full_name
stringlengths 3
121
| state
stringlengths 7
9.32k
| tactic
stringlengths 3
5.35k
| target_state
stringlengths 7
19k
| url
stringclasses 1
value | commit
stringclasses 1
value | file_path
stringlengths 21
79
|
---|---|---|---|---|---|---|
measurable_inv_iff
|
α✝ : Type u_1
G✝ : Type u_2
α : Type u_3
inst✝⁵ : Inv G✝
inst✝⁴ : MeasurableSpace G✝
inst✝³ : MeasurableInv G✝
m : MeasurableSpace α
f✝ : α → G✝
μ : Measure α
G : Type u_4
inst✝² : Group G
inst✝¹ : MeasurableSpace G
inst✝ : MeasurableInv G
f : α → G
h : Measurable fun x => (f x)⁻¹
⊢ Measurable f
|
simpa only [<a>inv_inv</a>] using h.inv
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Group/Arithmetic.lean
|
CategoryTheory.PreGaloisCategory.subobj_selfProd_trans
|
C : Type u₁
inst✝⁴ : Category.{u₂, u₁} C
inst✝³ : GaloisCategory C
F : C ⥤ FintypeCat
inst✝² : FiberFunctor F
X A : C
inst✝¹ : IsConnected A
u : A ⟶ CategoryTheory.PreGaloisCategory.selfProd F X
inst✝ : Mono u
a : ↑(F.obj A)
h : F.map u a = CategoryTheory.PreGaloisCategory.mkSelfProdFib F X
b : ↑(F.obj A)
⊢ ∃ f, F.map f.hom b = a
|
apply <a>CategoryTheory.PreGaloisCategory.connected_component_unique</a> F b a u (<a>_private.Mathlib.CategoryTheory.Galois.Decomposition.0.CategoryTheory.PreGaloisCategory.selfProdPermIncl</a> h b)
|
case h
C : Type u₁
inst✝⁴ : Category.{u₂, u₁} C
inst✝³ : GaloisCategory C
F : C ⥤ FintypeCat
inst✝² : FiberFunctor F
X A : C
inst✝¹ : IsConnected A
u : A ⟶ CategoryTheory.PreGaloisCategory.selfProd F X
inst✝ : Mono u
a : ↑(F.obj A)
h : F.map u a = CategoryTheory.PreGaloisCategory.mkSelfProdFib F X
b : ↑(F.obj A)
⊢ F.map u b = F.map (CategoryTheory.PreGaloisCategory.selfProdPermIncl h b) a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Galois/Decomposition.lean
|
CategoryTheory.PreGaloisCategory.subobj_selfProd_trans
|
case h
C : Type u₁
inst✝⁴ : Category.{u₂, u₁} C
inst✝³ : GaloisCategory C
F : C ⥤ FintypeCat
inst✝² : FiberFunctor F
X A : C
inst✝¹ : IsConnected A
u : A ⟶ CategoryTheory.PreGaloisCategory.selfProd F X
inst✝ : Mono u
a : ↑(F.obj A)
h : F.map u a = CategoryTheory.PreGaloisCategory.mkSelfProdFib F X
b : ↑(F.obj A)
⊢ F.map u b = F.map (CategoryTheory.PreGaloisCategory.selfProdPermIncl h b) a
|
exact <a>_private.Mathlib.CategoryTheory.Galois.Decomposition.0.CategoryTheory.PreGaloisCategory.selfProdTermIncl_fib_eq</a> h b
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Galois/Decomposition.lean
|
dvd_sub
|
α : Type u_1
β : Type u_2
inst✝ : NonUnitalRing α
a b c : α
h₁ : a ∣ b
h₂ : a ∣ c
⊢ a ∣ b - c
|
simpa only [← <a>sub_eq_add_neg</a>] using h₁.add h₂.neg_right
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Ring/Divisibility/Basic.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
z τ : ℂ
⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
|
rcases <a>eq_or_ne</a> τ 0 with rfl | hτ
|
case inl
z : ℂ
⊢ jacobiTheta₂' z 0 = -2 * ↑π / (-I * 0) ^ (3 / 2) * jacobiTheta₂'' z (-1 / 0)
case inr
z τ : ℂ
hτ : τ ≠ 0
⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inr
z τ : ℂ
hτ : τ ≠ 0
⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
|
have aux1 : (-2 * π : ℂ) / (2 * π * <a>Complex.I</a>) = <a>Complex.I</a> := by rw [<a>div_eq_iff</a> <a>Complex.two_pi_I_ne_zero</a>, <a>mul_comm</a> <a>Complex.I</a>, <a>mul_assoc</a> _ <a>Complex.I</a> <a>Complex.I</a>, <a>Complex.I_mul_I</a>, <a>neg_mul</a>, <a>mul_neg</a>, <a>mul_one</a>]
|
case inr
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inr
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ jacobiTheta₂' z τ = -2 * ↑π / (-I * τ) ^ (3 / 2) * jacobiTheta₂'' z (-1 / τ)
|
rw [<a>jacobiTheta₂'_functional_equation</a>, ← <a>mul_one_div</a> _ τ, <a>mul_right_comm</a> _ (cexp _), (by rw [<a>Complex.cpow_one</a>, ← <a>div_div</a>, <a>div_self</a> (neg_ne_zero.mpr <a>Complex.I_ne_zero</a>)] : 1 / τ = -I / (-I * τ) ^ (1 : ℂ)), <a>div_mul_div_comm</a>, ← <a>Complex.cpow_add</a> _ _ (<a>mul_ne_zero</a> (neg_ne_zero.mpr <a>Complex.I_ne_zero</a>) hτ), ← <a>div_mul_eq_mul_div</a>, (by norm_num : (1 / 2 + 1 : ℂ) = 3 / 2), <a>mul_assoc</a> (1 / _), <a>mul_assoc</a> (1 / _), ← <a>mul_one_div</a> (-2 * π : ℂ), <a>mul_comm</a> _ (1 / _), <a>mul_assoc</a> (1 / _)]
|
case inr
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ 1 / (-I * τ) ^ (3 / 2) *
(-I * cexp (-↑π * I * z ^ 2 / τ) *
(jacobiTheta₂' (z / τ) (-1 / τ) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-1 / τ))) =
1 / (-I * τ) ^ (3 / 2) * (-2 * ↑π * jacobiTheta₂'' z (-1 / τ))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inr
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ 1 / (-I * τ) ^ (3 / 2) *
(-I * cexp (-↑π * I * z ^ 2 / τ) *
(jacobiTheta₂' (z / τ) (-1 / τ) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-1 / τ))) =
1 / (-I * τ) ^ (3 / 2) * (-2 * ↑π * jacobiTheta₂'' z (-1 / τ))
|
congr 1
|
case inr.e_a
