full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
Set.Finite.exists_maximal_wrt
case neg.inl α : Type u β : Type v ι : Sort w γ : Type x s✝¹ t : Set α inst✝ : PartialOrder β f : α → β s✝ s : Set α h✝¹ : s.Finite ih✝ : s.Nonempty → ∃ a ∈ s, ∀ a' ∈ s, f a ≤ f a' → f a = f a' h✝ : s.Nonempty b : α hb : b ∈ s ih : ∀ a' ∈ s, f b ≤ f a' → f b = f a' c : α hbc : f b ≤ f c his : c ∉ s hs : (insert c s).Nonempty h : ¬f b ≤ f c hc : c ∈ insert c s ⊢ f b = f c
exact (h hbc).<a>False.elim</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Finite.lean
Set.Finite.exists_maximal_wrt
case neg.inr α : Type u β : Type v ι : Sort w γ : Type x s✝¹ t : Set α inst✝ : PartialOrder β f : α → β s✝ : Set α a : α s : Set α his : a ∉ s h✝¹ : s.Finite ih✝ : s.Nonempty → ∃ a ∈ s, ∀ a' ∈ s, f a ≤ f a' → f a = f a' hs : (insert a s).Nonempty h✝ : s.Nonempty b : α hb : b ∈ s ih : ∀ a' ∈ s, f b ≤ f a' → f b = f a' h : ¬f b ≤ f a c : α hc : c ∈ insert a s hbc : f b ≤ f c hcs : c ∈ s ⊢ f b = f c
exact ih c hcs hbc
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Finite.lean
MeasureTheory.SignedMeasure.totalVariation_neg
α : Type u_1 β : Type u_2 inst✝ : MeasurableSpace α s : SignedMeasure α ⊢ (-s).totalVariation = s.totalVariation
simp [<a>MeasureTheory.SignedMeasure.totalVariation</a>, <a>MeasureTheory.SignedMeasure.toJordanDecomposition_neg</a>, <a>add_comm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Decomposition/Jordan.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x : V ⊢ B.orthogonal (Submodule.span K {x}) = ker (B.toLinHomAux₁ x)
ext y
case h R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ y ∈ B.orthogonal (Submodule.span K {x}) ↔ y ∈ ker (B.toLinHomAux₁ x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
case h R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ y ∈ B.orthogonal (Submodule.span K {x}) ↔ y ∈ ker (B.toLinHomAux₁ x)
simp_rw [<a>LinearMap.BilinForm.mem_orthogonal_iff</a>, <a>LinearMap.mem_ker</a>, <a>Submodule.mem_span_singleton</a>]
case h R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → B.IsOrtho n y) ↔ (B.toLinHomAux₁ x) y = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
case h R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → B.IsOrtho n y) ↔ (B.toLinHomAux₁ x) y = 0
constructor
case h.mp R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → B.IsOrtho n y) → (B.toLinHomAux₁ x) y = 0 case h.mpr R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ (B.toLinHomAux₁ x) y = 0 → ∀ (n : V), (∃ a, a • x = n) → B.IsOrtho n y
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
case h.mp R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → B.IsOrtho n y) → (B.toLinHomAux₁ x) y = 0
exact fun h => h x ⟨1, <a>one_smul</a> _ _⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
case h.mpr R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V ⊢ (B.toLinHomAux₁ x) y = 0 → ∀ (n : V), (∃ a, a • x = n) → B.IsOrtho n y
rintro h _ ⟨z, rfl⟩
case h.mpr.intro R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V h : (B.toLinHomAux₁ x) y = 0 z : K ⊢ B.IsOrtho (z • x) y
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
case h.mpr.intro R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V h : (B.toLinHomAux₁ x) y = 0 z : K ⊢ B.IsOrtho (z • x) y
rw [<a>LinearMap.BilinForm.IsOrtho</a>, <a>LinearMap.BilinForm.smul_left</a>, <a>mul_eq_zero</a>]
