full_name
stringlengths 3
121
| state
stringlengths 7
9.32k
| tactic
stringlengths 3
5.35k
| target_state
stringlengths 7
19k
| url
stringclasses 1
value | commit
stringclasses 1
value | file_path
stringlengths 21
79
|
---|---|---|---|---|---|---|
Real.sign_apply_eq
|
case inl
r : ℝ
hn : r < 0
⊢ r.sign = -1 ∨ r.sign = 0 ∨ r.sign = 1
|
exact <a>Or.inl</a> <| <a>Real.sign_of_neg</a> hn
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Real/Sign.lean
|
Real.sign_apply_eq
|
case inr.inl
⊢ sign 0 = -1 ∨ sign 0 = 0 ∨ sign 0 = 1
|
exact <a>Or.inr</a> <| <a>Or.inl</a> <| <a>Real.sign_zero</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Real/Sign.lean
|
Real.sign_apply_eq
|
case inr.inr
r : ℝ
hp : 0 < r
⊢ r.sign = -1 ∨ r.sign = 0 ∨ r.sign = 1
|
exact <a>Or.inr</a> <| <a>Or.inr</a> <| <a>Real.sign_of_pos</a> hp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Real/Sign.lean
|
Nonneg.toNonneg_le
|
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
b : { x // 0 ≤ x }
⊢ toNonneg a ≤ b ↔ a ≤ ↑b
|
cases' b with b hb
|
case mk
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a b : α
hb : 0 ≤ b
⊢ toNonneg a ≤ ⟨b, hb⟩ ↔ a ≤ ↑⟨b, hb⟩
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Nonneg/Ring.lean
|
Nonneg.toNonneg_le
|
case mk
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a b : α
hb : 0 ≤ b
⊢ toNonneg a ≤ ⟨b, hb⟩ ↔ a ≤ ↑⟨b, hb⟩
|
simp [<a>Nonneg.toNonneg</a>, hb]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Nonneg/Ring.lean
|
Complex.arg_eq_pi_iff
|
a x z✝ z : ℂ
⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
|
by_cases h₀ : z = 0
|
case pos
a x z✝ z : ℂ
h₀ : z = 0
⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
case neg
a x z✝ z : ℂ
h₀ : ¬z = 0
⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg
a x z✝ z : ℂ
h₀ : ¬z = 0
⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
|
constructor
|
case neg.mp
a x z✝ z : ℂ
h₀ : ¬z = 0
⊢ z.arg = π → z.re < 0 ∧ z.im = 0
case neg.mpr
a x z✝ z : ℂ
h₀ : ¬z = 0
⊢ z.re < 0 ∧ z.im = 0 → z.arg = π
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case pos
a x z✝ z : ℂ
h₀ : z = 0
⊢ z.arg = π ↔ z.re < 0 ∧ z.im = 0
|
simp [h₀, <a>lt_irrefl</a>, Real.pi_ne_zero.symm]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mp
a x z✝ z : ℂ
h₀ : ¬z = 0
⊢ z.arg = π → z.re < 0 ∧ z.im = 0
|
intro h
|
case neg.mp
a x z✝ z : ℂ
h₀ : ¬z = 0
h : z.arg = π
⊢ z.re < 0 ∧ z.im = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mp
a x z✝ z : ℂ
h₀ : ¬z = 0
h : z.arg = π
⊢ z.re < 0 ∧ z.im = 0
|
rw [← <a>Complex.abs_mul_cos_add_sin_mul_I</a> z, h]
|
case neg.mp
a x z✝ z : ℂ
h₀ : ¬z = 0
h : z.arg = π
⊢ (↑(abs z) * (cos ↑π + sin ↑π * I)).re < 0 ∧ (↑(abs z) * (cos ↑π + sin ↑π * I)).im = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mp
a x z✝ z : ℂ
h₀ : ¬z = 0
h : z.arg = π
⊢ (↑(abs z) * (cos ↑π + sin ↑π * I)).re < 0 ∧ (↑(abs z) * (cos ↑π + sin ↑π * I)).im = 0
|
simp [h₀]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mpr
a x z✝ z : ℂ
h₀ : ¬z = 0
⊢ z.re < 0 ∧ z.im = 0 → z.arg = π
|
cases' z with x y
|
case neg.mpr.mk
a x✝ z : ℂ
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re < 0 ∧ { re := x, im := y }.im = 0 → { re := x, im := y }.arg = π
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mpr.mk
a x✝ z : ℂ
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re < 0 ∧ { re := x, im := y }.im = 0 → { re := x, im := y }.arg = π
|
rintro ⟨h : x < 0, rfl : y = 0⟩
|
case neg.mpr.mk.intro
a x✝ z : ℂ
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ { re := x, im := 0 }.arg = π
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mpr.mk.intro
a x✝ z : ℂ
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ { re := x, im := 0 }.arg = π
|
rw [← <a>Complex.arg_neg_one</a>, ← <a>Complex.arg_real_mul</a> (-1) (<a>neg_pos</a>.2 h)]
|
case neg.mpr.mk.intro
a x✝ z : ℂ
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ { re := x, im := 0 }.arg = (↑(-x) * -1).arg
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
Complex.arg_eq_pi_iff
|
case neg.mpr.mk.intro
a x✝ z : ℂ
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ { re := x, im := 0 }.arg = (↑(-x) * -1).arg
|
simp [← <a>Complex.ofReal_def</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
|
MeasureTheory.SimpleFunc.measurableSet_support
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
m : MeasurableSpace α
inst✝² : Zero β
inst✝¹ : Zero γ
μ : Measure α
f✝ : α →ₛ β
inst✝ : MeasurableSpace α
f : α →ₛ β
⊢ MeasurableSet (support ↑f)
|
rw [f.support_eq]
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
m : MeasurableSpace α
inst✝² : Zero β
inst✝¹ : Zero γ
μ : Measure α
f✝ : α →ₛ β