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ -I * cexp (-↑π * I * z ^ 2 / τ) * (jacobiTheta₂' (z / τ) (-1 / τ) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-1 / τ)) =
-2 * ↑π * jacobiTheta₂'' z (-1 / τ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inr.e_a
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ -I * cexp (-↑π * I * z ^ 2 / τ) * (jacobiTheta₂' (z / τ) (-1 / τ) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-1 / τ)) =
-2 * ↑π * jacobiTheta₂'' z (-1 / τ)
|
rw [<a>HurwitzZeta.jacobiTheta₂''</a>, <a>div_add'</a> _ _ _ <a>Complex.two_pi_I_ne_zero</a>, ← <a>mul_div_assoc</a>, ← <a>mul_div_assoc</a>, ← <a>div_mul_eq_mul_div</a> (-2 * π : ℂ), <a>mul_assoc</a>, aux1, <a>mul_div</a> z (-1), <a>mul_neg_one</a>, <a>neg_div</a> τ z, <a>jacobiTheta₂_neg_left</a>, <a>jacobiTheta₂'_neg_left</a>, <a>neg_mul</a>, ← <a>mul_neg</a>, ← <a>mul_neg</a>, <a>mul_div</a>, <a>mul_neg_one</a>, <a>neg_div</a>, <a>neg_mul</a>, <a>neg_mul</a>, <a>neg_div</a>]
|
case inr.e_a
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ I *
(cexp (-(↑π * I * z ^ 2 / τ)) *
-(jacobiTheta₂' (z / τ) (-(1 / τ)) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-(1 / τ)))) =
I *
(cexp (-(↑π * I * z ^ 2 / τ)) *
(-jacobiTheta₂' (z / τ) (-(1 / τ)) + z * jacobiTheta₂ (z / τ) (-(1 / τ)) * (2 * ↑π * I)))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inr.e_a
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ I *
(cexp (-(↑π * I * z ^ 2 / τ)) *
-(jacobiTheta₂' (z / τ) (-(1 / τ)) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-(1 / τ)))) =
I *
(cexp (-(↑π * I * z ^ 2 / τ)) *
(-jacobiTheta₂' (z / τ) (-(1 / τ)) + z * jacobiTheta₂ (z / τ) (-(1 / τ)) * (2 * ↑π * I)))
|
congr 2
|
case inr.e_a.e_a.e_a
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ -(jacobiTheta₂' (z / τ) (-(1 / τ)) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-(1 / τ))) =
-jacobiTheta₂' (z / τ) (-(1 / τ)) + z * jacobiTheta₂ (z / τ) (-(1 / τ)) * (2 * ↑π * I)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inr.e_a.e_a.e_a
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ -(jacobiTheta₂' (z / τ) (-(1 / τ)) - 2 * ↑π * I * z * jacobiTheta₂ (z / τ) (-(1 / τ))) =
-jacobiTheta₂' (z / τ) (-(1 / τ)) + z * jacobiTheta₂ (z / τ) (-(1 / τ)) * (2 * ↑π * I)
|
rw [<a>neg_sub</a>, ← <a>sub_eq_neg_add</a>, <a>mul_comm</a> _ (_ * <a>Complex.I</a>), ← <a>mul_assoc</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
case inl
z : ℂ
⊢ jacobiTheta₂' z 0 = -2 * ↑π / (-I * 0) ^ (3 / 2) * jacobiTheta₂'' z (-1 / 0)
|
rw [<a>jacobiTheta₂'_undef</a> _ (by simp), <a>MulZeroClass.mul_zero</a>, <a>Complex.zero_cpow</a> (by norm_num), <a>div_zero</a>, <a>MulZeroClass.zero_mul</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
z : ℂ
⊢ im 0 ≤ 0
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
z : ℂ
⊢ 3 / 2 ≠ 0
|
norm_num
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
z τ : ℂ
hτ : τ ≠ 0
⊢ -2 * ↑π / (2 * ↑π * I) = I
|
rw [<a>div_eq_iff</a> <a>Complex.two_pi_I_ne_zero</a>, <a>mul_comm</a> <a>Complex.I</a>, <a>mul_assoc</a> _ <a>Complex.I</a> <a>Complex.I</a>, <a>Complex.I_mul_I</a>, <a>neg_mul</a>, <a>mul_neg</a>, <a>mul_one</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ 1 / τ = -I / (-I * τ) ^ 1
|
rw [<a>Complex.cpow_one</a>, ← <a>div_div</a>, <a>div_self</a> (neg_ne_zero.mpr <a>Complex.I_ne_zero</a>)]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
HurwitzZeta.jacobiTheta₂'_functional_equation'
|
z τ : ℂ
hτ : τ ≠ 0
aux1 : -2 * ↑π / (2 * ↑π * I) = I
⊢ 1 / 2 + 1 = 3 / 2
|
norm_num
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
multiplicity_eq_zero_of_coprime
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : multiplicity p a ≤ multiplicity p b
hab : a.Coprime b
⊢ multiplicity p a = 0
|
rw [<a>multiplicity.multiplicity_le_multiplicity_iff</a>] at hle
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
⊢ multiplicity p a = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Multiplicity.lean
|
multiplicity_eq_zero_of_coprime
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
⊢ multiplicity p a = 0
|
rw [← <a>nonpos_iff_eq_zero</a>, ← <a>not_lt</a>, <a>PartENat.pos_iff_one_le</a>, ← <a>Nat.cast_one</a>, ← <a>multiplicity.pow_dvd_iff_le_multiplicity</a>]
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
⊢ ¬p ^ 1 ∣ a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Multiplicity.lean
|
multiplicity_eq_zero_of_coprime
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
⊢ ¬p ^ 1 ∣ a
|
intro h
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
h : p ^ 1 ∣ a
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Multiplicity.lean
|
multiplicity_eq_zero_of_coprime
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
h : p ^ 1 ∣ a
⊢ False
|
have := <a>Nat.dvd_gcd</a> h (hle _ h)
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
h : p ^ 1 ∣ a
this : p ^ 1 ∣ a.gcd b
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Multiplicity.lean
|