case h.mpr.intro R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V h : (B.toLinHomAux₁ x) y = 0 z : K ⊢ z = 0 ∨ (B x) y = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
LinearMap.BilinForm.orthogonal_span_singleton_eq_toLin_ker
case h.mpr.intro R : Type u_1 M : Type u_2 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommGroup M₁ inst✝³ : Module R₁ M₁ V : Type u_5 K : Type u_6 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ N L : Submodule R M B : BilinForm K V x y : V h : (B.toLinHomAux₁ x) y = 0 z : K ⊢ z = 0 ∨ (B x) y = 0
exact <a>Or.intro_right</a> _ h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
intervalIntegral.integral_nonneg_of_ae_restrict
ι : Type u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 A : Type u_5 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℝ E f g : ℝ → ℝ a b : ℝ μ : Measure ℝ hab : a ≤ b hf : 0 ≤ᶠ[ae (μ.restrict (Icc a b))] f ⊢ 0 ≤ ∫ (u : ℝ) in a..b, f u ∂μ
let H := <a>MeasureTheory.ae_restrict_of_ae_restrict_of_subset</a> <a>Set.Ioc_subset_Icc_self</a> hf
ι : Type u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 A : Type u_5 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℝ E f g : ℝ → ℝ a b : ℝ μ : Measure ℝ hab : a ≤ b hf : 0 ≤ᶠ[ae (μ.restrict (Icc a b))] f H : ∀ᵐ (x : ℝ) ∂μ.restrict (Ioc a b), 0 x ≤ f x := ae_restrict_of_ae_restrict_of_subset Ioc_subset_Icc_self hf ⊢ 0 ≤ ∫ (u : ℝ) in a..b, f u ∂μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
intervalIntegral.integral_nonneg_of_ae_restrict
ι : Type u_1 𝕜 : Type u_2 E : Type u_3 F : Type u_4 A : Type u_5 inst✝² : NormedAddCommGroup E inst✝¹ : CompleteSpace E inst✝ : NormedSpace ℝ E f g : ℝ → ℝ a b : ℝ μ : Measure ℝ hab : a ≤ b hf : 0 ≤ᶠ[ae (μ.restrict (Icc a b))] f H : ∀ᵐ (x : ℝ) ∂μ.restrict (Ioc a b), 0 x ≤ f x := ae_restrict_of_ae_restrict_of_subset Ioc_subset_Icc_self hf ⊢ 0 ≤ ∫ (u : ℝ) in a..b, f u ∂μ
simpa only [<a>intervalIntegral.integral_of_le</a> hab] using <a>MeasureTheory.setIntegral_nonneg_of_ae_restrict</a> H
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
Finset.mul_prod_Ioc_eq_prod_Icc
α : Type u_1 M : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid M f : α → M a b : α inst✝ : LocallyFiniteOrder α h : a ≤ b ⊢ f a * ∏ x ∈ Ioc a b, f x = ∏ x ∈ Icc a b, f x
rw [<a>Finset.Icc_eq_cons_Ioc</a> h, <a>Finset.prod_cons</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/BigOperators/Intervals.lean
isSplittingField_iff_intermediateField
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E α : E p : F[X] ⊢ IsSplittingField F E p ↔ Splits (algebraMap F E) p ∧ adjoin F (p.rootSet E) = ⊤
rw [← toSubalgebra_injective.eq_iff, <a>IntermediateField.adjoin_algebraic_toSubalgebra</a> fun _ ↦ <a>isAlgebraic_of_mem_rootSet</a>]
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E α : E p : F[X] ⊢ IsSplittingField F E p ↔ Splits (algebraMap F E) p ∧ Algebra.adjoin F (p.rootSet E) = ⊤.toSubalgebra
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/Adjoin.lean
isSplittingField_iff_intermediateField
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E α : E p : F[X] ⊢ IsSplittingField F E p ↔ Splits (algebraMap F E) p ∧ Algebra.adjoin F (p.rootSet E) = ⊤.toSubalgebra
exact ⟨fun ⟨spl, adj⟩ ↦ ⟨spl, adj⟩, fun ⟨spl, adj⟩ ↦ ⟨spl, adj⟩⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/Adjoin.lean
ZMod.natAbs_min_of_le_div_two