inst✝ : MeasurableSpace α
f : α →ₛ β
⊢ MeasurableSet (⋃ y ∈ filter (fun y => y ≠ 0) f.range, ↑f ⁻¹' {y})
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/SimpleFunc.lean
|
MeasureTheory.SimpleFunc.measurableSet_support
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
m : MeasurableSpace α
inst✝² : Zero β
inst✝¹ : Zero γ
μ : Measure α
f✝ : α →ₛ β
inst✝ : MeasurableSpace α
f : α →ₛ β
⊢ MeasurableSet (⋃ y ∈ filter (fun y => y ≠ 0) f.range, ↑f ⁻¹' {y})
|
exact <a>Finset.measurableSet_biUnion</a> _ fun y _ => <a>MeasureTheory.SimpleFunc.measurableSet_fiber</a> _ _
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/SimpleFunc.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
by_cases hm : m ≤ m0
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : ¬m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : ¬m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
swap
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : ¬m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
by_cases hμm : <a>MeasureTheory.SigmaFinite</a> (μ.trim hm)
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : ¬SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : ¬SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
swap
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : ¬SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
haveI : <a>MeasureTheory.SigmaFinite</a> (μ.trim hm) := hμm
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this : SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this : SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
have : s.indicator (μ[f|m]) =ᵐ[μ] s.indicator (μ[s.indicator f + sᶜ.<a>Set.indicator</a> f|m]) := by rw [<a>Set.indicator_self_add_compl</a> s f]
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
refine (this.trans ?_).<a>Filter.EventuallyEq.symm</a>
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) =ᶠ[ae μ] μ[s.indicator f|m]
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : ¬m ≤ m0
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
simp_rw [<a>MeasureTheory.condexp_of_not_le</a> hm, <a>Set.indicator_zero'</a>]
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : ¬m ≤ m0
⊢ 0 =ᶠ[ae μ] 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : ¬m ≤ m0
⊢ 0 =ᶠ[ae μ] 0
|
rfl
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : ¬SigmaFinite (μ.trim hm)
⊢ μ[s.indicator f|m] =ᶠ[ae μ] s.indicator (μ[f|m])
|
simp_rw [<a>MeasureTheory.condexp_of_not_sigmaFinite</a> hm hμm, <a>Set.indicator_zero'</a>]
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : ¬SigmaFinite (μ.trim hm)
⊢ 0 =ᶠ[ae μ] 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm : ¬SigmaFinite (μ.trim hm)
⊢ 0 =ᶠ[ae μ] 0
|
rfl
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this : SigmaFinite (μ.trim hm)
⊢ s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
|
rw [<a>Set.indicator_self_add_compl</a> s f]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m])
|
have : μ[s.indicator f + sᶜ.<a>Set.indicator</a> f|m] =ᵐ[μ] μ[s.indicator f|m] + μ[sᶜ.<a>Set.indicator</a> f|m] := <a>MeasureTheory.condexp_add</a> (hf_int.indicator (hm _ hs)) (hf_int.indicator (hm _ hs.compl))
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : μ[s.indicator f + sᶜ.indicator f|m] =ᶠ[ae μ] μ[s.indicator f|m] + μ[sᶜ.indicator f|m]
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : μ[s.indicator f + sᶜ.indicator f|m] =ᶠ[ae μ] μ[s.indicator f|m] + μ[sᶜ.indicator f|m]
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m])
|
filter_upwards [this] with x hx
|
case h
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : μ[s.indicator f + sᶜ.indicator f|m] =ᶠ[ae μ] μ[s.indicator f|m] + μ[sᶜ.indicator f|m]
x : α
hx : (μ[s.indicator f + sᶜ.indicator f|m]) x = (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) x
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) x = s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case h
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : μ[s.indicator f + sᶜ.indicator f|m] =ᶠ[ae μ] μ[s.indicator f|m] + μ[sᶜ.indicator f|m]
x : α
hx : (μ[s.indicator f + sᶜ.indicator f|m]) x = (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) x
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) x = s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) x
|
classical rw [<a>Set.indicator_apply</a>, <a>Set.indicator_apply</a>, hx]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case h
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : μ[s.indicator f + sᶜ.indicator f|m] =ᶠ[ae μ] μ[s.indicator f|m] + μ[sᶜ.indicator f|m]
x : α
