full_name
stringlengths 3
121
| state
stringlengths 7
9.32k
| tactic
stringlengths 3
5.35k
| target_state
stringlengths 7
19k
| url
stringclasses 1
value | commit
stringclasses 1
value | file_path
stringlengths 21
79
|
---|---|---|---|---|---|---|
Monoid.image_closure
|
case intro.intro.one
M : Type u_1
inst✝² : Monoid M
s✝ : Set M
A✝ : Type u_2
inst✝¹ : AddMonoid A✝
t : Set A✝
A : Type u_3
inst✝ : Monoid A
f : M → A
hf : IsMonoidHom f
s : Set M
x : M
⊢ f 1 ∈ Closure (f '' s)
|
rw [hf.map_one]
|
case intro.intro.one
M : Type u_1
inst✝² : Monoid M
s✝ : Set M
A✝ : Type u_2
inst✝¹ : AddMonoid A✝
t : Set A✝
A : Type u_3
inst✝ : Monoid A
f : M → A
hf : IsMonoidHom f
s : Set M
x : M
⊢ 1 ∈ Closure (f '' s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Deprecated/Submonoid.lean
|
Monoid.image_closure
|
case intro.intro.one
M : Type u_1
inst✝² : Monoid M
s✝ : Set M
A✝ : Type u_2
inst✝¹ : AddMonoid A✝
t : Set A✝
A : Type u_3
inst✝ : Monoid A
f : M → A
hf : IsMonoidHom f
s : Set M
x : M
⊢ 1 ∈ Closure (f '' s)
|
apply <a>IsSubmonoid.one_mem</a> (<a>Monoid.closure.isSubmonoid</a> (f '' s))
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Deprecated/Submonoid.lean
|
Monoid.image_closure
|
case intro.intro.mul
M : Type u_1
inst✝² : Monoid M
s✝ : Set M
A✝ : Type u_2
inst✝¹ : AddMonoid A✝
t : Set A✝
A : Type u_3
inst✝ : Monoid A
f : M → A
hf : IsMonoidHom f
s : Set M
x a✝² b✝ : M
a✝¹ : InClosure s a✝²
a✝ : InClosure s b✝
a_ih✝¹ : f a✝² ∈ Closure (f '' s)
a_ih✝ : f b✝ ∈ Closure (f '' s)
⊢ f (a✝² * b✝) ∈ Closure (f '' s)
|
rw [hf.map_mul]
|
case intro.intro.mul
M : Type u_1
inst✝² : Monoid M
s✝ : Set M
A✝ : Type u_2
inst✝¹ : AddMonoid A✝
t : Set A✝
A : Type u_3
inst✝ : Monoid A
f : M → A
hf : IsMonoidHom f
s : Set M
x a✝² b✝ : M
a✝¹ : InClosure s a✝²
a✝ : InClosure s b✝
a_ih✝¹ : f a✝² ∈ Closure (f '' s)
a_ih✝ : f b✝ ∈ Closure (f '' s)
⊢ f a✝² * f b✝ ∈ Closure (f '' s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Deprecated/Submonoid.lean
|
Monoid.image_closure
|
case intro.intro.mul
M : Type u_1
inst✝² : Monoid M
s✝ : Set M
A✝ : Type u_2
inst✝¹ : AddMonoid A✝
t : Set A✝
A : Type u_3
inst✝ : Monoid A
f : M → A
hf : IsMonoidHom f
s : Set M
x a✝² b✝ : M
a✝¹ : InClosure s a✝²
a✝ : InClosure s b✝
a_ih✝¹ : f a✝² ∈ Closure (f '' s)
a_ih✝ : f b✝ ∈ Closure (f '' s)
⊢ f a✝² * f b✝ ∈ Closure (f '' s)
|
solve_by_elim [(<a>Monoid.closure.isSubmonoid</a> _).<a>IsSubmonoid.mul_mem</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Deprecated/Submonoid.lean
|
Matrix.trace_blockDiagonal
|
ι : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
α : Type u_5
R : Type u_6
S : Type u_7
inst✝⁴ : Fintype m
inst✝³ : Fintype n
inst✝² : Fintype p
inst✝¹ : AddCommMonoid R
inst✝ : DecidableEq p
M : p → Matrix n n R
⊢ (blockDiagonal M).trace = ∑ i : p, (M i).trace
|
simp [<a>Matrix.blockDiagonal</a>, <a>Matrix.trace</a>, <a>Finset.sum_comm</a> (γ := n)]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Matrix/Trace.lean
|
CategoryTheory.Adjunction.leftAdjointUniq_refl
|
C : Type u_1
D : Type u_2
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Category.{u_4, u_2} D
F : C ⥤ D
G : D ⥤ C
adj1 : F ⊣ G
⊢ (adj1.leftAdjointUniq adj1).hom = 𝟙 F
|
simp [<a>CategoryTheory.Adjunction.leftAdjointUniq</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Adjunction/Unique.lean
|
derivWithin_mem_iff
|
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
t : Set 𝕜
s : Set F
x : 𝕜
⊢ derivWithin f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ derivWithin f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
|
by_cases hx : <a>DifferentiableWithinAt</a> 𝕜 f t x <;> simp [<a>derivWithin_zero_of_not_differentiableWithinAt</a>, *]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/Deriv/Basic.lean
|
MeasureTheory.OuterMeasure.top_apply'
|
α : Type u_1
β : Type u_2
m : OuterMeasure α
s : Set α
h : s = ∅
⊢ ⊤ s = ⨅ (_ : s = ∅), 0
|
simp [h]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/OuterMeasure/Operations.lean
|
MeasureTheory.OuterMeasure.top_apply'
|
α : Type u_1
β : Type u_2
m : OuterMeasure α
s : Set α
h : s.Nonempty
⊢ ⊤ s = ⨅ (_ : s = ∅), 0
|
simp [h, h.ne_empty]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/OuterMeasure/Operations.lean
|
MeasureTheory.le_trim
|
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
s : Set α
hm : m ≤ m0
⊢ μ s ≤ (μ.trim hm) s
|
simp_rw [<a>MeasureTheory.Measure.trim</a>]
|