n✝ a n : ℕ x y : ℤ he : ↑x = ↑y hl : x.natAbs ≤ n / 2 ⊢ x.natAbs ≤ y.natAbs
rw [<a>ZMod.intCast_eq_intCast_iff_dvd_sub</a>] at he
n✝ a n : ℕ x y : ℤ he : ↑n ∣ y - x hl : x.natAbs ≤ n / 2 ⊢ x.natAbs ≤ y.natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
n✝ a n : ℕ x y : ℤ he : ↑n ∣ y - x hl : x.natAbs ≤ n / 2 ⊢ x.natAbs ≤ y.natAbs
obtain ⟨m, he⟩ := he
case intro n✝ a n : ℕ x y : ℤ hl : x.natAbs ≤ n / 2 m : ℤ he : y - x = ↑n * m ⊢ x.natAbs ≤ y.natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro n✝ a n : ℕ x y : ℤ hl : x.natAbs ≤ n / 2 m : ℤ he : y - x = ↑n * m ⊢ x.natAbs ≤ y.natAbs
rw [<a>sub_eq_iff_eq_add</a>] at he
case intro n✝ a n : ℕ x y : ℤ hl : x.natAbs ≤ n / 2 m : ℤ he : y = ↑n * m + x ⊢ x.natAbs ≤ y.natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro n✝ a n : ℕ x y : ℤ hl : x.natAbs ≤ n / 2 m : ℤ he : y = ↑n * m + x ⊢ x.natAbs ≤ y.natAbs
subst he
case intro n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ ⊢ x.natAbs ≤ (↑n * m + x).natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ ⊢ x.natAbs ≤ (↑n * m + x).natAbs
obtain rfl | hm := <a>eq_or_ne</a> m 0
case intro.inl n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 ⊢ x.natAbs ≤ (↑n * 0 + x).natAbs case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ x.natAbs ≤ (↑n * m + x).natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ x.natAbs ≤ (↑n * m + x).natAbs
apply hl.trans
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 ≤ (↑n * m + x).natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 ≤ (↑n * m + x).natAbs
rw [← <a>add_le_add_iff_right</a> x.natAbs]
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + x.natAbs ≤ (↑n * m + x).natAbs + x.natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + x.natAbs ≤ (↑n * m + x).natAbs + x.natAbs
refine <a>le_trans</a> (<a>le_trans</a> ((<a>add_le_add_iff_left</a> _).2 hl) ?_) (<a>Int.natAbs_sub_le</a> _ _)
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + n / 2 ≤ (↑n * m + x - x).natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + n / 2 ≤ (↑n * m + x - x).natAbs
rw [<a>add_sub_cancel_right</a>, <a>Int.natAbs_mul</a>, <a>Int.natAbs_ofNat</a>]
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + n / 2 ≤ n * m.natAbs
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + n / 2 ≤ n * m.natAbs
refine <a>le_trans</a> ?_ (<a>Nat.le_mul_of_pos_right</a> _ <| <a>Int.natAbs_pos</a>.2 hm)
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + n / 2 ≤ n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 + n / 2 ≤ n
rw [← <a>mul_two</a>]
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 * 2 ≤ n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inr n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 m : ℤ hm : m ≠ 0 ⊢ n / 2 * 2 ≤ n
apply <a>Nat.div_mul_le_self</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
ZMod.natAbs_min_of_le_div_two
case intro.inl n✝ a n : ℕ x : ℤ hl : x.natAbs ≤ n / 2 ⊢ x.natAbs ≤ (↑n * 0 + x).natAbs
rw [<a>MulZeroClass.mul_zero</a>, <a>zero_add</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/ZMod/Basic.lean
Ideal.add_eq_one_iff
R : Type u ι : Type u_1 inst✝ : CommSemiring R I J K L : Ideal R ⊢ I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1
rw [<a>Ideal.one_eq_top</a>, <a>Ideal.eq_top_iff_one</a>, <a>Ideal.add_eq_sup</a>, <a>Submodule.mem_sup</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/Operations.lean