hx : (μ[s.indicator f + sᶜ.indicator f|m]) x = (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) x
⊢ s.indicator (μ[s.indicator f + sᶜ.indicator f|m]) x = s.indicator (μ[s.indicator f|m] + μ[sᶜ.indicator f|m]) x
|
rw [<a>Set.indicator_apply</a>, <a>Set.indicator_apply</a>, hx]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator (μ[s.indicator f|m]) + s.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ]
s.indicator (μ[s.indicator f|m]) + s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m]))
|
refine Filter.EventuallyEq.rfl.add ?_
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m]))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
⊢ s.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m]))
|
filter_upwards [this] with x hx
|
case h
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
x : α
hx : sᶜ.indicator (μ[sᶜ.indicator f|m]) x = (μ[sᶜ.indicator f|m]) x
⊢ s.indicator (μ[sᶜ.indicator f|m]) x = s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case h
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
x : α
hx : sᶜ.indicator (μ[sᶜ.indicator f|m]) x = (μ[sᶜ.indicator f|m]) x
⊢ s.indicator (μ[sᶜ.indicator f|m]) x = s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) x
|
by_cases hxs : x ∈ s
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
x : α
hx : sᶜ.indicator (μ[sᶜ.indicator f|m]) x = (μ[sᶜ.indicator f|m]) x
hxs : x ∈ s
⊢ s.indicator (μ[sᶜ.indicator f|m]) x = s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) x
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
x : α
hx : sᶜ.indicator (μ[sᶜ.indicator f|m]) x = (μ[sᶜ.indicator f|m]) x
hxs : x ∉ s
⊢ s.indicator (μ[sᶜ.indicator f|m]) x = s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
|
refine (<a>MeasureTheory.condexp_indicator_aux</a> hs.compl ?_).symm.trans ?_
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ sᶜ.indicator f =ᶠ[ae (μ.restrict sᶜᶜ)] 0
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ μ[sᶜ.indicator (sᶜ.indicator f)|m] =ᶠ[ae μ] μ[sᶜ.indicator f|m]
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ sᶜ.indicator f =ᶠ[ae (μ.restrict sᶜᶜ)] 0
|
exact <a>indicator_ae_eq_restrict_compl</a> (hm _ hs.compl)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ μ[sᶜ.indicator (sᶜ.indicator f)|m] =ᶠ[ae μ] μ[sᶜ.indicator f|m]
|
rw [<a>Set.indicator_indicator</a>, <a>Set.inter_self</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case pos
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
x : α
hx : sᶜ.indicator (μ[sᶜ.indicator f|m]) x = (μ[sᶜ.indicator f|m]) x
hxs : x ∈ s
⊢ s.indicator (μ[sᶜ.indicator f|m]) x = s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) x
|
simp only [hx, hxs, <a>Set.indicator_of_mem</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case neg
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝¹ : SigmaFinite (μ.trim hm)
this✝ : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
this : sᶜ.indicator (μ[sᶜ.indicator f|m]) =ᶠ[ae μ] μ[sᶜ.indicator f|m]
x : α
hx : sᶜ.indicator (μ[sᶜ.indicator f|m]) x = (μ[sᶜ.indicator f|m]) x
hxs : x ∉ s
⊢ s.indicator (μ[sᶜ.indicator f|m]) x = s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) x
|
simp only [hxs, <a>Set.indicator_of_not_mem</a>, <a>not_false_iff</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator (μ[s.indicator f|m]) + s.indicator (sᶜ.indicator (μ[sᶜ.indicator f|m])) =ᶠ[ae μ]
s.indicator (μ[s.indicator f|m])
|
rw [<a>Set.indicator_indicator</a>, <a>Set.inter_compl_self</a>, <a>Set.indicator_empty'</a>, <a>add_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator (μ[s.indicator f|m]) =ᶠ[ae μ] μ[s.indicator f|m]
|
refine (<a>MeasureTheory.condexp_indicator_aux</a> hs ?_).symm.trans ?_
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator f =ᶠ[ae (μ.restrict sᶜ)] 0
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ μ[s.indicator (s.indicator f)|m] =ᶠ[ae μ] μ[s.indicator f|m]
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ s.indicator f =ᶠ[ae (μ.restrict sᶜ)] 0
|
exact <a>indicator_ae_eq_restrict_compl</a> (hm _ hs)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_indicator
|
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hf_int : Integrable f μ
hs : MeasurableSet s
hm : m ≤ m0
hμm this✝ : SigmaFinite (μ.trim hm)
this : s.indicator (μ[f|m]) =ᶠ[ae μ] s.indicator (μ[s.indicator f + sᶜ.indicator f|m])
⊢ μ[s.indicator (s.indicator f)|m] =ᶠ[ae μ] μ[s.indicator f|m]
|
rw [<a>Set.indicator_indicator</a>, <a>Set.inter_self</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
multiplicity.Int.pow_add_pow
|
R : Type u_1
n✝ : ℕ
inst✝ : CommRing R
a b x✝ y✝ : R
p : ℕ
hp : Nat.Prime p
hp1 : Odd p