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
s : Set α
hm : m ≤ m0
⊢ μ s ≤ (μ.toMeasure ⋯) s
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Trim.lean
|
MeasureTheory.le_trim
|
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
s : Set α
hm : m ≤ m0
⊢ μ s ≤ (μ.toMeasure ⋯) s
|
exact @<a>MeasureTheory.le_toMeasure_apply</a> _ m _ _ _
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Trim.lean
|
dist_mul_self_right
|
𝓕 : Type u_1
α : Type u_2
E : Type u_3
F : Type u_4
inst✝¹ : SeminormedGroup E
inst✝ : SeminormedGroup F
s : Set E
a✝ a₁ a₂ b✝ b₁ b₂ : E
r r₁ r₂ : ℝ
a b : E
⊢ dist b (a * b) = ‖a‖
|
rw [← <a>dist_one_left</a>, ← <a>dist_mul_right</a> 1 a b, <a>one_mul</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Normed/Group/Uniform.lean
|
algebraicIndependent_sUnion_of_directed
|
ι : Type u_1
ι' : Type u_2
R : Type u_3
K : Type u_4
A : Type u_5
A' : Type u_6
A'' : Type u_7
V : Type u
V' : Type u_8
x : ι → A
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : CommRing A'
inst✝³ : CommRing A''
inst✝² : Algebra R A
inst✝¹ : Algebra R A'
inst✝ : Algebra R A''
a b : R
s : Set (Set A)
hsn : s.Nonempty
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val
⊢ AlgebraicIndependent R Subtype.val
|
letI : <a>Nonempty</a> s := <a>Set.Nonempty.to_subtype</a> hsn
|
ι : Type u_1
ι' : Type u_2
R : Type u_3
K : Type u_4
A : Type u_5
A' : Type u_6
A'' : Type u_7
V : Type u
V' : Type u_8
x : ι → A
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : CommRing A'
inst✝³ : CommRing A''
inst✝² : Algebra R A
inst✝¹ : Algebra R A'
inst✝ : Algebra R A''
a b : R
s : Set (Set A)
hsn : s.Nonempty
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val
this : Nonempty ↑s := Nonempty.to_subtype hsn
⊢ AlgebraicIndependent R Subtype.val
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/AlgebraicIndependent.lean
|
algebraicIndependent_sUnion_of_directed
|
ι : Type u_1
ι' : Type u_2
R : Type u_3
K : Type u_4
A : Type u_5
A' : Type u_6
A'' : Type u_7
V : Type u
V' : Type u_8
x : ι → A
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : CommRing A'
inst✝³ : CommRing A''
inst✝² : Algebra R A
inst✝¹ : Algebra R A'
inst✝ : Algebra R A''
a b : R
s : Set (Set A)
hsn : s.Nonempty
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val
this : Nonempty ↑s := Nonempty.to_subtype hsn
⊢ AlgebraicIndependent R Subtype.val
|
exact <a>algebraicIndependent_iUnion_of_directed</a> hs.directed_val (by simpa using h)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/AlgebraicIndependent.lean
|
algebraicIndependent_sUnion_of_directed
|
ι : Type u_1
ι' : Type u_2
R : Type u_3
K : Type u_4
A : Type u_5
A' : Type u_6
A'' : Type u_7
V : Type u
V' : Type u_8
x : ι → A
inst✝⁶ : CommRing R
inst✝⁵ : CommRing A
inst✝⁴ : CommRing A'
inst✝³ : CommRing A''
inst✝² : Algebra R A
inst✝¹ : Algebra R A'
inst✝ : Algebra R A''
a b : R
s : Set (Set A)
hsn : s.Nonempty
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ a ∈ s, AlgebraicIndependent R Subtype.val
this : Nonempty ↑s := Nonempty.to_subtype hsn
⊢ ∀ (i : ↑s), AlgebraicIndependent R Subtype.val
|
simpa using h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/AlgebraicIndependent.lean
|
unitInterval.qRight_zero_right
|
t : ↑I
⊢ ↑(qRight (t, 0)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1
|
simp only [<a>unitInterval.qRight</a>, <a>Set.Icc.coe_zero</a>, <a>add_zero</a>, <a>div_one</a>]
|
t : ↑I
⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
t : ↑I
⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1
|
split_ifs
|
case pos
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t
case neg
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
case pos
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t
|
rw [<a>Set.projIcc_of_mem</a> _ ((<a>unitInterval.mul_pos_mem_iff</a> <a>zero_lt_two</a>).2 _)]
|
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ ↑t ∈ Set.Icc 0 (1 / 2)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ ↑t ∈ Set.Icc 0 (1 / 2)
|
refine ⟨t.2.1, ?_⟩
|
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ ↑t ≤ 1 / 2
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ ↑t ≤ 1 / 2
|
tauto
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
case neg
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1
|
rw [(<a>Set.projIcc_eq_right</a> _).2]
|
case neg
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 1 ≤ 2 * ↑t
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 0 < 1
