayout(self, request) template = CourseNotificationTemplate() return { 'layout': mail_layout, 'title': template.subject, 'notification': template.text_html, 'attendee': request.attendee } @FsiApp.html( model=CourseCollection, template='courses.pt', permission=Personal ) def view_course_collection(self, request): layout = CourseCollectionLayout(self, request) layout.include_accordion() return { 'layout': layout, 'model': self, } @FsiApp.form( model=CourseCollection, template='form.pt', name='add', form=CourseForm, permission=Secret ) def view_add_course_event(self, request, form): layout = AddCourseLayout(self, request) layout.include_editor() if form.submitted(request): course = self.add(**form.get_useful_data()) request.success(_("Added a new course")) return request.redirect(request.link(course)) return { 'layout': layout, 'model': self, 'form': form } @FsiApp.html( model=Course, template='course.pt', permission=Personal ) def view_course_event(self, request): layout = CourseLayout(self, request) return { 'layout': layout, 'model': self, 'events': self.future_events.all() } @FsiApp.json( model=Course, permission=Personal, name='content-json' ) def get_course_event_content(self, request): return self.description_html @FsiApp.form( model=Course, template='form.pt', name='edit', form=CourseForm, permission=Secret ) def view_edit_course_event(self, request, form): layout = EditCourseLayout(self, request) layout.include_editor() if form.submitted(request): form.update_model(self) request.success(_("Your changes were saved")) return request.redirect(request.link(self)) if not form.errors: form.apply_model(self) return { 'layout': layout, 'model': self, 'form': form, 'button_text': _('Update') } @FsiApp.form( model=Course, template='course_invite.pt', form=InviteCourseForm, name='invite', permission=Private ) def invite_attendees_for_event(self, request, form): layout = InviteCourseLayout(self, request) if form.submitted(request): recipients = form.get_useful_data() request = handle_send_invitation_email( CourseInvitationTemplate(), self, request, recipients, cc_to_sender=False ) return request.redirect(request.link(self)) return { 'layout': layout, 'model': self, 'form': form, 'button_text': _('Send Invitation'), 'email': CourseInvitationTemplate(), 'iframe_link': request.link(self, name='embed') } @FsiApp.view( model=Course, request_method='DELETE', permission=Secret ) def delete_course(self, request): request.assert_valid_csrf_token() if not self.events.first(): CourseEventCollection(request.session).delete(self) request.success(_('Course successfully deleted')) else: request.warning(_('This course has events and can not be deleted'))
27.038627
77
0.628254
38dce8febadffc6a8a290ffb214c1ae017cc58f2
4,673
py
Python
RDS/circle1_adapters_and_ports/port_openscienceframework/tests/server/example.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
10
2020-06-24T08:22:24.000Z
2022-01-13T16:17:36.000Z
RDS/circle1_adapters_and_ports/port_openscienceframework/tests/server/example.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
78
2020-01-23T14:32:06.000Z
2022-03-07T14:11:16.000Z
RDS/circle1_adapters_and_ports/port_openscienceframework/tests/server/example.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
1
2020-06-24T08:33:48.000Z
2020-06-24T08:33:48.000Z
import json # Use this to initialize a `Project` instance node_json = """ { "data": { "relationships": { "files": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/files/", "meta": {} } } }, "view_only_links": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/view_only_links/", "meta": {} } } }, "citation": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/citation/", "meta": {} } } }, "license": { "links": { "related": { "href": "https://api.osf.io/v2/licenses/563c1ffbda3e240129e72c03/", "meta": {} } } }, "contributors": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/contributors/", "meta": {} } } }, "forks": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/forks/", "meta": {} } } }, "root": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/", "meta": {} } } }, "identifiers": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/identifiers/", "meta": {} } } }, "comments": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/comments/?filter%5Btarget%5D=f3szh", "meta": {} } } }, "registrations": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/registrations/", "meta": {} } } }, "logs": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/logs/", "meta": {} } } }, "node_links": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/node_links/", "meta": {} } } }, "linked_nodes": { "links": { "self": { "href": "https://api.osf.io/v2/nodes/f3szh/relationships/linked_nodes/", "meta": {} }, "related": { "href": "https://api.osf.io/v2/nodes/f3szh/linked_nodes/", "meta": {} } } }, "wikis": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/wikis/", "meta": {} } } }, "affiliated_institutions": { "links": { "self": { "href": "https://api.osf.io/v2/nodes/f3szh/relationships/institutions/", "meta": {} }, "related": { "href": "https://api.osf.io/v2/nodes/f3szh/institutions/", "meta": {} } } }, "children": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/children/", "meta": {} } } }, "preprints": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/preprints/", "meta": {} } } }, "draft_registrations": { "links": { "related": { "href": "https://api.osf.io/v2/nodes/f3szh/draft_registrations/", "meta": {} } } } }, "links": { "self": "https://api.osf.io/v2/nodes/f3szh/", "html": "https://osf.io/f3szh/" }, "attributes": { "category": "project", "fork": false, "preprint": true, "description": "this is a test for preprint citations", "current_user_permissions": [ "read" ], "date_modified": "2017-03-17T16:11:35.721000", "title": "Preprint Citations Test", "collection": false, "registration": false, "date_created": "2017-03-17T16:09:14.864000", "current_user_can_comment": false, "node_license": { "copyright_holders": [], "year": "2017" }, "public": true, "tags": [ "qatest" ] }, "type": "nodes", "id": "f3szh" } } """ def _build_node(type_): node = json.loads(node_json) node["data"]["type"] = type_ return node
23.482412
91
0.395035
c7fa2d7b6279fbc16ddf225ebbef4fbcd6439d6d
2,204
py
Python
Grundlagen/Python/Minensucher/minensucher.py
jneug/schule-projekte
4f1d56d6bb74a47ca019cf96d2d6cc89779803c9
[ "MIT" ]
2
2020-09-24T12:11:16.000Z
2022-03-31T04:47:24.000Z
Grundlagen/Python/Minensucher/minensucher.py
jneug/schule-projekte
4f1d56d6bb74a47ca019cf96d2d6cc89779803c9
[ "MIT" ]
1
2021-02-27T15:06:27.000Z
2021-03-01T16:32:48.000Z
Grundlagen/Python/Minensucher/minensucher.py
jneug/schule-projekte
4f1d56d6bb74a47ca019cf96d2d6cc89779803c9
[ "MIT" ]
1
2021-02-24T05:12:35.000Z
2021-02-24T05:12:35.000Z
from random import randint FELD_BREITE = 15 FELD_HOEHE = 10 ANZAHL_MINEN = randint( int(FELD_BREITE * FELD_HOEHE * 0.1), int(FELD_BREITE * FELD_HOEHE * 0.2) ) WIDTH = FELD_BREITE * 20 HEIGHT = FELD_HOEHE * 20 feld = [] def minen_verteilen(anzahl): for i in range(FELD_BREITE): feld.append([]) for j in range(FELD_HOEHE): if anzahl > 0 and randint(0, 10) < 3: feld[i].append("X") anzahl -= 1 else: feld[i].append(0) def anzahl_anpassen(i, j): for x in range(3): for y in range(3): new_i = i - 1 + x new_j = j - 1 + y if new_i >= 0 and new_i < FELD_BREITE and new_j >= 0 and new_j < FELD_HOEHE: if feld[new_i][new_j] != "X": feld[new_i][new_j] += 1 def minen_zaehlen(): for i in range(FELD_BREITE): for j in range(FELD_HOEHE): cell = feld[i][j] if cell == "X": anzahl_anpassen(i, j) sprites = [] def feld_aufbauen(): for i in range(FELD_BREITE): for j in range(FELD_HOEHE): inhalt = feld[i][j] if inhalt == "X": bomb_sprite = Actor("bomb") bomb_sprite.center = (i * 20 + 10, j * 20 + 10) sprites.append(bomb_sprite) feld_sprite = Actor("feld") feld_sprite.topleft = (i * 20, j * 20) sprites.append(feld_sprite) minen_verteilen(ANZAHL_MINEN) minen_zaehlen() feld_aufbauen() def draw(): screen.clear() for i in range(FELD_BREITE): for j in range(FELD_HOEHE): inhalt = feld[i][j] screen.draw.textbox(str(inhalt), Rect((i*20,j*20), (20,20))) for sprite in sprites: sprite.draw() def on_mouse_down(pos, button): if button == mouse.LEFT: for sprite in sprites: if sprite.collidepoint(pos): sprites.remove(sprite) i, j = int(pos[0] / 20), int(pos[1] / 20) if feld[i][j] == 'X': print("Bombe!") else: print(feld[i][j])
25.929412
89
0.503176
2d83515d3b2c0545f64c14bb473a19cac246deff
168
py
Python
nz_django/day1/urls_include_demo/book/urls.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
null
null
null
nz_django/day1/urls_include_demo/book/urls.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
27
2020-02-12T07:55:58.000Z
2022-03-12T00:19:09.000Z
nz_django/day1/urls_include_demo/book/urls.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
2
2020-02-18T01:54:55.000Z
2020-02-21T11:36:28.000Z
from django.urls import path from . import views urlpatterns = [ path('', views.index), path('detail/<int:book_id>/', views.book_detail,{'name':'kangbazi'}), ]
24
73
0.666667
933cb13bc7fe5bd1b62885cb8b25ce8a810ed468
2,082
py
Python
Packs/CrowdStrikeFalcon/Scripts/ReadNetstatFile/ReadNetstatFile.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
null
null
null
Packs/CrowdStrikeFalcon/Scripts/ReadNetstatFile/ReadNetstatFile.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
40
2022-03-03T07:34:00.000Z
2022-03-31T07:38:35.000Z
Packs/CrowdStrikeFalcon/Scripts/ReadNetstatFile/ReadNetstatFile.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
null
null
null
from CommonServerPython import * COMMAND_NAME = 'netstat' def get_netstat_file_name(command_files): if command_files and isinstance(command_files, dict): netstat_files = command_files.get(COMMAND_NAME, []) if netstat_files: if isinstance(netstat_files, list): # we want to get the last file name return netstat_files[len(netstat_files) - 1].get('Filename') elif isinstance(netstat_files, dict): return netstat_files.get('Filename') # type:ignore def get_file_name_from_context() -> str: crowdstrike_context = demisto.context().get('CrowdStrike', {}) all_command_files = [] if isinstance(crowdstrike_context, list): for ctx in crowdstrike_context: if cmd_ctx := ctx.get('Command'): all_command_files.append(cmd_ctx) elif isinstance(crowdstrike_context, dict) and (cmd_ctx := crowdstrike_context.get('Command')): all_command_files.append(cmd_ctx) for command_file in all_command_files[::-1]: # get last file in context if file_name := get_netstat_file_name(command_file): return file_name return "" def get_file_entry_id(file_name): file_entry_id = "" if file_name: entries = demisto.executeCommand('getEntries', {}) for entry in entries: file_entry = demisto.get(entry, 'File') is_correct_file = file_name.lower() == file_entry.lower() if is_correct_file: file_entry_id = entry['ID'] break return file_entry_id def get_file_content(file_entry_id): if file_entry_id: res = execute_command('getFilePath', {'id': file_entry_id}) file_path = res.get('path') with open(file_path, 'r') as f: file_content = f.read() return file_content def main(): file_name = get_file_name_from_context() if file_name: demisto.results(get_file_content(get_file_entry_id(file_name))) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
33.580645
99
0.650336
35c47dafeebb19ee587dafd46dfb9444757360e8
352
py
Python
Packs/CommonScripts/Scripts/DumpJSON/DumpJSON.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/CommonScripts/Scripts/DumpJSON/DumpJSON.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/CommonScripts/Scripts/DumpJSON/DumpJSON.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import json import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 def main(): key = demisto.args()['key'] obj_str = json.dumps(demisto.get(demisto.context(), key)) demisto.setContext('JsonStr', obj_str) return_results(obj_str) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
22
61
0.6875
35d1681b32652ae64d777846da7fc45306f656ec
476
py
Python
___Python/Angela/PyKurs/p07_file_io/m01_count_files.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
___Python/Angela/PyKurs/p07_file_io/m01_count_files.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
___Python/Angela/PyKurs/p07_file_io/m01_count_files.py
uvenil/PythonKurs201806
85afa9c9515f5dd8bec0c546f077d8cc39568fe8
[ "Apache-2.0" ]
null
null
null
from pathlib import Path # Zaehle die Anzahl Ordner in einem Ordner (inkl. allen Unterordnern) def count_dirs(path): subdirs = [subdir for subdir in path.iterdir() if subdir.is_dir()] #Bestimme die direkten Unterordner des Ordners path count = 1 # Spielwiese selbst for subdir in subdirs: count += count_dirs(subdir) # fuer jedes einzelne Kind return count count = count_dirs(Path("O:\Spielwiese")) print(count) # Iterative Lösung
29.75
123
0.701681
ea420c4d8691173ecb3f646afb940711d48ce24a
484
py
Python
experiment/ea/make_tweet_tokenized_data_master.py
iecasszyjy/tweet_search-master
e4978521a39964c22ae46bf35d6ff17710e8e6c6
[ "MIT" ]
null
null
null
experiment/ea/make_tweet_tokenized_data_master.py
iecasszyjy/tweet_search-master
e4978521a39964c22ae46bf35d6ff17710e8e6c6
[ "MIT" ]
2
2021-03-31T18:54:16.000Z
2021-12-13T19:49:08.000Z
experiment/ea/make_tweet_tokenized_data_master.py
iecasszyjy/tweet_search-master
e4978521a39964c22ae46bf35d6ff17710e8e6c6
[ "MIT" ]
null
null
null
from tqdm import tqdm import pymongo import redis import json from bson import json_util client = pymongo.MongoClient('localhost:27017') db = client.tweet r = redis.StrictRedis(host='localhost', port=6379, db=0) events = [e for e in db.current_event.find({},{'_id':1})] def send_message(eid): message = {'event_id':json.dumps(eid,default=json_util.default)} r.rpush('task:data',json.dumps(message)) if __name__ == '__main__': [send_message(e['_id']) for e in tqdm(events)]
25.473684
65
0.725207
57741b8c449b1a45735b70561ed716e153f13b4e
943
py
Python
venv/Lib/site-packages/pynance/tst/unit/data/test_compare.py
LeonardoHMS/imobi
6b2b97a05df67ea7d493f7b601382f65c6629cc2
[ "MIT" ]
35
2015-03-12T04:16:14.000Z
2020-12-17T18:10:15.000Z
venv/Lib/site-packages/pynance/tst/unit/data/test_compare.py
LeonardoHMS/imobi
6b2b97a05df67ea7d493f7b601382f65c6629cc2
[ "MIT" ]
31
2015-03-16T21:31:04.000Z
2021-01-26T00:12:34.000Z
venv/Lib/site-packages/pynance/tst/unit/data/test_compare.py
LeonardoHMS/imobi
6b2b97a05df67ea7d493f7b601382f65c6629cc2
[ "MIT" ]
18
2015-09-30T10:40:26.000Z
2021-01-25T21:20:44.000Z
""" Tests for performance comparison functions. Copyright (c) 2016 Marshall Farrier license http://opensource.org/licenses/MIT """ import unittest import numpy as np import pandas as pd import pynance as pn class TestCompare(unittest.TestCase): def test_compare(self): rng = pd.date_range('2016-03-28', periods=4) eqs = ('SCTY', 'SPWR') eq_dfs = [pd.DataFrame(index=rng, columns=['Close']) for i in range(len(eqs))] eq_dfs[0].iloc[:, 0] = [2., 4., 6., 8.] eq_dfs[1].iloc[:, 0] = [4., 4., 2., 6.] rel_perf = pn.data.compare(eq_dfs, eqs) self.assertTrue((rng == rel_perf.index).all(), 'incorrect index') self.assertTrue((list(eqs) == list(rel_perf)), 'incorrect column labels') self.assertTrue(np.allclose(np.array([[1., 2., 3., 4.], [1., 1., .5, 1.5]]).T, rel_perf.to_numpy()), 'incorrect values') if __name__ == '__main__': unittest.main()
30.419355
108
0.610817
57de2bd1b9fbd5865d36e8b81853868fd4548e1b
620
py
Python
comp/yelp/onsite2/MinCoinNum_swirl_streaming.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2015-12-16T04:01:03.000Z
2015-12-16T04:01:03.000Z
comp/yelp/onsite2/MinCoinNum_swirl_streaming.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
comp/yelp/onsite2/MinCoinNum_swirl_streaming.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
# Think about another ways def mincoin(coins, target): # coins: positive nums coins.sort() cand = set(coins) minnums = [0] * target cnt = 0 while len(cand) != 0: cnt += 1 newcand = set() for c in cand: minnums[c] = cnt for coin in coins: idx = c + coin if idx < target: print 2 if minnums[idx] == 0: newcand.add(idx) else: break cand = newcand return cnt print mincoin([1, 2], 3)
20.666667
41
0.41129
17b32a03eacb3b7786a65a8d9678832d9e175f53
857
py
Python
tools/pythonpkg/tests/fast/arrow/test_multiple_reads.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
2,816
2018-06-26T18:52:52.000Z
2021-04-06T10:39:15.000Z
tools/pythonpkg/tests/fast/arrow/test_multiple_reads.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
1,310
2021-04-06T16:04:52.000Z
2022-03-31T13:52:53.000Z
tools/pythonpkg/tests/fast/arrow/test_multiple_reads.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
270
2021-04-09T06:18:28.000Z
2022-03-31T11:55:37.000Z
import duckdb import os try: import pyarrow import pyarrow.parquet can_run = True except: can_run = False class TestArrowReads(object): def test_multiple_queries_same_relation(self, duckdb_cursor): if not can_run: return parquet_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),'data','userdata1.parquet') cols = 'id, first_name, last_name, email, gender, ip_address, cc, country, birthdate, salary, title, comments' userdata_parquet_table = pyarrow.parquet.read_table(parquet_filename) userdata_parquet_table.validate(full=True) rel = duckdb.from_arrow_table(userdata_parquet_table) assert(rel.aggregate("(avg(salary))::INT").execute().fetchone()[0] == 149005) assert(rel.aggregate("(avg(salary))::INT").execute().fetchone()[0] == 149005)
38.954545
118
0.697783
aa0112abd3623d59b95270b5dbc850092d2947d8
101
py
Python
python_lessons/python_test/second_python.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
python_lessons/python_test/second_python.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
python_lessons/python_test/second_python.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
# second python test # write via GNU nano MacBook Pro MMartin n = 10 for i in range(n): print(i)
12.625
40
0.683168
aa293795336e1733f07e56c3faa8c985e7a7dfa2
1,111
py
Python
src/python3_learn_video/BIF_closure.py
HuangHuaBingZiGe/GitHub-Demo
f3710f73b0828ef500343932d46c61d3b1e04ba9
[ "Apache-2.0" ]
null
null
null
src/python3_learn_video/BIF_closure.py
HuangHuaBingZiGe/GitHub-Demo
f3710f73b0828ef500343932d46c61d3b1e04ba9
[ "Apache-2.0" ]
null
null
null
src/python3_learn_video/BIF_closure.py
HuangHuaBingZiGe/GitHub-Demo
f3710f73b0828ef500343932d46c61d3b1e04ba9
[ "Apache-2.0" ]
null
null
null
# global 关键字 print('-----------------------------------') count = 5 def MyFun(): count = 10 print(count) MyFun() print(count) print('-----------------------------------') def MyFun(): global count count = 10 print(count) MyFun() print(count) print('-----------------------------------') def fun1(): print('fun1()正在被调用...') def fun2(): print('func2()正在被调用...') fun2() fun1() print('-----------------------------------') def FunX(x): def FunY(y): return x * y return FunY i = FunX(8) print(i) print(type(i)) print('-----------------------------------') print(i(5)) print('-----------------------------------') print(FunX(8)(5)) print('-----------------------------------') def Fun1(): x = [5] def Fun2(): x[0] *= x[0] return x[0] return Fun2() print(Fun1()) print('-----------------------------------') def Fun1(): x = 5 def Fun2(): nonlocal x x *= x return x return Fun2() print(Fun1()) print('-----------------------------------')
13.070588
44
0.338434
a4b16b9a02b8e34f41e02a71006951401e22f714
1,009
py
Python
Packs/PaloAltoNetworks_IoT3rdParty/Scripts/GeneratePANWIoTDeviceTableQueryForServiceNow/GeneratePANWIoTDeviceTableQueryForServiceNow.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/PaloAltoNetworks_IoT3rdParty/Scripts/GeneratePANWIoTDeviceTableQueryForServiceNow/GeneratePANWIoTDeviceTableQueryForServiceNow.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/PaloAltoNetworks_IoT3rdParty/Scripts/GeneratePANWIoTDeviceTableQueryForServiceNow/GeneratePANWIoTDeviceTableQueryForServiceNow.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 def main(): device_list = demisto.args().get('devices') query_strs = [] query_str = 'mac_addressIN' DEFAULT_VALUE_SIZE = 100 # each query contains 100 deviceid res = {} output_description = f'Total data length is {len(device_list)}' for i, entry in enumerate(device_list): query_str += entry['deviceid'] + ',' if ((i + 1) % DEFAULT_VALUE_SIZE == 0 or i == (len(device_list) - 1)): query_strs.append(query_str[0:len(query_str) - 1]) query_str = 'mac_addressIN' res['query'] = query_strs output_description = f'{output_description} total number of query is {len(query_strs)}' results = CommandResults( readable_output=output_description, outputs_prefix="PanwIot3rdParty.Query", outputs=res ) return results if __name__ in ['__main__', 'builtin', 'builtins']: res = main() return_results(res)
30.575758
91
0.650149
1035e02df02cb8357fc290dc2aba63b6c1ba4281
1,640
py
Python
backend/utils/id_generator.py
methodpark/digitaleswarten
024c0b88df54e9727925b202e139b3c5b2ce73d6
[ "Apache-2.0" ]
10
2020-03-20T19:14:43.000Z
2020-10-29T21:31:40.000Z
backend/utils/id_generator.py
methodpark/digitaleswarten
024c0b88df54e9727925b202e139b3c5b2ce73d6
[ "Apache-2.0" ]
41
2020-03-20T20:27:55.000Z
2020-03-24T21:49:37.000Z
backend/utils/id_generator.py
methodpark/digitaleswarten
024c0b88df54e9727925b202e139b3c5b2ce73d6
[ "Apache-2.0" ]
1
2020-03-21T09:31:51.000Z
