full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
Monoid.image_closure
case intro.intro.one M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x : M ⊢ f 1 ∈ Closure (f '' s)
rw [hf.map_one]
case intro.intro.one M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x : M ⊢ 1 ∈ Closure (f '' s)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Deprecated/Submonoid.lean
Monoid.image_closure
case intro.intro.one M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x : M ⊢ 1 ∈ Closure (f '' s)
apply <a>IsSubmonoid.one_mem</a> (<a>Monoid.closure.isSubmonoid</a> (f '' s))
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Deprecated/Submonoid.lean
Monoid.image_closure
case intro.intro.mul M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : f a✝² ∈ Closure (f '' s) a_ih✝ : f b✝ ∈ Closure (f '' s) ⊢ f (a✝² * b✝) ∈ Closure (f '' s)
rw [hf.map_mul]
case intro.intro.mul M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : f a✝² ∈ Closure (f '' s) a_ih✝ : f b✝ ∈ Closure (f '' s) ⊢ f a✝² * f b✝ ∈ Closure (f '' s)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Deprecated/Submonoid.lean
Monoid.image_closure
case intro.intro.mul M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : f a✝² ∈ Closure (f '' s) a_ih✝ : f b✝ ∈ Closure (f '' s) ⊢ f a✝² * f b✝ ∈ Closure (f '' s)
solve_by_elim [(<a>Monoid.closure.isSubmonoid</a> _).<a>IsSubmonoid.mul_mem</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Deprecated/Submonoid.lean
Matrix.trace_blockDiagonal
ι : Type u_1 m : Type u_2 n : Type u_3 p : Type u_4 α : Type u_5 R : Type u_6 S : Type u_7 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Fintype p inst✝¹ : AddCommMonoid R inst✝ : DecidableEq p M : p → Matrix n n R ⊢ (blockDiagonal M).trace = ∑ i : p, (M i).trace
simp [<a>Matrix.blockDiagonal</a>, <a>Matrix.trace</a>, <a>Finset.sum_comm</a> (γ := n)]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/Trace.lean
CategoryTheory.Adjunction.leftAdjointUniq_refl
C : Type u_1 D : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Category.{u_4, u_2} D F : C ⥤ D G : D ⥤ C adj1 : F ⊣ G ⊢ (adj1.leftAdjointUniq adj1).hom = 𝟙 F
simp [<a>CategoryTheory.Adjunction.leftAdjointUniq</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Adjunction/Unique.lean
derivWithin_mem_iff
𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 F : Type v inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type w inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f✝ f₀ f₁ g : 𝕜 → F f' f₀' f₁' g' : F x✝ : 𝕜 s✝ t✝ : Set 𝕜 L L₁ L₂ : Filter 𝕜 f : 𝕜 → F t : Set 𝕜 s : Set F x : 𝕜 ⊢ derivWithin f t x ∈ s ↔ DifferentiableWithinAt 𝕜 f t x ∧ derivWithin f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
by_cases hx : <a>DifferentiableWithinAt</a> 𝕜 f t x <;> simp [<a>derivWithin_zero_of_not_differentiableWithinAt</a>, *]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/Deriv/Basic.lean
MeasureTheory.OuterMeasure.top_apply'
α : Type u_1 β : Type u_2 m : OuterMeasure α s : Set α h : s = ∅ ⊢ ⊤ s = ⨅ (_ : s = ∅), 0
simp [h]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/OuterMeasure/Operations.lean
MeasureTheory.OuterMeasure.top_apply'
α : Type u_1 β : Type u_2 m : OuterMeasure α s : Set α h : s.Nonempty ⊢ ⊤ s = ⨅ (_ : s = ∅), 0
simp [h, h.ne_empty]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/OuterMeasure/Operations.lean
MeasureTheory.le_trim
α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 ⊢ μ s ≤ (μ.trim hm) s
simp_rw [<a>MeasureTheory.Measure.trim</a>]
α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 ⊢ μ s ≤ (μ.toMeasure ⋯) s
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Trim.lean
MeasureTheory.le_trim
α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 ⊢ μ s ≤ (μ.toMeasure ⋯) s
exact @<a>MeasureTheory.le_toMeasure_apply</a> _ m _ _ _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Trim.lean
dist_mul_self_right
𝓕 : Type u_1 α : Type u_2 E : Type u_3 F : Type u_4 inst✝¹ : SeminormedGroup E inst✝ : SeminormedGroup F s : Set E a✝ a₁ a₂ b✝ b₁ b₂ : E r r₁ r₂ : ℝ a b : E ⊢ dist b (a * b) = ‖a‖
rw [← <a>dist_one_left</a>, ← <a>dist_mul_right</a> 1 a b, <a>one_mul</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Normed/Group/Uniform.lean