multiplicity_eq_zero_of_coprime
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
h : p ^ 1 ∣ a
this : p ^ 1 ∣ a.gcd b
⊢ False
|
rw [<a>Nat.Coprime.gcd_eq_one</a> hab, <a>Nat.dvd_one</a>, <a>pow_one</a>] at this
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
h : p ^ 1 ∣ a
this : p = 1
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Multiplicity.lean
|
multiplicity_eq_zero_of_coprime
|
α : Type u_1
β : Type u_2
p a b : ℕ
hp : p ≠ 1
hle : ∀ (n : ℕ), p ^ n ∣ a → p ^ n ∣ b
hab : a.Coprime b
h : p ^ 1 ∣ a
this : p = 1
⊢ False
|
exact hp this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Multiplicity.lean
|
toAdd_multiset_sum
|
ι : Type u_1
κ : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset (Multiplicative α)
⊢ toAdd s.prod = (Multiset.map (⇑toAdd) s).sum
|
simp [<a>Multiplicative.toAdd</a>, <a>Multiplicative.ofAdd</a>]
|
ι : Type u_1
κ : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset (Multiplicative α)
⊢ s.prod = s.sum
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/BigOperators/Group/Finset.lean
|
toAdd_multiset_sum
|
ι : Type u_1
κ : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset (Multiplicative α)
⊢ s.prod = s.sum
|
rfl
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/BigOperators/Group/Finset.lean
|
WeierstrassCurve.Affine.evalEval_polynomialY_zero
|
R : Type u
inst✝ : CommRing R
W : Affine R
⊢ evalEval 0 0 W.polynomialY = W.a₃
|
simp only [<a>WeierstrassCurve.Affine.evalEval_polynomialY</a>, <a>zero_add</a>, <a>MulZeroClass.mul_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean
|
Set.iUnion_Ico_eq_Iio_self_iff
|
ι : Sort u
α : Type v
β : Type w
inst✝ : LinearOrder α
a₁ a₂ b₁ b₂ : α
f : ι → α
a : α
⊢ ⋃ i, Ico (f i) a = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x
|
simp [← <a>Set.Ici_inter_Iio</a>, ← <a>Set.iUnion_inter</a>, <a>Set.subset_def</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/Interval/Set/Disjoint.lean
|
dist_vsub_cancel_left
|
α : Type u_1
V : Type u_2
P : Type u_3
W : Type u_4
Q : Type u_5
inst✝⁵ : SeminormedAddCommGroup V
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor V P
inst✝² : NormedAddCommGroup W
inst✝¹ : MetricSpace Q
inst✝ : NormedAddTorsor W Q
x y z : P
⊢ dist (x -ᵥ y) (x -ᵥ z) = dist y z
|
rw [<a>dist_eq_norm</a>, <a>vsub_sub_vsub_cancel_left</a>, <a>dist_comm</a>, <a>dist_eq_norm_vsub</a> V]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Normed/Group/AddTorsor.lean
|
CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd
|
C : Type u_1
inst✝⁵ : Category.{u_2, u_1} C
X Y Z : C
inst✝⁴ : HasPullbacks C
S T : C
f : X ⟶ T
g : Y ⟶ T
i : T ⟶ S
inst✝³ : HasPullback i i
inst✝² : HasPullback f g
inst✝¹ : HasPullback (f ≫ i) (g ≫ i)
inst✝ : HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯)
⊢ (pullbackDiagonalMapIdIso f g i).inv ≫ snd ≫ snd = snd
|
rw [<a>CategoryTheory.Iso.inv_comp_eq</a>]
|
C : Type u_1
inst✝⁵ : Category.{u_2, u_1} C
X Y Z : C
inst✝⁴ : HasPullbacks C
S T : C
f : X ⟶ T
g : Y ⟶ T
i : T ⟶ S
inst✝³ : HasPullback i i
inst✝² : HasPullback f g
inst✝¹ : HasPullback (f ≫ i) (g ≫ i)
inst✝ : HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯)
⊢ snd ≫ snd = (pullbackDiagonalMapIdIso f g i).hom ≫ snd
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Limits/Shapes/Diagonal.lean
|
CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd
|
C : Type u_1
inst✝⁵ : Category.{u_2, u_1} C
X Y Z : C
inst✝⁴ : HasPullbacks C
S T : C
f : X ⟶ T
g : Y ⟶ T
i : T ⟶ S
inst✝³ : HasPullback i i
inst✝² : HasPullback f g
inst✝¹ : HasPullback (f ≫ i) (g ≫ i)
inst✝ : HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯)
⊢ snd ≫ snd = (pullbackDiagonalMapIdIso f g i).hom ≫ snd
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Limits/Shapes/Diagonal.lean
|
Finset.sdiff_eq_filter
|
α : Type u_1
β : Type u_2
γ : Type u_3
p q : α → Prop
inst✝² : DecidablePred p
inst✝¹ : DecidablePred q
s : Finset α
inst✝ : DecidableEq α
s₁ s₂ : Finset α
x✝ : α
⊢ x✝ ∈ s₁ \ s₂ ↔ x✝ ∈ filter (fun x => x ∉ s₂) s₁
|
simp [<a>Finset.mem_sdiff</a>, <a>Finset.mem_filter</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/Basic.lean
|
Finite.card_le_of_surjective
|
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Finite α
f : α → β
hf : Function.Surjective f
⊢ Nat.card β ≤ Nat.card α
|
haveI := <a>Fintype.ofFinite</a> α
|
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Finite α
f : α → β
hf : Function.Surjective f
this : Fintype α
⊢ Nat.card β ≤ Nat.card α
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finite/Card.lean
|
Finite.card_le_of_surjective
|
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Finite α
f : α → β
hf : Function.Surjective f
this : Fintype α
⊢ Nat.card β ≤ Nat.card α
|
haveI := <a>Fintype.ofSurjective</a> f hf
|
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Finite α
f : α → β
hf : Function.Surjective f
this✝ : Fintype α
this : Fintype β