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
case neg
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 1 ≤ 2 * ↑t
|
linarith
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
unitInterval.qRight_zero_right
|
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 0 < 1
|
exact <a>zero_lt_one</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Homotopy/HSpaces.lean
|
OrderIso.isLUB_preimage
|
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ≃o β
s : Set β
x : α
⊢ IsLUB (⇑f ⁻¹' s) x ↔ IsLUB s (f x)
|
rw [← f.symm_symm, ← <a>OrderIso.image_eq_preimage</a>, <a>OrderIso.isLUB_image</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/Bounds/OrderIso.lean
|
SzemerediRegularity.hundred_le_m
|
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Fintype α
P : Finpartition univ
u : Finset α
ε : ℝ
inst✝ : Nonempty α
hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α
hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5
hε : ε ≤ 1
⊢ 0 ≤ 100
|
norm_num
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
|
SzemerediRegularity.hundred_le_m
|
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Fintype α
P : Finpartition univ
u : Finset α
ε : ℝ
inst✝ : Nonempty α
hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α
hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5
hε : ε ≤ 1
⊢ 0 < ε ^ 5
|
sz_positivity
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
|
SzemerediRegularity.hundred_le_m
|
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Fintype α
P : Finpartition univ
u : Finset α
ε : ℝ
inst✝ : Nonempty α
hPα : P.parts.card * 16 ^ P.parts.card ≤ Fintype.card α
hPε : 100 ≤ 4 ^ P.parts.card * ε ^ 5
hε : ε ≤ 1
⊢ 0 ≤ ε
|
sz_positivity
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
⊢ Nonempty (G →g F)
|
cases <a>nonempty_fintype</a> W
|
case intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
⊢ Nonempty (G →g F)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
⊢ Nonempty (G →g F)
|
haveI : ∀ G' : G.Finsubgraphᵒᵖ, <a>Nonempty</a> ((<a>SimpleGraph.finsubgraphHomFunctor</a> G F).<a>Prefunctor.obj</a> G') := fun G' => ⟨h G'.unop G'.unop.property⟩
|
case intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
⊢ Nonempty (G →g F)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
⊢ Nonempty (G →g F)
|
haveI : ∀ G' : G.Finsubgraphᵒᵖ, <a>Fintype</a> ((<a>SimpleGraph.finsubgraphHomFunctor</a> G F).<a>Prefunctor.obj</a> G') := by intro G' haveI : <a>Fintype</a> (G'.unop.val.verts : Type u) := G'.unop.property.fintype haveI : <a>Fintype</a> (↥G'.unop.val.verts → W) := by classical exact <a>Pi.fintype</a> exact <a>Fintype.ofInjective</a> (fun f => f.toFun) <a>RelHom.coe_fn_injective</a>
|
case intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
⊢ Nonempty (G →g F)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
⊢ Nonempty (G →g F)
|
obtain ⟨u, hu⟩ := <a>nonempty_sections_of_finite_inverse_system</a> (<a>SimpleGraph.finsubgraphHomFunctor</a> G F)
|
case intro.intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
⊢ Nonempty (G →g F)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
⊢ Nonempty (G →g F)
|
refine ⟨⟨fun v => ?_, ?_⟩⟩
|
case intro.intro.refine_1
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v : V
⊢ W
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
⊢ ∀ {a b : V}, G.Adj a b → F.Adj ((fun v => ?m.17533 v) a) ((fun v => ?m.17533 v) b)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
⊢ (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
|
intro G'
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
|
haveI : <a>Fintype</a> (G'.unop.val.verts : Type u) := G'.unop.property.fintype
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
this : Fintype ↑(↑G'.unop).verts
⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
this : Fintype ↑(↑G'.unop).verts
⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
|
haveI : <a>Fintype</a> (↥G'.unop.val.verts → W) := by classical exact <a>Pi.fintype</a>
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝¹ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
this✝ : Fintype ↑(↑G'.unop).verts
this : Fintype (↑(↑G'.unop).verts → W)
⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝¹ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
this✝ : Fintype ↑(↑G'.unop).verts
this : Fintype (↑(↑G'.unop).verts → W)
⊢ Fintype ((G.finsubgraphHomFunctor F).obj G')
|