algebraicIndependent_sUnion_of_directed
ι : Type u_1 ι' : Type u_2 R : Type u_3 K : Type u_4 A : Type u_5 A' : Type u_6 A'' : Type u_7 V : Type u V' : Type u_8 x : ι → A inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : CommRing A' inst✝³ : CommRing A'' inst✝² : Algebra R A inst✝¹ : Algebra R A' inst✝ : Algebra R A'' a b : R s : Set (Set A) hsn : s.Nonempty hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val ⊢ AlgebraicIndependent R Subtype.val
letI : <a>Nonempty</a> s := <a>Set.Nonempty.to_subtype</a> hsn
ι : Type u_1 ι' : Type u_2 R : Type u_3 K : Type u_4 A : Type u_5 A' : Type u_6 A'' : Type u_7 V : Type u V' : Type u_8 x : ι → A inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : CommRing A' inst✝³ : CommRing A'' inst✝² : Algebra R A inst✝¹ : Algebra R A' inst✝ : Algebra R A'' a b : R s : Set (Set A) hsn : s.Nonempty hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val this : Nonempty ↑s := Nonempty.to_subtype hsn ⊢ AlgebraicIndependent R Subtype.val
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/AlgebraicIndependent.lean
algebraicIndependent_sUnion_of_directed
ι : Type u_1 ι' : Type u_2 R : Type u_3 K : Type u_4 A : Type u_5 A' : Type u_6 A'' : Type u_7 V : Type u V' : Type u_8 x : ι → A inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : CommRing A' inst✝³ : CommRing A'' inst✝² : Algebra R A inst✝¹ : Algebra R A' inst✝ : Algebra R A'' a b : R s : Set (Set A) hsn : s.Nonempty hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val this : Nonempty ↑s := Nonempty.to_subtype hsn ⊢ AlgebraicIndependent R Subtype.val
exact <a>algebraicIndependent_iUnion_of_directed</a> hs.directed_val (by simpa using h)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/AlgebraicIndependent.lean
algebraicIndependent_sUnion_of_directed
ι : Type u_1 ι' : Type u_2 R : Type u_3 K : Type u_4 A : Type u_5 A' : Type u_6 A'' : Type u_7 V : Type u V' : Type u_8 x : ι → A inst✝⁶ : CommRing R inst✝⁵ : CommRing A inst✝⁴ : CommRing A' inst✝³ : CommRing A'' inst✝² : Algebra R A inst✝¹ : Algebra R A' inst✝ : Algebra R A'' a b : R s : Set (Set A) hsn : s.Nonempty hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val this : Nonempty ↑s := Nonempty.to_subtype hsn ⊢ ∀ (i : ↑s), AlgebraicIndependent R Subtype.val
simpa using h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/AlgebraicIndependent.lean
unitInterval.qRight_zero_right
t : ↑I ⊢ ↑(qRight (t, 0)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1
simp only [<a>unitInterval.qRight</a>, <a>Set.Icc.coe_zero</a>, <a>add_zero</a>, <a>div_one</a>]
t : ↑I ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
t : ↑I ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1
split_ifs
case pos t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t case neg t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
case pos t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t
rw [<a>Set.projIcc_of_mem</a> _ ((<a>unitInterval.mul_pos_mem_iff</a> <a>zero_lt_two</a>).2 _)]
t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑t ∈ Set.Icc 0 (1 / 2)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑t ∈ Set.Icc 0 (1 / 2)
refine ⟨t.2.1, ?_⟩
t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑t ≤ 1 / 2
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑t ≤ 1 / 2
tauto
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
case neg t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1
rw [(<a>Set.projIcc_eq_right</a> _).2]
case neg t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 ≤ 2 * ↑t t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 0 < 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
case neg t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 ≤ 2 * ↑t
linarith
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 0 < 1
exact <a>zero_lt_one</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Homotopy/HSpaces.lean
OrderIso.isLUB_preimage
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β s : Set β x : α ⊢ IsLUB (⇑f ⁻¹' s) x ↔ IsLUB s (f x)
rw [← f.symm_symm, ← <a>OrderIso.image_eq_preimage</a>, <a>OrderIso.isLUB_image</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Bounds/OrderIso.lean
SzemerediRegularity.hundred_le_m