Set.iUnion_accumulate
α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ⋃ x, Accumulate s x = ⋃ x, s x
apply <a>Set.Subset.antisymm</a>
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ⋃ x, Accumulate s x ⊆ ⋃ x, s x case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ⋃ x, s x ⊆ ⋃ x, Accumulate s x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Accumulate.lean
Set.iUnion_accumulate
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ⋃ x, Accumulate s x ⊆ ⋃ x, s x
simp only [<a>Set.subset_def</a>, <a>Set.mem_iUnion</a>, <a>exists_imp</a>, <a>Set.mem_accumulate</a>]
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ∀ (x : β) (x_1 x_2 : α), x_2 ≤ x_1 ∧ x ∈ s x_2 → ∃ i, x ∈ s i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Accumulate.lean
Set.iUnion_accumulate
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ∀ (x : β) (x_1 x_2 : α), x_2 ≤ x_1 ∧ x ∈ s x_2 → ∃ i, x ∈ s i
intro z x x' ⟨_, hz⟩
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α z : β x x' : α left✝ : x' ≤ x hz : z ∈ s x' ⊢ ∃ i, z ∈ s i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Accumulate.lean
Set.iUnion_accumulate
case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α z : β x x' : α left✝ : x' ≤ x hz : z ∈ s x' ⊢ ∃ i, z ∈ s i
exact ⟨x', hz⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Accumulate.lean
Set.iUnion_accumulate
case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 s : α → Set β t : α → Set γ inst✝ : Preorder α ⊢ ⋃ x, s x ⊆ ⋃ x, Accumulate s x
exact <a>Set.iUnion_mono</a> fun i => <a>Set.subset_accumulate</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Accumulate.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ ∫ (a : α), ⟪↑↑f a, ↑↑f a⟫_𝕜 ∂μ = ↑(∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ).toReal
simp_rw [<a>inner_self_eq_norm_sq_to_K</a>]
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ ∫ (a : α), ↑‖↑↑f a‖ ^ 2 ∂μ = ↑(∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ).toReal
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ ∫ (a : α), ↑‖↑↑f a‖ ^ 2 ∂μ = ↑(∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ).toReal
norm_cast
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ ∫ (x : α), ‖↑↑f x‖ ^ 2 ∂μ = (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ).toReal
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ ∫ (x : α), ‖↑↑f x‖ ^ 2 ∂μ = (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ).toReal
rw [<a>MeasureTheory.integral_eq_lintegral_of_nonneg_ae</a>]
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ (∫⁻ (a : α), ENNReal.ofReal (‖↑↑f a‖ ^ 2) ∂μ).toReal = (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ).toReal case hf α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ 0 ≤ᶠ[ae μ] fun x => ‖↑↑f x‖ ^ 2 case hfm α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ AEStronglyMeasurable (fun x => ‖↑↑f x‖ ^ 2) μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ (∫⁻ (a : α), ENNReal.ofReal (‖↑↑f a‖ ^ 2) ∂μ).toReal = (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ).toReal case hf α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ 0 ≤ᶠ[ae μ] fun x => ‖↑↑f x‖ ^ 2 case hfm α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ AEStronglyMeasurable (fun x => ‖↑↑f x‖ ^ 2) μ
rotate_left