⊢ Nat.card β ≤ Nat.card α
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finite/Card.lean
|
Finite.card_le_of_surjective
|
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Finite α
f : α → β
hf : Function.Surjective f
this✝ : Fintype α
this : Fintype β
⊢ Nat.card β ≤ Nat.card α
|
simpa only [<a>Nat.card_eq_fintype_card</a>, <a>ge_iff_le</a>] using <a>Fintype.card_le_of_surjective</a> f hf
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finite/Card.lean
|
LinearOrderedField.smul_Iio
|
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
⊢ r • Iio a = Iio (r • a)
|
ext x
|
case h
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ x ∈ r • Iio a ↔ x ∈ Iio (r • a)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ x ∈ r • Iio a ↔ x ∈ Iio (r • a)
|
simp only [<a>Set.mem_smul_set</a>, <a>smul_eq_mul</a>, <a>Set.mem_Iio</a>]
|
case h
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ (∃ y < a, r * y = x) ↔ x < r * a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ (∃ y < a, r * y = x) ↔ x < r * a
|
constructor
|
case h.mp
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ (∃ y < a, r * y = x) → x < r * a
case h.mpr
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ x < r * a → ∃ y < a, r * y = x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h.mp
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ (∃ y < a, r * y = x) → x < r * a
|
rintro ⟨a_w, a_h_left, rfl⟩
|
case h.mp.intro.intro
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
a_w : K
a_h_left : a_w < a
⊢ r * a_w < r * a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h.mp.intro.intro
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
a_w : K
a_h_left : a_w < a
⊢ r * a_w < r * a
|
exact (<a>mul_lt_mul_left</a> hr).<a>Iff.mpr</a> a_h_left
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h.mpr
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
⊢ x < r * a → ∃ y < a, r * y = x
|
rintro h
|
case h.mpr
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ ∃ y < a, r * y = x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h.mpr
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ ∃ y < a, r * y = x
|
use x / r
|
case h
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ x / r < a ∧ r * (x / r) = x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ x / r < a ∧ r * (x / r) = x
|
constructor
|
case h.left
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ x / r < a
case h.right
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ r * (x / r) = x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h.left
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ x / r < a
|
exact (<a>div_lt_iff'</a> hr).<a>Iff.mpr</a> h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
LinearOrderedField.smul_Iio
|
case h.right
α : Type u_1
K : Type u_2
inst✝ : LinearOrderedField K
a b r : K
hr : 0 < r
x : K
h : x < r * a
⊢ r * (x / r) = x
|
exact <a>mul_div_cancel₀</a> _ (<a>ne_of_gt</a> hr)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Pointwise.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s : Set α
ε r : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A : Set α
⊢ (μ.restrict A).InnerRegularWRT p fun s => MeasurableSet s ∧ (μ.restrict A) s ≠ ⊤
|
rintro s ⟨s_meas, hs⟩ r hr
|
case intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : (μ.restrict A) s ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ ∃ K ⊆ s, p K ∧ r < (μ.restrict A) K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
case intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : (μ.restrict A) s ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ ∃ K ⊆ s, p K ∧ r < (μ.restrict A) K
|
rw [<a>MeasureTheory.Measure.restrict_apply</a> s_meas] at hs
|
case intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ ∃ K ⊆ s, p K ∧ r < (μ.restrict A) K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
case intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ ∃ K ⊆ s, p K ∧ r < (μ.restrict A) K
|
obtain ⟨K, K_subs, pK, rK⟩ : ∃ K, K ⊆ (<a>MeasureTheory.toMeasurable</a> μ (s ∩ A)) ∩ s ∧ p K ∧ r < μ K := by have : r < μ ((<a>MeasureTheory.toMeasurable</a> μ (s ∩ A)) ∩ s) := by apply hr.trans_le rw [<a>MeasureTheory.Measure.restrict_apply</a> s_meas] exact <a>MeasureTheory.measure_mono</a> <| <a>Set.subset_inter</a> (<a>MeasureTheory.subset_toMeasurable</a> μ (s ∩ A)) <a>Set.inter_subset_left</a> refine h ⟨(<a>MeasureTheory.measurableSet_toMeasurable</a> _ _).<a>MeasurableSet.inter</a> s_meas, ?_⟩ _ this apply (<a>lt_of_le_of_lt</a> _ hs.lt_top).<a>LT.lt.ne</a> rw [← <a>MeasureTheory.measure_toMeasurable</a> (s ∩ A)] exact <a>MeasureTheory.measure_mono</a> <a>Set.inter_subset_left</a>
|
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ ∃ K ⊆ s, p K ∧ r < (μ.restrict A) K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ ∃ K ⊆ s, p K ∧ r < (μ.restrict A) K
|