α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α P : Finpartition univ u : Finset α ε : ℝ inst✝ : Nonempty α hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5 hε : ε ≤ 1 ⊢ 0 ≤ 100
norm_num
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
SzemerediRegularity.hundred_le_m
α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α P : Finpartition univ u : Finset α ε : ℝ inst✝ : Nonempty α hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5 hε : ε ≤ 1 ⊢ 0 < ε ^ 5
sz_positivity
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
SzemerediRegularity.hundred_le_m
α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α P : Finpartition univ u : Finset α ε : ℝ inst✝ : Nonempty α hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5 hε : ε ≤ 1 ⊢ 0 ≤ ε
sz_positivity
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F ⊢ Nonempty (G →g F)
cases <a>nonempty_fintype</a> W
case intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W ⊢ Nonempty (G →g F)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W ⊢ Nonempty (G →g F)
haveI : ∀ G' : G.Finsubgraphᵒᵖ, <a>Nonempty</a> ((<a>SimpleGraph.finsubgraphHomFunctor</a> G F).<a>Prefunctor.obj</a> G') := fun G' => ⟨h G'.unop G'.unop.property⟩
case intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') ⊢ Nonempty (G →g F)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') ⊢ Nonempty (G →g F)
haveI : ∀ G' : G.Finsubgraphᵒᵖ, <a>Fintype</a> ((<a>SimpleGraph.finsubgraphHomFunctor</a> G F).<a>Prefunctor.obj</a> G') := by intro G' haveI : <a>Fintype</a> (G'.unop.val.verts : Type u) := G'.unop.property.fintype haveI : <a>Fintype</a> (↥G'.unop.val.verts → W) := by classical exact <a>Pi.fintype</a> exact <a>Fintype.ofInjective</a> (fun f => f.toFun) <a>RelHom.coe_fn_injective</a>
case intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') ⊢ Nonempty (G →g F)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') ⊢ Nonempty (G →g F)
obtain ⟨u, hu⟩ := <a>nonempty_sections_of_finite_inverse_system</a> (<a>SimpleGraph.finsubgraphHomFunctor</a> G F)
case intro.intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections ⊢ Nonempty (G →g F)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections ⊢ Nonempty (G →g F)
refine ⟨⟨fun v => ?_, ?_⟩⟩
case intro.intro.refine_1 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v : V ⊢ W case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections ⊢ ∀ {a b : V}, G.Adj a b → F.Adj ((fun v => ?m.17533 v) a) ((fun v => ?m.17533 v) b)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') ⊢ (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
intro G'
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ ⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ ⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
haveI : <a>Fintype</a> (G'.unop.val.verts : Type u) := G'.unop.property.fintype
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ this : Fintype ↑(↑G'.unop).verts ⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ this : Fintype ↑(↑G'.unop).verts ⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
haveI : <a>Fintype</a> (↥G'.unop.val.verts → W) := by classical exact <a>Pi.fintype</a>
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝¹ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ this✝ : Fintype ↑(↑G'.unop).verts this : Fintype (↑(↑G'.unop).verts → W) ⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝¹ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ this✝ : Fintype ↑(↑G'.unop).verts this : Fintype (↑(↑G'.unop).verts → W) ⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
exact <a>Fintype.ofInjective</a> (fun f => f.toFun) <a>RelHom.coe_fn_injective</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ this : Fintype ↑(↑G'.unop).verts ⊢ Fintype (↑(↑G'.unop).verts → W)
classical exact <a>Pi.fintype</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') G' : G.Finsubgraphᵒᵖ this : Fintype ↑(↑G'.unop).verts ⊢ Fintype (↑(↑G'.unop).verts → W)
exact <a>Pi.fintype</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_1 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v : V ⊢ W
exact (u (<a>Opposite.op</a> (<a>SimpleGraph.singletonFinsubgraph</a> v))).<a>RelHom.toFun</a> ⟨v, by unfold <a>SimpleGraph.singletonFinsubgraph</a> simp⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v : V ⊢ v ∈ (↑{ unop := singletonFinsubgraph v }.unop).verts