2020-03-21T09:31:51.000Z
import random import time from hashlib import sha1 random.seed() WORDLIST = { 'adjective': [ 'angenehm', 'attraktiv', 'aufmerksam', 'bunt', 'blau', 'charmant', 'dankbar', 'edel', 'frei', 'gelb', 'glatt', 'hell', 'ideal', 'jung', 'leicht', 'lieb', 'luftig', 'mutig', 'nah', 'neu', 'offen', 'poetisch', 'rein', 'rund', 'sicher', 'treu', 'wach', 'warm', 'weich', 'zart', 'zentral', 'zivil' ], 'noun': [ 'amulett', 'arm', 'ball', 'baum', 'dach', 'eimer', 'engel', 'film', 'foto', 'freiheit', 'haus', 'insel', 'kugel', 'liebe', 'mutter', 'maus', 'nase', 'natur', 'obst', 'orgel', 'papier', 'quelle', 'radio', 'ritter', 'sand', 'stein', 'uhr', 'vater', 'vogel', 'wasser', 'zahn' ], 'verb': [ 'atmen', 'baden', 'bilden', 'danken', 'deuten', 'essen', 'haben', 'heilen', 'hoffen', 'jubeln', 'kreisen', 'lachen', 'leben', 'leuchten', 'loben', 'lohnen', 'malen', 'mischen', 'ordnen', 'planen', 'pfeifen', 'reden', 'rollen', 'sehen', 'stehen', 'teilen', 'trinken', 'wollen', 'zelten' ] } def generate_place_id(): """ Returns: - String: Human-readable id phrase """ return random.choice(WORDLIST['adjective']) + \ random.choice(WORDLIST['noun']) + \ random.choice(WORDLIST['verb']) def generate_queue_id(queue_name): hasher = sha1() hasher.update(queue_name.encode('utf-8')) name_hash = hasher.hexdigest()[:4] time_stamp = str(int(time.time()))[-2:] return name_hash + time_stamp def generate_entry_id(name): return generate_queue_id(name)
33.469388
79
0.54939
f4e559ef07486c1df08e4e0937f04c329444508d
2,126
py
Python
books/PythonCleanCode/ch6_descriptors/descriptors_methods_4.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
books/PythonCleanCode/ch6_descriptors/descriptors_methods_4.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
books/PythonCleanCode/ch6_descriptors/descriptors_methods_4.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
"""Clean Code in Python - Chapter 6: Descriptors > Methods of the descriptor interface: __set_name__ """ from log import logger class DescriptorWithName: """This descriptor requires the name to be explicitly set.""" def __init__(self, name): self.name = name def __get__(self, instance, owner): if instance is None: return self logger.info("getting %r attribute from %r", self.name, instance) return instance.__dict__[self.name] def __set__(self, instance, value): instance.__dict__[self.name] = value class ClientClass: """ >>> client = ClientClass() >>> client.descriptor = "value" >>> client.descriptor 'value' >>> ClientClass.descriptor_2.name "a name that doesn't match the attribute" """ descriptor = DescriptorWithName("descriptor") descriptor_2 = DescriptorWithName("a name that doesn't match the attribute") class DescriptorWithAutomaticName(DescriptorWithName): """This descriptor can infer the name of the attribute, if not provided. It also supports setting a different name explicitly. """ def __init__(self, name: str = None) -> None: self.name = name def __set_name__(self, owner, name): self.name = self.name or name class NewClientClass: """ >>> NewClientClass.descriptor_with_default_name.name 'descriptor_with_default_name' >>> NewClientClass.named_descriptor.name 'named_descriptor' >>> NewClientClass.descriptor_named_differently.name 'a_different_name' >>> client = NewClientClass() >>> client.descriptor_named_differently = "foo" >>> client.__dict__["a_different_name"] 'foo' >>> client.descriptor_named_differently 'foo' >>> client.a_different_name 'foo' """ descriptor_with_default_name = DescriptorWithAutomaticName() named_descriptor = DescriptorWithAutomaticName("named_descriptor") descriptor_named_differently = DescriptorWithAutomaticName( "a_different_name" )
26.575
81
0.660395
df4ccadd48ef65ce73e0ea13f4e72f45bf8f773d
381
py
Python
INBa/2015/RotkinAM/Zadacha_2_21.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/RotkinAM/Zadacha_2_21.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
INBa/2015/RotkinAM/Zadacha_2_21.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
# Задача 2. Вариант 21. # Напишите программу, которая будет выводить на экран наиболее понравившееся вам высказывание, автором которого является Леонардо да Винчи. Не забудьте о том, что автор должен быть упомянут на отдельной строке. # Rotkin A.M. # 02.04.2016 print ('За сладкое приходтся горько расплачиваться') print ("\nЛеонардо да Винчи") input ("Нажмите Enter для выхода")
42.333333
210
0.779528
df762fc47e8e0a8f06d11c71436c63aab26e2183
398
py
Python
api/app.py
singhprincejeet/in_poster
1b0e18631ebede94e679eb0aba6c8e7630a02aba
[ "MIT" ]
null
null
null
api/app.py
singhprincejeet/in_poster
1b0e18631ebede94e679eb0aba6c8e7630a02aba
[ "MIT" ]
4
2021-04-30T21:09:19.000Z
2022-03-12T00:19:12.000Z
api/app.py
singhprincejeet/in_poster
1b0e18631ebede94e679eb0aba6c8e7630a02aba
[ "MIT" ]
null
null
null
from flask import Flask, request, send_file from main_controller import MainController app = Flask(__name__) @app.route('/generate', methods=['POST']) def generate(): image_src = MainController().generate_image(request) return send_file(image_src) @app.route('/ping', methods=['GET']) def ping(): return 'pong' if __name__ == '__main__': app.run(host='0.0.0.0')
23.411765
57
0.673367
33a49dcb8909ea1581dc4d90f918e7844abada00
223
py
Python
WD/Cwiczenia/Kwadraty_w_petli.py
galursa/UWM
b7ab4a275662764a91af6c5bc79da0d98177d0ac
[ "MIT" ]
1
2020-02-29T14:38:33.000Z
2020-02-29T14:38:33.000Z
WD/Cwiczenia/Kwadraty_w_petli.py
galursa/UWM
b7ab4a275662764a91af6c5bc79da0d98177d0ac
[ "MIT" ]
null
null
null
WD/Cwiczenia/Kwadraty_w_petli.py
galursa/UWM
b7ab4a275662764a91af6c5bc79da0d98177d0ac
[ "MIT" ]
null
null
null
#2 ćwiczenia #zadanie 7 ile=input("Podaj ile chcesz wczytać liczb: ") ile=int(ile) for i in range(ile): liczba=input("Podaj liczbę numer "+str(i)+": ") liczba=int(liczba) print(str(liczba**2))
18.583333
52
0.609865
8938bff55d9a25b0a08b3653bc1b868f9bcab4d6
716
py
Python
30_days_of_Code/15_linked_list.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
30_days_of_Code/15_linked_list.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
30_days_of_Code/15_linked_list.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 class Node: def __init__(self, data): self.data = data self.next = None class Solution: def display(self, head): current = head while current: print(current.data, end=' ') current = current.next def insert(self, head, data): if head: cur = head while cur.next: cur = cur.next N = Node(data=data) cur.next = N return head else: head = Node(data=data) return head mylist= Solution() T=int(input()) head=None for i in range(T): data=int(input()) head=mylist.insert(head, data) mylist.display(head);
20.457143
40
0.519553
98359bcafb43958d81e407a2ccbc55ca959dfeb4
10,932
py
Python
XlsxTools/xls2json/Tools/xls2json.py
maplelearC/Unity3DTraining
3824d5f92c5fce5cbd8806feb1852e9a99e4a711
[ "MIT" ]
3,914
2017-01-20T04:55:53.000Z
2022-03-31T18:06:12.000Z
XlsxTools/xls2json/Tools/xls2json.py
maplelearC/Unity3DTraining
3824d5f92c5fce5cbd8806feb1852e9a99e4a711
[ "MIT" ]
5
2019-12-17T05:27:58.000Z
2022-01-20T11:55:33.000Z
XlsxTools/xls2json/Tools/xls2json.py
maplelearC/Unity3DTraining
3824d5f92c5fce5cbd8806feb1852e9a99e4a711
[ "MIT" ]
1,263
2017-01-15T09:54:44.000Z
2022-03-31T14:59:11.000Z
# -*- coding: utf-8 -*- import os,sys,importlib import xml.etree.ElementTree as ET import xdrlib,xlrd # 防止中文乱码 importlib.reload(sys) #配置文件名 CONFIG_NAME = "config.ini" #保存文件类型 SAVE_FILE_TYPE = ".json" #保存映射类类型 SAVE_MAPPING_TYPE = ".cs" #分隔符 SPLIT_CAHR = ":" #表格路径 XLS_PATH = "" #解析路径 XML_PATH = "" #导出路径 OUT_PATH = "" #映射路径 MAP_PATH = "" #映射总数据类分表内容 MAPPING_CONTENT = "" #读取配置 def read_config(): print("开始读取配置文件") config_file = open(CONFIG_NAME, "r", encoding = "utf-8") #表格路径 cur_line = config_file.readline().rstrip("\r\n").split(SPLIT_CAHR) global XLS_PATH XLS_PATH = os.path.abspath(cur_line[1]) print("表格路径:", XLS_PATH) #解析路径 cur_line = config_file.readline().rstrip("\r\n").split(SPLIT_CAHR) global XML_PATH XML_PATH = os.path.abspath(cur_line[1]) print("解析路径", XML_PATH) #导出路径 cur_line = config_file.readline().rstrip("\r\n").split(SPLIT_CAHR) global OUT_PATH OUT_PATH = os.path.abspath(cur_line[1]) print("导出路径", OUT_PATH) #映射路径 cur_line = config_file.readline().rstrip("\r\n").split(SPLIT_CAHR) global MAP_PATH MAP_PATH = os.path.abspath(cur_line[1]) print("映射路径", MAP_PATH) config_file.close() #删除导出目录原文件 def delect_old_file(): print("删除导出目录原文件") file_list = os.listdir(OUT_PATH) for file in file_list: #只删除JSON文件 if file.endswith(SAVE_FILE_TYPE): os.remove(OUT_PATH + "\\" + file) print("删除映射目录原文件") file_list = os.listdir(MAP_PATH) for file in file_list: #只删除C#文件 if file.endswith(SAVE_MAPPING_TYPE): os.remove(MAP_PATH + "\\" + file) #转换文件 def change_file(): print("开始转换文件") file_list = os.listdir(XML_PATH) for file in file_list: if file.endswith(".xml"): #拼接XML路径 xml_file_path = XML_PATH + "\\" + file isSucc = parse_file_by_xml(xml_file_path) if (False == isSucc): print("出错了!!!!!!!!!!!!!!!!!!") return def parse_file_by_xml(xml_file_path): #解析XML try: tree = ET.parse(xml_file_path) #获得根节点 root = tree.getroot() except Exception as e: print("解析{0}失败!!!!!!!!!!!!".format(xml_file_path)) sys.exit() return False #解析内容 if root.tag == "config": xls_file_list = [] save_file_name = "" element_list = [] for child in root: if child.tag == "input": #要转换的表格 for input_child in child: xls_file_list.append(input_child.get("file")) elif child.tag == "output": #输出文件名称 save_file_name = child.get("name") elif child.tag == "elements": #列表转换 element_list = child #转换数据 return change_file_by_xml_data(xls_file_list, element_list, save_file_name) else: print("找不到config节点 {0}".format(xml_file_path)) return False #开始转换表格 def change_file_by_xml_data(xls_file_list, element_list, save_file_name): #主键检查 primary_key = None primary_type = None for element in element_list: if "true" == element.get("primary"): if None == primary_key: primary_key = element.get("name") primary_type = element.get("type") else: print("存在多个主键") return False if None == primary_key: print("没有主键") return False all_value_list = {} for xls_file in xls_file_list: xls_file_path = XLS_PATH + "\\" + xls_file print("转换文件{0}".format(xls_file_path)) #打开表格 xls_data = None try: xls_data = xlrd.open_workbook(xls_file_path) except Exception as e: print(str(e)) return False #读取sheet1的数据 xls_table = xls_data.sheets()[0] nrows = xls_table.nrows #行数 ncols = xls_table.ncols #列数 #转换为XML中的数据 key_list = xls_table.row_values(0) for row_index in range(1, nrows): row_values = xls_table.row_values(row_index) #将数据转存为字典 value_dic = {} for col_index in range(0, ncols): for element in element_list: if key_list[col_index] == element.get("key"): if "int" == element.get("type"): value_dic[element.get("name")] = int(row_values[col_index]) elif "string" == element.get("type"): value_dic[element.get("name")] = str(row_values[col_index]) else: value_dic[element.get("name")] = str(row_values[col_index]) break #设置主键 primary_value = str(value_dic[primary_key]) if primary_value in all_value_list: print("存在重复的主键") return False all_value_list[primary_value] = value_dic #释放内存 xls_data.release_resources() #拼接为JSON字符串 JSON_STR = str(all_value_list).replace("\'", "\"") #拼接类名 file_name = "Table" + save_file_name[0].upper() + save_file_name[1:] #存储为JSON文件 save_to_json(JSON_STR, file_name) #生成C#映射类 save_to_mapping(file_name, element_list, primary_type) return True #存储为JSON文件 def save_to_json(str, file_name): save_file_path = OUT_PATH + "\\" + file_name + SAVE_FILE_TYPE print("输出文件:" + save_file_path) file_object = open(save_file_path, 'w', encoding = "utf-8") file_object.write(str) file_object.close() #生成C#映射类 def save_to_mapping(file_name, element_list, primary_type): table_content_frame = "public class " + file_name + " {{\n{0}{1}\n}}" table_content_field = "" constructor_content = "" constructor_params = None constructor_assign = None mapping_single_content = create_single_table_mapping_content(file_name) mapping_json_value = None #映射类成员 for element in element_list: field_name = element.get("name") type_str = element.get("type") field_str = "\n\t//列名[{0}] Type[{1}]\n\tpublic {2} " + field_name + " = {3};\n" define_value_str = None if "int" == type_str: define_value_str = 0 elif "string" == type_str: define_value_str = "\"\"" if None != type_str: #填充 key_name_str = element.get("key") table_content_field = table_content_field + field_str.format(key_name_str, type_str, type_str, define_value_str) if None != constructor_params: constructor_params = constructor_params + ", " + type_str + " " + field_name constructor_assign = constructor_assign + "\n\t\tthis.{0} = {1};".format(field_name, field_name) mapping_json_value = mapping_json_value + (", ({0})json.Value[\"{1}\"]").format(type_str, field_name) else: constructor_params = type_str + " " + field_name constructor_assign = "\t\tthis.{0} = {1};".format(field_name, field_name) mapping_json_value = "({0})json.Value[\"{1}\"]".format(type_str, field_name) #可以创建构造函数 if None != constructor_params: #构造函数 constructor_content = ("\n\t//构造函数\n\tpublic " + file_name + "({0})\n\t{{\n{1}\n\t}}").format(constructor_params, constructor_assign) #映射总数据 global MAPPING_CONTENT prime_key_trans = "null" if "int" == primary_type: prime_key_trans = "int.Parse(json.Key)" elif "string" == primary_type: prime_key_trans = "json.Key" MAPPING_CONTENT = MAPPING_CONTENT + mapping_single_content.format(prim_key_type = primary_type, prime_key_trans = prime_key_trans, json_value = mapping_json_value) save_file_path = MAP_PATH + "\\" + file_name + SAVE_MAPPING_TYPE print("输出映射类:" + save_file_path) file_object = open(save_file_path, 'w', encoding = "utf-8") file_object.write(table_content_frame.format(table_content_field, constructor_content)) file_object.close() #生成单个映射总数据内容 def create_single_table_mapping_content(file_name): content = "" content = content + "\n\n\t//{xml_name}" content = content + "\n\tprivate Dictionary<{{prim_key_type}}, {file_name}> {lower_file_name}Dic = new Dictionary<{{prim_key_type}}, {file_name}>();" content = content + "\n\t//初始化{xml_name}字典" content = content + "\n\tprivate void Init{file_name}()" content = content + "\n\t{{{{" content = content + "\n\t\tJObject jsonData = JsonManager.GetTableJson(\"{file_name}\");" content = content + "\n\t\tforeach (var json in jsonData)" content = content + "\n\t\t{{{{" content = content + "\n\t\t\t{{prim_key_type}} key = {{prime_key_trans}};" content = content + "\n\t\t\tvar jsonValue = json.Value;" content = content + "\n\t\t\t{file_name} value = new {file_name}({{json_value}});" content = content + "\n\t\t\t{lower_file_name}Dic.Add(key, value);" content = content + "\n\t\t}}}}" content = content + "\n\t}}}}" content = content + "\n\t//通过主键值获取{xml_name}数据" content = content + "\n\tpublic {file_name} Get{file_name}ByPrimKey({{prim_key_type}} primKey)" content = content + "\n\t{{{{" content = content + "\n\t\tif (0 == {lower_file_name}Dic.Count) Init{file_name}();" content = content + "\n\t\t//获取数据" content = content + "\n\t\t{file_name} {lower_file_name}Data = null;" content = content + "\n\t\t{lower_file_name}Dic.TryGetValue(primKey, out {lower_file_name}Data);" content = content + "\n\t\treturn {lower_file_name}Data;" content = content + "\n\t}}}}" return content.format(xml_name = file_name[5:], file_name = file_name, lower_file_name = file_name[0].lower() + file_name[1:]) #创建映射总数据文件 def craete_table_mapping_cs(): mapping_frame = "" mapping_frame = mapping_frame + "using System.Collections.Generic;" mapping_frame = mapping_frame + "\nusing Newtonsoft.Json.Linq;" mapping_frame = mapping_frame + "\n\npublic class TableMapping" mapping_frame = mapping_frame + "\n{{\n{0}{1}\n}}" mapping_ins = "" mapping_ins = mapping_ins + "//单例" mapping_ins = mapping_ins + "\n\tprivate TableMapping() { }" mapping_ins = mapping_ins + "\n\tprivate static TableMapping _ins;" mapping_ins = mapping_ins + "\n\tpublic static TableMapping Ins { get { if (null == _ins) { _ins = new TableMapping(); } return _ins; } }" #保存文件 save_file_path = MAP_PATH + "\\TableMappnig" + SAVE_MAPPING_TYPE file_object = open(save_file_path, 'w', encoding = "utf-8") file_object.write(mapping_frame.format(mapping_ins, MAPPING_CONTENT)) file_object.close() def main(): read_config() delect_old_file() change_file() craete_table_mapping_cs() if __name__ == "__main__": main()
36.198675
171
0.608214
9846d7a929dfc7206aaef3926e2eb249dc72eda7
30
py
Python
notebooks/utils/tui/__init__.py
k4t0mono/ipln
ba71860bc38df52780903f647fb2404c61a6b3f2
[ "BSD-2-Clause" ]
1
2021-03-15T11:53:40.000Z
2021-03-15T11:53:40.000Z
python/progress/__init__.py
pedromxavier/cookbook
243532f893651c34e70fbba8a52f3f129dbc8dd3
[ "MIT" ]
2
2020-03-24T17:06:03.000Z
2020-03-31T02:16:40.000Z
python/progress/__init__.py
pedromxavier/cookbook
243532f893651c34e70fbba8a52f3f129dbc8dd3
[ "MIT" ]
null
null
null
from .progress import Progress
30
30
0.866667
120b99a0975e33345360483fef0a78b371c52141
2,633
py
Python
ai/split-chinese/jieba-base.py
veaba/ncov
6019f6b90761fd39363f8a7182ffcee22b9cb7ed
[ "MIT" ]
288
2020-01-21T06:12:03.000Z
2022-01-16T08:03:13.000Z
ai/split-chinese/jieba-base.py
veaba/ncov
6019f6b90761fd39363f8a7182ffcee22b9cb7ed
[ "MIT" ]
26
2020-01-20T05:07:31.000Z
2022-03-12T00:24:56.000Z
ai/split-chinese/jieba-base.py
veaba/ncov
6019f6b90761fd39363f8a7182ffcee22b9cb7ed
[ "MIT" ]
48
2020-01-22T09:05:59.000Z
2022-01-16T08:03:11.000Z
# encoding=utf-8 import jieba.posseg as psg # string="来到北京清华大学" string ="""  4月12日0—24时,31个省(自治区、直辖市)和新疆生产建设兵团报告新增确诊病例108例,其中98例为境外输入病例,10例为本土病例(黑龙江7例,广东3例);新增死亡病例2例(湖北2例);新增疑似病例6例,均为境外输入病例(黑龙江4例,上海2例)。   当日新增治愈出院病例88例,解除医学观察的密切接触者1092人,重症病例减少18例。   境外输入现有确诊病例867例(含重症病例38例),现有疑似病例72例。累计确诊病例1378例,累计治愈出院病例511例,无死亡病例。   截至4月12日24时,据31个省(自治区、直辖市)和新疆生产建设兵团报告,现有确诊病例1156例(其中重症病例121例),累计治愈出院病例77663例,累计死亡病例3341例,累计报告确诊病例82160例,现有疑似病例72例。累计追踪到密切接触者719908人,尚在医学观察的密切接触者9655人。   湖北无新增确诊病例,新增治愈出院病例57例(武汉57例),新增死亡病例2例(武汉2例),现有确诊病例244例(武汉243例),其中重症病例75例(武汉74例)。累计治愈出院病例64338例(武汉47186例),累计死亡病例3221例(武汉2579例),累计确诊病例67803例(武汉50008例)。无新增疑似病例,无现有疑似病例。   31个省(自治区、直辖市)和新疆生产建设兵团报告新增无症状感染者61例,其中境外输入无症状感染者12例;当日转为确诊病例28例(境外输入28例);当日解除医学观察55例(境外输入9例);尚在医学观察无症状感染者1064例(境外输入307例)。   累计收到港澳台地区通报确诊病例1437例:香港特别行政区1004例(出院360例,死亡4例),澳门特别行政区45例(出院13例),台湾地区388例(出院109例,死亡6例)。 """ seg_list=psg.cut(string) # print("精确模式===>","| ".join(seg_list)) # 结果===》 """ 精确模式===> |  | 4| 月| 12| 日| 0| —| 24| 时| ,| 31| 个省| (| 自治区| 、| 直辖市| )| 和| 新疆生产建设兵团| 报告| 新增| 确诊| 病例| 108| 例| ,| 其中| 98| 例为| 境外| 输入| 病例| ,| 10| 例为| 本土| 病例| (| 黑龙江| 7| 例| ,| 广东| 3| 例| )| ;| 新增| 死亡| 病例| 2| 例| (| 湖北| 2| 例| )| ;| 新增| 疑似病例| 6| 例| ,| 均| 为| 境外| 输入| 病例| (| 黑龙江| 4| 例| ,| 上海| 2| 例| )| 。| |  |  | 当日| 新增| 治愈| 出院| 病例| 88| 例| ,| 解除| 医学观察| 的| 密切接触| 者| 1092| 人| ,| 重症| 病例| 减少| 18| 例| 。| |  |  | 境外| 输入| 现有| 确诊| 病例| 867| 例| (| 含| 重症| 病例| 38| 例| )| ,| 现有| 疑似病例| 72| 例| 。| 累计| 确诊| 病例| 1378| 例| ,| 累计| 治愈| 出院| 病例| 511| 例| ,| 无| 死亡| 病例| 。| |  |  | 截至| 4| 月| 12| 日| 24| 时| ,| 据| 31| 个省| (| 自治区| 、| 直辖市| )| 和| 新疆生产建设兵团| 报告| ,| 现有| 确诊| 病例| 1156| 例| (| 其中| 重症| 病例| 121| 例| )| ,| 累计| 治愈| 出院| 病例| 77663| 例| ,| 累计| 死亡| 病 例| 3341| 例| ,| 累计| 报告| 确诊| 病例| 82160| 例| ,| 现有| 疑似病例| 72| 例| 。| 累计| 追踪| 到| 密切接触| 者| 719908| 人| ,| 尚| 在| 医学观察| 的| 密切接触| 者| 9655| 人| 。| |  |  | 湖北| 无| 新增| 确诊| 病例| ,| 新增| 治愈| 出院| 病例| 57| 例| (| 武汉| 57| 例| )| ,| 新增| 死亡| 病例| 2| 例| (| 武汉| 2| 例| )| ,| 现有| 确诊| 病例| 244| 例| (| 武汉| 243| 例| )| ,| 其中| 重症| 病例| 75| 例| (| 武汉 | 74| 例| )| 。| 累计| 治愈| 出院| 病例| 64338| 例| (| 武汉| 47186| 例| )| ,| 累计| 死亡| 病例| 3221| 例| (| 武汉| 2579| 例| )| ,| 累计| 确诊| 病例| 67803| 例| (| 武汉| 50008| 例| )| 。| 无| 新增| 疑似病例| ,| 无| 现有| 疑似病例 | 。| |  |  | 31| 个省| (| 自治区| 、| 直辖市| )| 和| 新疆生产建设兵团| 报告| 新增| 无症状| 感染者| 61| 例| ,| 其中| 境外| 输入| 无症状| 感染者| 12| 例| ;| 当日| 转为| 确诊| 病例| 28| 例| (| 境外| 输入| 28| 例| )| ;| 当日| 解除| 医学观 察| 55| 例| (| 境外| 输入| 9| 例| )| ;| 尚| 在| 医学观察| 无症状| 感染者| 1064| 例| (| 境外| 输入| 307| 例| )| 。| |  |  | 累计| 收到| 港澳台地区| 通报| 确诊| 病例| 1437| 例| :| 香港特别行政区| 1004| 例| (| 出院| 360| 例| ,| 死亡| 4| 例| )| ,| 澳门特别行政区| 45| 例| (| 出院| 13| 例| )| ,| 台湾地区| 388| 例| (| 出院| 109| 例| ,| 死亡| 6| 例| )| 。| | """ for i in seg_list: print("==>",type(i),i)
65.825
179
0.550703
89d9e48927ec828fd9208dc357f86ea67a28a09c
793
py
Python
scripts/add_come.py
belamu/kanthaus.online
de84010a77e60156cbefb8e014ac6290540ded69
[ "CC0-1.0", "MIT" ]
6
2018-09-03T15:48:19.000Z
2021-09-27T12:04:04.000Z
scripts/add_come.py
belamu/kanthaus.online
de84010a77e60156cbefb8e014ac6290540ded69
[ "CC0-1.0", "MIT" ]
13
2017-12-25T20:44:37.000Z
2020-10-30T09:37:10.000Z
scripts/add_come.py
belamu/kanthaus.online
de84010a77e60156cbefb8e014ac6290540ded69
[ "CC0-1.0", "MIT" ]
14
2018-01-05T19:54:40.000Z
2021-03-24T10:16:31.000Z
#!/usr/bin/env python3 # Usage: ./scripts/add_come.py url = "https://codi.kanthaus.online/come/download" import urllib.request with urllib.request.urlopen(url) as response: markdown = response.read().decode() import yaml parts = markdown.split('---') frontmatter = parts[1] frontmatter = yaml.safe_load(frontmatter) date = frontmatter['date'] destination_directory = 'user/pages/40.governance/90.minutes/{}_CoMe'.format(date) import os import sys if os.path.isdir(destination_directory): print(destination_directory, 'already exists! Exiting...') sys.exit(1) os.mkdir(destination_directory) destination_file = os.path.join(destination_directory, 'item.md') with open(destination_file, 'w+') as f: f.write(markdown) print('Done! Type `git status` to see the changes!')