exact <a>Fintype.ofInjective</a> (fun f => f.toFun) <a>RelHom.coe_fn_injective</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
this : Fintype ↑(↑G'.unop).verts
⊢ Fintype (↑(↑G'.unop).verts → W)
|
classical exact <a>Pi.fintype</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
G' : G.Finsubgraphᵒᵖ
this : Fintype ↑(↑G'.unop).verts
⊢ Fintype (↑(↑G'.unop).verts → W)
|
exact <a>Pi.fintype</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_1
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v : V
⊢ W
|
exact (u (<a>Opposite.op</a> (<a>SimpleGraph.singletonFinsubgraph</a> v))).<a>RelHom.toFun</a> ⟨v, by unfold <a>SimpleGraph.singletonFinsubgraph</a> simp⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v : V
⊢ v ∈ (↑{ unop := singletonFinsubgraph v }.unop).verts
|
unfold <a>SimpleGraph.singletonFinsubgraph</a>
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v : V
⊢ v ∈ (↑{ unop := ⟨G.singletonSubgraph v, ⋯⟩ }.unop).verts
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v : V
⊢ v ∈ (↑{ unop := ⟨G.singletonSubgraph v, ⋯⟩ }.unop).verts
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
⊢ ∀ {a b : V},
G.Adj a b →
F.Adj ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) a)
((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) b)
|
intro v v' e
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
⊢ F.Adj ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v)
((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v')
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
⊢ F.Adj ((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v)
((fun v => (u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) v')
|
simp only
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
|
have hv : <a>Opposite.op</a> (<a>SimpleGraph.finsubgraphOfAdj</a> e) ⟶ <a>Opposite.op</a> (<a>SimpleGraph.singletonFinsubgraph</a> v) := <a>Quiver.Hom.op</a> (<a>CategoryTheory.homOfLE</a> <a>SimpleGraph.singletonFinsubgraph_le_adj_left</a>)
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
|
have hv' : <a>Opposite.op</a> (<a>SimpleGraph.finsubgraphOfAdj</a> e) ⟶ <a>Opposite.op</a> (<a>SimpleGraph.singletonFinsubgraph</a> v') := <a>Quiver.Hom.op</a> (<a>CategoryTheory.homOfLE</a> <a>SimpleGraph.singletonFinsubgraph_le_adj_right</a>)
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' }
⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' }
⊢ F.Adj ((u { unop := singletonFinsubgraph v }).toFun ⟨v, ⋯⟩) ((u { unop := singletonFinsubgraph v' }).toFun ⟨v', ⋯⟩)
|
rw [← hu hv, ← hu hv']
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' }
⊢ F.Adj (((G.finsubgraphHomFunctor F).map hv (u { unop := finsubgraphOfAdj e })).toFun ⟨v, ⋯⟩)
(((G.finsubgraphHomFunctor F).map hv' (u { unop := finsubgraphOfAdj e })).toFun ⟨v', ⋯⟩)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' }
⊢ F.Adj (((G.finsubgraphHomFunctor F).map hv (u { unop := finsubgraphOfAdj e })).toFun ⟨v, ⋯⟩)
(((G.finsubgraphHomFunctor F).map hv' (u { unop := finsubgraphOfAdj e })).toFun ⟨v', ⋯⟩)
|
refine <a>SimpleGraph.Hom.map_adj</a> (u (<a>Opposite.op</a> (<a>SimpleGraph.finsubgraphOfAdj</a> e))) ?_
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' }
⊢ (↑{ unop := finsubgraphOfAdj e }.unop).coe.Adj ⟨v, ⋯⟩ ⟨v', ⋯⟩
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom
|
case intro.intro.refine_2
V : Type u
W : Type v
G : SimpleGraph V
F : SimpleGraph W
inst✝ : Finite W
h : (G' : G.Subgraph) → G'.verts.Finite → G'.coe →g F
val✝ : Fintype W
this✝ : ∀ (G' : G.Finsubgraphᵒᵖ), Nonempty ((G.finsubgraphHomFunctor F).obj G')
this : (G' : G.Finsubgraphᵒᵖ) → Fintype ((G.finsubgraphHomFunctor F).obj G')
u : (j : G.Finsubgraphᵒᵖ) → (G.finsubgraphHomFunctor F).obj j
hu : u ∈ (G.finsubgraphHomFunctor F).sections
v v' : V
e : G.Adj v v'
hv : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v }
hv' : { unop := finsubgraphOfAdj e } ⟶ { unop := singletonFinsubgraph v' }
⊢ (↑{ unop := finsubgraphOfAdj e }.unop).coe.Adj ⟨v, ⋯⟩ ⟨v', ⋯⟩
|
simp [<a>SimpleGraph.finsubgraphOfAdj</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Combinatorics/SimpleGraph/Finsubgraph.lean
|
Polynomial.rootSet_monomial
|
R : Type u
S : Type v
k : Type y
A : Type z
a✝ b : R
n✝ : ℕ
inst✝³ : Field R
p q : R[X]
inst✝² : CommRing S
inst✝¹ : IsDomain S
inst✝ : Algebra R S
n : ℕ
hn : n ≠ 0
a : R
ha : a ≠ 0
⊢ ((monomial n) a).rootSet S = {0}
|