unfold <a>SimpleGraph.singletonFinsubgraph</a>
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v : V ⊢ v ∈ (↑{ unop := ⟨G.singletonSubgraph v, ⋯⟩ }.unop).verts
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v : V ⊢ v ∈ (↑{ unop := ⟨G.singletonSubgraph v, ⋯⟩ }.unop).verts
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections ⊢ ∀ {a b : V}, G.Adj a b → F.Adj ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) a) ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) b)
intro v v' e
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' ⊢ F.Adj ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v) ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' ⊢ F.Adj ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v) ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v')
simp only
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' ⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' ⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
have hv : <a>Opposite.op</a> (<a>SimpleGraph.finsubgraphOfAdj</a> e) ⟶ <a>Opposite.op</a> (<a>SimpleGraph.singletonFinsubgraph</a> v) := <a>Quiver.Hom.op</a> (<a>CategoryTheory.homOfLE</a> <a>SimpleGraph.singletonFinsubgraph_le_adj_left</a>)
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } ⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } ⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
have hv' : <a>Opposite.op</a> (<a>SimpleGraph.finsubgraphOfAdj</a> e) ⟶ <a>Opposite.op</a> (<a>SimpleGraph.singletonFinsubgraph</a> v') := <a>Quiver.Hom.op</a> (<a>CategoryTheory.homOfLE</a> <a>SimpleGraph.singletonFinsubgraph_le_adj_right</a>)
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' } ⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' } ⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
rw [← hu hv, ← hu hv']
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' } ⊢ F.Adj (((G.finsubgraphHomFunctor F).map hv (u { unop := finsubgraphOfAdj e })).toFun ⟨v, ⋯⟩) (((G.finsubgraphHomFunctor F).map hv' (u { unop := finsubgraphOfAdj e })).toFun ⟨v', ⋯⟩)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' } ⊢ F.Adj (((G.finsubgraphHomFunctor F).map hv (u { unop := finsubgraphOfAdj e })).toFun ⟨v, ⋯⟩) (((G.finsubgraphHomFunctor F).map hv' (u { unop := finsubgraphOfAdj e })).toFun ⟨v', ⋯⟩)
refine <a>SimpleGraph.Hom.map_adj</a> (u (<a>Opposite.op</a> (<a>SimpleGraph.finsubgraphOfAdj</a> e))) ?_
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' } ⊢ (↑{ unop := finsubgraphOfAdj e }.unop).coe.Adj ⟨v, ⋯⟩ ⟨v', ⋯⟩
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
case intro.intro.refine_2 V : Type u W : Type v G : SimpleGraph V F : SimpleGraph W inst✝ : Finite W h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F val✝ : Fintype W this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G') this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G') u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j hu : u ∈ (G.finsubgraphHomFunctor F).sections v v' : V e : G.Adj v v' hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v } hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' } ⊢ (↑{ unop := finsubgraphOfAdj e }.unop).coe.Adj ⟨v, ⋯⟩ ⟨v', ⋯⟩
simp [<a>SimpleGraph.finsubgraphOfAdj</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
Polynomial.rootSet_monomial
R : Type u S : Type v k : Type y A : Type z a✝ b : R n✝ : ℕ inst✝³ : Field R p q : R[X] inst✝² : CommRing S inst✝¹ : IsDomain S inst✝ : Algebra R S n : ℕ hn : n ≠ 0 a : R ha : a ≠ 0 ⊢ ((monomial n) a).rootSet S = {0}
classical rw [<a>Polynomial.rootSet</a>, <a>Polynomial.aroots_monomial</a> ha, <a>Multiset.toFinset_nsmul</a> _ _ hn, <a>Multiset.toFinset_singleton</a>, <a>Finset.coe_singleton</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/FieldDivision.lean
Polynomial.rootSet_monomial
R : Type u S : Type v k : Type y A : Type z a✝ b : R n✝ : ℕ inst✝³ : Field R p q : R[X] inst✝² : CommRing S inst✝¹ : IsDomain S inst✝ : Algebra R S n : ℕ hn : n ≠ 0 a : R ha : a ≠ 0 ⊢ ((monomial n) a).rootSet S = {0}