x y : ℤ
hxy : ↑p ∣ x + y
hx : ¬↑p ∣ x
n : ℕ
hn : Odd n
⊢ multiplicity (↑p) (x ^ n + y ^ n) = multiplicity (↑p) (x + y) + multiplicity p n
|
rw [← <a>sub_neg_eq_add</a>] at hxy
|
R : Type u_1
n✝ : ℕ
inst✝ : CommRing R
a b x✝ y✝ : R
p : ℕ
hp : Nat.Prime p
hp1 : Odd p
x y : ℤ
hxy : ↑p ∣ x - -y
hx : ¬↑p ∣ x
n : ℕ
hn : Odd n
⊢ multiplicity (↑p) (x ^ n + y ^ n) = multiplicity (↑p) (x + y) + multiplicity p n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/Multiplicity.lean
|
multiplicity.Int.pow_add_pow
|
R : Type u_1
n✝ : ℕ
inst✝ : CommRing R
a b x✝ y✝ : R
p : ℕ
hp : Nat.Prime p
hp1 : Odd p
x y : ℤ
hxy : ↑p ∣ x - -y
hx : ¬↑p ∣ x
n : ℕ
hn : Odd n
⊢ multiplicity (↑p) (x ^ n + y ^ n) = multiplicity (↑p) (x + y) + multiplicity p n
|
rw [← <a>sub_neg_eq_add</a>, ← <a>sub_neg_eq_add</a>, ← <a>Odd.neg_pow</a> hn]
|
R : Type u_1
n✝ : ℕ
inst✝ : CommRing R
a b x✝ y✝ : R
p : ℕ
hp : Nat.Prime p
hp1 : Odd p
x y : ℤ
hxy : ↑p ∣ x - -y
hx : ¬↑p ∣ x
n : ℕ
hn : Odd n
⊢ multiplicity (↑p) (x ^ n - (-y) ^ n) = multiplicity (↑p) (x - -y) + multiplicity p n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/Multiplicity.lean
|
multiplicity.Int.pow_add_pow
|
R : Type u_1
n✝ : ℕ
inst✝ : CommRing R
a b x✝ y✝ : R
p : ℕ
hp : Nat.Prime p
hp1 : Odd p
x y : ℤ
hxy : ↑p ∣ x - -y
hx : ¬↑p ∣ x
n : ℕ
hn : Odd n
⊢ multiplicity (↑p) (x ^ n - (-y) ^ n) = multiplicity (↑p) (x - -y) + multiplicity p n
|
exact <a>multiplicity.Int.pow_sub_pow</a> hp hp1 hxy hx n
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/Multiplicity.lean
|
CategoryTheory.MonoidalCategory.whiskerLeft_hom_inv'
|
C : Type u
𝒞 : Category.{v, u} C
inst✝¹ : MonoidalCategory C
X Y Z : C
f : Y ⟶ Z
inst✝ : IsIso f
⊢ X ◁ f ≫ X ◁ inv f = 𝟙 (X ⊗ Y)
|
rw [← <a>CategoryTheory.MonoidalCategory.whiskerLeft_comp</a>, <a>CategoryTheory.IsIso.hom_inv_id</a>, <a>CategoryTheory.MonoidalCategory.whiskerLeft_id</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Monoidal/Category.lean
|
PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
⊢ ContinuousOn f s ↔ ContinuousOn (f ∘ ↑e) (e.source ∩ ↑e ⁻¹' s)
|
simp only [← e.symm_image_eq_source_inter_preimage h, <a>ContinuousOn</a>, <a>Set.forall_mem_image</a>]
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
⊢ (∀ x ∈ s, ContinuousWithinAt f s x) ↔ ∀ ⦃x : Y⦄, x ∈ s → ContinuousWithinAt (f ∘ ↑e) (↑e.symm '' s) (↑e.symm x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/PartialHomeomorph.lean
|
PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
⊢ (∀ x ∈ s, ContinuousWithinAt f s x) ↔ ∀ ⦃x : Y⦄, x ∈ s → ContinuousWithinAt (f ∘ ↑e) (↑e.symm '' s) (↑e.symm x)
|
refine <a>forall₂_congr</a> fun x hx => ?_
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
x : Y
hx : x ∈ s
⊢ ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ ↑e) (↑e.symm '' s) (↑e.symm x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/PartialHomeomorph.lean
|
PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
x : Y
hx : x ∈ s
⊢ ContinuousWithinAt f s x ↔ ContinuousWithinAt (f ∘ ↑e) (↑e.symm '' s) (↑e.symm x)
|
rw [e.continuousWithinAt_iff_continuousWithinAt_comp_right (h hx), e.symm_image_eq_source_inter_preimage h, <a>Set.inter_comm</a>, <a>continuousWithinAt_inter</a>]
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
x : Y
hx : x ∈ s
⊢ e.source ∈ 𝓝 (↑e.symm x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/PartialHomeomorph.lean
|
PartialHomeomorph.continuousOn_iff_continuousOn_comp_right
|
X : Type u_1
X' : Type u_2
Y : Type u_3
Y' : Type u_4
Z : Type u_5
Z' : Type u_6
inst✝⁵ : TopologicalSpace X
inst✝⁴ : TopologicalSpace X'
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Y'
inst✝¹ : TopologicalSpace Z
inst✝ : TopologicalSpace Z'
e : PartialHomeomorph X Y
f : Y → Z
s : Set Y
h : s ⊆ e.target
x : Y
hx : x ∈ s
⊢ e.source ∈ 𝓝 (↑e.symm x)
|
exact <a>IsOpen.mem_nhds</a> e.open_source (e.map_target (h hx))
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/PartialHomeomorph.lean
|
groupCohomology.groupCohomologyπ_comp_isoH0_hom
|
k G : Type u
inst✝¹ : CommRing k
inst✝ : Group G
A : Rep k G
⊢ groupCohomologyπ A 0 ≫ (isoH0 A).hom = (isoZeroCocycles A).hom
|
simp [<a>groupCohomology.isoH0</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RepresentationTheory/GroupCohomology/LowDegree.lean
|
NonUnitalSubring.coe_sSup_of_directedOn
|
F : Type w
R : Type u
S✝ : Type v
T : Type u_1
inst✝⁴ : NonUnitalNonAssocRing R
inst✝³ : NonUnitalNonAssocRing S✝
inst✝² : NonUnitalNonAssocRing T
inst✝¹ : FunLike F R S✝
inst✝ : NonUnitalRingHomClass F R S✝
g : S✝ →ₙ+* T
f : R →ₙ+* S✝
S : Set (NonUnitalSubring R)
Sne : S.Nonempty
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : R
⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ s ∈ S, ↑s
|
simp [<a>NonUnitalSubring.mem_sSup_of_directedOn</a> Sne hS]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/NonUnitalSubring/Basic.lean
|
Module.End.mapsTo_iSup_genEigenspace_of_comm
|
K R : Type v
V M : Type w
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f g : End R M
h : Commute f g
μ : R
⊢ MapsTo ⇑g ↑(⨆ k, (f.genEigenspace μ) k) ↑(⨆ k, (f.genEigenspace μ) k)
|
simp only [<a>Set.MapsTo</a>, <a>Submodule.coe_iSup_of_chain</a>, <a>Set.mem_iUnion</a>, <a>SetLike.mem_coe</a>]
|
K R : Type v
V M : Type w
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f g : End R M
h : Commute f g
μ : R
⊢ ∀ ⦃x : M⦄, (∃ i, x ∈ (f.genEigenspace μ) i) → ∃ i, g x ∈ (f.genEigenspace μ) i
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
|
Module.End.mapsTo_iSup_genEigenspace_of_comm
|
K R : Type v
V M : Type w
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f g : End R M
h : Commute f g
μ : R
⊢ ∀ ⦃x : M⦄, (∃ i, x ∈ (f.genEigenspace μ) i) → ∃ i, g x ∈ (f.genEigenspace μ) i
|
rintro x ⟨k, hk⟩
|
case intro
K R : Type v
V M : Type w
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f g : End R M
h : Commute f g
μ : R
x : M
k : ℕ
hk : x ∈ (f.genEigenspace μ) k
⊢ ∃ i, g x ∈ (f.genEigenspace μ) i
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
|
Module.End.mapsTo_iSup_genEigenspace_of_comm
|
case intro
K R : Type v
V M : Type w
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
f g : End R M
h : Commute f g
μ : R
x : M
k : ℕ
hk : x ∈ (f.genEigenspace μ) k
⊢ ∃ i, g x ∈ (f.genEigenspace μ) i
|
exact ⟨k, f.mapsTo_genEigenspace_of_comm h μ k hk⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
|
Set.image_eq
|
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
s : Set α
⊢ f '' s = (Function.graph f).image s
|
rfl
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Rel.lean
|
Polynomial.leadingCoeff_eq_zero_iff_deg_eq_bot
|
R : Type u
S : Type v
a b c d : R
n m : ℕ
inst✝ : Semiring R
p✝ p q : R[X]
ι : Type u_1
⊢ p.leadingCoeff = 0 ↔ p.degree = ⊥
|
rw [<a>Polynomial.leadingCoeff_eq_zero</a>, <a>Polynomial.degree_eq_bot</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/Degree/Definitions.lean
|
ZMod.natAbs_mod_two
|
a : ℤ
⊢ ↑a.natAbs = ↑a
|
cases a
|
case ofNat
a✝ : ℕ
⊢ ↑(Int.ofNat a✝).natAbs = ↑(Int.ofNat a✝)
case negSucc
a✝ : ℕ
⊢ ↑(Int.negSucc a✝).natAbs = ↑(Int.negSucc a✝)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/ZMod/Basic.lean
|
ZMod.natAbs_mod_two
|
case ofNat
a✝ : ℕ
⊢ ↑(Int.ofNat a✝).natAbs = ↑(Int.ofNat a✝)
|
simp only [<a>Int.natAbs_ofNat</a>, <a>Int.cast_natCast</a>, <a>Int.ofNat_eq_coe</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/ZMod/Basic.lean
|
ZMod.natAbs_mod_two
|
case negSucc
a✝ : ℕ
⊢ ↑(Int.negSucc a✝).natAbs = ↑(Int.negSucc a✝)
|
simp only [<a>ZMod.neg_eq_self_mod_two</a>, <a>Nat.cast_succ</a>, <a>Int.natAbs</a>, <a>Int.cast_negSucc</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/ZMod/Basic.lean
|
Finset.card_insert_eq_ite
|
α : Type u_1
β : Type u_2
R : Type u_3
s t : Finset α
a b : α
inst✝ : DecidableEq α
⊢ (insert a s).card = if a ∈ s then s.card else s.card + 1
|
by_cases h : a ∈ s
|
case pos
α : Type u_1
β : Type u_2
R : Type u_3
s t : Finset α
a b : α
inst✝ : DecidableEq α
h : a ∈ s
⊢ (insert a s).card = if a ∈ s then s.card else s.card + 1
case neg
α : Type u_1
β : Type u_2
R : Type u_3
s t : Finset α
a b : α
inst✝ : DecidableEq α
h : a ∉ s
⊢ (insert a s).card = if a ∈ s then s.card else s.card + 1
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/Card.lean
|
Finset.card_insert_eq_ite
|
case pos
α : Type u_1
β : Type u_2
R : Type u_3
s t : Finset α
a b : α
inst✝ : DecidableEq α
h : a ∈ s
⊢ (insert a s).card = if a ∈ s then s.card else s.card + 1
|
rw [<a>Finset.card_insert_of_mem</a> h, <a>if_pos</a> h]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/Card.lean
|
Finset.card_insert_eq_ite
|
case neg
α : Type u_1
β : Type u_2
R : Type u_3
s t : Finset α
a b : α
inst✝ : DecidableEq α
h : a ∉ s
⊢ (insert a s).card = if a ∈ s then s.card else s.card + 1
|
rw [<a>Finset.card_insert_of_not_mem</a> h, <a>if_neg</a> h]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/Card.lean
|
IndepMatroid.ofFinset_indep'
|
α : Type u_1
I✝ B X : Set α
inst✝ : DecidableEq α
E : Set α
Indep : Finset α → Prop
indep_empty : Indep ∅
indep_subset : ∀ ⦃I J : Finset α⦄, Indep J → I ⊆ J → Indep I
indep_aug : ∀ ⦃I J : Finset α⦄, Indep I → Indep J → I.card < J.card → ∃ e ∈ J, e ∉ I ∧ Indep (insert e I)
subset_ground : ∀ ⦃I : Finset α⦄, Indep I → ↑I ⊆ E
I : Set α