classical rw [<a>Polynomial.rootSet</a>, <a>Polynomial.aroots_monomial</a> ha, <a>Multiset.toFinset_nsmul</a> _ _ hn, <a>Multiset.toFinset_singleton</a>, <a>Finset.coe_singleton</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/FieldDivision.lean
|
Polynomial.rootSet_monomial
|
R : Type u
S : Type v
k : Type y
A : Type z
a✝ b : R
n✝ : ℕ
inst✝³ : Field R
p q : R[X]
inst✝² : CommRing S
inst✝¹ : IsDomain S
inst✝ : Algebra R S
n : ℕ
hn : n ≠ 0
a : R
ha : a ≠ 0
⊢ ((monomial n) a).rootSet S = {0}
|
rw [<a>Polynomial.rootSet</a>, <a>Polynomial.aroots_monomial</a> ha, <a>Multiset.toFinset_nsmul</a> _ _ hn, <a>Multiset.toFinset_singleton</a>, <a>Finset.coe_singleton</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/FieldDivision.lean
|
fderivWithin_neg
|
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ fderivWithin 𝕜 (fun y => -f y) s x = -fderivWithin 𝕜 f s x
|
rw [<a>fderivWithin_zero_of_not_differentiableWithinAt</a> h, <a>fderivWithin_zero_of_not_differentiableWithinAt</a>, <a>neg_zero</a>]
|
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ ¬DifferentiableWithinAt 𝕜 (fun y => -f y) s x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/FDeriv/Add.lean
|
fderivWithin_neg
|
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ ¬DifferentiableWithinAt 𝕜 (fun y => -f y) s x
|
simpa
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/FDeriv/Add.lean
|
Set.Finite.exists_finset_coe
|
α : Type u
β : Type v
ι : Sort w
γ : Type x
s : Set α
h : s.Finite
⊢ ∃ s', ↑s' = s
|
cases h.nonempty_fintype
|
case intro
α : Type u
β : Type v
ι : Sort w
γ : Type x
s : Set α
h : s.Finite
val✝ : Fintype ↑s
⊢ ∃ s', ↑s' = s
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Finite.lean
|
Set.Finite.exists_finset_coe
|
case intro
α : Type u
β : Type v
ι : Sort w
γ : Type x
s : Set α
h : s.Finite
val✝ : Fintype ↑s
⊢ ∃ s', ↑s' = s
|
exact ⟨s.toFinset, s.coe_toFinset⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Finite.lean
|
continuousAt_jacobiTheta₂'
|
z τ : ℂ
hτ : 0 < τ.im
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
obtain ⟨T, hT, hτ'⟩ := <a>exists_between</a> hτ
|
case intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
obtain ⟨S, hz⟩ := <a>NoMaxOrder.exists_gt</a> |<a>Complex.im</a> z|
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
let V := {u | |<a>Complex.im</a> u| < S} ×ˢ {v | T < <a>Complex.im</a> v}
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
have hVo : <a>IsOpen</a> V := ((_root_.continuous_abs.comp <a>Complex.continuous_im</a>).<a>Continuous.isOpen_preimage</a> _ <a>isOpen_Iio</a>).<a>IsOpen.prod</a> (continuous_im.isOpen_preimage _ <a>isOpen_Ioi</a>)
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
⊢ ContinuousAt (fun p => jacobiTheta₂' p.1 p.2) (z, τ)
|
refine <a>ContinuousOn.continuousAt</a> ?_ (hVo.mem_nhds ⟨hz, hτ'⟩)
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
|
let u (n : ℤ) : ℝ := 2 * π * |n| * rexp (-π * (T * n ^ 2 - 2 * S * |n|))
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
|
have hu : <a>Summable</a> u := by simpa only [u, <a>mul_assoc</a>, <a>pow_one</a>] using (<a>summable_pow_mul_jacobiTheta₂_term_bound</a> S hT 1).<a>Summable.mul_left</a> (2 * π)
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
⊢ ContinuousOn (fun p => jacobiTheta₂' p.1 p.2) V
|
refine <a>continuousOn_tsum</a> (fun n ↦ ?_) hu (fun n ⟨z', τ'⟩ ⟨hz', hτ'⟩ ↦ ?_)
|
case intro.intro.intro.refine_1
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
⊢ ContinuousOn (fun p => jacobiTheta₂'_term n p.1 p.2) V
case intro.intro.intro.refine_2
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ'✝ : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
x✝¹ : ℂ × ℂ
z' τ' : ℂ
x✝ : (z', τ') ∈ V
hz' : (z', τ').1 ∈ {u | |u.im| < S}
hτ' : (z', τ').2 ∈ {v | T < v.im}
⊢ ‖jacobiTheta₂'_term n (z', τ').1 (z', τ').2‖ ≤ u n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
⊢ Summable u
|
simpa only [u, <a>mul_assoc</a>, <a>pow_one</a>] using (<a>summable_pow_mul_jacobiTheta₂_term_bound</a> S hT 1).<a>Summable.mul_left</a> (2 * π)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro.refine_1
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
⊢ ContinuousOn (fun p => jacobiTheta₂'_term n p.1 p.2) V
|
apply <a>Continuous.continuousOn</a>
|
case intro.intro.intro.refine_1.h
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
⊢ Continuous fun p => jacobiTheta₂'_term n p.1 p.2
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro.refine_1.h