rw [<a>Polynomial.rootSet</a>, <a>Polynomial.aroots_monomial</a> ha, <a>Multiset.toFinset_nsmul</a> _ _ hn, <a>Multiset.toFinset_singleton</a>, <a>Finset.coe_singleton</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/FieldDivision.lean
fderivWithin_neg
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type u_4 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G G' : Type u_5 inst✝¹ : NormedAddCommGroup G' inst✝ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E hxs : UniqueDiffWithinAt 𝕜 s x h : ¬DifferentiableWithinAt 𝕜 f s x ⊢ fderivWithin 𝕜 (fun y => -f y) s x = -fderivWithin 𝕜 f s x
rw [<a>fderivWithin_zero_of_not_differentiableWithinAt</a> h, <a>fderivWithin_zero_of_not_differentiableWithinAt</a>, <a>neg_zero</a>]
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type u_4 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G G' : Type u_5 inst✝¹ : NormedAddCommGroup G' inst✝ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E hxs : UniqueDiffWithinAt 𝕜 s x h : ¬DifferentiableWithinAt 𝕜 f s x ⊢ ¬DifferentiableWithinAt 𝕜 (fun y => -f y) s x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/FDeriv/Add.lean
fderivWithin_neg
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type u_3 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type u_4 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G G' : Type u_5 inst✝¹ : NormedAddCommGroup G' inst✝ : NormedSpace 𝕜 G' f f₀ f₁ g : E → F f' f₀' f₁' g' e : E →L[𝕜] F x : E s t : Set E L L₁ L₂ : Filter E hxs : UniqueDiffWithinAt 𝕜 s x h : ¬DifferentiableWithinAt 𝕜 f s x ⊢ ¬DifferentiableWithinAt 𝕜 (fun y => -f y) s x
simpa
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/FDeriv/Add.lean
Set.Finite.exists_finset_coe
α : Type u β : Type v ι : Sort w γ : Type x s : Set α h : s.Finite ⊢ ∃ s', ↑s' = s
cases h.nonempty_fintype
case intro α : Type u β : Type v ι : Sort w γ : Type x s : Set α h : s.Finite val✝ : Fintype ↑s ⊢ ∃ s', ↑s' = s
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Finite.lean
Set.Finite.exists_finset_coe
case intro α : Type u β : Type v ι : Sort w γ : Type x s : Set α h : s.Finite val✝ : Fintype ↑s ⊢ ∃ s', ↑s' = s
exact ⟨s.toFinset, s.coe_toFinset⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Finite.lean
continuousAt_jacobiTheta₂'
z τ : ℂ hτ : 0 < τ.im ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
obtain ⟨T, hT, hτ'⟩ := <a>exists_between</a> hτ
case intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
obtain ⟨S, hz⟩ := <a>NoMaxOrder.exists_gt</a> |<a>Complex.im</a> z|
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
let V := {u | |<a>Complex.im</a> u| < S} ×ˢ {v | T < <a>Complex.im</a> v}
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
have hVo : <a>IsOpen</a> V := ((_root_.continuous_abs.comp <a>Complex.continuous_im</a>).<a>Continuous.isOpen_preimage</a> _ <a>isOpen_Iio</a>).<a>IsOpen.prod</a> (continuous_im.isOpen_preimage _ <a>isOpen_Ioi</a>)
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V ⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
refine <a>ContinuousOn.continuousAt</a> ?_ (hVo.mem_nhds ⟨hz, hτ'⟩)
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V ⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V ⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
let u (n : ℤ) : ℝ := 2 * π * |n| * rexp (-π * (T * n ^ 2 - 2 * S * |n|))
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) ⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) ⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
have hu : <a>Summable</a> u := by simpa only [u, <a>mul_assoc</a>, <a>pow_one</a>] using (<a>summable_pow_mul_jacobiTheta₂_term_bound</a> S hT 1).<a>Summable.mul_left</a> (2 * π)
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u ⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u ⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
refine <a>continuousOn_tsum</a> (fun n ↦ ?_) hu (fun n ⟨z', τ'⟩ ⟨hz', hτ'⟩ ↦ ?_)
case intro.intro.intro.refine_1 z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ ⊢ ContinuousOn (fun p => jacobiTheta₂'_term n p.1 p.2) V case intro.intro.intro.refine_2 z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ'✝ : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ x✝¹ : ℂ × ℂ z' τ' : ℂ x✝ : (z', τ') ∈ V hz' : (z', τ').1 ∈ {u | |u.im| < S} hτ' : (z', τ').2 ∈ {v | T < v.im} ⊢ ‖jacobiTheta₂'_term n (z', τ').1 (z', τ').2‖ ≤ u n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) ⊢ Summable u