27.344828
82
0.741488
143a71f0538e957183a42d1dc096bccb0dd0d05c
345
py
Python
Problems/Two Pointers/easy/MergeStringAlternately/test_merge_string_alternately.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
1
2021-08-16T14:52:05.000Z
2021-08-16T14:52:05.000Z
Problems/Two Pointers/easy/MergeStringAlternately/test_merge_string_alternately.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
Problems/Two Pointers/easy/MergeStringAlternately/test_merge_string_alternately.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
from unittest import TestCase from merge_string_alternately import mergeAlternately class Test(TestCase): def test_merge_alternately(self): self.assertEqual(mergeAlternately("abc", "pqr"), "apbqcr") self.assertEqual(mergeAlternately("ab", "pqrs"), "apbqrs") self.assertEqual(mergeAlternately("abcd", "pq"), "apbqcd")
43.125
66
0.727536
1ae63296d699c65a0bd047816b0e603a4cff99eb
5,841
py
Python
hplc_analysis.py
furubayashim/hplc-analysis-hitachi
d8f2b594b577032548e860b424f55241bbe72b37
[ "MIT" ]
null
null
null
hplc_analysis.py
furubayashim/hplc-analysis-hitachi
d8f2b594b577032548e860b424f55241bbe72b37
[ "MIT" ]
null
null
null
hplc_analysis.py
furubayashim/hplc-analysis-hitachi
d8f2b594b577032548e860b424f55241bbe72b37
[ "MIT" ]
null
null
null
#!/usr/bin/env python # script to draw PDA chromatogram & spectrum figure using Hitachi HPLC Chromaster stx/ctx files import pandas as pd import numpy as np import glob import os import sys import matplotlib.pyplot as plt # change this if using different user/folder data_dir = "raw/" # can give sample name file as argv if len(sys.argv) >1: samplenamefile = sys.argv[1] else: samplenamefile = 'sampletable.xlsx' sample_df = pd.read_excel(samplenamefile) ### load parameter from the xls file #################################### sample_nos = [str(s) for s in sample_df['sample no'].values] sample_names = sample_df['name'].values sample_dir = sorted([f+'/' for f in os.listdir(data_dir) if not os.path.isfile(f)],key=lambda x:int(x[:-1])) # Time range (x axis) start_time = 2 end_time = 18 if 'start time' in sample_df.columns: start_time = sample_df['start time'].values[0] if 'end time' in sample_df.columns: end_time = sample_df['end time'].values[0] # which chart to draw all_chromato = sample_df['all chromato'].values[0] each_data = sample_df['each data'].values[0] # output folder and name if not os.path.exists('processed'): os.mkdir('processed') output_name = 'all_chromato' if 'output name' in sample_df.columns: output_name = sample_df['output name'].values[0] ### draw chromato for all samples in one fig ############################ if all_chromato == 'y': ctx_files = sorted(glob.glob(data_dir+'*/*.ctx'),key=lambda x: (int(x.split('/')[1]),int(x.split('/')[2][:-4]))) #ごちゃごちゃ chromato_dfs = [pd.read_csv(file,skiprows=38,delimiter=';',header=None,names=[sample_names[n],'NaN']).iloc[:,:1] for n,file in enumerate(ctx_files)] chromato_df = pd.concat(chromato_dfs,axis=1) chromato_df_cut = chromato_df.loc[start_time:end_time] fig,axes = plt.subplots(1,2,figsize=[10,8]) for n,(name,col) in enumerate(chromato_df_cut.iteritems()): time = chromato_df_cut.index.values abs = col.values - 0.1 * n axes[0].plot(time,abs,label=name) axes[0].legend() axes[0].set_ylabel('Absorbance') axes[0].set_xlabel('Time (min)') #axes[0].set_ylim([-0.45,0.1]) axes[0].set_xlim([start_time,end_time]) axes[0].set_title('Height as it is') for n,(name,col) in enumerate(chromato_df_cut.iteritems()): abs = col.values / np.nanmax(col.values) - 1.1 * n time = chromato_df_cut.index.values axes[1].plot(time,abs,label=name) axes[1].legend() axes[1].set_ylabel('Absorbance (Normalized)') axes[1].set_xlabel('Time (min)') #axes[1].set_ylim([-0.45,1]) axes[1].set_xlim([start_time,end_time]) axes[1].set_title('Height Normalized') plt.savefig("processed/{}.pdf".format(output_name),bbox_inches = "tight"); ### draw chromato/spec for each sample ############################ if each_data == 'y': for sample_no,sample_name,sample_dir in zip(sample_nos,sample_names,sample_dir): # load chromato files. Can import several ctx file ctx_files = sorted(glob.glob(data_dir+sample_dir+'*.ctx')) chromato_dfs = [pd.read_csv(file,skiprows=38,delimiter=';',header=None,names=[os.path.basename(file)[:-4],'NaN']).iloc[:,:1] for file in ctx_files] chromato_df = pd.concat(chromato_dfs,axis=1) if chromato_df.index.min() < start_time: chromato_df_cut = chromato_df.loc[start_time:] else: chromato_df_cut = chromato_df if chromato_df_cut.index.max() > end_time: chromato_df_cut = chromato_df_cut.loc[:end_time] # load stx files stx_files = sorted(glob.glob(data_dir+sample_dir+'*.stx'),key=lambda x: float(os.path.basename(x[:-4]))) stx_dfs = [pd.read_csv(f,delimiter=';',skiprows=44).iloc[:,:1] for f in stx_files] stx_df = pd.concat(stx_dfs,axis=1) # stx_df is the dataframe of the abs spectrum of each peak. # index = 200-650 (nm) # column name = str of time (min) stx_df_cut = stx_df.loc[250:600] # select 250-600 nm # draw figure fig = plt.figure(figsize=[6,16]) # draw chromatogram ymax = 0 ymin = 0 for name,col in chromato_df_cut.iteritems(): time = chromato_df_cut.index.values abs = col.values plt.subplot(6,1,1) #109: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. plt.plot(time,abs,label=name) ymaxtemp = chromato_df.loc[start_time:end_time,name].values.max() ymintemp = chromato_df.loc[start_time:end_time,name].values.min() if ymaxtemp > ymax: ymax = ymaxtemp if ymintemp < ymin: ymin = ymintemp plt.legend() plt.xticks(np.arange(start_time,end_time,1)) plt.xlabel('Time (min)') plt.ylabel('Absorbance') plt.ylim([ymin + ymin*0.05,ymax + ymax*0.05]) plt.title(sample_no + '-' + sample_name) # draw abs spectrum for n,(rt,series) in enumerate(stx_df_cut.iteritems()): wavelength = series.index.values absorbance = series.values abs_max = str(int(series.idxmax())) plt.subplot(12,3,7+n) plt.plot(wavelength,absorbance,label=rt) plt.xlim([250,600]) plt.xticks(np.arange(300,700,100)) plt.ylim([series.min(),series.max()]) plt.title('{} min (λmax: {} nm)'.format(rt[:-2],abs_max)) plt.tight_layout(pad=-0.1); plt.savefig('processed/'+sample_no+'-'+sample_name+'.pdf',bbox_inches = "tight");
41.721429
349
0.640644
2ee382ef7e4e52fef0695c81d210f8710fbaae22
26,869
py
Python
kiosk/models.py
AndiBr/ffksk
ff4bc4ad26d4571eaa1a6ff815b2e6a876f8ba99
[ "MIT" ]
null
null
null
kiosk/models.py
AndiBr/ffksk
ff4bc4ad26d4571eaa1a6ff815b2e6a876f8ba99
[ "MIT" ]
14
2018-09-12T06:59:55.000Z
2020-02-26T07:17:48.000Z
kiosk/models.py
AndiBr/ffksk
ff4bc4ad26d4571eaa1a6ff815b2e6a876f8ba99
[ "MIT" ]
null
null
null
from django.db import models from django.utils import timezone from dateutil import tz import pytz from datetime import date from django.core.validators import MinValueValidator from django.db import transaction from profil.models import KioskUser from django.db import connection from django.conf import settings from django.template.loader import render_to_string from .queries import readFromDatabase from django.db.models import Max # Create your models here. class Start_News(models.Model): heading = models.CharField(max_length=256) date = models.DateTimeField(default=timezone.now) content = models.TextField(max_length=2048, blank=True) created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) starred = models.BooleanField(default=False) visible = models.BooleanField(default=True) def __str__(self): return(str(self.date) + ': ' + str(self.heading)) class Kontakt_Nachricht(models.Model): name = models.CharField(max_length=40) email = models.EmailField('E-Mail-Adresse') gesendet = models.DateTimeField(auto_now_add=True) betreff = models.TextField(max_length=128, blank=True) text = models.TextField(max_length=1024) beantwortet = models.BooleanField(default=False) def __str__(self): return ('Von: ' + str(self.name) + ': '+str(self.betreff)) class Produktpalette(models.Model): produktName = models.CharField(max_length=40) imVerkauf = models.BooleanField() inAufstockung = models.BooleanField(default=True) produktErstellt = models.DateTimeField(auto_now_add=True) produktGeaendert = models.DateTimeField(auto_now=True) #kommentar = models.TextField(max_length=512,blank=True) farbeFuerPlot = models.TextField(max_length=7,blank=True) def __str__(self): return ('ID ' + str(self.id) + ': ' + self.produktName) class Produktkommentar(models.Model): produktpalette = models.ForeignKey(Produktpalette, on_delete=models.CASCADE) erstellt = models.DateTimeField(auto_now_add=timezone.now) kommentar = models.TextField(max_length=512,blank=True) def __str__(self): return (self.produktpalette.produktName + ' (' + str(self.erstellt) + ' )') class Kioskkapazitaet(models.Model): produktpalette = models.OneToOneField( Produktpalette,on_delete=models.CASCADE ,primary_key=True) maxKapazitaet = models.IntegerField(validators=[MinValueValidator(0)]) schwelleMeldung = models.IntegerField(validators=[MinValueValidator(0)]) paketgroesseInListe = models.IntegerField(validators=[MinValueValidator(0)]) def __str__(self): return(self.produktpalette.produktName + ", Kapazit"+chr(228)+"t: " + str(self.maxKapazitaet)) class ProduktVerkaufspreise(models.Model): produktpalette = models.ForeignKey( Produktpalette, on_delete=models.CASCADE) verkaufspreis = models.IntegerField(validators=[MinValueValidator(0)]) preisAufstockung = models.IntegerField(validators=[MinValueValidator(0)]) gueltigAb = models.DateTimeField(default=timezone.now) def __str__(self): price = '%.2f' % (self.verkaufspreis/100) aufstockung = '%.2f' % (self.preisAufstockung/100) return(self.produktpalette.produktName + ", " + str(price) + "(+"+str(aufstockung)+") "+chr(8364)+" g"+chr(252)+"ltig ab " + str(self.gueltigAb)) def getActPrices(produkt_id): verkaufspreis = readFromDatabase('getActPrices',[produkt_id]) return(verkaufspreis[0]) def getPreisAufstockung(produkt_id): aufstockung = readFromDatabase('getPreisAufstockung',[produkt_id]) return(aufstockung[0]) class Einkaufsliste(models.Model): kiosk_ID = models.AutoField(primary_key=True) produktpalette = models.ForeignKey( Produktpalette,on_delete=models.CASCADE) bedarfErstelltUm = models.DateTimeField(auto_now_add=timezone.now) def __str__(self): return("[#" + str(self.kiosk_ID) + "] " + self.produktpalette.produktName + ", Bedarf angemeldet um " + str(self.bedarfErstelltUm)) def getEinkaufsliste(): einkaufsliste = readFromDatabase('getEinkaufsliste') return(einkaufsliste) # Eine Gruppe in der Einkaufsliste wird zum Einkauf vorgemerkt @transaction.atomic def einkaufGroupVormerken(ekGroupID,user): # Suchen von Gruppen in EinkaufslisteGroups und dann die IDs in Einkaufsliste groupEntries = EinkaufslisteGroups.objects.filter(gruppenID=ekGroupID) for grEntry in groupEntries: grEntryID = grEntry.einkaufslistenItem_id ekItem = Einkaufsliste.objects.get(kiosk_ID=grEntryID) vg = ZumEinkaufVorgemerkt(kiosk_ID=ekItem.kiosk_ID, bedarfErstelltUm=ekItem.bedarfErstelltUm, produktpalette_id=ekItem.produktpalette_id, einkaufsvermerkUm=timezone.now(), einkaeufer_id = user) vg.save() Einkaufsliste.objects.get(kiosk_ID=grEntryID).delete() EinkaufslisteGroups.objects.filter(gruppenID=ekGroupID).delete() return True def getCommentsOnProducts(ekGroupID): # Gebe die Kommentare aller Produkte zurueck comments = readFromDatabase('getCommentsOnProductsInEkList',[ekGroupID]) return comments class EinkaufslisteGroups(models.Model): einkaufslistenItem = models.OneToOneField(Einkaufsliste, to_field='kiosk_ID', on_delete=models.CASCADE) gruppenID = models.IntegerField() def __str__(self): return("Element: [#" + str(self.einkaufslistenItem.kiosk_ID) + "] Gruppe " + str(self.gruppenID)) class ZumEinkaufVorgemerkt(models.Model): kiosk_ID = models.AutoField(primary_key=True) produktpalette = models.ForeignKey( Produktpalette,on_delete=models.CASCADE) bedarfErstelltUm = models.DateTimeField() einkaufsvermerkUm = models.DateTimeField(auto_now_add=timezone.now) einkaeufer = models.ForeignKey( KioskUser,on_delete=models.CASCADE) def __str__(self): return("[#" + str(self.kiosk_ID) + "] " + self.produktpalette.produktName + ", vorgemerkt um " + str(self.einkaufsvermerkUm) + ", von " + str(self.einkaeufer)) def getMyZumEinkaufVorgemerkt(currentUserID): persEinkaufsliste = readFromDatabase('getMyZumEinkaufVorgemerkt',[currentUserID]) return(persEinkaufsliste) @transaction.atomic def einkaufAnnehmen(form, currentUser): retVal = {'product_id': None, 'err': False, 'msg': None, 'html': None, 'dct': None, 'angeliefert': None} finanz = getattr(settings,'FINANZ') product_id= form['product_id'] product = Produktpalette.objects.get(id=product_id) retVal['product_id'] = product_id prodVkPreis = ProduktVerkaufspreise.getActPrices(product_id) prodVkPreis = prodVkPreis.get('verkaufspreis') retVal['err'] = False userID = form['userID'] anzahlAngeliefert = form['anzahlAngeliefert'] gesPreis = form['gesPreis'] # Get the maximal number of products to accept persEkList = ZumEinkaufVorgemerkt.getMyZumEinkaufVorgemerkt(userID) anzahlElemente = [x['anzahlElemente'] for x in persEkList if x['id']==product_id][0] # Pruefen, ob nicht mehr einkgekauft wurde, als auf der Liste stand if anzahlAngeliefert > anzahlElemente: retVal['msg'] = "Die Menge der angelieferten Ware ist zu gro"+chr(223)+" f"+chr(252)+"r '"+product.produktName+"'" retVal['err'] = True # Pruefen, dass die Kosten niedrig genug sind, so dass eine Marge zwischen Einkauf und Verkauf von 10 % vorhanden ist. minProduktMarge = finanz['minProduktMarge'] if float(gesPreis) > float(anzahlAngeliefert) * (1-float(minProduktMarge)) * float(prodVkPreis): retVal['msg'] = "Die Kosten f"+chr(252)+"r den Einkauf von '"+product.produktName+"' sind zu hoch. Der Einkauf kann nicht angenommen werden." retVal['err'] = True if retVal['err'] == True: # Bei Eingabefehler, Eine Alert-Meldung zurueck, dass Eingabe falsch ist retVal['html'] = render_to_string('kiosk/fehler_message.html', {'message':retVal['msg']}) return retVal # Hier am besten die <form> aufloesen und das manuell bauen, POST wie oben GET nutzen, der Token muss in die uebergebenen Daten im JavaScript mit rein. else: # Wenn Eingabe passt, dann wird der Einkaufspreis errechnet, zu den Produkten geschrieben und die Produkte in das Kiosk gelegt. Geldueberweisung von der Bank an den Einkaeufer # Einkaufspreis berechnen prodEkPreis = int(gesPreis / anzahlAngeliefert) datum = timezone.now() angeliefert = ZumEinkaufVorgemerkt.objects.filter(einkaeufer__id=userID, produktpalette__id=product_id).order_by('kiosk_ID')[:anzahlAngeliefert] if len(angeliefert) != anzahlAngeliefert: raise ValueError # Eintragen der Werte und Schreiben ins Kiosk for an in angeliefert: k = Kiosk(kiosk_ID=an.kiosk_ID,bedarfErstelltUm=an.bedarfErstelltUm, produktpalette_id=an.produktpalette_id, einkaufsvermerkUm=an.einkaufsvermerkUm, einkaeufer_id = an.einkaeufer_id, geliefertUm = datum, verwalterEinpflegen_id = currentUser.id, einkaufspreis = prodEkPreis) # Aufpassen, dass dann ein zweistelliger Nachkommawert eingetragen wird! k.save() an.delete() # Gewinn und Gesamtrechnung berechnen gewinnEK = finanz['gewinnEK'] provision = int(((float(prodVkPreis) * float(anzahlAngeliefert)) - float(gesPreis)) * float(gewinnEK)) paidPrice = gesPreis gesPreis = gesPreis + provision # Geldueberweisung von der Bank an den Einkaeufer userBank = KioskUser.objects.get(username='Bank') userAnlieferer = KioskUser.objects.get(id=userID) GeldTransaktionen.doTransaction(userBank,userAnlieferer,gesPreis,datum, "Erstattung Einkauf " + product.produktName + " (" + str(anzahlAngeliefert) + "x)" )#" um " + str(datum.astimezone(tz.tzlocal()))) # Aufpassen, dass dann ein zweistelliger Nachkommawert eingetragen wird! retVal['dct'] = {'gesPreis':gesPreis/100,'userAnlieferer':userAnlieferer.username, 'produktName': product.produktName,'anzahlElemente':anzahlElemente} retVal['angeliefert'] = angeliefert retVal['msg'] = "Vom Produkt '"+str(product.produktName)+"' wurden "+str(anzahlAngeliefert)+' St'+chr(252)+'ck zum Preis von '+'%.2f'%(paidPrice/100)+' '+chr(8364)+' angeliefert.' retVal['html'] = render_to_string('kiosk/success_message.html', {'message':retVal['msg']}) return retVal class Kiosk(models.Model): kiosk_ID = models.AutoField(primary_key=True) produktpalette = models.ForeignKey( Produktpalette,on_delete=models.CASCADE) bedarfErstelltUm = models.DateTimeField() einkaufsvermerkUm = models.DateTimeField() einkaeufer = models.ForeignKey( KioskUser,on_delete=models.CASCADE,related_name='kiosk_einkaeufer') geliefertUm = models.DateTimeField(auto_now_add=timezone.now) verwalterEinpflegen = models.ForeignKey( KioskUser,on_delete=models.CASCADE,related_name='kiosk_verwalter') einkaufspreis = models.IntegerField(validators=[MinValueValidator(0)]) def __str__(self): price = '%.2f' % (self.einkaufspreis/100) return("[#" + str(self.kiosk_ID) + "] " + self.produktpalette.produktName + ", EK: " + str(price) + " "+chr(8364)+", um " + str(self.geliefertUm) + ', von ' + str(self.einkaeufer) + ' (' + str(self.verwalterEinpflegen) + ')') def getKioskContent(): kioskItems = readFromDatabase('getKioskContent') return(kioskItems) def getKioskContentForInventory(): kioskItems = readFromDatabase('getKioskContentForInventory') return(kioskItems) # Kauf eines Produkts auf 'kauf_page' @transaction.atomic def buyItem(wannaBuyItem,user,gekauft_per='ubk', buyAndDonate=False): retVals = {'success': False, 'msg': [], 'product': wannaBuyItem, 'price': 0, 'hasDonated': False, 'donation': 0} # First, look in Kiosk. try: item = Kiosk.objects.filter(produktpalette__produktName=wannaBuyItem)[:1].get() foundInKiosk = True except: msg = 'Selected item is not in Kiosk anymore. But let\'s look into the bought items of "Dieb" ...' print(msg) retVals['msg'].append(msg) foundInKiosk = False # If not available in Kiosk, do Rueckbuchung from Dieb if not foundInKiosk: try: itemBoughtByDieb = Gekauft.objects.filter(kaeufer__username='Dieb',produktpalette__produktName=wannaBuyItem)[:1].get() except: msg = 'No selecetd item has been found in the whole Kiosk to be bought.' print(msg) retVals['msg'].append(msg) return retVals # Book back the item from Dieb dieb = KioskUser.objects.get(username='Dieb') item = Gekauft.rueckbuchenOhneForm(dieb.id, itemBoughtByDieb.produktpalette.id, 1) foundInKiosk = True # Abfrage des aktuellen Verkaufspreis fuer das Objekt actPrices = ProduktVerkaufspreise.getActPrices(item.produktpalette.id) actPrices = actPrices.get('verkaufspreis') donation = ProduktVerkaufspreise.getPreisAufstockung(item.produktpalette.id) donation = donation.get('preisAufstockung') # Check if user is allowed to buy something and has enough money allowedConusmers = readFromDatabase('getUsersToConsume') if user.id not in [x['id'] for x in allowedConusmers] and not user.username=='Dieb': msg = 'Du bist nicht berechtigt, Produkte zu kaufen.' print(msg) retVals['msg'].append(msg) return retVals if not user.username=='Dieb': konto = Kontostand.objects.get(nutzer = user) if buyAndDonate: if konto.stand - actPrices - donation < 0: msg = 'Dein Kontostand ist zu niedrig, um dieses Produkt zu kaufen und eine Spende zu geben.' print(msg) retVals['msg'].append(msg) return retVals else: if konto.stand - actPrices < 0: msg = 'Dein Kontostand ist zu niedrig, um dieses Produkt zu kaufen.' print(msg) retVals['msg'].append(msg) return retVals # Ablage des Kaufs in Tabelle 'Gekauft' g = Gekauft(kiosk_ID=item.kiosk_ID, produktpalette=item.produktpalette, bedarfErstelltUm=item.bedarfErstelltUm, einkaufsvermerkUm=item.einkaufsvermerkUm, einkaeufer=item.einkaeufer, geliefertUm=item.geliefertUm, verwalterEinpflegen=item.verwalterEinpflegen, einkaufspreis=item.einkaufspreis, gekauftUm = timezone.now(), kaeufer = user, verkaufspreis=actPrices, gekauft_per=gekauft_per) # Produkt in Tabelle 'Kiosk' loeschen Kiosk.objects.get(kiosk_ID=item.pk).delete() # Automatische Geldtransaktion vom User zur Bank userBank = KioskUser.objects.get(username='Bank') GeldTransaktionen.doTransaction(g.kaeufer,userBank,g.verkaufspreis,g.gekauftUm, "Kauf " + g.produktpalette.produktName)# + " um " + str(g.gekauftUm.astimezone(tz.tzlocal()))) if buyAndDonate and donation>0: userSpendenkonto = KioskUser.objects.get(username='Spendenkonto') GeldTransaktionen.doTransaction( g.kaeufer, userSpendenkonto, donation, g.gekauftUm, "Spende durch Aufstockung von " + g.produktpalette.produktName) g.save() retVals['success'] = True retVals['msg'].append('OK') retVals['price'] = actPrices/100.0 retVals['hasDonated'] = buyAndDonate and donation>0 retVals['donation'] = donation/100.0 return retVals class Gekauft(models.Model): kiosk_ID = models.AutoField(primary_key=True) produktpalette = models.ForeignKey( Produktpalette,on_delete=models.CASCADE) bedarfErstelltUm = models.DateTimeField() einkaufsvermerkUm = models.DateTimeField() einkaeufer = models.ForeignKey( KioskUser,on_delete=models.CASCADE,related_name='gekauft_einkaeufer') geliefertUm = models.DateTimeField() verwalterEinpflegen = models.ForeignKey( KioskUser,on_delete=models.CASCADE,related_name='gekauft_verwalter') einkaufspreis = models.IntegerField(validators=[MinValueValidator(0)]) gekauftUm = models.DateTimeField(auto_now_add=timezone.now) kaeufer = models.ForeignKey( KioskUser,on_delete=models.CASCADE,related_name='gekauft_kaeufer') # Verkaufspreis ist eigentlich nicht noetig, ergibt sich aus Relationen, die Dokumentationstabellen sollen aber sicherheitshalber diese Info speichern (zum Schutz vor Loesuchungen in anderen Tabellen). verkaufspreis = models.IntegerField(validators=[MinValueValidator(0)]) kaufarten = (('slack','slack'),('web','web'),('ubk','unbekannt'),('dieb','dieb')) gekauft_per = models.CharField(max_length=6,default='ubk',choices=kaufarten) def __str__(self): price = '%.2f' % (self.verkaufspreis/100) return("[#" + str(self.kiosk_ID) + "] " + self.produktpalette.produktName + ", VK: " + str(price) + " "+chr(8364)+", gekauft von " + str(self.kaeufer) + " um " + str(self.gekauftUm)) @transaction.atomic def rueckbuchenOhneForm(userID,productID,anzahlZurueck): dR = doRueckbuchung(userID,productID,anzahlZurueck) return dR['item'] @transaction.atomic def rueckbuchen(form): userID = form.cleaned_data['kaeufer_id'] productID = form.cleaned_data['produkt_id'] anzahlZurueck = form.cleaned_data['anzahl_zurueck'] dR = doRueckbuchung(userID,productID,anzahlZurueck) price = dR['price'] # Hole den Kioskinhalt kioskItems = Kiosk.getKioskContent() # Einkaufsliste abfragen einkaufsliste = Einkaufsliste.getEinkaufsliste() product = Produktpalette.objects.get(id=productID) return {'userID':userID, 'anzahlZurueck': anzahlZurueck, 'price': price/100.0, 'product': product.produktName} def doRueckbuchung(userID,productID,anzahlZurueck): productsToMove = Gekauft.objects.filter(kaeufer__id=userID, produktpalette__id=productID).order_by('-gekauftUm')[:anzahlZurueck] price = 0 newKioskItem = None for item in productsToMove: k = Kiosk(kiosk_ID=item.kiosk_ID, produktpalette=item.produktpalette, bedarfErstelltUm=item.bedarfErstelltUm, einkaufsvermerkUm=item.einkaufsvermerkUm, einkaeufer=item.einkaeufer, geliefertUm=item.geliefertUm, verwalterEinpflegen=item.verwalterEinpflegen, einkaufspreis=item.einkaufspreis) k.save() k.geliefertUm = item.geliefertUm k.save() # Only the last item is taken!! price = price + item.verkaufspreis newKioskItem = k userBank = KioskUser.objects.get(username='Bank') user = KioskUser.objects.get(id=userID) GeldTransaktionen.doTransaction(userBank,user,item.verkaufspreis,timezone.now, "R"+chr(252)+"ckbuchung Kauf von " + item.produktpalette.produktName) item.delete() return {'price':price, 'item':newKioskItem} from .bot import slack_MsgToUserAboutNonNormalBankBalance class GeldTransaktionen(models.Model): AutoTrans_ID = models.AutoField(primary_key=True) vonnutzer = models.ForeignKey( KioskUser, on_delete=models.CASCADE,related_name='nutzerVon') zunutzer = models.ForeignKey( KioskUser, on_delete=models.CASCADE,related_name='nutzerZu') betrag = models.IntegerField(validators=[MinValueValidator(0)]) kommentar = models.TextField(max_length=512,blank=True) datum = models.DateTimeField(auto_now_add=timezone.now) def __str__(self): betr = '%.2f' % (self.betrag/100) return("[#" + str(self.AutoTrans_ID) + "] " + str(betr) + " "+chr(8364)+" von " + str(self.vonnutzer) + " an " + str(self.zunutzer)) # Abfrage der Anzahl aller Transaktionen def getLengthOfAllTransactions(user): allTransactions = readFromDatabase('getLengthOfAllTransactions',[user.id, user.id]) return(allTransactions) # Abfrage einer Auswahl an Transaktionen eines Nutzers zur Anzeige bei den Kontobewegungen def getTransactions(user,page,limPP,maxIt): if int(page)*int(limPP) > int(maxIt): limPPn = int(limPP) - (int(page)*int(limPP) - int(maxIt)) else: limPPn = limPP allTransactions = readFromDatabase('getTransactions', [user.id, user.id, int(page)*int(limPP), limPPn]) # Add TimeZone information: It is stored as UTC-Time in the SQLite-Database for k,v in enumerate(allTransactions): allTransactions[k]['datum'] = pytz.timezone('UTC').localize(v['datum']) return(allTransactions) @transaction.atomic def doTransaction(vonnutzer,zunutzer,betrag,datum, kommentar): t = GeldTransaktionen(vonnutzer=vonnutzer, zunutzer=zunutzer, betrag = betrag, datum=datum, kommentar=kommentar) # Bargeld transaction among Bargeld-users are calculated negatively. But not, as soon as one "normal" user is a part of the transaction if t.vonnutzer.username in ('Bargeld','Bargeld_Dieb','Bargeld_im_Tresor') and t.zunutzer.username in ('Bargeld','Bargeld_Dieb','Bargeld_im_Tresor'): sign = -1 else: sign = +1 # Besorge den Kontostand des 'vonNutzer' und addiere neuen Wert vonNutzerKonto = Kontostand.objects.get(nutzer_id=t.vonnutzer) vonNutzerKonto.stand = vonNutzerKonto.stand - sign * t.betrag vonNutzerKonto.save() # Besorge den Kontostand des 'zuNutzer' und addiere neuen Wert zuNutzerKonto = Kontostand.objects.get(nutzer_id=t.zunutzer) zuNutzerKonto.stand = zuNutzerKonto.stand + sign * t.betrag zuNutzerKonto.save() t.save() # Message to the users if their bank balance becomes too high / too low if getattr(settings,'ACTIVATE_SLACK_INTERACTION') == True: try: slack_MsgToUserAboutNonNormalBankBalance(t.vonnutzer.id, vonNutzerKonto.stand) slack_MsgToUserAboutNonNormalBankBalance(t.zunutzer.id, zuNutzerKonto.stand) except: pass @transaction.atomic def makeManualTransaktion(form,currentUser): # Durchfuehren einer Ueberweisung aus dem Admin-Bereich idFrom = int(form['idFrom'].value()) idTo = int(form['idTo'].value()) betrag = int(100*float(form['betrag'].value())) kommentar = form['kommentar'].value() userFrom = KioskUser.objects.get(id=idFrom) userTo = KioskUser.objects.get(id=idTo) kommentar = kommentar + ' (' + userFrom.username + ' --> ' + userTo.username + ')' GeldTransaktionen.doTransaction(vonnutzer=userFrom, zunutzer=userTo, betrag=betrag, datum=timezone.now(), kommentar=kommentar) return {'returnDict':{'betrag':betrag/100,'userFrom':userFrom.username,'userTo':userTo.username}, 'type':'manTransaction', 'userFrom':userFrom, 'userTo':userTo, 'betrag':betrag/100, 'user':currentUser } @transaction.atomic def makeEinzahlung(form,currentUser): # Durchfuehren einer Einzahlung bzw. Auszahlung (GegenUser ist 'Bargeld') barUser = KioskUser.objects.get(username='Bargeld') if form['typ'].value() == 'Einzahlung': idFrom = barUser.id idTo = int(form['idUser'].value()) ezaz = 'eingezahlt' else: idTo = barUser.id idFrom = int(form['idUser'].value()) ezaz = 'ausgezahlt' betrag = int(100*float(form['betrag'].value())) kommentar = form['kommentar'].value() userFrom = KioskUser.objects.get(id=idFrom) userTo = KioskUser.objects.get(id=idTo) kommentar = kommentar + ' (' + form['typ'].value() + ')' GeldTransaktionen.doTransaction(vonnutzer=userFrom, zunutzer=userTo, betrag=betrag, datum=timezone.now(), kommentar=kommentar) return {'type':ezaz, 'userFrom':userFrom, 'userTo':userTo, 'betrag':betrag/100, 'user':currentUser } # Aus den GeldTransaktionen ergibt sich eigentlich der Kontostand, aber zur Sicherheit (Loeschen von Tabelleneintraegen, Bugs, etc.) wird der Kontostand zusaetzlich gespeichert, bei jeder Transaktion wird dem aktuellen Stand die neue Transaktion angerechnet. Keine weitere Kopplung -> andere Tabellen koennen crashen, ohne den Kontostand zu beschaedigen. class Kontostand(models.Model): nutzer = models.OneToOneField(KioskUser, on_delete=models.CASCADE, primary_key = True) stand = models.IntegerField() def __str__(self): stnd = '%.2f' % (self.stand/100) return(str(self.nutzer) + ": " + str(stnd) + " "+chr(8364)) # At inventory, here the paid but not taken items are registered class ZuVielBezahlt(models.Model): produkt = models.ForeignKey( Produktpalette,on_delete=models.CASCADE) datum = models.DateTimeField(auto_now_add=True) preis = models.IntegerField() def __str__(self): preis = '%.2f' % (self.preis/100) return(self.produkt.produktName + ": " + str(preis) + " "+chr(8364)) @transaction.atomic def makeInventory(request, currentUser, inventoryList): report = [] # Go through all items in the kiosk for item in inventoryList: # Check, if the item should be considered if not request.POST.get(item["checkbutton_id_name"]) is None: # Get the should- and is- count of the item isVal = int(request.POST.get(item["count_id_name"])) shouldVal = item["anzahl"] # Check, if stock is higher, lower or equal if shouldVal == isVal: diff = 0 report.append({'id': item["id"], 'produkt_name': item["produkt_name"], 'verkaufspreis_ct': item["verkaufspreis_ct"], 'verlust': False, 'anzahl': diff, 'message': 'OK.'}) elif shouldVal < isVal: diff = isVal - shouldVal # Too much has been bought. # First try to book back items, the "Dieb" has "bought" userDieb = KioskUser.objects.get(username='Dieb') diebBoughtItems = readFromDatabase('getBoughtItemsOfUser', [userDieb.id]) diebBought = [x for x in diebBoughtItems if x['produkt_id']==item['id']] if not diebBought==[]: noToBuyBack = diebBought[0]['anzahl_gekauft'] noToBuyBack = min(noToBuyBack,diff) Gekauft.rueckbuchenOhneForm(userDieb.id,item['id'],noToBuyBack) else: noToBuyBack = 0 diff = diff - noToBuyBack # If not possible, boooking back, a new item will be created in the open shopping list and be pushed to the kiosk. Notice in table of to much bought items will be given. datum = timezone.now() p = Produktpalette.objects.get(id=item["id"]) maxGroup = EinkaufslisteGroups.objects.all().aggregate(Max('gruppenID')) maxGroup = maxGroup["gruppenID__max"] + 1 for i in range(0,diff): e = Einkaufsliste(produktpalette = p) e.save() eg = EinkaufslisteGroups(einkaufslistenItem=e,gruppenID=maxGroup) eg.save() ok = Einkaufsliste.einkaufGroupVormerken(maxGroup,currentUser.id) z = ZuVielBezahlt(produkt = p, datum = datum, preis = int(item["verkaufspreis_ct"])) z.save() angeliefert = ZumEinkaufVorgemerkt.objects.filter(einkaeufer__id=currentUser.id, produktpalette__id=item["id"]).order_by('kiosk_ID')[:diff] # Eintragen der Werte und Schreiben ins Kiosk for an in angeliefert: k = Kiosk(kiosk_ID=an.kiosk_ID,bedarfErstelltUm=an.bedarfErstelltUm, produktpalette_id=an.produktpalette_id, einkaufsvermerkUm=an.einkaufsvermerkUm, einkaeufer_id = an.einkaeufer_id, geliefertUm = datum, verwalterEinpflegen_id = currentUser.id, einkaufspreis = 0) k.save() an.delete() report.append({'id': item["id"], 'produkt_name': item["produkt_name"], 'verkaufspreis_ct': item["verkaufspreis_ct"], 'verlust': False, 'anzahl': diff+noToBuyBack, 'message': str(diff+noToBuyBack) + ' zu viel gekauft.'}) elif shouldVal > isVal: # Items have not been payed. Now, the "thieve" "buys" them. diff = shouldVal-isVal user = KioskUser.objects.get(username='Dieb') buyItem = item["produkt_name"] for x in range(0,diff): retVal = Kiosk.buyItem(buyItem,user,gekauft_per='dieb') report.append({'id': item["id"], 'produkt_name': item["produkt_name"], 'verkaufspreis_ct': item["verkaufspreis_ct"], 'verlust': True, 'anzahl': diff, 'message': str(diff) + ' nicht bezahlt. Nun "kauft" diese der Dieb.'}) return(report)
37.526536
354
0.737318
d31caf04cb9c133ec4d3c2c4da1c9cc2f19a7a62
553
py
Python
module_functions.py
dcazabat/SYNOP_PY
7a9f1804858d72b1ec2584fed887689161036ad7
[ "MIT" ]
null
null
null
module_functions.py
dcazabat/SYNOP_PY
7a9f1804858d72b1ec2584fed887689161036ad7
[ "MIT" ]
null
null
null
module_functions.py
dcazabat/SYNOP_PY
7a9f1804858d72b1ec2584fed887689161036ad7
[ "MIT" ]
null
null
null
import platform import os def creation_date(path_to_file): if platform.system() == 'Windows': return os.path.getctime(path_to_file) else: stat = os.stat(path_to_file) try: return stat.st_birthtime except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. return stat.st_time def clear(): if os.name == "nt": os.system("cls") else: os.system("clear")
27.65
78
0.60217
9f701bc08c1c4dfe533065e4d0ee3002ac64f361
1,661
py
Python
c++basic/DATA_STRUCTURES/prime_mult.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
c++basic/DATA_STRUCTURES/prime_mult.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
c++basic/DATA_STRUCTURES/prime_mult.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
from multiprocessing.pool import ThreadPool import datetime import numpy as np import math def __is_divisible__(a,b): if a%b == 0: return 1 return 0 def isPrime_n(a): #is prime noob k=0 for i in range(2,a-1): if __is_divisible__(a,i) == 1: k=1 break if k==0: return 1 else: return 0 def isPrime_g(a): #is prime good k=0 for i in range(2,int(a/2)+1): if __is_divisible__(a,i) == 1: k=1 break if k==0: return 1 else: return 0 def isPrime_b(a): # is prime best k=0 for i in range(2,int(math.sqrt(a)+1)): if __is_divisible__(a,i) == 1: k=1 break if k==0: return 1 else: return 0 IS_PRIME = True class mult_prime: global IS_PRIME def __is_divisible__(self,a,b): if a%b == 0: IS_PRIME = False def method_prime(method_tr): et = datetime.datetime.now() for i in np.arange(100): k = method_tr(i) and i if k > 0: print(k,end=" ") print("\nMicro-Seconds : ",(et-datetime.datetime.now()).microseconds) def multi_prime(a): arr = np.arange(2,int(math.sqrt(a)+1)) #print(arr) ThreadPool(30).imap_unordered(mult_prime.__is_divisible__,a,arr) global IS_PRIME if IS_PRIME == True: print(a) if __name__ == "__main__": #print(__is_divisible__(5,2)) print("noob:",end="") method_prime(isPrime_n) print("good:",end="") method_prime(isPrime_g) print("best:",end="") method_prime(isPrime_b) print() #multi_prime(10) pass
20.506173
73
0.5587
e290dde6888c2655675fa623360f1477b47adc7f
5,415
py
Python
app/freelancer/tests/test_profile.py
mshirzad/find-my-job
7dca88d6233649952f0b948156a91af5b96352ff
[ "MIT" ]
null
null
null
app/freelancer/tests/test_profile.py
mshirzad/find-my-job
7dca88d6233649952f0b948156a91af5b96352ff
[ "MIT" ]
null
null
null
app/freelancer/tests/test_profile.py
mshirzad/find-my-job
7dca88d6233649952f0b948156a91af5b96352ff
[ "MIT" ]
1
2022-03-06T17:44:49.000Z
2022-03-06T17:44:49.000Z
import os, tempfile from PIL import Image from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from rest_framework import test, status from rest_framework.test import APIClient from core.models import Profile, Address, Gig, Education from freelancer.serializers import ProfileSerializer # MY_PROFILE_URL = reverse('freelancer:myProfile-list') # ALL_PROFILES_URL = reverse('freelancer:profile-list') def upload_profile_photo_url(profile_id): return reverse('freelancer:myprofile-uploade-profile-photo', args=[profile_id]) def profile_details_url(profile_id): return reverse('freelancer:myprofile-details', args=[profile_id]) def create_sample_address(**params): defaults = { 'address_line1': 'Apt 102, St 33 NW', 'city': 'LA', 'province': 'CA', 'post_code': '33AW23', 'country': 'USA' } defaults.update(params) return Address.objects.create(**defaults) def create_sample_edu(**params): defaults = { 'degree': 'Master', 'university': 'MIT', 'faculty': 'CS', 'start_year': 2018, 'graduation_year': 2020 } defaults.update(params) return Education.objects.create(**defaults) def create_sample_profile(user, **params): defaults = { 'phone': '+93778898899', 'profession': 'Eng', 'boi': 'Test Boi', 'address': create_sample_address(), 'education': create_sample_edu() } defaults.update(params) return Profile.objects.create(user=user, **defaults) def create_sample_gig(freelancer, **params): defaults = { 'title': 'New Gig for Web App', 'description': 'Some Lorem ipsom', 'min_price': 40.00 } defaults.update(params) return Gig.objects.create(freelancer=freelancer, **defaults) # class TestPublicProfileAPI(TestCase): # def setUp(self): # self.client = APIClient() # def test_auth_required(self): # resp = self.client.get(ALL_PROFILES_URL) # self.assertEqual(resp.status_code, status.HTTP_401_UNAUTHORIZED) # class TestPrivateProfileAPI(TestCase): # def setUp(self): # self.client = APIClient() # self.user = get_user_model().objects.create_user( # email='[email protected]', # password='test@12345' # ) # self.user.name = 'Test User' # self.client.force_authenticate(self.user) # def test_show_freelancer_profile_to_other_users(self): # user2 = get_user_model().objects.create_user( # '[email protected]', # 'test@1234555' # ) # user2.name = 'Test USER' # user3 = get_user_model().objects.create_user( # '[email protected]', # 'test@1234555' # ) # user3.name = 'Test USER3' # create_sample_profile(user=user2) # create_sample_profile(user=user3) # resp = self.client.get(ALL_PROFILES_URL) # profiles = Profile.objects.all().order_by('-rating') # serializer = ProfileSerializer(profiles, many=True) # self.assertEqual(resp.status_code, status.HTTP_200_OK) # self.assertEqual(resp.data, serializer.data) # def test_show_profile_to_its_own_user(self): # user2 = get_user_model().objects.create_user( # '[email protected]', # 'test@1234555' # ) # user2.name = 'Test USER2' # create_sample_profile(user=user2) # create_sample_profile(user=self.user) # resp = self.client.get(MY_PROFILE_URL) # profile = Profile.objects.filter(user=self.user) # serializer = ProfileSerializer(profile, many=True) # self.assertEqual(resp.status_code, status.HTTP_200_OK) # self.assertEqual(len(resp.data), 1) # print(resp.data) # print("#########") # print(serializer.data) # self.assertEqual(resp.data, serializer.data) # class TestUploadProfilePhotoAPI(TestCase): # def setUp(self): # self.client = APIClient() # self.user = get_user_model().objects.create_user( # email='[email protected]', # password='test@12345' # ) # self.user.name = 'Test User' # self.client.force_authenticate(self.user) # self.profile = create_sample_profile(user= self.user) # def tearDown(self): # self.profile.profile_photo.delete() # def test_upload_profile_photo(self): # url = upload_profile_photo_url(profile_id=self.profile.id) # with tempfile.NamedTemporaryFile(suffix='.jpg') as nft: # img = Image.new('RGB', (10,10)) # img.save(nft, format='JPEG') # nft.seek(0) # resp = self.client.post(url, {'profile_photo': nft}, format='maltipart') # self.profile.refresh_form_db() # self.assertEqual(resp.status_code, status.HTTP_200_OK) # self.assertIn('profile_photo', resp.data) # self.assertTrue(os.path.exists(self.profile.profile_photo.path)) # def test_upload_profile_photo_bad_image(self): # url = upload_profile_photo_url(profile_id=self.profile.id) # resp = self.client.post(url, {'profile_photo': 'noImage'}, format='maltipart') # self.assertEqual(resp.status_code, status.HTTP_400_BAD_REQUEST)
28.650794
88
0.635272
e2aefdb5d4c4918146034a0834daf3d3d9bd181b
1,173
py
Python
website/python/app.py
man-r/DimensionsLab
c94c3aec0d52326ad522a6fa41d43ec3bde87d74
[ "MIT" ]
null
null
null
website/python/app.py
man-r/DimensionsLab
c94c3aec0d52326ad522a6fa41d43ec3bde87d74
[ "MIT" ]
1
2022-03-24T06:13:52.000Z
2022-03-24T06:13:52.000Z
website/python/app.py
man-r/DimensionsLab
c94c3aec0d52326ad522a6fa41d43ec3bde87d74
[ "MIT" ]
null
null
null
from flask import Flask from flask_restful import Api, Resource, reqparse app = Flask(__name__) api = Api(app) users = [ { "name": "Nicholas", "age": 42, "occupation": "Network Engineer" }, { "name": "Elvin", "age": 32, "occupation": "Doctor" }, { "name": "Jass", "age": 22, "occupation": "Web Developer" } ] class User(Resource): def get(self, name): for user in users: if (name == user["name"]): return user, 200 return "User not found", 404 def post(self, name): parser = reqparse.RequestParser() parser.add_argument("age") parser.add_argument("occupation") args = parser.parse_args() for user in users: if (name == user["name"]): return "User with the name {} already exist".format(name), 400 user = { "name": name, "age": args["age"], "occupation": args["occupation"] } users.append(user) return user, 201 def delete(self, name): global users users = [user for user in users if user["name"] != name] return "{} is deleted.".format(name), 200 api.add_resource(User, "/user/<string:name>") app.run(debug=True)
19.881356
66
0.58994
394e6287c45dd4b169b78862df54b129511b5346
1,495
py
Python
test_pyparsing_3_1.py
luluci/gui_env
9c2ffe331c2dc8a7e128474ce9590498082de569
[ "MIT" ]
null
null
null
test_pyparsing_3_1.py
luluci/gui_env
9c2ffe331c2dc8a7e128474ce9590498082de569
[ "MIT" ]
null
null
null
test_pyparsing_3_1.py
luluci/gui_env
9c2ffe331c2dc8a7e128474ce9590498082de569
[ "MIT" ]
null
null
null
import pyparsing as pp def act_comment(token): print("comment: " + str(token)) def act_keyword(token): print("keyword: " + str(token)) def act_sc(token): print("semicolon: " + str(token)) def act_parser_start(token): print("parser_start: " + str(token)) def act_parser_end(token): print("parser_end: " + str(token)) comment_parser = pp.Group( (pp.Literal("//") + pp.restOfLine) | pp.cStyleComment ).setParseAction(act_comment) pp_key1 = pp.Keyword("hoge") pp_key2 = pp.Keyword("fuga") pp_sc = pp.Literal(";") statement = pp.Group( pp.Empty().setParseAction(act_parser_start) + pp_key1.setParseAction(act_keyword) + pp_key2.setParseAction(act_keyword) + pp_sc.setParseAction(act_sc) + pp.Empty().setParseAction(act_parser_end) ) parser = statement[1, ...].ignore(comment_parser) test_text = """\ hoge fuga; // comment1 hoge /* comment2-1 */ fuga; /* comment2-2 */ // comment3 hoge fuga; // comment4 """ ret = parser.parseString(test_text) print(ret) """ [result] parser_start: [] keyword: ['hoge'] keyword: ['fuga'] semicolon: [';'] comment: [['//', ' comment1']] parser_end: [] parser_start: [] keyword: ['hoge'] comment: [['/* comment2-1 */']] keyword: ['fuga'] semicolon: [';'] comment: [['/* comment2-2 */']] comment: [['//', ' comment3']] parser_end: [] parser_start: [] keyword: ['hoge'] keyword: ['fuga'] semicolon: [';'] comment: [['//', ' comment4']] parser_end: [] parser_start: [] [['hoge', 'fuga', ';'], ['hoge', 'fuga', ';'], ['hoge', 'fuga', ';']] """