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
⊢ Continuous fun p => jacobiTheta₂'_term n p.1 p.2
|
unfold <a>jacobiTheta₂'_term</a> <a>jacobiTheta₂_term</a>
|
case intro.intro.intro.refine_1.h
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
⊢ Continuous fun p => 2 * ↑π * I * ↑n * cexp (2 * ↑π * I * ↑n * p.1 + ↑π * I * ↑n ^ 2 * p.2)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro.refine_1.h
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ' : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
⊢ Continuous fun p => 2 * ↑π * I * ↑n * cexp (2 * ↑π * I * ↑n * p.1 + ↑π * I * ↑n ^ 2 * p.2)
|
fun_prop
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
continuousAt_jacobiTheta₂'
|
case intro.intro.intro.refine_2
z τ : ℂ
hτ : 0 < τ.im
T : ℝ
hT : 0 < T
hτ'✝ : T < τ.im
S : ℝ
hz : |z.im| < S
V : Set (ℂ × ℂ) := {u | |u.im| < S} ×ˢ {v | T < v.im}
hVo : IsOpen V
u : ℤ → ℝ := fun n => 2 * π * ↑|n| * rexp (-π * (T * ↑n ^ 2 - 2 * S * ↑|n|))
hu : Summable u
n : ℤ
x✝¹ : ℂ × ℂ
z' τ' : ℂ
x✝ : (z', τ') ∈ V
hz' : (z', τ').1 ∈ {u | |u.im| < S}
hτ' : (z', τ').2 ∈ {v | T < v.im}
⊢ ‖jacobiTheta₂'_term n (z', τ').1 (z', τ').2‖ ≤ u n
|
exact <a>norm_jacobiTheta₂'_term_le</a> hT (<a>le_of_lt</a> hz') (<a>le_of_lt</a> hτ') n
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
|
Ordinal.nadd_le_nadd_right
|
a✝ b c : Ordinal.{u}
h : b ≤ c
a : Ordinal.{u}
⊢ b ♯ a ≤ c ♯ a
|
rcases <a>lt_or_eq_of_le</a> h with (h | rfl)
|
case inl
a✝ b c : Ordinal.{u}
h✝ : b ≤ c
a : Ordinal.{u}
h : b < c
⊢ b ♯ a ≤ c ♯ a
case inr
a✝ b a : Ordinal.{u}
h : b ≤ b
⊢ b ♯ a ≤ b ♯ a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/Ordinal/NaturalOps.lean
|
Ordinal.nadd_le_nadd_right
|
case inl
a✝ b c : Ordinal.{u}
h✝ : b ≤ c
a : Ordinal.{u}
h : b < c
⊢ b ♯ a ≤ c ♯ a
|
exact (<a>Ordinal.nadd_lt_nadd_right</a> h a).<a>LT.lt.le</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/Ordinal/NaturalOps.lean
|
Ordinal.nadd_le_nadd_right
|
case inr
a✝ b a : Ordinal.{u}
h : b ≤ b
⊢ b ♯ a ≤ b ♯ a
|
exact <a>le_rfl</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/Ordinal/NaturalOps.lean
|
CategoryTheory.Limits.biprod.associator_inv_natural
|
J : Type w
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasZeroMorphisms C
D : Type uD
inst✝² : Category.{uD', uD} D
inst✝¹ : HasZeroMorphisms D
P Q : C
inst✝ : HasBinaryBiproducts C
U V W X Y Z : C
f : U ⟶ X
g : V ⟶ Y
h : W ⟶ Z
⊢ map f (map g h) ≫ (associator X Y Z).inv = (associator U V W).inv ≫ map (map f g) h
|
aesop_cat
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
|
WeakDual.CharacterSpace.isClosed
|
𝕜 : Type u_1
A : Type u_2
inst✝¹⁰ : CommRing 𝕜
inst✝⁹ : NoZeroDivisors 𝕜
inst✝⁸ : TopologicalSpace 𝕜
inst✝⁷ : ContinuousAdd 𝕜
inst✝⁶ : ContinuousConstSMul 𝕜 𝕜
inst✝⁵ : TopologicalSpace A
inst✝⁴ : Semiring A
inst✝³ : Algebra 𝕜 A
inst✝² : Nontrivial 𝕜
inst✝¹ : T2Space 𝕜
inst✝ : ContinuousMul 𝕜
⊢ IsClosed (characterSpace 𝕜 A)
|
rw [<a>WeakDual.CharacterSpace.eq_set_map_one_map_mul</a>, <a>Set.setOf_and</a>]
|
𝕜 : Type u_1
A : Type u_2
inst✝¹⁰ : CommRing 𝕜
inst✝⁹ : NoZeroDivisors 𝕜
inst✝⁸ : TopologicalSpace 𝕜
inst✝⁷ : ContinuousAdd 𝕜
inst✝⁶ : ContinuousConstSMul 𝕜 𝕜
inst✝⁵ : TopologicalSpace A
inst✝⁴ : Semiring A
inst✝³ : Algebra 𝕜 A
inst✝² : Nontrivial 𝕜
inst✝¹ : T2Space 𝕜
inst✝ : ContinuousMul 𝕜
⊢ IsClosed ({a | a 1 = 1} ∩ {a | ∀ (x y : A), a (x * y) = a x * a y})
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
|
WeakDual.CharacterSpace.isClosed
|
𝕜 : Type u_1
A : Type u_2
inst✝¹⁰ : CommRing 𝕜
inst✝⁹ : NoZeroDivisors 𝕜
inst✝⁸ : TopologicalSpace 𝕜
inst✝⁷ : ContinuousAdd 𝕜
inst✝⁶ : ContinuousConstSMul 𝕜 𝕜
inst✝⁵ : TopologicalSpace A
inst✝⁴ : Semiring A
inst✝³ : Algebra 𝕜 A
inst✝² : Nontrivial 𝕜
inst✝¹ : T2Space 𝕜
inst✝ : ContinuousMul 𝕜
⊢ IsClosed ({a | a 1 = 1} ∩ {a | ∀ (x y : A), a (x * y) = a x * a y})
|
refine <a>IsClosed.inter</a> (<a>isClosed_eq</a> (<a>WeakDual.eval_continuous</a> _) <a>continuous_const</a>) ?_
|
𝕜 : Type u_1
A : Type u_2
inst✝¹⁰ : CommRing 𝕜
inst✝⁹ : NoZeroDivisors 𝕜
inst✝⁸ : TopologicalSpace 𝕜
inst✝⁷ : ContinuousAdd 𝕜
inst✝⁶ : ContinuousConstSMul 𝕜 𝕜
inst✝⁵ : TopologicalSpace A
inst✝⁴ : Semiring A
inst✝³ : Algebra 𝕜 A
inst✝² : Nontrivial 𝕜
inst✝¹ : T2Space 𝕜
inst✝ : ContinuousMul 𝕜
⊢ IsClosed {a | ∀ (x y : A), a (x * y) = a x * a y}
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
|
WeakDual.CharacterSpace.isClosed
|
𝕜 : Type u_1