simpa only [u, <a>mul_assoc</a>, <a>pow_one</a>] using (<a>summable_pow_mul_jacobiTheta₂_term_bound</a> S hT 1).<a>Summable.mul_left</a> (2 * π)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro.refine_1 z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ ⊢ ContinuousOn (fun p => jacobiTheta₂'_term n p.1 p.2) V
apply <a>Continuous.continuousOn</a>
case intro.intro.intro.refine_1.h z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ ⊢ Continuous fun p => jacobiTheta₂'_term n p.1 p.2
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro.refine_1.h z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ ⊢ Continuous fun p => jacobiTheta₂'_term n p.1 p.2
unfold <a>jacobiTheta₂'_term</a> <a>jacobiTheta₂_term</a>
case intro.intro.intro.refine_1.h z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ ⊢ Continuous fun p => 2 * ↑π * I * ↑n * cexp (2 * ↑π * I * ↑n * p.1 + ↑π * I * ↑n ^ 2 * p.2)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro.refine_1.h z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ' : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ ⊢ Continuous fun p => 2 * ↑π * I * ↑n * cexp (2 * ↑π * I * ↑n * p.1 + ↑π * I * ↑n ^ 2 * p.2)
fun_prop
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
continuousAt_jacobiTheta₂'
case intro.intro.intro.refine_2 z τ : ℂ hτ : 0 < τ.im T : ℝ hT : 0 < T hτ'✝ : T < τ.im S : ℝ hz : |z.im| < S V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im} hVo : IsOpen V u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|)) hu : Summable u n : ℤ x✝¹ : ℂ × ℂ z' τ' : ℂ x✝ : (z', τ') ∈ V hz' : (z', τ').1 ∈ {u | |u.im| < S} hτ' : (z', τ').2 ∈ {v | T < v.im} ⊢ ‖jacobiTheta₂'_term n (z', τ').1 (z', τ').2‖ ≤ u n
exact <a>norm_jacobiTheta₂'_term_le</a> hT (<a>le_of_lt</a> hz') (<a>le_of_lt</a> hτ') n
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
Ordinal.nadd_le_nadd_right
a✝ b c : Ordinal.{u} h : b ≤ c a : Ordinal.{u} ⊢ b ♯ a ≤ c ♯ a
rcases <a>lt_or_eq_of_le</a> h with (h | rfl)
case inl a✝ b c : Ordinal.{u} h✝ : b ≤ c a : Ordinal.{u} h : b < c ⊢ b ♯ a ≤ c ♯ a case inr a✝ b a : Ordinal.{u} h : b ≤ b ⊢ b ♯ a ≤ b ♯ a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Ordinal/NaturalOps.lean
Ordinal.nadd_le_nadd_right
case inl a✝ b c : Ordinal.{u} h✝ : b ≤ c a : Ordinal.{u} h : b < c ⊢ b ♯ a ≤ c ♯ a
exact (<a>Ordinal.nadd_lt_nadd_right</a> h a).<a>LT.lt.le</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Ordinal/NaturalOps.lean
Ordinal.nadd_le_nadd_right
case inr a✝ b a : Ordinal.{u} h : b ≤ b ⊢ b ♯ a ≤ b ♯ a
exact <a>le_rfl</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Ordinal/NaturalOps.lean
CategoryTheory.Limits.biprod.associator_inv_natural
J : Type w C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroMorphisms C D : Type uD inst✝² : Category.{uD', uD} D inst✝¹ : HasZeroMorphisms D P Q : C inst✝ : HasBinaryBiproducts C U V W X Y Z : C f : U ⟶ X g : V ⟶ Y h : W ⟶ Z ⊢ map f (map g h) ≫ (associator X Y Z).inv = (associator U V W).inv ≫ map (map f g) h
aesop_cat
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
WeakDual.CharacterSpace.isClosed
𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed (characterSpace 𝕜 A)
rw [<a>WeakDual.CharacterSpace.eq_set_map_one_map_mul</a>, <a>Set.setOf_and</a>]
𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed ({a | a 1 = 1} ∩ {a | ∀ (x y : A), a (x * y) = a x * a y})
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
WeakDual.CharacterSpace.isClosed
𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed ({a | a 1 = 1} ∩ {a | ∀ (x y : A), a (x * y) = a x * a y})
refine <a>IsClosed.inter</a> (<a>isClosed_eq</a> (<a>WeakDual.eval_continuous</a> _) <a>continuous_const</a>) ?_
𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed {a | ∀ (x y : A), a (x * y) = a x * a y}
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
WeakDual.CharacterSpace.isClosed
𝕜 : Type u_1 A : Type u_2 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : NoZeroDivisors 𝕜 inst✝⁸ : TopologicalSpace 𝕜 inst✝⁷ : ContinuousAdd 𝕜 inst✝⁶ : ContinuousConstSMul 𝕜 𝕜 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : Algebra 𝕜 A inst✝² : Nontrivial 𝕜 inst✝¹ : T2Space 𝕜 inst✝ : ContinuousMul 𝕜 ⊢ IsClosed {a | ∀ (x y : A), a (x * y) = a x * a y}