refine ⟨K, K_subs.trans <a>Set.inter_subset_right</a>, pK, ?_⟩
|
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ r < (μ.restrict A) K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ r < (μ.restrict A) K
|
calc r < μ K := rK _ = μ.restrict (<a>MeasureTheory.toMeasurable</a> μ (s ∩ A)) K := by rw [<a>MeasureTheory.Measure.restrict_apply'</a> (<a>MeasureTheory.measurableSet_toMeasurable</a> μ (s ∩ A))] congr apply (<a>Set.inter_eq_left</a>.2 ?_).<a>Eq.symm</a> exact K_subs.trans <a>Set.inter_subset_left</a> _ = μ.restrict (s ∩ A) K := by rwa [<a>MeasureTheory.Measure.restrict_toMeasurable</a>] _ ≤ μ.restrict A K := <a>MeasureTheory.Measure.le_iff'</a>.1 (<a>MeasureTheory.Measure.restrict_mono</a> <a>Set.inter_subset_right</a> <a>le_rfl</a>) K
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ ∃ K ⊆ toMeasurable μ (s ∩ A) ∩ s, p K ∧ r < μ K
|
have : r < μ ((<a>MeasureTheory.toMeasurable</a> μ (s ∩ A)) ∩ s) := by apply hr.trans_le rw [<a>MeasureTheory.Measure.restrict_apply</a> s_meas] exact <a>MeasureTheory.measure_mono</a> <| <a>Set.subset_inter</a> (<a>MeasureTheory.subset_toMeasurable</a> μ (s ∩ A)) <a>Set.inter_subset_left</a>
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ ∃ K ⊆ toMeasurable μ (s ∩ A) ∩ s, p K ∧ r < μ K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ ∃ K ⊆ toMeasurable μ (s ∩ A) ∩ s, p K ∧ r < μ K
|
refine h ⟨(<a>MeasureTheory.measurableSet_toMeasurable</a> _ _).<a>MeasurableSet.inter</a> s_meas, ?_⟩ _ this
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ μ (toMeasurable μ (s ∩ A) ∩ s) ≠ ⊤
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ μ (toMeasurable μ (s ∩ A) ∩ s) ≠ ⊤
|
apply (<a>lt_of_le_of_lt</a> _ hs.lt_top).<a>LT.lt.ne</a>
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ μ (toMeasurable μ (s ∩ A) ∩ s) ≤ μ (s ∩ A)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ μ (toMeasurable μ (s ∩ A) ∩ s) ≤ μ (s ∩ A)
|
rw [← <a>MeasureTheory.measure_toMeasurable</a> (s ∩ A)]
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ μ (toMeasurable μ (s ∩ A) ∩ s) ≤ μ (toMeasurable μ (s ∩ A))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
this : r < μ (toMeasurable μ (s ∩ A) ∩ s)
⊢ μ (toMeasurable μ (s ∩ A) ∩ s) ≤ μ (toMeasurable μ (s ∩ A))
|
exact <a>MeasureTheory.measure_mono</a> <a>Set.inter_subset_left</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ r < μ (toMeasurable μ (s ∩ A) ∩ s)
|
apply hr.trans_le
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ (μ.restrict A) s ≤ μ (toMeasurable μ (s ∩ A) ∩ s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ (μ.restrict A) s ≤ μ (toMeasurable μ (s ∩ A) ∩ s)
|
rw [<a>MeasureTheory.Measure.restrict_apply</a> s_meas]
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ μ (s ∩ A) ≤ μ (toMeasurable μ (s ∩ A) ∩ s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
⊢ μ (s ∩ A) ≤ μ (toMeasurable μ (s ∩ A) ∩ s)
|
exact <a>MeasureTheory.measure_mono</a> <| <a>Set.subset_inter</a> (<a>MeasureTheory.subset_toMeasurable</a> μ (s ∩ A)) <a>Set.inter_subset_left</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ μ K = (μ.restrict (toMeasurable μ (s ∩ A))) K
|
rw [<a>MeasureTheory.Measure.restrict_apply'</a> (<a>MeasureTheory.measurableSet_toMeasurable</a> μ (s ∩ A))]
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ μ K = μ (K ∩ toMeasurable μ (s ∩ A))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ μ K = μ (K ∩ toMeasurable μ (s ∩ A))
|
congr
|
case h.e_6.h
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ K = K ∩ toMeasurable μ (s ∩ A)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
case h.e_6.h
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ K = K ∩ toMeasurable μ (s ∩ A)
|
apply (<a>Set.inter_eq_left</a>.2 ?_).<a>Eq.symm</a>
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ K ⊆ toMeasurable μ (s ∩ A)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ K ⊆ toMeasurable μ (s ∩ A)
|
exact K_subs.trans <a>Set.inter_subset_left</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.InnerRegularWRT.restrict
|
α : Type u_1
β : Type u_2
inst✝¹ : MeasurableSpace α
inst✝ : TopologicalSpace α
μ : Measure α
p q : Set α → Prop
U s✝ : Set α
ε r✝ : ℝ≥0∞
h : μ.InnerRegularWRT p fun s => MeasurableSet s ∧ μ s ≠ ⊤
A s : Set α
s_meas : MeasurableSet s
hs : μ (s ∩ A) ≠ ⊤
r : ℝ≥0∞
hr : r < (μ.restrict A) s
K : Set α
K_subs : K ⊆ toMeasurable μ (s ∩ A) ∩ s
pK : p K
rK : r < μ K
⊢ (μ.restrict (toMeasurable μ (s ∩ A))) K = (μ.restrict (s ∩ A)) K
|
rwa [<a>MeasureTheory.Measure.restrict_toMeasurable</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
prod_dvd_iff
|
ι : Type u_1
G₁ : Type u_2
G₂ : Type u_3
G : ι → Type u_4
inst✝² : Semigroup G₁
inst✝¹ : Semigroup G₂
inst✝ : (i : ι) → Semigroup (G i)
x y : G₁ × G₂
⊢ x ∣ y ↔ x.1 ∣ y.1 ∧ x.2 ∣ y.2
|
cases x
|
case mk
ι : Type u_1
G₁ : Type u_2
G₂ : Type u_3
G : ι → Type u_4
inst✝² : Semigroup G₁
inst✝¹ : Semigroup G₂