⊢ (IndepMatroid.ofFinset E Indep indep_empty indep_subset indep_aug subset_ground).Indep I ↔
∀ (J : Finset α), ↑J ⊆ I → Indep J
|
simp only [<a>IndepMatroid.ofFinset</a>, <a>IndepMatroid.ofFinitary_indep</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Matroid/IndepAxioms.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
⊢ GrowsPolynomially fun x => f x ^ p
|
intro b hb
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
obtain ⟨c₁, (hc₁_mem : 0 < c₁), c₂, hc₂_mem, hfnew⟩ := hf b hb
|
case intro.intro.intro.intro
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
have hc₁p : 0 < c₁ ^ p := <a>Real.rpow_pos_of_pos</a> hc₁_mem _
|
case intro.intro.intro.intro
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
have hc₂p : 0 < c₂ ^ p := <a>Real.rpow_pos_of_pos</a> hc₂_mem _
|
case intro.intro.intro.intro
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
cases <a>le_or_lt</a> 0 p with | <a>Or.inl</a> => -- 0 ≤ p refine ⟨c₁^p, hc₁p, ?_⟩ refine ⟨c₂^p, hc₂p, ?_⟩ filter_upwards [<a>Filter.eventually_gt_atTop</a> 0, hfnew, hf_nonneg, (tendsto_id.const_mul_atTop hb.1).<a>Filter.Tendsto.eventually_forall_ge_atTop</a> hf_nonneg] with x _ hf₁ hf_nonneg hf_nonneg₂ intro u hu have fu_nonneg : 0 ≤ f u := hf_nonneg₂ u hu.1 refine ⟨?lb, ?ub⟩ case lb => calc c₁^p * (f x)^p = (c₁ * f x)^p := by rw [<a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₁_mem) hf_nonneg] _ ≤ _ := by gcongr; exact (hf₁ u hu).1 case ub => calc (f u)^p ≤ (c₂ * f x)^p := by gcongr; exact (hf₁ u hu).2 _ = _ := by rw [← <a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₂_mem) hf_nonneg] | <a>Or.inr</a> hp => -- p < 0 match hf.eventually_atTop_zero_or_pos_or_neg with | .inl hzero => -- eventually zero refine ⟨1, by norm_num, 1, by norm_num, ?_⟩ filter_upwards [hzero, hfnew] with x hx hx' intro u hu simp only [hx, <a>ne_eq</a>, <a>Real.zero_rpow</a> (<a>ne_of_lt</a> hp), <a>MulZeroClass.mul_zero</a>, <a>le_refl</a>, <a>not_true</a>, <a>lt_self_iff_false</a>, <a>Set.Icc_self</a>, <a>Set.mem_singleton_iff</a>] simp only [hx, <a>MulZeroClass.mul_zero</a>, <a>Set.Icc_self</a>, <a>Set.mem_singleton_iff</a>] at hx' rw [hx' u hu, <a>Real.zero_rpow</a> (<a>ne_of_lt</a> hp)] | .inr (.inl hpos) => -- eventually positive refine ⟨c₂^p, hc₂p, ?_⟩ refine ⟨c₁^p, hc₁p, ?_⟩ filter_upwards [<a>Filter.eventually_gt_atTop</a> 0, hfnew, hpos, (tendsto_id.const_mul_atTop hb.1).<a>Filter.Tendsto.eventually_forall_ge_atTop</a> hpos] with x _ hf₁ hf_pos hf_pos₂ intro u hu refine ⟨?lb, ?ub⟩ case lb => calc c₂^p * (f x)^p = (c₂ * f x)^p := by rw [<a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₂_mem) (<a>le_of_lt</a> hf_pos)] _ ≤ _ := <a>Real.rpow_le_rpow_of_exponent_nonpos</a> (hf_pos₂ u hu.1) (hf₁ u hu).2 (<a>le_of_lt</a> hp) case ub => calc (f u)^p ≤ (c₁ * f x)^p := by exact <a>Real.rpow_le_rpow_of_exponent_nonpos</a> (by positivity) (hf₁ u hu).1 (<a>le_of_lt</a> hp) _ = _ := by rw [← <a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₁_mem) (<a>le_of_lt</a> hf_pos)] | .inr (.inr hneg) => -- eventually negative (which is impossible) have : ∀ᶠ (_:ℝ) in <a>Filter.atTop</a>, <a>False</a> := by filter_upwards [hf_nonneg, hneg] with x hx hx'; linarith rw [<a>Filter.eventually_false_iff_eq_bot</a>] at this exact <a>False.elim</a> <| (<a>Filter.atTop_neBot</a>).<a>Filter.NeBot.ne</a> this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro.inl
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
refine ⟨c₁^p, hc₁p, ?_⟩
|
case intro.intro.intro.intro.inl
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
⊢ ∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₁ ^ p * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro.inl
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
⊢ ∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₁ ^ p * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
refine ⟨c₂^p, hc₂p, ?_⟩
|
case intro.intro.intro.intro.inl
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
⊢ ∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₁ ^ p * (fun x => f x ^ p) x) (c₂ ^ p * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro.inl
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
⊢ ∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₁ ^ p * (fun x => f x ^ p) x) (c₂ ^ p * (fun x => f x ^ p) x)
|
filter_upwards [<a>Filter.eventually_gt_atTop</a> 0, hfnew, hf_nonneg, (tendsto_id.const_mul_atTop hb.1).<a>Filter.Tendsto.eventually_forall_ge_atTop</a> hf_nonneg] with x _ hf₁ hf_nonneg hf_nonneg₂
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (c₁ ^ p * f x ^ p) (c₂ ^ p * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (c₁ ^ p * f x ^ p) (c₂ ^ p * f x ^ p)