simpa only [(<a>WeakDual.CharacterSpace.union_zero</a> 𝕜 A).<a>Eq.symm</a>] using <a>WeakDual.CharacterSpace.union_zero_isClosed</a> _ _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
StrictMono.strictMono_iterate_of_lt_map
α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : StrictMono f hx : x < f x n : ℕ ⊢ f^[n] x < f^[n + 1] x
rw [<a>Function.iterate_succ_apply</a>]
α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : StrictMono f hx : x < f x n : ℕ ⊢ f^[n] x < f^[n] (f x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Iterate.lean
StrictMono.strictMono_iterate_of_lt_map
α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : StrictMono f hx : x < f x n : ℕ ⊢ f^[n] x < f^[n] (f x)
exact hf.iterate n hx
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Iterate.lean
isSimpleModule_iff_isAtom
ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁵ : Ring R inst✝⁴ : Ring S M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M m : Submodule R M N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N ⊢ IsSimpleModule R ↥m ↔ IsAtom m
rw [← <a>Set.isSimpleOrder_Iic_iff_isAtom</a>]
ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁵ : Ring R inst✝⁴ : Ring S M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M m : Submodule R M N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N ⊢ IsSimpleModule R ↥m ↔ IsSimpleOrder ↑(Set.Iic m)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/SimpleModule.lean
isSimpleModule_iff_isAtom
ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁵ : Ring R inst✝⁴ : Ring S M : Type u_4 inst✝³ : AddCommGroup M inst✝² : Module R M m : Submodule R M N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N ⊢ IsSimpleModule R ↥m ↔ IsSimpleOrder ↑(Set.Iic m)
exact m.mapIic.isSimpleOrder_iff
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/SimpleModule.lean
ContinuousLinearEquiv.contDiff_comp_iff
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ ContDiff 𝕜 n (f ∘ ⇑e) ↔ ContDiff 𝕜 n f
rw [← <a>contDiffOn_univ</a>, ← <a>contDiffOn_univ</a>, ← <a>Set.preimage_univ</a>]
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ ContDiffOn 𝕜 n (f ∘ ⇑e) (?m.417021 ⁻¹' univ) ↔ ContDiffOn 𝕜 n f univ 𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ Type ?u.417017 𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ G → ?m.417020
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
ContinuousLinearEquiv.contDiff_comp_iff
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ ContDiffOn 𝕜 n (f ∘ ⇑e) (?m.417021 ⁻¹' univ) ↔ ContDiffOn 𝕜 n f univ 𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ Type ?u.417017 𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁹ : NormedAddCommGroup D inst✝⁸ : NormedSpace 𝕜 D E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type u_2 inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F b : E × F → G m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F e : G ≃L[𝕜] E ⊢ G → ?m.417020
exact e.contDiffOn_comp_iff
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ ∃ x, IsSelfAdjoint x ∧ QuasispectrumRestricts x ⇑ContinuousMap.realToNNReal ∧ x * x = a
use <a>cfcₙ</a> <a>Real.sqrt</a> a, <a>cfcₙ_predicate</a> <a>Real.sqrt</a> a
case right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal ∧ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
case right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal ∧ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
constructor
case right.left A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal case right.right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
case right.left A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal
simpa only [<a>QuasispectrumRestricts.nnreal_iff</a>, <a>cfcₙ_map_quasispectrum</a> <a>Real.sqrt</a> a, <a>Set.mem_image</a>, <a>forall_exists_index</a>, <a>and_imp</a>, <a>forall_apply_eq_imp_iff₂</a>] using fun x _ ↦ <a>Real.sqrt_nonneg</a> x
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
case right.right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
rw [← <a>cfcₙ_mul</a> ..]