19.166667
69
0.646154
200a07a8f6c323cf28ccdef7bc5e7ac20a331280
206
py
Python
src/onegov/winterthur/forms/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/winterthur/forms/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/winterthur/forms/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.winterthur.forms.mission_report import MissionReportForm from onegov.winterthur.forms.mission_report import MissionReportVehicleForm __all__ = ('MissionReportForm', 'MissionReportVehicleForm')
41.2
75
0.868932
6490cc9b76431e255aeab4722b02c97b8014ad01
5,628
py
Python
src/flocker/blueprints/mvg-frame/__init__.py
Muxelmann/home-projects
85bd06873174b9c5c6276160988c19b460370db8
[ "MIT" ]
null
null
null
src/flocker/blueprints/mvg-frame/__init__.py
Muxelmann/home-projects
85bd06873174b9c5c6276160988c19b460370db8
[ "MIT" ]
null
null
null
src/flocker/blueprints/mvg-frame/__init__.py
Muxelmann/home-projects
85bd06873174b9c5c6276160988c19b460370db8
[ "MIT" ]
null
null
null
import os import time from flask import Blueprint, render_template, redirect, url_for, request, current_app from . import mvg from . import displays from PIL import Image, ImageFont, ImageDraw def create_bp(app): bp_mvg = Blueprint('mvg-frame', __name__, url_prefix='/mvg-frame') displays.init(app) @bp_mvg.route('/index/') @bp_mvg.route('/') def index(): return render_template('mvg-frame/index.html.j2', data=displays.data()) @bp_mvg.route("/updateData/<string:mac>", methods={'GET', 'POST'}) def update_data(mac): data = {} # Check if a specific station ID has been passed if 'station_id' in request.args: station_id = request.args.get('station_id') station_name = mvg.get_name_for_id(station_id) # Only set the data if ID is valid, i.e. returns a valid station name if station_name is not None: data['station_id'] = station_id data['station_name'] = station_name # Populate data with form inputs for key, value in request.form.items(): if key in ['station_name']: data[key] = value # vv Makes sure that the old station ID is not accidentally kept data['station_id'] = None if key in ['offset_top', 'offset_bottom', 'offset_left', 'offset_right'] and value.isnumeric(): data[key] = int(value) # Upate the stored data displays.update(mac, data) # Check if a station ID has already been passed / set if data['station_id'] is None: # Find all station IDs for the station name station_ids = mvg.get_ids_for_satation(data['station_name']) # If not exactly one station was found... if len(station_ids) == 1: # ... save the found station ID for key, value in station_ids.items(): displays.update(mac, {'station_id': key}) elif len(station_ids) > 1: # ... or let the user choose and pass (via GET) a station ID return render_template('mvg-frame/index.html.j2', mac=mac, station_ids=station_ids) return redirect(url_for('mvg-frame.index')) # Functions called from frame @bp_mvg.route('/update/<string:mac>') def update(mac): # Make a new empty image in the size of the screen img_path = os.path.join(current_app.instance_path, 'mvg-{}.png'.format(mac.replace(':', ''))) (w, h) = displays.size_for(mac) img = Image.new('RGB', (w, h), (0, 0, 0)) draw = ImageDraw.Draw(img) font_dir = os.path.join('/'.join(os.path.abspath(__file__).split('/')[0:-1]), 'static') font_normal = ImageFont.truetype(os.path.join(font_dir, 'EXCITE.otf'), 42) font_bold = ImageFont.truetype(os.path.join(font_dir, 'EXCITE_B.otf'), 42) station_id, _ = displays.station_for(mac) if station_id is None: draw.text((w/2, h/2), "STATION ERROR", fill=(255, 255, 255), font=font_bold, anchor='mm') img.save(img_path, 'PNG') return "0" (o_t, o_b, o_l, o_r) = displays.offset_for(mac) draw.polygon([ o_l, o_t, o_l, h-o_b, w-o_r, h-o_b, w-o_r, o_t, ], fill=(255, 255, 255)) # Get the departures for the station ID departures = mvg.get_departures_for_id(station_id, limit=7) if len(departures) == 0: draw.text((w/2, h/2), "NO DATA", fill=(0, 0, 0), font=font_bold, anchor='mm') img.save(img_path, 'PNG') return "0" # departure_times = "\n".join([time.strftime('%H:%M', d['departure']) for d in departures]) departure_minutes = "\n".join(["{:.0f}".format((time.mktime(d['departure'])-time.time())/60) for d in departures]) departure_service = "\n".join(["{} {}".format(d['service'], d['destination']) for d in departures]) draw.multiline_text((o_l + 10, o_t+5), departure_minutes, font=font_bold, fill=(0, 0, 0)) draw.multiline_text((o_l + 100, o_t+5), departure_service, font=font_normal, fill=(0, 0, 0)) img.save(img_path, 'PNG') return "1" @bp_mvg.route('/imageData/<string:mac>') # GET: segCount & seg def image_data(mac): seg_count = int(request.args.get('segCount', default="1")) seg = int(request.args.get('seg', default="0")) img_path = os.path.join(current_app.instance_path, 'mvg-{}.png'.format(mac.replace(':', ''))) img = Image.open(img_path) (w, h) = img.size img = img.rotate(180) crop_box = (0, seg*h/seg_count, w, (seg+1)*h/seg_count) img = img.crop(crop_box) (w, h) = img.size data = '' pixels = img.load() for y in range(h): for x in range(0, w, 4): black = [all([pixel == 0 for pixel in pixels[x+px, y]]) for px in range(4)] white = [all([pixel == 255 for pixel in pixels[x+px, y]]) for px in range(4)] new_data = '' for z in range(4): if white[z]: new_data += '11' elif black[z]: new_data += '00' else: new_data += '01' data += '{:02x}'.format(int(new_data, base=2)) return data @bp_mvg.route('/delayTime/<string:mac>') def delay_time(mac): return "30000" return bp_mvg
39.083333
122
0.555792
b3dac29fab9b30a15f3567e16ce2def62510c239
5,959
py
Python
src/main/apps/mlops/utils/model_loader.py
Nouvellie/django-tflite
1d08fdc8a2ec58886d7d2b8d40e7b3598613caca
[ "MIT" ]
2
2021-08-23T21:56:07.000Z
2022-01-20T13:52:19.000Z
src/main/apps/mlops/utils/model_loader.py
Nouvellie/django-tflite
1d08fdc8a2ec58886d7d2b8d40e7b3598613caca
[ "MIT" ]
null
null
null
src/main/apps/mlops/utils/model_loader.py
Nouvellie/django-tflite
1d08fdc8a2ec58886d7d2b8d40e7b3598613caca
[ "MIT" ]
null
null
null
import numpy as np import os from .file_loader import ( CatsvsdogsFileLoader, FashionMnistFileLoader, ImdbSentimentFileLoader, StackoverflowFileLoader, ) from .model_input import ModelInputGenerator from .output_decoder import OutputDecoder from .pipeline import Pipeline from .preprocessing import pipeline_function_register from abc import ( ABC, abstractmethod, ) from main.settings import ( DEBUG, MODEL_ROOT, ) from tensorflow import ( convert_to_tensor, lite, ) from tensorflow.keras.models import model_from_json from typing import ( Generic, TypeVar, ) SELFCLASS = TypeVar('SELFCLASS') class BaseModelLoader(ABC): """Metaclass for defining the model loader.""" def __new__(cls, model_dir: str, *args, **kwargs) -> Generic[SELFCLASS]: return super(BaseModelLoader, cls).__new__(cls, *args, **kwargs) def __init__(self, model_dir: str) -> None: self.model_type = int(model_dir.split("/")[0]) self.model_dir = model_dir self.model_preload() self.preprocessing_load() self.postprocessing_load() self.model_input_load() self.preload_file_loader() def preprocessing_load(self) -> None: """Function to apply preprocessing to an array.""" preprocessing_path = os.path.join(MODEL_ROOT + f"{self.model_dir}/preprocessing.json") self.preprocessing = Pipeline() self.preprocessing.from_json(preprocessing_path) def postprocessing_load(self) -> None: """Function to apply postprocessing to model output.""" postprocessing_path = os.path.join(MODEL_ROOT + f"{self.model_dir}/postprocessing.json") self.postprocessing = OutputDecoder() self.postprocessing.from_json(postprocessing_path) def model_input_load(self) -> None: """Creates a generic modelinput.""" self.ModelInput = ModelInputGenerator() def preload_file_loader(self) -> None: """Function to load the file as an array.""" if self.model_type == 1: self.file_loader = FashionMnistFileLoader() elif self.model_type == 2: self.file_loader = ImdbSentimentFileLoader() elif self.model_type == 3: self.file_loader = StackoverflowFileLoader() elif self.model_type == 4: self.file_loader = CatsvsdogsFileLoader() else: pass def generate_model_input(self, model_input: any) -> list: """From file -> array -> preprocessing -> model input.""" model_input = self.file_loader(model_input) model_input = self.preprocessing(model_input) model_input = self.ModelInput.model_input_generator(model_input) return model_input @abstractmethod def model_preload(self) -> None: """This function is used to generate the preload of the model.""" pass @abstractmethod def predict(self, model_input: any, confidence: bool) -> dict: """With this function the inference of the model is generated.""" pass class TFLiteModelLoader(BaseModelLoader): """Class to generate predictions from a TFLite model.""" NUM_THREADS = 4 def model_preload(self) -> None: tflite_name = [name for name in os.listdir(MODEL_ROOT + f"{self.model_dir}") if name.endswith(".tflite")][0] model_path = os.path.join(MODEL_ROOT + f"{self.model_dir}/{tflite_name}") if self.NUM_THREADS > 0: self.interpreter = lite.Interpreter( model_path=str(model_path), num_threads=self.NUM_THREADS) else: self.interpreter = lite.Interpreter(model_path=str(model_path)) self.interpreter.allocate_tensors() self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() # print(f"The model {self.model_dir.title()} has been successfully pre-loaded. (TFLITE)") def predict(self, model_input: any, confidence: bool = False) -> dict: model_input = self.generate_model_input(model_input) if self.model_type in (1, 4): for i, j in enumerate(model_input): model_input_tensor = convert_to_tensor( np.array(j), np.float32) self.interpreter.set_tensor( self.input_details[i]['index'], model_input_tensor) elif self.model_type in (2, 3): for i, j in enumerate(model_input): self.interpreter.set_tensor( self.input_details[i]['index'], j) self.interpreter.invoke() prediction = self.interpreter.get_tensor( self.output_details[0]['index']) result = self.postprocessing.output_decoding( model_output=prediction, confidence=confidence) return result class HDF5JSONModelLoader(BaseModelLoader): """Class to generate predictions from a HDF5JSON model.""" def model_preload(self) -> None: hdf5_path = os.path.join(MODEL_ROOT + f"{self.model_dir}/model.hdf5") json_path = os.path.join(MODEL_ROOT + f"{self.model_dir}/model.json") with open(json_path, "r") as jp: self.model = model_from_json(jp.read()) self.model.load_weights(hdf5_path) # print(f"The model {self.model_dir.title()} has been successfully pre-loaded. (HDF5-JSON)") def predict(self, model_input: any, confidence: bool = False) -> dict: model_input = self.generate_model_input(model_input) prediction = self.model.predict(model_input) result = self.postprocessing.output_decoding( model_output=prediction, confidence=confidence) return result class CheckpointModelLoader(BaseModelLoader): """Class to generate predictions from a Checkpoint model.""" def model_preload(self) -> None: pass def predict(self, model_input: any, confidence: bool) -> dict: pass
35.260355
116
0.664205
37369717bf4744bf752a9e5e1db557ed280d3c7a
496
py
Python
Blatt-02/Sonstiges/tribonacci.py
MartinThoma/prog-ws1213
c82a2fb81bac774f8d3214a25c33124a9f512ef0
[ "MIT" ]
1
2017-08-10T13:12:03.000Z
2017-08-10T13:12:03.000Z
Blatt-02/Sonstiges/tribonacci.py
siviaseason/prog-ws1213
c82a2fb81bac774f8d3214a25c33124a9f512ef0
[ "MIT" ]
null
null
null
Blatt-02/Sonstiges/tribonacci.py
siviaseason/prog-ws1213
c82a2fb81bac774f8d3214a25c33124a9f512ef0
[ "MIT" ]
2
2016-06-08T20:56:04.000Z
2022-03-11T20:12:37.000Z
def tribonacci(n): if n < 3: return n else: return tribonacci(n-1) + tribonacci(n-2) + tribonacci(n-3) def tribonacciBottomUp(n): last = 1 secondLast = 1 thirdLast = 1 for i in range(2,n): new = last + secondLast + thirdLast thirdLast = secondLast secondLast = last last = new return last def fillIt(n): solutions for i in xrange(0,40+1): print("<tr><td>%i</td><td>%i</td></tr>" % (i, tribonacciBottomUp(i)))
21.565217
73
0.568548
03fcad1d1936cee28640a02b1c3ebdfc5c4cd278
53
py
Python
python_lessons/MtMk_Test_Files/numpy_test.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
python_lessons/MtMk_Test_Files/numpy_test.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
python_lessons/MtMk_Test_Files/numpy_test.py
1986MMartin/coding-sections-markus
e13be32e5d83e69250ecfb3c76a04ee48a320607
[ "Apache-2.0" ]
null
null
null
import numpy as np arr = np.arange(0,11) print(arr)
17.666667
22
0.698113
45a6eb2cafb85abd876f4684bf56dbe0066463d9
16,694
py
Python
research/cv/eppmvsnet/src/networks.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/eppmvsnet/src/networks.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/eppmvsnet/src/networks.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """sub-networks of EPP-MVSNet""" import numpy as np import mindspore import mindspore.ops as P from mindspore import nn from mindspore import Tensor, Parameter from src.modules import depth_regression, soft_argmin, entropy class BasicBlockA(nn.Cell): """BasicBlockA""" def __init__(self, in_channels, out_channels, stride): super(BasicBlockA, self).__init__() self.conv2d_0 = nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1, pad_mode="pad") self.conv2d_1 = nn.Conv2d(in_channels, out_channels, 1, stride=stride, padding=0, pad_mode="valid") self.batchnorm2d_2 = nn.BatchNorm2d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.batchnorm2d_3 = nn.BatchNorm2d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_4 = nn.ReLU() self.conv2d_5 = nn.Conv2d(out_channels, out_channels, 3, stride=1, padding=(1, 1, 1, 1), pad_mode="pad") self.batchnorm2d_6 = nn.BatchNorm2d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_8 = nn.ReLU() def construct(self, x): """construct""" x1 = self.conv2d_0(x) x1 = self.batchnorm2d_2(x1) x1 = self.relu_4(x1) x1 = self.conv2d_5(x1) x1 = self.batchnorm2d_6(x1) res = self.conv2d_1(x) res = self.batchnorm2d_3(res) out = P.Add()(x1, res) out = self.relu_8(out) return out class BasicBlockB(nn.Cell): """BasicBlockB""" def __init__(self, in_channels, out_channels): super(BasicBlockB, self).__init__() self.conv2d_0 = nn.Conv2d(in_channels, out_channels, 3, stride=1, padding=1, pad_mode="pad") self.batchnorm2d_1 = nn.BatchNorm2d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_2 = nn.ReLU() self.conv2d_3 = nn.Conv2d(in_channels, out_channels, 3, stride=1, padding=1, pad_mode="pad") self.batchnorm2d_4 = nn.BatchNorm2d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_6 = nn.ReLU() def construct(self, x): """construct""" x1 = self.conv2d_0(x) x1 = self.batchnorm2d_1(x1) x1 = self.relu_2(x1) x1 = self.conv2d_3(x1) x1 = self.batchnorm2d_4(x1) res = x out = P.Add()(x1, res) out = self.relu_6(out) return out class UNet2D(nn.Cell): """UNet2D""" def __init__(self): super(UNet2D, self).__init__() self.conv2d_0 = nn.Conv2d(3, 16, 5, stride=2, padding=2, pad_mode="pad") self.batchnorm2d_1 = nn.BatchNorm2d(16, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.leakyrelu_2 = nn.LeakyReLU(alpha=0.009999999776482582) self.convblocka_0 = BasicBlockA(16, 32, 1) self.convblockb_0 = BasicBlockB(32, 32) self.convblocka_1 = BasicBlockA(32, 64, 2) self.convblockb_1 = BasicBlockB(64, 64) self.convblocka_2 = BasicBlockA(64, 128, 2) self.convblockb_2 = BasicBlockB(128, 128) self.conv2dbackpropinput_51 = P.Conv2DBackpropInput(64, 3, stride=2, pad=1, pad_mode="pad") self.conv2dbackpropinput_51_weight = Parameter(Tensor( np.random.uniform(0, 1, (128, 64, 3, 3)).astype(np.float32))) self.conv2d_54 = nn.Conv2d(128, 64, 3, stride=1, padding=1, pad_mode="pad") self.convblockb_3 = BasicBlockB(64, 64) self.conv2dbackpropinput_62 = P.Conv2DBackpropInput(32, 3, stride=2, pad=1, pad_mode="pad") self.conv2dbackpropinput_62_weight = Parameter(Tensor( np.random.uniform(0, 1, (64, 32, 3, 3)).astype(np.float32))) self.conv2d_65 = nn.Conv2d(64, 32, 3, stride=1, padding=1, pad_mode="pad") self.convblockb_4 = BasicBlockB(32, 32) self.conv2d_52 = nn.Conv2d(128, 32, 3, stride=1, padding=1, pad_mode="pad") self.conv2d_63 = nn.Conv2d(64, 32, 3, stride=1, padding=1, pad_mode="pad") self.conv2d_73 = nn.Conv2d(32, 32, 3, stride=1, padding=1, pad_mode="pad") self.concat = P.Concat(axis=1) param_dict = mindspore.load_checkpoint("./ckpts/feat_ext.ckpt") params_not_loaded = mindspore.load_param_into_net(self, param_dict, strict_load=True) print(params_not_loaded) def construct(self, imgs): """construct""" _, _, h, w = imgs.shape x = self.conv2d_0(imgs) x = self.batchnorm2d_1(x) x = self.leakyrelu_2(x) x1 = self.convblocka_0(x) x1 = self.convblockb_0(x1) x2 = self.convblocka_1(x1) x2 = self.convblockb_1(x2) x3 = self.convblocka_2(x2) x3 = self.convblockb_2(x3) x2_upsample = self.conv2dbackpropinput_51(x3, self.conv2dbackpropinput_51_weight, (x2.shape[0], x2.shape[1], h // 4, w // 4)) x2_upsample = self.concat((x2_upsample, x2,)) x2_upsample = self.conv2d_54(x2_upsample) x2_upsample = self.convblockb_3(x2_upsample) x1_upsample = self.conv2dbackpropinput_62(x2_upsample, self.conv2dbackpropinput_62_weight, (x1.shape[0], x1.shape[1], h // 2, w // 2)) x1_upsample = self.concat((x1_upsample, x1,)) x1_upsample = self.conv2d_65(x1_upsample) x1_upsample = self.convblockb_4(x1_upsample) x3_final = self.conv2d_52(x3) x2_final = self.conv2d_63(x2_upsample) x1_final = self.conv2d_73(x1_upsample) return x3_final, x2_final, x1_final class ConvBnReLu(nn.Cell): """ConvBnReLu""" def __init__(self, in_channels, out_channels): super(ConvBnReLu, self).__init__() self.conv3d_0 = nn.Conv3d(in_channels, out_channels, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.batchnorm3d_1 = nn.BatchNorm3d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.leakyrelu_2 = nn.LeakyReLU(alpha=0.009999999776482582) def construct(self, x): """construct""" x = self.conv3d_0(x) x = self.batchnorm3d_1(x) x = self.leakyrelu_2(x) return x class CostCompression(nn.Cell): """CostCompression""" def __init__(self): super(CostCompression, self).__init__() self.basicblock_0 = ConvBnReLu(8, 64) self.basicblock_1 = ConvBnReLu(64, 64) self.basicblock_2 = ConvBnReLu(64, 8) param_dict = mindspore.load_checkpoint("./ckpts/stage1_cost_compression.ckpt") params_not_loaded = mindspore.load_param_into_net(self, param_dict, strict_load=True) print(params_not_loaded) def construct(self, x): """construct""" x = self.basicblock_0(x) x = self.basicblock_1(x) x = self.basicblock_2(x) return x class Pseudo3DBlock_A(nn.Cell): """Pseudo3DBlock_A""" def __init__(self, in_channels, out_channels): super(Pseudo3DBlock_A, self).__init__() self.conv3d_0 = nn.Conv3d(in_channels, out_channels, (1, 3, 3), stride=1, padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_1 = nn.Conv3d(out_channels, out_channels, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.batchnorm3d_2 = nn.BatchNorm3d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_3 = nn.ReLU() self.conv3d_4 = nn.Conv3d(out_channels, out_channels, (1, 3, 3), stride=1, padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_5 = nn.Conv3d(out_channels, out_channels, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.batchnorm3d_6 = nn.BatchNorm3d(out_channels, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_8 = nn.ReLU() def construct(self, x): """construct""" x1 = self.conv3d_0(x) x1 = self.conv3d_1(x1) x1 = self.batchnorm3d_2(x1) x1 = self.relu_3(x1) x1 = self.conv3d_4(x1) x1 = self.conv3d_5(x1) x1 = self.batchnorm3d_6(x1) res = x out = P.Add()(x1, res) out = self.relu_8(out) return out class Pseudo3DBlock_B(nn.Cell): """Pseudo3DBlock_B""" def __init__(self): super(Pseudo3DBlock_B, self).__init__() self.conv3d_0 = nn.Conv3d(8, 8, (1, 3, 3), stride=(1, 2, 2), padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_1 = nn.Conv3d(8, 16, (1, 1, 1), stride=2, padding=0, pad_mode="valid") self.conv3d_2 = nn.Conv3d(8, 16, (3, 1, 1), stride=(2, 1, 1), padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.batchnorm3d_3 = nn.BatchNorm3d(16, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.batchnorm3d_4 = nn.BatchNorm3d(16, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_5 = nn.ReLU() self.conv3d_6 = nn.Conv3d(16, 16, (1, 3, 3), stride=1, padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_7 = nn.Conv3d(16, 16, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.batchnorm3d_8 = nn.BatchNorm3d(16, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.relu_10 = nn.ReLU() def construct(self, x): """construct""" x1 = self.conv3d_0(x) x1 = self.conv3d_2(x1) x1 = self.batchnorm3d_4(x1) x1 = self.relu_5(x1) x1 = self.conv3d_6(x1) x1 = self.conv3d_7(x1) x1 = self.batchnorm3d_8(x1) res = self.conv3d_1(x) res = self.batchnorm3d_3(res) out = P.Add()(x1, res) out = self.relu_10(out) return out class CoarseStageRegFuse(nn.Cell): """CoarseStageRegFuse""" def __init__(self): super(CoarseStageRegFuse, self).