|
intro u hu
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p ∈ Set.Icc (c₁ ^ p * f x ^ p) (c₂ ^ p * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p ∈ Set.Icc (c₁ ^ p * f x ^ p) (c₂ ^ p * f x ^ p)
|
have fu_nonneg : 0 ≤ f u := hf_nonneg₂ u hu.1
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ∈ Set.Icc (c₁ ^ p * f x ^ p) (c₂ ^ p * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ∈ Set.Icc (c₁ ^ p * f x ^ p) (c₂ ^ p * f x ^ p)
|
refine ⟨?lb, ?ub⟩
|
case lb
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ c₁ ^ p * f x ^ p ≤ f u ^ p
case ub
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ≤ c₂ ^ p * f x ^ p
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case lb
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ c₁ ^ p * f x ^ p ≤ f u ^ p
case ub
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ≤ c₂ ^ p * f x ^ p
|
case lb => calc c₁^p * (f x)^p = (c₁ * f x)^p := by rw [<a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₁_mem) hf_nonneg] _ ≤ _ := by gcongr; exact (hf₁ u hu).1
|
case ub
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ≤ c₂ ^ p * f x ^ p
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case ub
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ≤ c₂ ^ p * f x ^ p
|
case ub => calc (f u)^p ≤ (c₂ * f x)^p := by gcongr; exact (hf₁ u hu).2 _ = _ := by rw [← <a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₂_mem) hf_nonneg]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ c₁ ^ p * f x ^ p ≤ f u ^ p
|
calc c₁^p * (f x)^p = (c₁ * f x)^p := by rw [<a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₁_mem) hf_nonneg] _ ≤ _ := by gcongr; exact (hf₁ u hu).1
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ c₁ ^ p * f x ^ p = (c₁ * f x) ^ p
|
rw [<a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₁_mem) hf_nonneg]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ (c₁ * f x) ^ p ≤ f u ^ p
|
gcongr
|
case h₁
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ c₁ * f x ≤ f u
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h₁
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ c₁ * f x ≤ f u
|
exact (hf₁ u hu).1
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ≤ c₂ ^ p * f x ^ p
|
calc (f u)^p ≤ (c₂ * f x)^p := by gcongr; exact (hf₁ u hu).2 _ = _ := by rw [← <a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₂_mem) hf_nonneg]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ^ p ≤ (c₂ * f x) ^ p
|
gcongr
|
case h₁
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ≤ c₂ * f x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h₁
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ f u ≤ c₂ * f x
|
exact (hf₁ u hu).2
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg✝ : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
h✝ : 0 ≤ p
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_nonneg : 0 ≤ f x
hf_nonneg₂ : ∀ (y : ℝ), b * id x ≤ y → 0 ≤ f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
fu_nonneg : 0 ≤ f u
⊢ (c₂ * f x) ^ p = c₂ ^ p * f x ^ p
|
rw [← <a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₂_mem) hf_nonneg]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case intro.intro.intro.intro.inr
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
match hf.eventually_atTop_zero_or_pos_or_neg with | .inl hzero => -- eventually zero refine ⟨1, by norm_num, 1, by norm_num, ?_⟩ filter_upwards [hzero, hfnew] with x hx hx' intro u hu simp only [hx, <a>ne_eq</a>, <a>Real.zero_rpow</a> (<a>ne_of_lt</a> hp), <a>MulZeroClass.mul_zero</a>, <a>le_refl</a>, <a>not_true</a>, <a>lt_self_iff_false</a>, <a>Set.Icc_self</a>, <a>Set.mem_singleton_iff</a>] simp only [hx, <a>MulZeroClass.mul_zero</a>, <a>Set.Icc_self</a>, <a>Set.mem_singleton_iff</a>] at hx' rw [hx' u hu, <a>Real.zero_rpow</a> (<a>ne_of_lt</a> hp)] | .inr (.inl hpos) => -- eventually positive refine ⟨c₂^p, hc₂p, ?_⟩ refine ⟨c₁^p, hc₁p, ?_⟩ filter_upwards [<a>Filter.eventually_gt_atTop</a> 0, hfnew, hpos, (tendsto_id.const_mul_atTop hb.1).<a>Filter.Tendsto.eventually_forall_ge_atTop</a> hpos] with x _ hf₁ hf_pos hf_pos₂ intro u hu refine ⟨?lb, ?ub⟩ case lb => calc c₂^p * (f x)^p = (c₂ * f x)^p := by rw [<a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₂_mem) (<a>le_of_lt</a> hf_pos)] _ ≤ _ := <a>Real.rpow_le_rpow_of_exponent_nonpos</a> (hf_pos₂ u hu.1) (hf₁ u hu).2 (<a>le_of_lt</a> hp) case ub => calc (f u)^p ≤ (c₁ * f x)^p := by exact <a>Real.rpow_le_rpow_of_exponent_nonpos</a> (by positivity) (hf₁ u hu).1 (<a>le_of_lt</a> hp) _ = _ := by rw [← <a>Real.mul_rpow</a> (<a>le_of_lt</a> hc₁_mem) (<a>le_of_lt</a> hf_pos)] | .inr (.inr hneg) => -- eventually negative (which is impossible) have : ∀ᶠ (_:ℝ) in <a>Filter.atTop</a>, <a>False</a> := by filter_upwards [hf_nonneg, hneg] with x hx hx'; linarith rw [<a>Filter.eventually_false_iff_eq_bot</a>] at this exact <a>False.elim</a> <| (<a>Filter.atTop_neBot</a>).<a>Filter.NeBot.ne</a> this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