A : Type u_2
inst✝¹⁰ : CommRing 𝕜
inst✝⁹ : NoZeroDivisors 𝕜
inst✝⁸ : TopologicalSpace 𝕜
inst✝⁷ : ContinuousAdd 𝕜
inst✝⁶ : ContinuousConstSMul 𝕜 𝕜
inst✝⁵ : TopologicalSpace A
inst✝⁴ : Semiring A
inst✝³ : Algebra 𝕜 A
inst✝² : Nontrivial 𝕜
inst✝¹ : T2Space 𝕜
inst✝ : ContinuousMul 𝕜
⊢ IsClosed {a | ∀ (x y : A), a (x * y) = a x * a y}
|
simpa only [(<a>WeakDual.CharacterSpace.union_zero</a> 𝕜 A).<a>Eq.symm</a>] using <a>WeakDual.CharacterSpace.union_zero_isClosed</a> _ _
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Algebra/Module/CharacterSpace.lean
|
StrictMono.strictMono_iterate_of_lt_map
|
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : StrictMono f
hx : x < f x
n : ℕ
⊢ f^[n] x < f^[n + 1] x
|
rw [<a>Function.iterate_succ_apply</a>]
|
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : StrictMono f
hx : x < f x
n : ℕ
⊢ f^[n] x < f^[n] (f x)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/Iterate.lean
|
StrictMono.strictMono_iterate_of_lt_map
|
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : StrictMono f
hx : x < f x
n : ℕ
⊢ f^[n] x < f^[n] (f x)
|
exact hf.iterate n hx
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/Iterate.lean
|
isSimpleModule_iff_isAtom
|
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁵ : Ring R
inst✝⁴ : Ring S
M : Type u_4
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R ↥m ↔ IsAtom m
|
rw [← <a>Set.isSimpleOrder_Iic_iff_isAtom</a>]
|
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁵ : Ring R
inst✝⁴ : Ring S
M : Type u_4
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R ↥m ↔ IsSimpleOrder ↑(Set.Iic m)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/SimpleModule.lean
|
isSimpleModule_iff_isAtom
|
ι : Type u_1
R : Type u_2
S : Type u_3
inst✝⁵ : Ring R
inst✝⁴ : Ring S
M : Type u_4
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_5
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R ↥m ↔ IsSimpleOrder ↑(Set.Iic m)
|
exact m.mapIic.isSimpleOrder_iff
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/SimpleModule.lean
|
ContinuousLinearEquiv.contDiff_comp_iff
|
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ ContDiff 𝕜 n (f ∘ ⇑e) ↔ ContDiff 𝕜 n f
|
rw [← <a>contDiffOn_univ</a>, ← <a>contDiffOn_univ</a>, ← <a>Set.preimage_univ</a>]
|
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ ContDiffOn 𝕜 n (f ∘ ⇑e) (?m.417021 ⁻¹' univ) ↔ ContDiffOn 𝕜 n f univ
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ Type ?u.417017
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ G → ?m.417020
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
|
ContinuousLinearEquiv.contDiff_comp_iff
|
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ ContDiffOn 𝕜 n (f ∘ ⇑e) (?m.417021 ⁻¹' univ) ↔ ContDiffOn 𝕜 n f univ
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ Type ?u.417017
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
D : Type uD
inst✝⁹ : NormedAddCommGroup D
inst✝⁸ : NormedSpace 𝕜 D
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type u_2
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
b : E × F → G
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
e : G ≃L[𝕜] E
⊢ G → ?m.417020
|
exact e.contDiffOn_comp_iff
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ ∃ x, IsSelfAdjoint x ∧ QuasispectrumRestricts x ⇑ContinuousMap.realToNNReal ∧ x * x = a
|
use <a>cfcₙ</a> <a>Real.sqrt</a> a, <a>cfcₙ_predicate</a> <a>Real.sqrt</a> a
|
case right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal ∧ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
case right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal ∧ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
|
constructor
|
case right.left
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal
case right.right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
case right.left
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ QuasispectrumRestricts (cfcₙ Real.sqrt a) ⇑ContinuousMap.realToNNReal
|
simpa only [<a>QuasispectrumRestricts.nnreal_iff</a>, <a>cfcₙ_map_quasispectrum</a> <a>Real.sqrt</a> a, <a>Set.mem_image</a>, <a>forall_exists_index</a>, <a>and_imp</a>, <a>forall_apply_eq_imp_iff₂</a>] using fun x _ ↦ <a>Real.sqrt_nonneg</a> x
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
case right.right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ cfcₙ Real.sqrt a * cfcₙ Real.sqrt a = a
|
rw [← <a>cfcₙ_mul</a> ..]