__init__() self.basicblocka_0 = Pseudo3DBlock_A(8, 8) self.basicblockb_0 = Pseudo3DBlock_B() self.conv3dtranspose_21 = nn.Conv3dTranspose(16, 8, 3, stride=2, padding=1, pad_mode="pad", output_padding=1) self.conv3d_23 = nn.Conv3d(16, 8, (1, 3, 3), stride=1, padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_24 = nn.Conv3d(8, 8, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.conv3d_25 = nn.Conv3d(8, 1, 3, stride=1, padding=1, pad_mode="pad") self.concat_1 = P.Concat(axis=1) self.squeeze_1 = P.Squeeze(axis=1) param_dict = mindspore.load_checkpoint("./ckpts/stage1_reg_fuse.ckpt") params_not_loaded = mindspore.load_param_into_net(self, param_dict, strict_load=True) print(params_not_loaded) def construct(self, fused_interim, depth_values): """construct""" x1 = self.basicblocka_0(fused_interim) x2 = self.basicblockb_0(x1) x1_upsample = self.conv3dtranspose_21(x2) cost_volume = self.concat_1((x1_upsample, x1)) cost_volume = self.conv3d_23(cost_volume) cost_volume = self.conv3d_24(cost_volume) score_volume = self.conv3d_25(cost_volume) score_volume = self.squeeze_1(score_volume) prob_volume, _, prob_map = soft_argmin(score_volume, dim=1, keepdim=True, window=2) est_depth = depth_regression(prob_volume, depth_values, keep_dim=True) return est_depth, prob_map, prob_volume class CoarseStageRegPair(nn.Cell): """CoarseStageRegPair""" def __init__(self): super(CoarseStageRegPair, self).__init__() self.basicblocka_0 = Pseudo3DBlock_A(8, 8) self.basicblockb_0 = Pseudo3DBlock_B() self.conv3dtranspose_21 = nn.Conv3dTranspose(16, 8, 3, stride=2, padding=1, pad_mode="pad", output_padding=1) self.concat_22 = P.Concat(axis=1) self.conv3d_23 = nn.Conv3d(16, 8, (1, 3, 3), stride=1, padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_24 = nn.Conv3d(8, 8, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.conv3d_25 = nn.Conv3d(8, 1, 3, stride=1, padding=1, pad_mode="pad") self.conv2d_38 = nn.Conv2d(1, 8, 3, stride=1, padding=1, pad_mode="pad") self.batchnorm2d_39 = nn.BatchNorm2d(num_features=8, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.leakyrelu_40 = nn.LeakyReLU(alpha=0.009999999776482582) self.conv2d_41 = nn.Conv2d(8, 8, 3, stride=1, padding=1, pad_mode="pad") self.batchnorm2d_42 = nn.BatchNorm2d(num_features=8, eps=9.999999747378752e-06, momentum=0.8999999761581421) self.leakyrelu_43 = nn.LeakyReLU(alpha=0.009999999776482582) self.conv2d_45 = nn.Conv2d(8, 1, 3, stride=1, padding=1, pad_mode="pad") self.conv2d_46 = nn.Conv2d(8, 1, 3, stride=1, padding=1, pad_mode="pad") self.concat_1 = P.Concat(axis=1) self.squeeze_1 = P.Squeeze(axis=1) param_dict = mindspore.load_checkpoint("./ckpts/stage1_reg_pair.ckpt") params_not_loaded = mindspore.load_param_into_net(self, param_dict, strict_load=True) print(params_not_loaded) def construct(self, cost_volume, depth_values): """construct""" x1 = self.basicblocka_0(cost_volume) x2 = self.basicblockb_0(x1) x1_upsample = self.conv3dtranspose_21(x2) interim = self.concat_1((x1_upsample, x1)) interim = self.conv3d_23(interim) interim = self.conv3d_24(interim) score_volume = self.conv3d_25(interim) score_volume = self.squeeze_1(score_volume) prob_volume, _ = soft_argmin(score_volume, dim=1, keepdim=True) est_depth = depth_regression(prob_volume, depth_values, keep_dim=True) entropy_ = entropy(prob_volume, dim=1, keepdim=True) x = self.conv2d_38(entropy_) x = self.batchnorm2d_39(x) x = self.leakyrelu_40(x) x = self.conv2d_41(x) x = self.batchnorm2d_42(x) x = self.leakyrelu_43(x) out = P.Add()(x, entropy_) uncertainty_map = self.conv2d_45(out) occ = self.conv2d_46(out) return interim, est_depth, uncertainty_map, occ class StageRegFuse(nn.Cell): """StageRegFuse""" def __init__(self, ckpt_path): super(StageRegFuse, self).__init__() self.basicblocka_0 = Pseudo3DBlock_A(8, 8) self.basicblocka_1 = Pseudo3DBlock_A(8, 8) self.basicblockb_0 = Pseudo3DBlock_B() self.basicblocka_2 = Pseudo3DBlock_A(16, 16) self.conv3dtranspose_38 = nn.Conv3dTranspose(16, 8, 3, stride=2, padding=1, pad_mode="pad", output_padding=1) self.concat_39 = P.Concat(axis=1) self.conv3d_40 = nn.Conv3d(16, 8, (1, 3, 3), stride=1, padding=(0, 0, 1, 1, 1, 1), pad_mode="pad") self.conv3d_41 = nn.Conv3d(8, 8, (3, 1, 1), stride=1, padding=(1, 1, 0, 0, 0, 0), pad_mode="pad") self.conv3d_42 = nn.Conv3d(8, 1, 3, stride=1, padding=1, pad_mode="pad") self.concat_1 = P.Concat(axis=1) self.squeeze_1 = P.Squeeze(axis=1) param_dict = mindspore.load_checkpoint(ckpt_path) params_not_loaded = mindspore.load_param_into_net(self, param_dict, strict_load=True) print(params_not_loaded) def construct(self, fused_interim, depth_values): """construct""" x1 = self.basicblocka_0(fused_interim) x1 = self.basicblocka_1(x1) x2 = self.basicblockb_0(x1) x2 = self.basicblocka_2(x2) x1_upsample = self.conv3dtranspose_38(x2) cost_volume = self.concat_1((x1_upsample, x1)) cost_volume = self.conv3d_40(cost_volume) cost_volume = self.conv3d_41(cost_volume) score_volume = self.conv3d_42(cost_volume) score_volume = self.squeeze_1(score_volume) prob_volume, _, prob_map = soft_argmin(score_volume, dim=1, keepdim=True, window=2) est_depth = depth_regression(prob_volume, depth_values, keep_dim=True) return est_depth, prob_map, prob_volume
41.424318
117
0.636157
94216394fa225ea1e01514370a7ab54fc7850fd6
4,394
py
Python
StateTracing/dataloader.py
junchenfeng/diagnosis_tracing
4e26e2ad0c7abc547f22774b6c9c299999a152c3
[ "MIT" ]
null
null
null
StateTracing/dataloader.py
junchenfeng/diagnosis_tracing
4e26e2ad0c7abc547f22774b6c9c299999a152c3
[ "MIT" ]
null
null
null
StateTracing/dataloader.py
junchenfeng/diagnosis_tracing
4e26e2ad0c7abc547f22774b6c9c299999a152c3
[ "MIT" ]
1
2020-09-08T13:42:16.000Z
2020-09-08T13:42:16.000Z
from torch import tensor from numpy.random import choice,shuffle max_len = 128 def random_cut(length): s = choice(length-max_len+1) return s,s+max_len def differeniate(statesA,statesB): return [[i,b] for i,(a,b) in enumerate(zip(map(int,statesA),map(int,statesB))) if b!=a] def generate_targets(sequences): ciid = -1 Xs,Ys = [],[] for i,(iid,state) in enumerate(sequences): if iid != ciid: cstate = state # updata state ciid = iid else: cstate = sequences[i-1][1] diff = differeniate(cstate,state) if len(diff) > 0: for d in diff: Xs.append(state) Ys.append(d) return Xs,Ys def pad_sequence3(sequences,padding = 0): """ every element in sequence is a 2-d list with shape [time_steps,dim] the dim is fixed """ d2s = [len(seq) for seq in sequences] d3 = sequences[0][0].__len__() result = [] max_l = max(d2s) for seq,l in zip(sequences,d2s): result.append(seq + [[padding for _ in range(d3)] for i in range((max_l-l))]) return result def pad_sequence2(sequences,padding=0): lens = [len(seq) for seq in sequences] ml = max(lens) results = [] for seq,l in zip(sequences,lens): results.append(seq+[padding for i in range(ml-l)]) return results def read_data(file_name): data = [] add = data.append tmp = [] with open(file_name,'r',encoding='utf8') as f: while True: line = f.readline() if not line:break if line.strip()=="": if tmp!=[]: add(tmp) tmp = [] else: item,state = line.strip().split() # item + 1 bacause of padding value is 0 tmp.append([int(item)+1,list(map(int,state))]) if tmp != []: add(tmp) return data def load_init(): results = {} items = {} for line in open('./items.dat','r',encoding='utf8'): itm,id_ = line.strip().split(' ') items[itm]=id_ for line in open('./init.dat','r',encoding='utf8'): itm,state = line.strip().split(' ') results[int(items[itm])+1] = [1 if e=='0' else 0 for e in state] return results class DataLoader(): def __init__(self,data,inits): self.data = data self.size = len(data) self.inits = inits def shuffle(self,): shuffle(self.data) def samples(self,batch_size): cursor = 0 self.shuffle() while cursor < self.size: data = self.data[cursor:cursor+batch_size] cursor += batch_size states,masks = [],[] for d in data: if len(d)>max_len: s,e = random_cut(len(d)) d = d[s:e] itms,sts = zip(*d) msk = [self.inits[i] for i in itms] states.append(list(sts)) masks.append(msk) yield pad_sequence3(states),pad_sequence3(masks) def check(Xs,Ys): for xs,ys in zip(Xs,Ys): for i in range(len(xs)-1): x_ = [v for v in xs[i]] if sum(x_) == 0: break pos,val = ys[i] x_[pos] = val if x_ != xs[i+1]: print(x_) print('------') print(xs[i+1]) print(' ') print(' ') print('ok') if __name__ == '__main__': from numpy import array inits = load_init() if 'data' not in dir(): data = read_data('../data/test.1.dat') dl = DataLoader(data,inits) for x,y in dl.samples(100): x = array(x) y = array(y) print(x.shape,y.shape) break # # items,sequences = zip(*data[123]) # x = data[15] # y = generate_targets(x) # items,states = zip(*x) # # x = [[1,[4,0,0,0]], # [1,[4,1,0,0]], # [1,[4,0,0,0]], # [1,[4,2,0,0]]] # # # targets = generate_targets(x)
26.46988
92
0.466318
84aa7a485b23bade222cd7a7bb91c2a1c86b90b1
5,893
py
Python
research/cv/centernet_det/infer/sdk/main.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/centernet_det/infer/sdk/main.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/centernet_det/infer/sdk/main.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# !/usr/bin/env python # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Sdk internece """ import argparse import json import os import time import copy import cv2 import numpy as np from api.infer import SdkApi from api.visual import visual_image from api.postprocess import data_process from api.image import get_affine_transform import MxpiDataType_pb2 as MxpiDataType from StreamManagerApi import StringVector from config import config as cfg from eval.eval_by_sdk import cal_acc def parser_args(): """ configuration parameter, input from outside """ parser = argparse.ArgumentParser(description="centernet inference") parser.add_argument("--img_path", type=str, required=True, help="image file path.") parser.add_argument( "--pipeline_path", type=str, required=False, default="config/centernet.pipeline", help="pipeline file path. The default is 'config/centernet.pipeline'. ") parser.add_argument( "--infer_mode", type=str, required=False, default="infer", help= "infer:only infer, eval: accuracy evaluation. The default is 'infer'.") parser.add_argument( "--infer_result_dir", type=str, required=False, default="../data/infer_result", help= "cache dir of inference result. The default is '../data/infer_result'." ) parser.add_argument("--ann_file", type=str, required=False, help="eval ann_file.") arg = parser.parse_args() return arg def process_img(img_file): """ Preprocessing the images """ mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32) std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32) input_size = [512, 512] img = cv2.imread(img_file) size = img.shape inp_width = size[1] inp_height = size[0] down_ratio = 4 c = np.array([inp_width / 2., inp_height / 2.], dtype=np.float32) s = max(inp_height, inp_width) * 1.0 img_metas = {'c': c, 's': s, 'out_height': input_size[0] // down_ratio, 'out_width': input_size[1] // down_ratio} trans_input = get_affine_transform(c, s, 0, [input_size[0], input_size[1]]) inp_img = cv2.warpAffine(img, trans_input, (cfg.MODEL_WIDTH, cfg.MODEL_HEIGHT), flags=cv2.INTER_LINEAR) inp_img = (inp_img.astype(np.float32) / 255. - mean) / std eval_image = inp_img.reshape((1,) + inp_img.shape) model_img = eval_image.transpose(0, 3, 1, 2) return model_img, img_metas def image_inference(pipeline_path, stream_name, img_dir, result_dir): """ image inference: get inference for images """ sdk_api = SdkApi(pipeline_path) if not sdk_api.init(): exit(-1) if not os.path.exists(result_dir): os.makedirs(result_dir) img_data_plugin_id = 0 print(f"\nBegin to inference for {img_dir}.\n") file_list = os.listdir(img_dir) total_len = len(file_list) for img_id, file_name in enumerate(file_list): if not file_name.lower().endswith((".jpg", "jpeg")): continue image_name, _ = os.path.splitext(file_name) file_path = os.path.join(img_dir, file_name) img_np, meta = process_img(file_path) sdk_api.send_tensor_input(stream_name, img_data_plugin_id, "appsrc0", img_np.tobytes(), img_np.shape, cfg.TENSOR_DTYPE_FLOAT32) keys = [b"mxpi_tensorinfer0"] keyVec = StringVector() for key in keys: keyVec.push_back(key) start_time = time.time() infer_result = sdk_api. get_protobuf(stream_name, 0, keyVec) end_time = time.time() - start_time result = MxpiDataType.MxpiTensorPackageList() result.ParseFromString(infer_result[0].messageBuf) result = np.frombuffer(result.tensorPackageVec[0].tensorVec[0].dataStr, dtype='float32').reshape((1, 100, 6)) img_id += 1 output = data_process(result, meta, image_name, cfg.NUM_CLASSES) print( f"End-2end inference, file_name: {file_path}, {img_id}/{total_len}, elapsed_time: {end_time}.\n" ) save_pred_image_path = os.path.join(result_dir, "pred_image") if not os.path.exists(save_pred_image_path): os.makedirs(save_pred_image_path) gt_image = cv2.imread(file_path) anno = copy.deepcopy(output["annotations"]) visual_image(gt_image, anno, save_pred_image_path, score_threshold=cfg.SCORE_THRESH) pred_res_file = os.path.join(result_dir, 'infer_{}_result.json').format(image_name) with open(pred_res_file, 'w+') as f: json.dump(output["annotations"], f, indent=1) if __name__ == "__main__": args = parser_args() stream_name0 = cfg.STREAM_NAME.encode("utf-8") print("stream_name0:") print(stream_name0) image_inference(args.pipeline_path, stream_name0, args.img_path, args.infer_result_dir) if args.infer_mode == "eval": print("Infer end.") print("Begin to eval...") cal_acc(args.ann_file, args.infer_result_dir)
35.077381
108
0.642797
17042212e5fa71f184651ff1dc382b9b9ed9f1a9
1,278
py
Python
research/cv/MaskedFaceRecognition/config.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/MaskedFaceRecognition/config.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/MaskedFaceRecognition/config.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network config setting, will be used in train.py and eval.py """ from easydict import EasyDict as ed config = ed({ "class_num": 10572, "batch_size": 128, "learning_rate": 0.01, "lr_decay_epochs": [40, 80, 100], "lr_decay_factor": 0.1, "lr_warmup_epochs": 20, "p": 16, "k": 8, "loss_scale": 1024, "momentum": 0.9, "weight_decay": 1e-4, "epoch_size": 120, "buffer_size": 10000, "image_height": 128, "image_width": 128, "save_checkpoint": True, "save_checkpoint_steps": 195, "keep_checkpoint_max": 2, "save_checkpoint_path": "./" })
31.170732
78
0.643975
ca433cfdc583b5417c142f3e27cbbc19fc20126f
636
py
Python
python_first_step/sortalgoArrayOperation/sort2.py
cartellefo/projet
23c67e847b415fb47f71e830b89a227fffed109b
[ "MIT" ]
null
null
null
python_first_step/sortalgoArrayOperation/sort2.py
cartellefo/projet
23c67e847b415fb47f71e830b89a227fffed109b
[ "MIT" ]
null
null
null
python_first_step/sortalgoArrayOperation/sort2.py
cartellefo/projet
23c67e847b415fb47f71e830b89a227fffed109b
[ "MIT" ]
null
null
null
import time import numpy as np import numpy.linalg as nl import random import matplotlib.pyplot as plt def sortInt(n_max) : # summe des carre listInt=[] for i in range(1, n_max) : s = random.randint(1,10) listInt.append(s) return(listInt) intRand= sortInt(5) print(intRand) def tri_ins(t): permut = 0 for k in range(1,len(t)): temp=t[k] j=k while j>0 and temp<t[j-1]: permut=permut+1 t[j]=t[j-1] j-=1 t[j]=temp print(t) permut= permut + 2*len(t) return t,permut x,e=tri_ins(intRand)
16.307692
34
0.542453
ca74d344cab07cbfd869efaea460c4c5bc949315
316
py
Python
exercises/de/exc_02_05_02.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
2
2020-07-07T01:46:37.000Z
2021-04-20T03:19:43.000Z
exercises/de/exc_02_05_02.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/de/exc_02_05_02.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
import spacy nlp = spacy.blank("de") # Importiere die Klasse Doc from ____ import ____ # Erwarteter Text: "Na, alles klar?" words = ["Na", ",", "alles", "klar", "?"] spaces = [____, ____, ____, ____, ____] # Erstelle ein Doc mit den Wörtern und Leerzeichen doc = ____(____, ____=____, ____=____) print(doc.text)
21.066667
50
0.674051
f3daf2d50e0303551f8d62b9050f38bb85c076ce
1,562
py
Python
python/pyqt/LearnPyQt/stack_layout.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pyqt/LearnPyQt/stack_layout.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pyqt/LearnPyQt/stack_layout.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
import sys from PyQt5.QtWidgets import ( QApplication, QMainWindow, QWidget, QVBoxLayout, QStackedLayout, QPushButton, ) from PyQt5.QtGui import ( QPalette, QColor, ) class Color(QWidget): def __init__(self, color, *args, **kwargs): super(Color, self).__init__(*args, **kwargs) self.setAutoFillBackground(True) palette = self.palette() palette.setColor(QPalette.Window, QColor(color)) self.setPalette(palette) class MainWindow(QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.color_index = 3 self.setWindowTitle("Jayone's Awesome App") layout = QVBoxLayout() layout2 = QStackedLayout() layout2.addWidget(Color('red')) layout2.addWidget(Color('green')) layout2.addWidget(Color('blue')) layout2.addWidget(Color('yellow')) layout2.setCurrentIndex(self.color_index) layout.addLayout(layout2) self.stack_layout = layout2 push_button = QPushButton('change') push_button.clicked.connect(self.button_click) layout.addWidget(push_button) widget = QWidget() widget.setLayout(layout) self.setCentralWidget(widget) def button_click(self): self.color_index += 1 if self.color_index > 3: self.color_index = 0 self.stack_layout.setCurrentIndex(self.color_index) app = QApplication(sys.argv) window = MainWindow() window.show() app.exec_()
23.313433
59
0.644686
f3fe9cadd102e32ca06c472d5c44ec2934c88eb6
4,592
py
Python
research/cv/PGAN/src/optimizer.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/PGAN/src/optimizer.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/PGAN/src/optimizer.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Gnet define""" from mindspore import ops from mindspore import nn from mindspore.ops import constexpr import mindspore import numpy as np @constexpr def generate_tensor(batch_size): """generate_tensor Returns: output. """ np_array = np.random.randn(batch_size, 1, 1, 1) return mindspore.Tensor(np_array, mindspore.float32) class GradientWithInput(nn.Cell): """GradientWithInput""" def __init__(self, discrimator): super(GradientWithInput, self).__init__() self.reduce_sum = ops.ReduceSum() self.discrimator = discrimator def construct(self, interpolates, alpha): """GradientWithInput Returns: output. """ decisionInterpolate = self.discrimator(interpolates, alpha) decisionInterpolate = self.reduce_sum(decisionInterpolate, 0) return decisionInterpolate class WGANGPGradientPenalty(nn.Cell): """WGANGPGradientPenalty""" def __init__(self, discrimator, lambdaGP=10): super(WGANGPGradientPenalty, self).__init__() self.reduce_sum = ops.ReduceSum() self.reduce_sum_keep_dim = ops.ReduceSum(keep_dims=True) self.sqrt = ops.Sqrt() self.discrimator = discrimator self.gradientWithInput = GradientWithInput(discrimator) self.lambdaGP = mindspore.Tensor(lambdaGP, mindspore.float32) self.gradient_op = ops.GradOperation() def construct(self, input_x, fake, input_alpha): """WGANGPGradientPenalty Returns: output. """ batch_size = input_x.shape[0] alpha = generate_tensor(batch_size) alpha = alpha.expand_as(input_x) interpolates = alpha * input_x + ((1 - alpha) * fake) gradient = self.gradient_op(self.gradientWithInput)(interpolates, input_alpha) gradient = ops.reshape(gradient, (batch_size, -1)) gradient = self.sqrt(self.reduce_sum(gradient * gradient, 1)) gradient_penalty = self.reduce_sum_keep_dim((gradient - 1.0) ** 2) * self.lambdaGP return gradient_penalty class AllLossD(nn.Cell): """AllLossD""" def __init__(self, netD): super(AllLossD, self).__init__() self.netD = netD self.wGANGPGradientPenalty = WGANGPGradientPenalty(self.netD) self.reduce_sum = ops.ReduceSum() self.epsilonLoss = EpsilonLoss(0.001) self.scalr_summary = ops.ScalarSummary() self.summary = ops.TensorSummary() def construct(self, real, fake, alpha): """AllLossD Returns: output. """ predict_real = self.netD(real, alpha) loss_real = -self.reduce_sum(predict_real, 0) predict_fake = self.netD(fake, alpha) loss_fake = self.reduce_sum(predict_fake, 0) lossD_Epsilon = self.epsilonLoss(predict_real) lossD_Grad = self.wGANGPGradientPenalty(real, fake, alpha) all_loss = loss_real + loss_fake + lossD_Grad + lossD_Epsilon return all_loss class AllLossG(nn.Cell): """AllLossG""" def __init__(self, netG, netD): super(AllLossG, self).__init__() self.netG = netG self.netD = netD self.reduce_sum = ops.ReduceSum() def construct(self, inputNoise, alpha): """AllLossG Returns: output. """ fake = self.netG(inputNoise, alpha) predict_fake = self.netD(fake, alpha) loss_fake = -self.reduce_sum(predict_fake, 0) return loss_fake class EpsilonLoss(nn.Cell): """EpsilonLoss""" def __init__(self, epsilonD): super(EpsilonLoss, self).__init__() self.reduce_sum = ops.ReduceSum() self.epsilonD = mindspore.Tensor(epsilonD, mindspore.float32) def construct(self, predRealD): """EpsilonLoss Returns: output. """ return self.reduce_sum(predRealD ** 2) * self.epsilonD