inst✝ : (i : ι) → Semigroup (G i)
y : G₁ × G₂
fst✝ : G₁
snd✝ : G₂
⊢ (fst✝, snd✝) ∣ y ↔ (fst✝, snd✝).1 ∣ y.1 ∧ (fst✝, snd✝).2 ∣ y.2
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Divisibility/Prod.lean
|
prod_dvd_iff
|
case mk
ι : Type u_1
G₁ : Type u_2
G₂ : Type u_3
G : ι → Type u_4
inst✝² : Semigroup G₁
inst✝¹ : Semigroup G₂
inst✝ : (i : ι) → Semigroup (G i)
y : G₁ × G₂
fst✝ : G₁
snd✝ : G₂
⊢ (fst✝, snd✝) ∣ y ↔ (fst✝, snd✝).1 ∣ y.1 ∧ (fst✝, snd✝).2 ∣ y.2
|
cases y
|
case mk.mk
ι : Type u_1
G₁ : Type u_2
G₂ : Type u_3
G : ι → Type u_4
inst✝² : Semigroup G₁
inst✝¹ : Semigroup G₂
inst✝ : (i : ι) → Semigroup (G i)
fst✝¹ : G₁
snd✝¹ : G₂
fst✝ : G₁
snd✝ : G₂
⊢ (fst✝¹, snd✝¹) ∣ (fst✝, snd✝) ↔ (fst✝¹, snd✝¹).1 ∣ (fst✝, snd✝).1 ∧ (fst✝¹, snd✝¹).2 ∣ (fst✝, snd✝).2
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Divisibility/Prod.lean
|
prod_dvd_iff
|
case mk.mk
ι : Type u_1
G₁ : Type u_2
G₂ : Type u_3
G : ι → Type u_4
inst✝² : Semigroup G₁
inst✝¹ : Semigroup G₂
inst✝ : (i : ι) → Semigroup (G i)
fst✝¹ : G₁
snd✝¹ : G₂
fst✝ : G₁
snd✝ : G₂
⊢ (fst✝¹, snd✝¹) ∣ (fst✝, snd✝) ↔ (fst✝¹, snd✝¹).1 ∣ (fst✝, snd✝).1 ∧ (fst✝¹, snd✝¹).2 ∣ (fst✝, snd✝).2
|
simp only [<a>dvd_def</a>, <a>Prod.exists</a>, <a>Prod.mk_mul_mk</a>, Prod.mk.injEq, <a>exists_and_left</a>, <a>exists_and_right</a>, <a>and_self</a>, <a>true_and</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Divisibility/Prod.lean
|
CategoryTheory.Limits.biprod.mapBiprod_hom_desc
|
C : Type u₁
inst✝⁶ : Category.{v₁, u₁} C
D : Type u₂
inst✝⁵ : Category.{v₂, u₂} D
inst✝⁴ : HasZeroMorphisms C
inst✝³ : HasZeroMorphisms D
F : C ⥤ D
inst✝² : F.PreservesZeroMorphisms
X Y : C
inst✝¹ : HasBinaryBiproduct X Y
inst✝ : PreservesBinaryBiproduct X Y F
W : C
f : X ⟶ W
g : Y ⟶ W
⊢ (F.mapBiprod X Y).hom ≫ desc (F.map f) (F.map g) = F.map (desc f g)
|
rw [← <a>CategoryTheory.Limits.biprod.mapBiprod_inv_map_desc</a>, <a>CategoryTheory.Iso.hom_inv_id_assoc</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Biproducts.lean
|
Computation.of_think_mem
|
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : (fun b => some a = b) ((↑s.think).get n)
⊢ a ∈ s
|
cases' n with n'
|
case zero
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
h : some a = (↑s.think).get 0
⊢ a ∈ s
case succ
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n' : ℕ
h : some a = (↑s.think).get (n' + 1)
⊢ a ∈ s
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Seq/Computation.lean
|
Computation.of_think_mem
|
case zero
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
h : some a = (↑s.think).get 0
⊢ a ∈ s
|
contradiction
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Seq/Computation.lean
|
Computation.of_think_mem
|
case succ
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n' : ℕ
h : some a = (↑s.think).get (n' + 1)
⊢ a ∈ s
|
exact ⟨n', h⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Seq/Computation.lean
|
Option.map₂_map_left_comm
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
α' : Type u_5
β' : Type u_6
δ' : Type u_7
ε : Type u_8
ε' : Type u_9
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
⊢ map₂ f (Option.map g a) b = Option.map g' (map₂ f' a b)
|
cases a <;> cases b <;> simp [h_left_comm]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Option/NAry.lean
|
Path.map_trans
|
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x y z : X
ι : Type u_3
γ✝ γ : Path x y
γ' : Path y z
f : X → Y
h : Continuous f
⊢ (γ.trans γ').map h = (γ.map h).trans (γ'.map h)
|
ext t
|
case a.h
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x y z : X
ι : Type u_3
γ✝ γ : Path x y
γ' : Path y z
f : X → Y
h : Continuous f
t : ↑I
⊢ ((γ.trans γ').map h) t = ((γ.map h).trans (γ'.map h)) t
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Connected/PathConnected.lean
|
Path.map_trans
|
case a.h
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x y z : X
ι : Type u_3
γ✝ γ : Path x y
γ' : Path y z
f : X → Y
h : Continuous f
t : ↑I
⊢ ((γ.trans γ').map h) t = ((γ.map h).trans (γ'.map h)) t
|
rw [<a>Path.trans_apply</a>, <a>Path.map_coe</a>, <a>Function.comp_apply</a>, <a>Path.trans_apply</a>]
|
case a.h
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x y z : X
ι : Type u_3
γ✝ γ : Path x y
γ' : Path y z
f : X → Y
h : Continuous f
t : ↑I
⊢ f (if h : ↑t ≤ 1 / 2 then γ ⟨2 * ↑t, ⋯⟩ else γ' ⟨2 * ↑t - 1, ⋯⟩) =
if h_1 : ↑t ≤ 1 / 2 then (γ.map h) ⟨2 * ↑t, ⋯⟩ else (γ'.map h) ⟨2 * ↑t - 1, ⋯⟩
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Connected/PathConnected.lean
|
Path.map_trans
|
case a.h
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x y z : X
ι : Type u_3
γ✝ γ : Path x y
γ' : Path y z
f : X → Y
h : Continuous f
t : ↑I
⊢ f (if h : ↑t ≤ 1 / 2 then γ ⟨2 * ↑t, ⋯⟩ else γ' ⟨2 * ↑t - 1, ⋯⟩) =
if h_1 : ↑t ≤ 1 / 2 then (γ.map h) ⟨2 * ↑t, ⋯⟩ else (γ'.map h) ⟨2 * ↑t - 1, ⋯⟩
|
split_ifs <;> rfl
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Connected/PathConnected.lean