refine ⟨1, by norm_num, 1, by norm_num, ?_⟩
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
⊢ ∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (1 * (fun x => f x ^ p) x) (1 * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
⊢ ∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (1 * (fun x => f x ^ p) x) (1 * (fun x => f x ^ p) x)
|
filter_upwards [hzero, hfnew] with x hx hx'
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
hx' : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (1 * f x ^ p) (1 * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
hx' : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (1 * f x ^ p) (1 * f x ^ p)
|
intro u hu
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
hx' : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p ∈ Set.Icc (1 * f x ^ p) (1 * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
hx' : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p ∈ Set.Icc (1 * f x ^ p) (1 * f x ^ p)
|
simp only [hx, <a>ne_eq</a>, <a>Real.zero_rpow</a> (<a>ne_of_lt</a> hp), <a>MulZeroClass.mul_zero</a>, <a>le_refl</a>, <a>not_true</a>, <a>lt_self_iff_false</a>, <a>Set.Icc_self</a>, <a>Set.mem_singleton_iff</a>]
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
hx' : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
hx' : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p = 0
|
simp only [hx, <a>MulZeroClass.mul_zero</a>, <a>Set.Icc_self</a>, <a>Set.mem_singleton_iff</a>] at hx'
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
u : ℝ
hu : u ∈ Set.Icc (b * x) x
hx' : ∀ u ∈ Set.Icc (b * x) x, f u = 0
⊢ f u ^ p = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
x : ℝ
hx : f x = 0
u : ℝ
hu : u ∈ Set.Icc (b * x) x
hx' : ∀ u ∈ Set.Icc (b * x) x, f u = 0
⊢ f u ^ p = 0
|
rw [hx' u hu, <a>Real.zero_rpow</a> (<a>ne_of_lt</a> hp)]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hzero : ∀ᶠ (x : ℝ) in atTop, f x = 0
⊢ 1 > 0
|
norm_num
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
⊢ ∃ c₁ > 0,
∃ c₂ > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x, (fun x => f x ^ p) u ∈ Set.Icc (c₁ * (fun x => f x ^ p) x) (c₂ * (fun x => f x ^ p) x)
|
refine ⟨c₂^p, hc₂p, ?_⟩
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
⊢ ∃ c₂_1 > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₂ ^ p * (fun x => f x ^ p) x) (c₂_1 * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
⊢ ∃ c₂_1 > 0,
∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₂ ^ p * (fun x => f x ^ p) x) (c₂_1 * (fun x => f x ^ p) x)
|
refine ⟨c₁^p, hc₁p, ?_⟩
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
⊢ ∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₂ ^ p * (fun x => f x ^ p) x) (c₁ ^ p * (fun x => f x ^ p) x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
⊢ ∀ᶠ (x : ℝ) in atTop,
∀ u ∈ Set.Icc (b * x) x,
(fun x => f x ^ p) u ∈ Set.Icc (c₂ ^ p * (fun x => f x ^ p) x) (c₁ ^ p * (fun x => f x ^ p) x)
|
filter_upwards [<a>Filter.eventually_gt_atTop</a> 0, hfnew, hpos, (tendsto_id.const_mul_atTop hb.1).<a>Filter.Tendsto.eventually_forall_ge_atTop</a> hpos] with x _ hf₁ hf_pos hf_pos₂
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_pos : 0 < f x
hf_pos₂ : ∀ (y : ℝ), b * id x ≤ y → 0 < f y
⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (c₂ ^ p * f x ^ p) (c₁ ^ p * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
AkraBazziRecurrence.GrowsPolynomially.rpow
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_pos : 0 < f x
hf_pos₂ : ∀ (y : ℝ), b * id x ≤ y → 0 < f y
⊢ ∀ u ∈ Set.Icc (b * x) x, f u ^ p ∈ Set.Icc (c₂ ^ p * f x ^ p) (c₁ ^ p * f x ^ p)
|
intro u hu
|
case h
f : ℝ → ℝ
p : ℝ
hf : GrowsPolynomially f
hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x
b : ℝ
hb : b ∈ Set.Ioo 0 1
c₁ : ℝ
hc₁_mem : 0 < c₁
c₂ : ℝ
hc₂_mem : c₂ > 0
hfnew : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hc₁p : 0 < c₁ ^ p
hc₂p : 0 < c₂ ^ p
hp : p < 0
hpos : ∀ᶠ (x : ℝ) in atTop, 0 < f x
x : ℝ
a✝ : 0 < x
hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x)
hf_pos : 0 < f x
hf_pos₂ : ∀ (y : ℝ), b * id x ≤ y → 0 < f y
u : ℝ
hu : u ∈ Set.Icc (b * x) x
⊢ f u ^ p ∈ Set.Icc (c₂ ^ p * f x ^ p) (c₁ ^ p * f x ^ p)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.