|
case right.right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ cfcₙ (fun x => √x * √x) a = a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
case right.right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ cfcₙ (fun x => √x * √x) a = a
|
nth_rw 2 [← <a>cfcₙ_id</a> ℝ a]
|
case right.right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ cfcₙ (fun x => √x * √x) a = cfcₙ id a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
case right.right
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
⊢ cfcₙ (fun x => √x * √x) a = cfcₙ id a
|
apply <a>cfcₙ_congr</a> fun x hx ↦ ?_
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
x : ℝ
hx : x ∈ σₙ ℝ a
⊢ √x * √x = id x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : QuasispectrumRestricts a ⇑ContinuousMap.realToNNReal
x : ℝ
hx : x ∈ σₙ ℝ a
⊢ √x * √x = id x
|
rw [<a>QuasispectrumRestricts.nnreal_iff</a>] at ha₂
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x
x : ℝ
hx : x ∈ σₙ ℝ a
⊢ √x * √x = id x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x
x : ℝ
hx : x ∈ σₙ ℝ a
⊢ √x * √x = id x
|
apply ha₂ x at hx
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x
x : ℝ
hx : 0 ≤ x
⊢ √x * √x = id x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CFC.exists_sqrt_of_isSelfAdjoint_of_quasispectrumRestricts
|
A : Type u_1
inst✝⁶ : NonUnitalRing A
inst✝⁵ : StarRing A
inst✝⁴ : TopologicalSpace A
inst✝³ : Module ℝ A
inst✝² : IsScalarTower ℝ A A
inst✝¹ : SMulCommClass ℝ A A
inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint
a : A
ha₁ : IsSelfAdjoint a
ha₂ : ∀ x ∈ σₙ ℝ a, 0 ≤ x
x : ℝ
hx : 0 ≤ x
⊢ √x * √x = id x
|
simp [← <a>sq</a>, <a>Real.sq_sqrt</a> hx]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/NormedSpace/Star/ContinuousFunctionalCalculus/Instances.lean
|
CategoryTheory.Abelian.tfae_mono
|
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
tfae_have 3 → 2
|
case tfae_3_to_2
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
⊢ Exact 0 f → kernel.ι f = 0
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
tfae_have 1 → 3
|
case tfae_1_to_3
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
⊢ Mono f → Exact 0 f
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
tfae_1_to_3 : Mono f → Exact 0 f
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
tfae_1_to_3 : Mono f → Exact 0 f
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
tfae_have 2 → 1
|
case tfae_2_to_1
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
tfae_1_to_3 : Mono f → Exact 0 f
⊢ kernel.ι f = 0 → Mono f
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
tfae_1_to_3 : Mono f → Exact 0 f
tfae_2_to_1 : kernel.ι f = 0 → Mono f
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
tfae_1_to_3 : Mono f → Exact 0 f
tfae_2_to_1 : kernel.ι f = 0 → Mono f
⊢ [Mono f, kernel.ι f = 0, Exact 0 f].TFAE
|
tfae_finish
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
case tfae_3_to_2
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
⊢ Exact 0 f → kernel.ι f = 0
|
exact <a>CategoryTheory.kernel_ι_eq_zero_of_exact_zero_left</a> Z
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
case tfae_1_to_3
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
⊢ Mono f → Exact 0 f
|
intros
|
case tfae_1_to_3
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
a✝ : Mono f
⊢ Exact 0 f
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
case tfae_1_to_3
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
a✝ : Mono f
⊢ Exact 0 f
|
exact <a>CategoryTheory.exact_zero_left_of_mono</a> Z
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
CategoryTheory.Abelian.tfae_mono
|
case tfae_2_to_1
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
inst✝ : Abelian C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
tfae_3_to_2 : Exact 0 f → kernel.ι f = 0
tfae_1_to_3 : Mono f → Exact 0 f
⊢ kernel.ι f = 0 → Mono f
|
exact <a>CategoryTheory.Abelian.mono_of_kernel_ι_eq_zero</a> _
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Abelian/Exact.lean
|
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
|
R : Type u
S : Type v
T : Type w
ι : Type y
a b : R
m n : ℕ
inst✝¹ : Semiring R
p q r : R[X]
inst✝ : Semiring S
f✝ f : R →+* S
hf : f p.leadingCoeff ≠ 0
⊢ p.degree ≤ (map f p).degree
|
have hp0 : p ≠ 0 := leadingCoeff_ne_zero.mp fun hp0 => hf (<a>trans</a> (<a>congr_arg</a> _ hp0) f.map_zero)
|
R : Type u
S : Type v
T : Type w
ι : Type y
a b : R
m n : ℕ
inst✝¹ : Semiring R
p q r : R[X]
inst✝ : Semiring S
f✝ f : R →+* S
hf : f p.leadingCoeff ≠ 0
hp0 : p ≠ 0
⊢ p.degree ≤ (map f p).degree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/Eval.lean
|
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
|
R : Type u
S : Type v
T : Type w
ι : Type y
a b : R
m n : ℕ
inst✝¹ : Semiring R
p q r : R[X]
inst✝ : Semiring S
f✝ f : R →+* S
hf : f p.leadingCoeff ≠ 0
hp0 : p ≠ 0
⊢ p.degree ≤ (map f p).degree
|
rw [<a>Polynomial.degree_eq_natDegree</a> hp0]
|
R : Type u
S : Type v
T : Type w
ι : Type y
a b : R
m n : ℕ
inst✝¹ : Semiring R
p q r : R[X]
inst✝ : Semiring S
f✝ f : R →+* S
hf : f p.leadingCoeff ≠ 0
hp0 : p ≠ 0
⊢ ↑p.natDegree ≤ (map f p).degree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/Eval.lean
|
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
|
R : Type u
S : Type v
T : Type w
ι : Type y
a b : R
m n : ℕ
inst✝¹ : Semiring R
p q r : R[X]
inst✝ : Semiring S
f✝ f : R →+* S
hf : f p.leadingCoeff ≠ 0
hp0 : p ≠ 0
⊢ ↑p.natDegree ≤ (map f p).degree
|
refine <a>Polynomial.le_degree_of_ne_zero</a> ?_
|
R : Type u
S : Type v
T : Type w
ι : Type y
a b : R
m n : ℕ
inst✝¹ : Semiring R
p q r : R[X]
inst✝ : Semiring S
f✝ f : R →+* S
hf : f p.leadingCoeff ≠ 0
hp0 : p ≠ 0
⊢ (map f p).coeff p.natDegree ≠ 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/Eval.lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.