|
RelSeries.smash_castAdd
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ (p.smash q connect).toFun (Fin.castAdd q.length i).castSucc = p.toFun i.castSucc
|
unfold <a>RelSeries.smash</a>
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ { length := p.length + q.length,
toFun := fun i => if H : ↑i < p.length then p.toFun ⟨↑i, ⋯⟩ else q.toFun ⟨↑i - p.length, ⋯⟩, step := ⋯ }.toFun
(Fin.castAdd q.length i).castSucc =
p.toFun i.castSucc
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/RelSeries.lean
|
RelSeries.smash_castAdd
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ { length := p.length + q.length,
toFun := fun i => if H : ↑i < p.length then p.toFun ⟨↑i, ⋯⟩ else q.toFun ⟨↑i - p.length, ⋯⟩, step := ⋯ }.toFun
(Fin.castAdd q.length i).castSucc =
p.toFun i.castSucc
|
dsimp
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ (if H : ↑i < p.length then p.toFun ⟨↑i, ⋯⟩ else q.toFun ⟨↑i - p.length, ⋯⟩) = p.toFun i.castSucc
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/RelSeries.lean
|
RelSeries.smash_castAdd
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ (if H : ↑i < p.length then p.toFun ⟨↑i, ⋯⟩ else q.toFun ⟨↑i - p.length, ⋯⟩) = p.toFun i.castSucc
|
rw [<a>dif_pos</a> i.2]
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ p.toFun ⟨↑i, ⋯⟩ = p.toFun i.castSucc
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/RelSeries.lean
|
RelSeries.smash_castAdd
|
α : Type u_1
r : Rel α α
β : Type u_2
s : Rel β β
p q : RelSeries r
connect : p.last = q.head
i : Fin p.length
⊢ p.toFun ⟨↑i, ⋯⟩ = p.toFun i.castSucc
|
rfl
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/RelSeries.lean
|
AddMonoidAlgebra.divOf_zero
|
k : Type u_1
G : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCancelCommMonoid G
x : k[G]
⊢ x /ᵒᶠ 0 = x
|
refine <a>Finsupp.ext</a> fun _ => ?_
|
k : Type u_1
G : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCancelCommMonoid G
x : k[G]
x✝ : G
⊢ (x /ᵒᶠ 0) x✝ = x x✝
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/MonoidAlgebra/Division.lean
|
AddMonoidAlgebra.divOf_zero
|
k : Type u_1
G : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCancelCommMonoid G
x : k[G]
x✝ : G
⊢ (x /ᵒᶠ 0) x✝ = x x✝
|
simp only [<a>AddMonoidAlgebra.divOf_apply</a>, <a>zero_add</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/MonoidAlgebra/Division.lean
|
ConvexOn.le_slope_of_hasDerivWithinAt
|
S : Set ℝ
f : ℝ → ℝ
x y f' : ℝ
hfc : ConvexOn ℝ S f
hx : x ∈ S
hy : y ∈ S
hxy : x < y
hf' : HasDerivWithinAt f f' S x
⊢ f' ≤ slope f x y
|
refine hfc.le_slope_of_hasDerivWithinAt_Ioi hx hy hxy (hf'.mono_of_mem ?_)
|
S : Set ℝ
f : ℝ → ℝ
x y f' : ℝ
hfc : ConvexOn ℝ S f
hx : x ∈ S
hy : y ∈ S
hxy : x < y
hf' : HasDerivWithinAt f f' S x
⊢ S ∈ 𝓝[>] x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Convex/Deriv.lean
|
ConvexOn.le_slope_of_hasDerivWithinAt
|
S : Set ℝ
f : ℝ → ℝ
x y f' : ℝ
hfc : ConvexOn ℝ S f
hx : x ∈ S
hy : y ∈ S
hxy : x < y
hf' : HasDerivWithinAt f f' S x
⊢ S ∈ 𝓝[>] x
|
rw [<a>mem_nhdsWithin_Ioi_iff_exists_Ioc_subset</a>]
|
S : Set ℝ
f : ℝ → ℝ
x y f' : ℝ
hfc : ConvexOn ℝ S f
hx : x ∈ S
hy : y ∈ S
hxy : x < y
hf' : HasDerivWithinAt f f' S x
⊢ ∃ u ∈ Ioi x, Ioc x u ⊆ S
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Convex/Deriv.lean
|
ConvexOn.le_slope_of_hasDerivWithinAt
|
S : Set ℝ
f : ℝ → ℝ
x y f' : ℝ
hfc : ConvexOn ℝ S f
hx : x ∈ S
hy : y ∈ S
hxy : x < y
hf' : HasDerivWithinAt f f' S x
⊢ ∃ u ∈ Ioi x, Ioc x u ⊆ S
|
exact ⟨y, hxy, Ioc_subset_Icc_self.trans (hfc.1.ordConnected.out hx hy)⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Convex/Deriv.lean
|
le_map_add_map_div
|
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁴ : FunLike F α β
inst✝³ : Group α
inst✝² : AddCommSemigroup β
inst✝¹ : LE β
inst✝ : MulLEAddHomClass F α β
f : F
a b : α
⊢ f a ≤ f b + f (a / b)
|
simpa only [<a>add_comm</a>, <a>div_mul_cancel</a>] using <a>MulLEAddHomClass.map_mul_le_add</a> f (a / b) b
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Hom/Basic.lean
|
MeasureTheory.Measure.Regular.map_iff
|
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
⊢ (map (⇑f) μ).Regular ↔ μ.Regular
|
refine ⟨fun h ↦ ?_, fun h ↦ h.map f⟩
|
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
h : (map (⇑f) μ).Regular
⊢ μ.Regular
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.Regular.map_iff
|
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
h : (map (⇑f) μ).Regular
⊢ μ.Regular
|
convert h.map f.symm
|
case h.e'_4
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
h : (map (⇑f) μ).Regular
⊢ μ = map (⇑f.symm) (map (⇑f) μ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.Regular.map_iff
|
case h.e'_4
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
h : (map (⇑f) μ).Regular
⊢ μ = map (⇑f.symm) (map (⇑f) μ)
|
rw [<a>MeasureTheory.Measure.map_map</a> f.symm.continuous.measurable f.continuous.measurable]