31.027027
90
0.647213
b679e07e4853c1ac8702e21a433f7100a58636c7
1,553
py
Python
dblp/python/citations.py
DocSeven/spark
a88330f554a4afc70696dac8d00bcf4d2f512acf
[ "Apache-2.0" ]
null
null
null
dblp/python/citations.py
DocSeven/spark
a88330f554a4afc70696dac8d00bcf4d2f512acf
[ "Apache-2.0" ]
null
null
null
dblp/python/citations.py
DocSeven/spark
a88330f554a4afc70696dac8d00bcf4d2f512acf
[ "Apache-2.0" ]
1
2019-11-06T11:29:31.000Z
2019-11-06T11:29:31.000Z
import citationsCommon def countByIdAndYear(rdd): docsplit = rdd.flatMap(lambda row: [('{}.{}'.format(ref, row[2]), 1) for ref in row[1]]) return docsplit.reduceByKey(lambda c, d: c + d) def joinIdYearAge(idYearCount, ddpairs): # idYear: id, year cited idYear = idYearCount.map(lambda row: (row[0][:-5], int(row[0][-4:]))) # ddpairs is expected to be: id, year published # idYearAge: id, year cited - year published return idYear.join(ddpairs).filter(lambda row: (row[1][0] - row[1][1] >= -2)).map( lambda row: ('{}.{}'.format(row[0], row[1][0]), (row[1][0] - row[1][1]))) def citationCountArrays(idYearAge, idYearCount): p2Afunc = citationsCommon.pairsToArrayHelper.pairsToArray return idYearAge.join(idYearCount).map( lambda row: (row[0][:-5], [(row[1][0], row[1][1])])).reduceByKey( lambda c, d: c + d).mapValues(lambda x: p2Afunc(x)) # df is the dataframe read from json before we've filtered out rows where # references is NULL # partitionCount says how many partitions to coalesce the intermediate # data to. def citationCountsE2E(df, partitionCount=34): dd = df.select("id", "references", "year").filter("references is not NULL").rdd idYearCount = countByIdAndYear(dd) # For publication dates, include publications with no references. idYearAge = joinIdYearAge(idYearCount, df.select("id", "year").rdd) citCountArrays = citationCountArrays(idYearAge.coalesce(partitionCount), idYearCount) return citCountArrays
41.972973
86
0.666452
1e61c19b1fa849a545aa5955ebc1129a3e165719
284
py
Python
zencad/interactive/axis.py
Spiritdude/zencad
4e63b1a6306dd235f4daa2791b10249f7546c95b
[ "MIT" ]
5
2018-04-11T14:11:40.000Z
2018-09-12T19:03:36.000Z
zencad/interactive/axis.py
Spiritdude/zencad
4e63b1a6306dd235f4daa2791b10249f7546c95b
[ "MIT" ]
null
null
null
zencad/interactive/axis.py
Spiritdude/zencad
4e63b1a6306dd235f4daa2791b10249f7546c95b
[ "MIT" ]
null
null
null
from zencad.interactive.interactive_object import InteractiveObject from OCC.Core.AIS import AIS_Axis class AxisInteractiveObject(InteractiveObject): def __init__(self, axis, color): self.axis = axis super().__init__(AIS_Axis(axis.to_Geom_Line()), color=color)
28.4
68
0.760563
1ebbf6764706c37fc954f30837690895994c3e65
1,759
py
Python
example_code/python/plot_curve_fit.py
NicoJG/PraktikumPhysikRepoVorlage
b29a4302958edc6205e2b107f7253f614cea0181
[ "MIT" ]
1
2021-08-21T17:08:39.000Z
2021-08-21T17:08:39.000Z
example_code/python/plot_curve_fit.py
NicoJG/PraktikumPhysikRepoVorlage
b29a4302958edc6205e2b107f7253f614cea0181
[ "MIT" ]
null
null
null
example_code/python/plot_curve_fit.py
NicoJG/PraktikumPhysikRepoVorlage
b29a4302958edc6205e2b107f7253f614cea0181
[ "MIT" ]
null
null
null
# Erstelle aus gegebnen Daten eine Ausgleichskurve # Und Plotte diese Kurve + die Daten # wechsle die Working Directory zum Versuchsordner, damit das Python-Script von überall ausgeführt werden kann import os,pathlib project_path = pathlib.Path(__file__).absolute().parent.parent os.chdir(project_path) # benutze die matplotlibrc und header-matplotlib.tex Dateien aus dem default Ordner os.environ['MATPLOTLIBRC'] = str(project_path.parent/'default'/'python'/'matplotlibrc') os.environ['TEXINPUTS'] = str(project_path.parent/'default'/'python')+':' # Imports import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt # Daten einlesen x,y,z = np.genfromtxt('data/NAME.csv',delimiter=',',skip_header=1,unpack=True) # Ausgleichskurven Funktion (hier Ausgleichsgerade) def f(x,a,b): return a*x + b # oder als Lambda Funktion f = lambda x,a,b: a*x + b # Ausgleichskurve berechnen params,pcov = curve_fit(f,x,y) # Parameter a = params[0] b = params[1] # Unsicherheiten a_err = np.absolute(pcov[0][0])**0.5 b_err = np.absolute(pcov[1][1])**0.5 # Werte irgendwie ausgeben lassen # z.B. mit print, aber besser als JSON Datei abspeichern print(f'{a = }+-{a_err}') print(f'{b = :.2f}+-{b_err:.2f}') # Plot der Ausgleichskurve x_linspace = np.linspace(np.min(x), np.max(x), 100) plt.plot(x_linspace, f(x_linspace,*params), 'k-', label='Ausgleichskurve') # Plot der Daten plt.plot(x, y, 'ro', label='Daten') # Achsenbeschriftung mit LaTeX (nur wenn matplotlibrc benutzt wird) plt.xlabel(r'$\alpha \:/\: \si{\ohm}$') plt.ylabel(r'$y \:/\: \si{\micro\joule}$') # in matplotlibrc leider (noch) nicht möglich plt.legend() plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) # Plot als PDF speichern plt.savefig('build/plot_NAME.pdf')
30.859649
110
0.728823
eca4f5aa27488a24c929f36854a3145b768fa867
3,266
py
Python
benwaonline/auth/core.py
goosechooser/benwaonline
e2879412aa6c3c230d25cd60072445165517b6b6
[ "MIT" ]
null
null
null
benwaonline/auth/core.py
goosechooser/benwaonline
e2879412aa6c3c230d25cd60072445165517b6b6
[ "MIT" ]
16
2017-09-13T10:21:40.000Z
2020-06-01T04:32:22.000Z
benwaonline/auth/core.py
goosechooser/benwaonline
e2879412aa6c3c230d25cd60072445165517b6b6
[ "MIT" ]
null
null
null
import os import requests from flask import current_app from jose import jwt, exceptions from benwaonline.cache import cache from benwaonline.exceptions import BenwaOnlineAuthError ALGORITHMS = ['RS256'] def verify_token(token): unverified_header = jwt.get_unverified_header(token) rsa_key = match_key_id(unverified_header) try: payload = jwt.decode( token, rsa_key, algorithms=ALGORITHMS, audience=current_app.config['API_AUDIENCE'], issuer=current_app.config['ISSUER'] ) except jwt.ExpiredSignatureError as err: handle_expired_signature(err) except jwt.JWTClaimsError as err: handle_claims(err) except exceptions.JWTError as err: handle_jwt(err) except Exception as err: handle_non_jwt() return payload def match_key_id(unverified_header): """Checks if the RSA key id given in the header exists in the JWKS.""" jwks = get_jwks() rsa_keys = [ rsa_from_jwks(key) for key in jwks["keys"] if key["kid"] == unverified_header["kid"] ] try: return rsa_keys[0] except IndexError: return None def rsa_from_jwks(key): return { "kty": key["kty"], "kid": key["kid"], "use": key["use"], "n": key["n"], "e": key["e"] } def handle_claims(err): """Handles tokens with invalid claims""" raise BenwaOnlineAuthError( detail='{0}'.format(err), title='invalid claim', status=401 ) def handle_expired_signature(err): """Handles tokens with expired signatures.""" raise err def handle_jwt(err): """Handles tokens with other jwt-related issues.""" raise BenwaOnlineAuthError( detail='{0}'.format(err), title='invalid signature', status=401 ) def handle_non_jwt(): """Handles everything else.""" raise BenwaOnlineAuthError( title='invalid header', detail='unable to parse authentication token' ) @cache.cached(timeout=48 * 3600, key_prefix='jwks') def get_jwks(): try: msg = 'JWKS not cached - requesting from {}'.format(current_app.config['JWKS_URL']) current_app.logger.debug(msg) jwksurl = requests.get(current_app.config['JWKS_URL'], timeout=5) except requests.exceptions.Timeout: raise BenwaOnlineAuthError( title='JWKS Request Timed Out', detail='the authentication server is unavailable, or another issue has occured', status=500 ) return jwksurl.json() def has_scope(scope, token): unverified_claims = jwt.get_unverified_claims(token) token_scopes = unverified_claims['scope'].split() return True if scope in token_scopes else False def refresh_token_request(client, refresh_token): data = { 'grant_type': 'refresh_token', 'refresh_token': refresh_token, 'client_id': client.consumer_key, 'client_secret': client.consumer_secret } msg = 'Attempting to refresh token at {}'.format(client.base_url + client.access_token_url) current_app.logger.debug(msg) resp = requests.post(client.base_url + client.access_token_url, data=data) return resp.json()
27.91453
95
0.649418
01f72bd21f2a381c2c81de43a8ad15b68badbae6
4,917
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/module_utils/cloudscale.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/module_utils/cloudscale.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/module_utils/cloudscale.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # (c) 2017, Gaudenz Steinlin <[email protected]> # Simplified BSD License (see licenses/simplified_bsd.txt or https://opensource.org/licenses/BSD-2-Clause) from __future__ import absolute_import, division, print_function __metaclass__ = type from copy import deepcopy from ansible.module_utils.basic import env_fallback from ansible.module_utils.urls import fetch_url from ansible.module_utils._text import to_text API_URL = 'https://api.cloudscale.ch/v1/' def cloudscale_argument_spec(): return dict( api_token=dict(fallback=(env_fallback, ['CLOUDSCALE_API_TOKEN']), no_log=True, required=True, type='str'), api_timeout=dict(default=30, type='int'), ) class AnsibleCloudscaleBase(object): def __init__(self, module): self._module = module self._auth_header = {'Authorization': 'Bearer %s' % module.params['api_token']} self._result = { 'changed': False, 'diff': dict(before=dict(), after=dict()), } def _get(self, api_call): resp, info = fetch_url(self._module, API_URL + api_call, headers=self._auth_header, timeout=self._module.params['api_timeout']) if info['status'] == 200: return self._module.from_json(to_text(resp.read(), errors='surrogate_or_strict')) elif info['status'] == 404: return None else: self._module.fail_json(msg='Failure while calling the cloudscale.ch API with GET for ' '"%s".' % api_call, fetch_url_info=info) def _post_or_patch(self, api_call, method, data): # This helps with tags when we have the full API resource href to update. if API_URL not in api_call: api_endpoint = API_URL + api_call else: api_endpoint = api_call headers = self._auth_header.copy() if data is not None: # Sanitize data dictionary # Deepcopy: Duplicate the data object for iteration, because # iterating an object and changing it at the same time is insecure for k, v in deepcopy(data).items(): if v is None: del data[k] data = self._module.jsonify(data) headers['Content-type'] = 'application/json' resp, info = fetch_url(self._module, api_endpoint, headers=headers, method=method, data=data, timeout=self._module.params['api_timeout']) if info['status'] in (200, 201): return self._module.from_json(to_text(resp.read(), errors='surrogate_or_strict')) elif info['status'] == 204: return None else: self._module.fail_json(msg='Failure while calling the cloudscale.ch API with %s for ' '"%s".' % (method, api_call), fetch_url_info=info) def _post(self, api_call, data=None): return self._post_or_patch(api_call, 'POST', data) def _patch(self, api_call, data=None): return self._post_or_patch(api_call, 'PATCH', data) def _delete(self, api_call): resp, info = fetch_url(self._module, API_URL + api_call, headers=self._auth_header, method='DELETE', timeout=self._module.params['api_timeout']) if info['status'] == 204: return None else: self._module.fail_json(msg='Failure while calling the cloudscale.ch API with DELETE for ' '"%s".' % api_call, fetch_url_info=info) def _param_updated(self, key, resource): param = self._module.params.get(key) if param is None: return False if resource and key in resource: if param != resource[key]: self._result['changed'] = True patch_data = { key: param } self._result['diff']['before'].update({key: resource[key]}) self._result['diff']['after'].update(patch_data) if not self._module.check_mode: href = resource.get('href') if not href: self._module.fail_json(msg='Unable to update %s, no href found.' % key) self._patch(href, patch_data) return True return False def get_result(self, resource): if resource: for k, v in resource.items(): self._result[k] = v return self._result
36.969925
106
0.548709
bf3a5e972de95e03358433c9a82b2ed12f784caf
1,025
py
Python
Hackerrank_problems/counting_valleys/solution1_CountingValleys.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
165
2020-10-03T08:01:11.000Z
2022-03-31T02:42:08.000Z
Hackerrank_problems/counting_valleys/solution1_CountingValleys.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
383
2020-10-03T07:39:11.000Z
2021-11-20T07:06:35.000Z
Hackerrank_problems/counting_valleys/solution1_CountingValleys.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
380
2020-10-03T08:05:04.000Z
2022-03-19T06:56:59.000Z
# # working # this function takes steps and detail of steps as input # we declare a zero level above which any up step will be considered as a valley that is climbed # we run from 0 to length of steps # if we detect a "U" we increase the zero level # similary if we detect "D" we decrease the zero level # thus calculating the net valley value def FindValleys(t, steps): pass zeroLevel = 0 Valley = 0 for i in range(t): if steps[i] == "U": zeroLevel = zeroLevel + 1 else: zeroLevel = zeroLevel - 1 if steps[i] == "U" and zeroLevel ==0: Valley = Valley + 1 return Valley # drive code # this code takes number os steps and details of steps as input # where steps will be given in "U" for step up and "D" for step down # we pass this data to Function FindValleys() if __name__ == "__main__": t = int(input()) steps = list(map(int, input().strip().split())) print(FindValleys(t, steps))
26.282051
100
0.616585
da69d942b34c7cb188f48d8f571305a3929e1a1b
95
py
Python
abfahrt/unittest/__init__.py
Team-Zugig-zum-Erfolg/InformatiCup
788076ac38bf6d8f462465b7fb96db14d13bed30
[ "MIT" ]
1
2022-01-30T14:30:02.000Z
2022-01-30T14:30:02.000Z
abfahrt/unittest/__init__.py
Team-Zugig-zum-Erfolg/InformatiCup
788076ac38bf6d8f462465b7fb96db14d13bed30
[ "MIT" ]
null
null
null
abfahrt/unittest/__init__.py
Team-Zugig-zum-Erfolg/InformatiCup
788076ac38bf6d8f462465b7fb96db14d13bed30
[ "MIT" ]
null
null
null
""" Unittest-Package for testing the most important classes/modules of the abfahrt-Package """
23.75
86
0.778947
e5f095d1388f9625e63f8d8fbeb39317cd585f8c
68
py
Python
Python/Books/Learning-Programming-with-Python.Tamim-Shahriar-Subeen/chapter-009.01-list/ph-9.11-list-del-function.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
Python/Books/Learning-Programming-with-Python.Tamim-Shahriar-Subeen/chapter-009.01-list/ph-9.11-list-del-function.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
Python/Books/Learning-Programming-with-Python.Tamim-Shahriar-Subeen/chapter-009.01-list/ph-9.11-list-del-function.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
li = [1, 2, 3, 3, 4, 5, 6] del(li[1]) print(li) del(li) print(li)
8.5
26
0.5
97742d434f756859171175e1ee026361918f8086
3,151
py
Python
blueprints/portfolio/build.py
andrenasturas/hausse
58e7cb71d5105cf1d6ec7d294e85668855bf8336
[ "MIT" ]
null
null
null
blueprints/portfolio/build.py
andrenasturas/hausse
58e7cb71d5105cf1d6ec7d294e85668855bf8336
[ "MIT" ]
1
2021-08-30T21:41:46.000Z
2021-08-30T21:41:46.000Z
blueprints/portfolio/build.py
andrenasturas/hausse
58e7cb71d5105cf1d6ec7d294e85668855bf8336
[ "MIT" ]
1
2021-08-31T19:27:32.000Z
2021-08-31T19:27:32.000Z
from hausse import Hausse from hausse.plugins import ( Assets, DiscoverPartials, Drop, Handlebars, Markdown, MetadataMarkdown, Relations, Collection, Collections ) # Collections preparations # By default, all files in "src/formations" folder will be grouped in this collection Links = Collection("links") # Using `indexBy` enables indexation, which is useful for building relations Projects = Collection("projects", indexBy="title") Skills = Collection("skills", indexBy="name") h = Hausse("examples/portfolio") h.clean() h.use( # `use()` method register plugins into the Hausse project # It is possible to call `use()` once or multiple times, with one or a list of Plugins # In any cases, Plugins will be called in order. [ # Assets plugin is used to simply dump static files, like stylesheets or icons # As it bypass all other plugins by copying directly files in "dist" folder, # it does not retrives files from "src/assets" but directly from "assets" Assets("assets"), # Markdown parses all markdown files found in "src" # Note that this plugin will also load as metadata all key-values present in headers Markdown(), # MetadataMarkdown parses markdown string found in files metadata MetadataMarkdown("summary"), # Collections (with a s) auto-creates collections based on files' "collections" metadata Collections(), # Each of the following defines a Collection and fill it with according files Links, Skills, Projects, # Relations helps making links between files in different collections # That's why Collections have been defined before Hausse() call # Other solution is to use CollectionSelector(collection_name) instead of the Collection Relations(Projects, Skills), # DiscoverPartials registers partials templates for Handlebars layout processing DiscoverPartials("templates"), # Handlebars does the actual layout processing to html files Handlebars("layouts", "layout.hbs", "index.md"), # Drop removes useless files from the project, before writing them in "dist" # Note that it does not remove the actual files from "src" folder # Here, it is used because we build a single page from multiple markdown files # Once the layout plugin processed them, used markdown files are no longer wanted Drop("*.md"), ] ) # And here the magic happens. When `build()` is called, Hausse project generation begins # Files from "src" directory are loaded and stored in a elements structure # Every registered Plugin is called in order on the same set of elements, metadata and settings # When all Plugins have been called, all files from elements are written in "dist" directory h.build() # Save will store the Hausse project configuration into a `hausse.json` file, # which can be used later by Hausse in CLI mode operation : `python -m hausse # hausse.json`. It is useful to simplify the project setup when development is # done and it goes to production. h.save()
41.460526
96
0.70676
8ae079fb5cc787087019878ddc15a079fc9ed4df
2,165
py
Python
elements/python/9/14/soln.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
11
2019-02-08T06:54:34.000Z
2021-08-07T18:57:39.000Z
elements/python/9/14/soln.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
1
2019-05-21T08:14:10.000Z
2019-05-21T08:14:10.000Z
elements/python/9/14/soln.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
null
null
null
import collections class MaxQueue(object): """ MaxQueue provides a base queue API and tracks the largest item contained in the queue. """ def __init__(self): self.items = [] self.peaks = [] def enqueue(self, x): self.items.append(x) while len(self.peaks) > 0 and self.peaks[-1] < x: self.peaks.pop(-1) self.peaks.append(x) def dequeue(self): if self.empty(): return None x = self.items.pop(0) if x == self.peaks[0]: self.peaks.pop(0) return x def max(self): return self.peaks[0] if not self.empty() else None def empty(self): return len(self.items) == 0 TimestampValue = collections.namedtuple('TimestampValue', ['timestamp', 'value']) def max_rolling_window(points, window_length): q = MaxQueue() maxima = [] t = 0 tail = 0 head = 0 while t <= points[-1].timestamp: while head < len(points) and points[head].timestamp <= t: q.enqueue(points[head].value) head += 1 while points[tail].timestamp < t - window_length: q.dequeue() tail += 1 maxima.append(TimestampValue( timestamp=t, value=q.max(), )) t += 1 return maxima def test(): """ test example from figure 9.4 """ points = [ 1.3, None, 2.5, 3.7, None, 1.4, 2.6, None, 2.2, 1.7, None, None, None, None, 1.7 ] maxima = [ 1.3, 1.3, 2.5, 3.7, 3.7, 3.7, 3.7, 2.6, 2.6, 2.6, 2.2, 2.2, 1.7, None, 1.7, ] timestamped_points = [] for t, p in enumerate(points): if p is not None: timestamped_points.append(TimestampValue( timestamp=t, value=p, )) results = max_rolling_window(timestamped_points, 3) for t, r in enumerate(results): assert r.timestamp == t assert maxima[t] == r.value print 'pass' def main(): test() if __name__ == '__main__': main()
23.031915
81
0.50485
c12ff6fc86fc337cb5664cef1cd543659806c57c
600
py
Python
staris.py
aertoria/MiscCode
a2e94d0fe0890e6620972f84adcb7976ca9f1408
[ "Apache-2.0" ]
null
null
null
staris.py
aertoria/MiscCode
a2e94d0fe0890e6620972f84adcb7976ca9f1408
[ "Apache-2.0" ]
null
null
null
staris.py
aertoria/MiscCode
a2e94d0fe0890e6620972f84adcb7976ca9f1408
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python #You are climbing a stair case. It takes n steps to reach to the top. #Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? class Solution: # @param {integer} n # @return {integer} count=0 def climbStairs(self, n): self.rec_climb(n) print self.count return self.count def rec_climb(self, n): if n==0: #print 'yeah success' self.count=self.count+1 elif n<0: #print 'cannot climb this way' pass else: self.rec_climb(n-1) self.rec_climb(n-2) solution=Solution() solution.climbStairs(35)