case right.right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ cfcₙ (fun x => √x * √x) a = a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
case right.right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ cfcₙ (fun x => √x * √x) a = a
nth_rw 2 [← <a>cfcₙ_id</a> ℝ a]
case right.right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ cfcₙ (fun x => √x * √x) a = cfcₙ id a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
case right.right A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal ⊢ cfcₙ (fun x => √x * √x) a = cfcₙ id a
apply <a>cfcₙ_congr</a> fun x hx ↦ ?_
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal x : ℝ hx : x ∈ σₙ ℝ a ⊢ √x * √x = id x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal x : ℝ hx : x ∈ σₙ ℝ a ⊢ √x * √x = id x
rw [<a>QuasispectrumRestricts.nnreal_iff</a>] at ha₂
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x x : ℝ hx : x ∈ σₙ ℝ a ⊢ √x * √x = id x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x x : ℝ hx : x ∈ σₙ ℝ a ⊢ √x * √x = id x
apply ha₂ x at hx
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x x : ℝ hx : 0 ≤ x ⊢ √x * √x = id x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : StarRing A inst✝⁴ : TopologicalSpace A inst✝³ : Module ℝ A inst✝² : IsScalarTower ℝ A A inst✝¹ : SMulCommClass ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha₁ : IsSelfAdjoint a ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x x : ℝ hx : 0 ≤ x ⊢ √x * √x = id x
simp [← <a>sq</a>, <a>Real.sq_sqrt</a> hx]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
CategoryTheory.Abelian.tfae_mono
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
tfae_have 3 → 2
case tfae_3_to_2 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z ⊢ Exact 0 f → kernel.ι f = 0 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
tfae_have 1 → 3
case tfae_1_to_3 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 ⊢ Mono f → Exact 0 f C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 tfae_1_to_3 : Mono f → Exact 0 f ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 tfae_1_to_3 : Mono f → Exact 0 f ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
tfae_have 2 → 1
case tfae_2_to_1 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 tfae_1_to_3 : Mono f → Exact 0 f ⊢ kernel.ι f = 0 → Mono f C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 tfae_1_to_3 : Mono f → Exact 0 f tfae_2_to_1 : kernel.ι f = 0 → Mono f ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 tfae_1_to_3 : Mono f → Exact 0 f tfae_2_to_1 : kernel.ι f = 0 → Mono f ⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
tfae_finish
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
case tfae_3_to_2 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z ⊢ Exact 0 f → kernel.ι f = 0
exact <a>CategoryTheory.kernel_ι_eq_zero_of_exact_zero_left</a> Z
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
case tfae_1_to_3 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 ⊢ Mono f → Exact 0 f
intros
case tfae_1_to_3 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 a✝ : Mono f ⊢ Exact 0 f
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
case tfae_1_to_3 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 a✝ : Mono f ⊢ Exact 0 f
exact <a>CategoryTheory.exact_zero_left_of_mono</a> Z
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.tfae_mono
case tfae_2_to_1 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z tfae_3_to_2 : Exact 0 f → kernel.ι f = 0 tfae_1_to_3 : Mono f → Exact 0 f ⊢ kernel.ι f = 0 → Mono f
exact <a>CategoryTheory.Abelian.mono_of_kernel_ι_eq_zero</a> _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Exact.lean
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
R : Type u S : Type v T : Type w ι : Type y a b : R m n : ℕ inst✝¹ : Semiring R p q r : R[X] inst✝ : Semiring S f✝ f : R →+* S hf : f p.leadingCoeff ≠ 0 ⊢ p.degree ≤ (map f p).degree
have hp0 : p ≠ 0 := leadingCoeff_ne_zero.mp fun hp0 => hf (<a>trans</a> (<a>congr_arg</a> _ hp0) f.map_zero)
R : Type u S : Type v T : Type w ι : Type y a b : R m n : ℕ inst✝¹ : Semiring R p q r : R[X] inst✝ : Semiring S f✝ f : R →+* S hf : f p.leadingCoeff ≠ 0 hp0 : p ≠ 0 ⊢ p.degree ≤ (map f p).degree
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Eval.lean
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
R : Type u S : Type v T : Type w ι : Type y a b : R m n : ℕ inst✝¹ : Semiring R p q r : R[X] inst✝ : Semiring S f✝ f : R →+* S hf : f p.leadingCoeff ≠ 0 hp0 : p ≠ 0 ⊢ p.degree ≤ (map f p).degree
rw [<a>Polynomial.degree_eq_natDegree</a> hp0]
R : Type u S : Type v T : Type w ι : Type y a b : R m n : ℕ inst✝¹ : Semiring R p q r : R[X] inst✝ : Semiring S f✝ f : R →+* S hf : f p.leadingCoeff ≠ 0 hp0 : p ≠ 0 ⊢ ↑p.natDegree ≤ (map f p).degree
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Eval.lean
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
R : Type u S : Type v T : Type w ι : Type y a b : R m n : ℕ inst✝¹ : Semiring R p q r : R[X] inst✝ : Semiring S f✝ f : R →+* S hf : f p.leadingCoeff ≠ 0 hp0 : p ≠ 0 ⊢ ↑p.natDegree ≤ (map f p).degree
refine <a>Polynomial.le_degree_of_ne_zero</a> ?_
R : Type u S : Type v T : Type w ι : Type y a b : R m n : ℕ inst✝¹ : Semiring R p q r : R[X] inst✝ : Semiring S f✝ f : R →+* S hf : f p.leadingCoeff ≠ 0 hp0 : p ≠ 0 ⊢ (map f p).coeff p.natDegree ≠ 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Eval.lean