|
case h.e'_4
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
h : (map (⇑f) μ).Regular
⊢ μ = map (⇑f.symm ∘ ⇑f) μ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
MeasureTheory.Measure.Regular.map_iff
|
case h.e'_4
α : Type u_1
β : Type u_2
inst✝⁵ : MeasurableSpace α
inst✝⁴ : TopologicalSpace α
μ : Measure α
inst✝³ : BorelSpace α
inst✝² : MeasurableSpace β
inst✝¹ : TopologicalSpace β
inst✝ : BorelSpace β
f : α ≃ₜ β
h : (map (⇑f) μ).Regular
⊢ μ = map (⇑f.symm ∘ ⇑f) μ
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Regular.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
⊢ f '' (s ∩ t) = f '' s ∩ f '' t
|
apply <a>Set.Subset.antisymm</a> (<a>Set.image_inter_subset</a> _ _ _)
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
⊢ f '' s ∩ f '' t ⊆ f '' (s ∩ t)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
⊢ f '' s ∩ f '' t ⊆ f '' (s ∩ t)
|
intro x ⟨⟨y, ys, hy⟩, ⟨z, zt, hz⟩⟩
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
⊢ x ∈ f '' (s ∩ t)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
⊢ x ∈ f '' (s ∩ t)
|
have : y = z := by apply hf (hs ys) (ht zt) rwa [← hz] at hy
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
this : y = z
⊢ x ∈ f '' (s ∩ t)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
this : y = z
⊢ x ∈ f '' (s ∩ t)
|
rw [← this] at zt
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : y ∈ t
hz : f z = x
this : y = z
⊢ x ∈ f '' (s ∩ t)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : y ∈ t
hz : f z = x
this : y = z
⊢ x ∈ f '' (s ∩ t)
|
exact ⟨y, ⟨ys, zt⟩, hy⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
⊢ y = z
|
apply hf (hs ys) (ht zt)
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
⊢ f y = f z
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
Set.InjOn.image_inter
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
π : α → Type u_5
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
p : Set γ
f f₁ f₂ f₃ : α → β
g g₁ g₂ : β → γ
f' f₁' f₂' : β → α
g' : γ → β
a : α
b : β
s t u : Set α
hf : InjOn f u
hs : s ⊆ u
ht : t ⊆ u
x : β
y : α
ys : y ∈ s
hy : f y = x
z : α
zt : z ∈ t
hz : f z = x
⊢ f y = f z
|
rwa [← hz] at hy
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Set/Function.lean
|
PartENat.find_le
|
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : P n
⊢ find P ≤ ↑n
|
rw [<a>PartENat.le_coe_iff</a>]
|
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : P n
⊢ ∃ (h : (find P).Dom), (find P).get h ≤ n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/PartENat.lean
|
PartENat.find_le
|
P : ℕ → Prop
inst✝ : DecidablePred P
n : ℕ
h : P n
⊢ ∃ (h : (find P).Dom), (find P).get h ≤ n
|
exact ⟨⟨_, h⟩, @<a>Nat.find_min'</a> P _ _ _ h⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/PartENat.lean
|
Submodule.map_unop_one
|
ι : Sort uι
R : Type u
inst✝² : CommSemiring R
A : Type v
inst✝¹ : Semiring A
inst✝ : Algebra R A
S T : Set A
M N P Q : Submodule R A
m n : A
⊢ map (↑(opLinearEquiv R).symm) 1 = 1
|
rw [← <a>Submodule.comap_equiv_eq_map_symm</a>, <a>Submodule.comap_op_one</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Algebra/Operations.lean
|
Affine.Simplex.sum_circumcenterWeightsWithCircumcenter
|
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
n : ℕ
⊢ ∑ i : PointsWithCircumcenterIndex n, circumcenterWeightsWithCircumcenter n i = 1
|
convert <a>Finset.sum_ite_eq'</a> <a>Finset.univ</a> <a>Affine.Simplex.PointsWithCircumcenterIndex.circumcenterIndex</a> (<a>Function.const</a> _ (1 : ℝ)) with j
|
case h.e'_2.a
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
n : ℕ
j : PointsWithCircumcenterIndex n
a✝ : j ∈ univ
⊢ circumcenterWeightsWithCircumcenter n j =
if j = circumcenterIndex then Function.const (PointsWithCircumcenterIndex n) 1 j else 0
case h.e'_3
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
n : ℕ
⊢ 1 = if circumcenterIndex ∈ univ then Function.const (PointsWithCircumcenterIndex n) 1 circumcenterIndex else 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Geometry/Euclidean/Circumcenter.lean
|
Affine.Simplex.sum_circumcenterWeightsWithCircumcenter
|
case h.e'_2.a
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
n : ℕ
j : PointsWithCircumcenterIndex n
a✝ : j ∈ univ
⊢ circumcenterWeightsWithCircumcenter n j =
if j = circumcenterIndex then Function.const (PointsWithCircumcenterIndex n) 1 j else 0
|
cases j <;> simp [<a>Affine.Simplex.circumcenterWeightsWithCircumcenter</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Geometry/Euclidean/Circumcenter.lean
|
Affine.Simplex.sum_circumcenterWeightsWithCircumcenter
|
case h.e'_3
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
n : ℕ
⊢ 1 = if circumcenterIndex ∈ univ then Function.const (PointsWithCircumcenterIndex n) 1 circumcenterIndex else 0
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Geometry/Euclidean/Circumcenter.lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.