18.181818
97
0.675
a9ee7d9ddb02712f3efcfc4263b4574071d89f40
237
py
Python
src/server/handlers/issues.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
156
2021-11-19T18:50:14.000Z
2022-03-31T19:48:59.000Z
src/server/handlers/issues.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
30
2021-12-27T19:30:56.000Z
2022-03-30T17:49:00.000Z
src/server/handlers/issues.py
monosidev/monosi
a88b689fc74010b10dbabb32f4b2bdeae865f4d5
[ "Apache-2.0" ]
14
2022-01-17T23:24:34.000Z
2022-03-29T09:27:47.000Z
from server.handlers.base import ListResource from server.models import Issue class IssueListResource(ListResource): @property def resource(self): return Issue @property def key(self): return "issues"
16.928571
45
0.696203
68c4d76626da0bce8c26017b492f398cab45c0ab
18,560
py
Python
GZP_GTO_QGIS/INSTALLATION/GeoTaskOrganizer/gto_point.py
msgis/swwat-gzp-template
080afbe9d49fb34ed60ba45654383d9cfca01e24
[ "MIT" ]
3
2019-06-18T15:28:09.000Z
2019-07-11T07:31:45.000Z
GZP_GTO_QGIS/INSTALLATION/GeoTaskOrganizer/gto_point.py
msgis/swwat-gzp-template
080afbe9d49fb34ed60ba45654383d9cfca01e24
[ "MIT" ]
2
2019-07-11T14:03:25.000Z
2021-02-08T16:14:04.000Z
GZP_GTO_QGIS/INSTALLATION/GeoTaskOrganizer/gto_point.py
msgis/swwat-gzp-template
080afbe9d49fb34ed60ba45654383d9cfca01e24
[ "MIT" ]
1
2019-06-12T11:07:37.000Z
2019-06-12T11:07:37.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import sys # QDoubleValidator needs QValidator in qgis 3.4! from PyQt5.QtCore import Qt, QLocale, pyqtSignal from PyQt5.QtGui import QDoubleValidator from PyQt5.QtWidgets import QWidget, QLabel, QLineEdit, QHBoxLayout, QToolButton, QToolBar, QComboBox, QDoubleSpinBox from PyQt5 import uic from qgis.core import QgsProject, QgsCoordinateReferenceSystem, QgsPointXY, QgsCoordinateTransform, QgsVectorLayerUtils, \ QgsWkbTypes, QgsGeometry from qgis.gui import QgsProjectionSelectionWidget, QgsVertexMarker import os from .gto_point_tool import GTOPointTool class GTOPointWidget(QWidget): isActive = pyqtSignal(bool) def __init__(self, gtoObj, parent=None): super(GTOPointWidget, self).__init__(parent) self.gtomain = gtoObj.gtomain self.info = self.gtomain.info self.debug = self.gtomain.debug try: # references self.helper = self.gtomain.helper self.iface = self.gtomain.iface self.prj = QgsProject.instance() self.canvas = self.iface.mapCanvas() # references self.x = 0 self.y = 0 self.xt = 0 self.yt = 0 self.snaped = False self.crs_transform = None self.crs_layer = None self.parent_widget = None # e.g toolbar self.userEditX = False self.userEditY = False # config self.tools = [] self.coordinatereferences = None self.scale = 0 self.center = True self.enable_save = False self.precision = -1 self.cboCoordSystems = None self.is_widgetaction = False self.show_tool_button = False self.addpoint_attributes = {} self.tools_after_addpoint = [] # widgets: uic.loadUi(os.path.join(os.path.dirname(__file__), 'gto_point.ui'), self) # point tool self.btnPointTool = self.btnPoint # x self.coordX = self.coordX # self.validX = QDoubleValidator(sys.float_info.min, sys.float_info.max, 16, self.coordX) # no negative numbers possible? # self.validX = QDoubleValidator(-999999999, 999999999, 16, self.coordX) # working but no range limit self.validX = QDoubleValidator(self.coordX) # so we use the standard: self.validX.setNotation(QDoubleValidator.StandardNotation) # By default, this property is set to ScientificNotation: i.e. 1.5E-2 is possible self.coordX.setValidator(self.validX) self.btnCopyXt = self.btnCopyXt self.lblX = self.lblX # y self.coordY = self.coordY self.validY = QDoubleValidator(self.coordY) self.validY.setNotation(QDoubleValidator.StandardNotation) self.coordY.setValidator(self.validY) self.btnCopyYt = self.btnCopyYt self.lblY = self.lblY # show self.btnShow = self.btnShow self.btnShow.setIcon(self.helper.getIcon('mActionZoomPoint.png')) # add point self.btnAddPoint = self.btnAddPoint self.btnAddPoint.setIcon(self.helper.getIcon('mActionAddPoint.png')) self.btnAddPoint.setToolTip("Punkt erstellen") # marker self.marker = QgsVertexMarker(self.canvas) self.marker.setColor(Qt.yellow) self.marker.setIconType(QgsVertexMarker.ICON_CROSS) self.marker.setIconSize(10) self.marker.setPenWidth(3) # See the enum IconType from http://www.qgis.org/api/classQgsVertexMarker.html # maptool self.mapTool = GTOPointTool(self.iface, self.canvas) self.mapTool.isActive.connect(self.setToolStatus) self.mapTool.canvasReleased.connect(self.setCoords) # signals # QToolButton.toggled() self.btnPoint.clicked.connect(self.setMapTool) # self.coordX.textChanged.connect(self.set_user_editX) # self.coordY.textChanged.connect(self.set_user_editY) self.coordX.textEdited.connect(self.set_user_editX) self.coordY.textEdited.connect(self.set_user_editY) # self.coordX.editingFinished.connect(self.check_coords) # self.coordY.editingFinished.connect(self.check_coords) self.btnShow.clicked.connect(self.showCoordinate) self.btnCopyXt.clicked.connect(self.copyXt) self.btnCopyYt.clicked.connect(self.copyYt) self.btnAddPoint.clicked.connect(self.add_point) self.prj.crsChanged.connect(self.prj_crs_changed) self.iface.mapCanvas().currentLayerChanged.connect(self.layer_changed) except Exception as e: self.info.err(e) def set_user_editX(self, *args): try: if self.debug: self.info.log("set_user_editX") self.userEditX = True self.marker.hide() self.marker.setColor(Qt.blue) self.snaped = False except Exception as e: self.info.err(e) def set_user_editY(self, *args): try: if self.debug: self.info.log("set_user_editY") self.userEditY = True self.marker.hide() self.marker.setColor(Qt.blue) self.snaped = False except Exception as e: self.info.err(e) def reset_user_edit(self): if self.debug: self.info.log("reset_user_edit") self.userEditX = False self.userEditY = False def check_coords(self): try: self.marker.hide() if self.debug: self.info.log("useredit: X:", self.userEditX, "userEditY:", self.userEditY) if self.coordX.text() == '': self.coordX.setText('0') self.x = 0 if self.coordY.text() == '': self.coordY.setText('0') self.y = 0 if self.userEditX or self.userEditY: self.snaped = False self.userEditX = False self.userEditY = False self.xt = float(self.coordX.text().replace(",", ".")) self.yt = float(self.coordY.text().replace(",", ".")) tr = QgsCoordinateTransform(self.crs_transform, self.prj.crs(), self.prj) trPoint = tr.transform(QgsPointXY(self.xt, self.yt)) self.x = trPoint.x() self.y = trPoint.y() if self.debug: self.info.log("check_coords:", self.x, "/", self.y, "/snaped:", self.snaped) except Exception as e: self.info.err(e) def setMapTool(self): try: self.canvas.setMapTool(self.mapTool) except Exception as e: self.info.err(e) def set_parent_widget(self, widget): try: self.parent_widget = widget if self.parent_widget.action.isChecked(): self.setMapTool() except Exception as e: self.info.err(e) def setToolStatus(self, isActive): try: self.btnPoint.setChecked(isActive) self.marker.hide() self.isActive.emit(isActive) if self.parent_widget is not None: self.parent_widget.set_status(isActive) except Exception as e: self.info.err(e) def setConfig(self, config): try: self.tools = config.get("tools", []) self.coordinatereferences = config.get("coordinatereferences", None) self.scale = config.get("scale", 0) self.center = config.get("center", True) self.enable_save = config.get('enable_save', False) self.precision = config.get('precision', -1) self.is_widgetaction = config.get('is_widgetaction', False) self.show_tool_button = config.get('show_tool_button', not self.is_widgetaction) self.addpoint_attributes = config.get("addpoint_attributes", {}) self.tools_after_addpoint = config.get("tools_after_addpoint", []) if self.precision < 0: self.precision, type_conversion_ok = self.prj.readNumEntry("PositionPrecision", "DecimalPlaces", 3) # labels: self.lblX.setText(config.get('label_x', 'X:')) self.lblY.setText(config.get('label_y', 'Y:')) # text text = '' if self.scale > 0 and self.center: text = "Auf Koordinate zentrieren, Maßstab: " + str(self.scale) elif self.center: text = "Auf Koordinate zentrieren" elif self.scale > 0: text = "Maßstab: " + str(self.scale) elif len(self.tools) > 0: text = self.tools[0] act = self.gtomain.findAction(self.tools[0]) if act is not None: text = act.toolTip() if act.icon() is not None: self.btnShow.setIcon(act.icon()) if self.debug: self.info.log(text) self.btnShow.setToolTip(text) if self.btnShow.toolTip() == '': self.btnShow.setHidden(True) # add point self.btnAddPoint.setHidden(not self.enable_save) # point tool self.btnPointTool.setHidden(not self.show_tool_button) except Exception as e: self.info.err(e) def added(self): # widget was added to parent try: self.crs_transform = self.prj.crs() self.crs_layer = self.iface.activeLayer().crs() # set crs widget if self.coordinatereferences is None: # qgis transform self.cboCoordSys.setHidden(True) self.cboCoordSystems = self.mQgsProjectionSelectionWidget self.cboCoordSystems.setMinimumWidth(460) self.cboCoordSystems.setOptionVisible(QgsProjectionSelectionWidget.ProjectCrs, True) self.cboCoordSystems.setCrs(self.prj.crs()) self.setCrs(self.cboCoordSystems.crs()) self.cboCoordSystems.crsChanged.connect(self.setCrs) else: # custom transform self.mQgsProjectionSelectionWidget.setHidden(True) self.cboCoordSystems = self.cboCoordSys self.cboCoordSystems.setMinimumWidth(400) self.cboCoordSystems.currentIndexChanged.connect( lambda: self.setCrs(self.cboCoordSystems.currentData())) self.cboCoordSystems.addItem( "Projekt CRS: " + self.crs_transform.authid() + " - " + self.crs_transform.description(), self.crs_transform) for crsID in self.coordinatereferences: try: crs = QgsCoordinateReferenceSystem(crsID) self.cboCoordSystems.addItem(crs.authid() + " - " + crs.description(), crs) except Exception as e: self.info.err(e) self.cboCoordSystems.setCurrentIndex(0) # here we know which type is cboCoordSystems! self.setIconSizes() except Exception as e: self.info.err(e) def setIconSizes(self): try: if self.parentWidget() is not None: btns = self.findChildren(QToolButton) for btn in btns: try: btn.setIconSize(self.iface.iconSize(False)) except: pass # help for the QGIS widget :S self.cboCoordSystems.setMaximumHeight(self.cboCoordSys.height()) btns = self.cboCoordSystems.findChildren(QToolButton) for btn in btns: btn.setIconSize(self.iface.iconSize(False)) except Exception as e: self.info.err(e) def layer_changed(self, layer): try: if layer.geometryType() == QgsWkbTypes.GeometryType.PointGeometry: self.btnAddPoint.setEnabled(True) else: self.btnAddPoint.setEnabled(False) except Exception as e: self.info.err(e) def prj_crs_changed(self): try: self.reset_user_edit() if self.coordinatereferences is not None: # my combo self.crs_transform = self.prj.crs() self.cboCoordSystems.setItemText(0, "Projekt CRS: " + self.crs_transform.authid() + " - " + self.crs_transform.description()) self.cboCoordSystems.setItemData(0, self.crs_transform) self.x = 0 self.y = 0 self.xt = 0 self.yt = 0 self.coordX.setText("---") self.coordY.setText("---") except Exception as e: self.info.err(e) def add_point(self): try: self.check_coords() layer = self.iface.activeLayer() if layer.geometryType() == QgsWkbTypes.GeometryType.PointGeometry: self.prj.layerTreeRoot().findLayer(layer.id()).setItemVisibilityCheckedParentRecursive(True) if self.x != 0 and self.y != 0: feat = QgsVectorLayerUtils.createFeature(layer) tr = QgsCoordinateTransform(self.prj.crs(), self.crs_layer, self.prj) trPoint = tr.transform(QgsPointXY(self.x, self.y)) feat.setGeometry(QgsGeometry.fromPointXY(trPoint)) # direct save # (res, features) = layer.dataProvider().addFeatures([feat]) # if self.debug: self.info.log("new point:", res, features[0]) # set attributes dic_info = {"x": self.x, "y": self.y, "snaped": self.snaped} # self.info.err(None,"mapping:",dic_info) # self.info.err(None, "addpoint_attributes:", self.addpoint_attributes) for k, v in self.addpoint_attributes.items(): # self.info.err(None,"attribute:",k,"value:",dic_info[v]) feat[k] = layer.fields().field(k).convertCompatible(dic_info[v]) features = [feat] layer.featureAdded.connect(self.select_new_feature) self.save_features(layer, features) layer.featureAdded.disconnect(self.select_new_feature) self.marker.hide() self.helper.refreshLayer(layer) self.gtomain.runcmd(self.tools_after_addpoint) else: self.info.gtoWarning('Ungültige Koordinaten! x:', self.x, "y:", self.y) else: self.info.gtoWarning('Kein Punktlayer ausgewählt!') except Exception as e: self.info.err(e) def select_new_feature(self, featId): try: if self.debug: self.info.log("new featue:", self.iface.activeLayer().name(), "/ fid:", featId) self.iface.activeLayer().selectByIds([featId]) self.mapTool.reset_marker() self.marker.hide() self.helper.refreshLayer(self.iface.activeLayer()) except Exception as e: self.info.err(e) def save_features(self, layer, features): if not layer.isEditable(): layer.startEditing() layer.beginEditCommand("layer {0} edit".format(layer.name())) try: layer.addFeatures(features) layer.endEditCommand() except Exception as e: layer.destroyEditCommand() raise e def copyXt(self): self.check_coords() dsp = QDoubleSpinBox() dsp.setDecimals(16) self.helper.copyToClipboard(dsp.textFromValue(self.xt)) def copyYt(self): self.check_coords() dsp = QDoubleSpinBox() dsp.setDecimals(16) self.helper.copyToClipboard(dsp.textFromValue(self.yt)) def reset(self): if self.debug: self.info.log("widget reset") self.marker.hide() def setCoords(self, point, snaped): try: self.reset_user_edit() self.snaped = snaped self.x = point.x() self.y = point.y() if self.debug: self.info.log("setCoords", self.x, "/", self.y) self.setCrs(self.crs_transform) # marker self.marker.setCenter(QgsPointXY(self.x, self.y)) if snaped: self.marker.setColor(Qt.red) else: self.marker.setColor(Qt.blue) self.marker.show() except Exception as e: self.info.err(e) def showCoordinate(self): try: self.check_coords() self.marker.hide() if self.x != 0 and self.y != 0: pt_center = QgsPointXY(self.x, self.y) self.marker.setCenter(pt_center) self.marker.show() # center map if self.center: self.canvas.setCenter(pt_center) # scale map if self.scale is not None and self.scale > 0: self.canvas.zoomScale(self.scale) self.canvas.refresh() # run tools self.gtomain.runcmd(self.tools) else: self.info.gtoWarning('Ungültige Koordinate! x:', self.x, "y:", self.y) except Exception as e: self.info.err(e) def setCrs(self, crs): try: if self.debug: self.info.log("setCrs") self.crs_transform = crs tr = QgsCoordinateTransform(self.prj.crs(), self.crs_transform, self.prj) trPoint = tr.transform(QgsPointXY(self.x, self.y)) self.xt = trPoint.x() self.yt = trPoint.y() d = round(trPoint.x(), self.precision) display = str(d).replace(".", QLocale().decimalPoint()) self.coordX.setText(display) d = round(trPoint.y(), self.precision) display = str(d).replace(".", QLocale().decimalPoint()) self.coordY.setText(display) except Exception as e: self.info.err(e)
41.061947
154
0.563524
6ba4e572e52707590a52608ce4cc12b513909627
2,117
py
Python
gemtown/users/serializers.py
doramong0926/gemtown
2c39284e3c68f0cc11994bed0ee2abaad0ea06b6
[ "MIT" ]
null
null
null
gemtown/users/serializers.py
doramong0926/gemtown
2c39284e3c68f0cc11994bed0ee2abaad0ea06b6
[ "MIT" ]
5
2020-09-04T20:13:39.000Z
2022-02-17T22:03:33.000Z
gemtown/users/serializers.py
doramong0926/gemtown
2c39284e3c68f0cc11994bed0ee2abaad0ea06b6
[ "MIT" ]
null
null
null
from rest_framework import serializers from gemtown.modelphotos import models as modelphoto_models from gemtown.modelers import models as modeler_models from gemtown.musicians import models as musician_models from . import models import time class TimestampField(serializers.Field): def to_representation(self, value): return int(time.mktime(value.timetuple())) class UsernameSerializer(serializers.ModelSerializer): class Meta: model = models.User fields = ( 'username', ) class MusicianSerializer(serializers.ModelSerializer): class Meta: model = musician_models.Musician fields = ( 'id', 'nickname', 'country', ) class ModelPhotoSerializer(serializers.ModelSerializer): class Meta: model = modelphoto_models.ModelPhoto fields = ( 'file', 'photo_type', ) class ModelerSerializer(serializers.ModelSerializer): cover_image = ModelPhotoSerializer() class Meta: model = modeler_models.Modeler fields = ( 'id', 'cover_image', 'nickname', 'country', ) class UserSerializer(serializers.ModelSerializer): created_at = TimestampField() updated_at = TimestampField() followers = UsernameSerializer(many=True) followings = UsernameSerializer(many=True) musician = MusicianSerializer() modeler = ModelerSerializer() class Meta: model = models.User fields = ( 'id', 'username', 'email', 'first_name', 'last_name', 'user_class', 'gem_amount', 'musician', 'modeler', 'gender', 'profile_photo', 'country', 'mobile_number', 'mobile_country', 'followers', 'followings', 'is_superuser', 'is_staff', 'created_at', 'updated_at' )
25.817073
60
0.561171
d84e7b0326da78457b27f3f5b7fda50734903f66
775
py
Python
Data-Structures/Stacks/stack.py
hussamEL-Hwary/DS-Algo-Handbook
86a97d586a4ca8b17168c0a9f5a9f43f856eba58
[ "MIT" ]
18
2016-11-01T04:00:36.000Z
2021-09-13T14:26:35.000Z
Data-Structures/Stacks/stack.py
JEERU/DS-Algo-Handbook
86a97d586a4ca8b17168c0a9f5a9f43f856eba58
[ "MIT" ]
60
2016-10-11T14:50:47.000Z
2016-10-31T11:05:01.000Z
Data-Structures/Stacks/stack.py
JEERU/DS-Algo-Handbook
86a97d586a4ca8b17168c0a9f5a9f43f856eba58
[ "MIT" ]
87
2016-09-08T05:04:50.000Z
2016-10-30T19:19:53.000Z
"""Implementation of a stack in python.""" class Stack: def __init__(self): self.items = [] def push(self, item): """Add an item to the stack.""" self.items.append(item) def pop(self): """Remove the most recent item from the stack.""" if len(self.items) > 0: last = self.items[-1] del(self.items[-1]) return last else: raise IndexError def peek(self): """Return the most recent item to be pushed to the stack.""" return self.items[-1] def isEmpty(self): """Returns True if stack is empty .""" return not len(self.items) >= 1 def size(self): """Return the size of the stack.""" return len(self.items)
24.21875
68
0.536774
d8b43126c4341230aae3fa4c8b5aa73490e76164
356
py
Python
uebung/bmi.py
wieerwill/Python-Intro
6b6f1d8b1b5c95590ffe15b0b4ddf188b680b491
[ "MIT" ]
3
2019-03-02T16:34:53.000Z
2021-11-15T11:43:53.000Z
uebung/bmi.py
wieerwill/Python-Intro
6b6f1d8b1b5c95590ffe15b0b4ddf188b680b491
[ "MIT" ]
null
null
null
uebung/bmi.py
wieerwill/Python-Intro
6b6f1d8b1b5c95590ffe15b0b4ddf188b680b491
[ "MIT" ]
null
null
null
# Calculate your Body-Mass-Index with Python print("BMI - Calculator!") weight_str = input("Please insert your weight (in kg): ") height_str = input("Please insert your bodys height(in m): ") weight = float(weight_str.replace(",", ".")) height = float(height_str.replace(",", ".")) bmi = weight / height ** 2 print("Your BMI is: " + str(round(bmi, 1)))
29.666667
61
0.668539
514737538b6050cbe92637918e942f1823b10292
1,699
py
Python
server/weather/RestWeatherProvider.py
EveryOtherUsernameWasAlreadyTaken/BIS
e132ce42dcc74e634231398dfecb08834d478cba
[ "MIT" ]
3
2019-07-09T08:51:20.000Z
2019-09-16T17:27:54.000Z
server/weather/RestWeatherProvider.py
thomasw-mitutoyo-ctl/BIS
08525cc12164902dfe968ae41beb6de0cd5bc411
[ "MIT" ]
24
2019-06-17T12:33:35.000Z
2020-03-27T08:17:35.000Z
server/weather/RestWeatherProvider.py
EveryOtherUsernameWasAlreadyTaken/BIS
e132ce42dcc74e634231398dfecb08834d478cba
[ "MIT" ]
1
2020-03-24T17:54:07.000Z
2020-03-24T17:54:07.000Z
import json import logging import threading from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer log = logging.getLogger(__name__) class RestWeatherProvider(threading.Thread): """ The RestWeatherProvider serves the collected weather data using a simple http server. The weather data can be obtained by doing a simple http GET request """ def __init__(self, repository, address, port): super(RestWeatherProvider, self).__init__() self.repository = repository self.port = port self.address = address def run(self): try: log.info("Starting WeatherProvider") # Create and start the http server server = HTTPServer((self.address, self.port), self.request_handler) server.serve_forever() except Exception as e: log.exception("WeatherProvider threw an exception: " + str(e)) def request_handler(self, *args): HTTPRequestHandler(self.repository, *args) class HTTPRequestHandler(BaseHTTPRequestHandler): """ HTTPRequestHandler for the RestWeatherProvider """ def __init__(self, repository, *args): self.repository = repository BaseHTTPRequestHandler.__init__(self, *args) # noinspection PyPep8Naming def do_GET(self): """ Handles the GET request and returns the weather in json format """ self.send_response(200) self.send_header('Content-type', 'application/json;charset=utf-8') self.send_header('Access-Control-Allow-Origin', '*') self.end_headers() data = self.repository.get_all_data() self.wfile.write(str(json.dumps(data)))
30.339286
114
0.669806