case hf α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ 0 ≤ᶠ[ae μ] fun x => ‖↑↑f x‖ ^ 2 case hfm α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ AEStronglyMeasurable (fun x => ‖↑↑f x‖ ^ 2) μ α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ (∫⁻ (a : α), ENNReal.ofReal (‖↑↑f a‖ ^ 2) ∂μ).toReal = (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ).toReal
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ (∫⁻ (a : α), ENNReal.ofReal (‖↑↑f a‖ ^ 2) ∂μ).toReal = (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ).toReal
congr
case e_a.e_f α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ (fun a => ENNReal.ofReal (‖↑↑f a‖ ^ 2)) = fun a => ↑(‖↑↑f a‖₊ ^ 2)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
case e_a.e_f α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ (fun a => ENNReal.ofReal (‖↑↑f a‖ ^ 2)) = fun a => ↑(‖↑↑f a‖₊ ^ 2)
ext1 x
case e_a.e_f.h α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α ⊢ ENNReal.ofReal (‖↑↑f x‖ ^ 2) = ↑(‖↑↑f x‖₊ ^ 2)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
case e_a.e_f.h α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α ⊢ ENNReal.ofReal (‖↑↑f x‖ ^ 2) = ↑(‖↑↑f x‖₊ ^ 2)
have h_two : (2 : ℝ) = ((2 : ℕ) : ℝ) := by simp
case e_a.e_f.h α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α h_two : 2 = ↑2 ⊢ ENNReal.ofReal (‖↑↑f x‖ ^ 2) = ↑(‖↑↑f x‖₊ ^ 2)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
case e_a.e_f.h α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α h_two : 2 = ↑2 ⊢ ENNReal.ofReal (‖↑↑f x‖ ^ 2) = ↑(‖↑↑f x‖₊ ^ 2)
rw [← <a>Real.rpow_natCast</a> _ 2, ← h_two, ← <a>ENNReal.ofReal_rpow_of_nonneg</a> (<a>norm_nonneg</a> _) <a>zero_le_two</a>, <a>ofReal_norm_eq_coe_nnnorm</a>]
case e_a.e_f.h α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α h_two : 2 = ↑2 ⊢ ↑‖↑↑f x‖₊ ^ 2 = ↑(‖↑↑f x‖₊ ^ 2)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
case e_a.e_f.h α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α h_two : 2 = ↑2 ⊢ ↑‖↑↑f x‖₊ ^ 2 = ↑(‖↑↑f x‖₊ ^ 2)
norm_cast
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
case hf α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ 0 ≤ᶠ[ae μ] fun x => ‖↑↑f x‖ ^ 2
exact <a>Filter.eventually_of_forall</a> fun x => <a>sq_nonneg</a> _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
case hfm α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) ⊢ AEStronglyMeasurable (fun x => ‖↑↑f x‖ ^ 2) μ
exact ((<a>MeasureTheory.Lp.aestronglyMeasurable</a> f).norm.aemeasurable.pow_const _).<a>AEMeasurable.aestronglyMeasurable</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.integral_inner_eq_sq_snorm
α : Type u_1 E : Type u_2 F : Type u_3 𝕜 : Type u_4 inst✝⁴ : RCLike 𝕜 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : NormedAddCommGroup F f : ↥(Lp E 2 μ) x : α ⊢ 2 = ↑2
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L2Space.lean
unitInterval.one_minus_nonneg
x : ↑I ⊢ 0 ≤ 1 - ↑x
simpa using x.2.2
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/UnitInterval.lean
Polynomial.as_sum_range_C_mul_X_pow
R : Type u S : Type v a b c d : R n m : ℕ inst✝ : Semiring R p✝ q r p : R[X] ⊢ ∑ i ∈ range (p.natDegree + 1), (monomial i) (p.coeff i) = ∑ i ∈ range (p.natDegree + 1), C (p.coeff i) * X ^ i
simp only [<a>Polynomial.C_mul_X_pow_eq_monomial</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Degree/Definitions.lean
LinearMap.equivariantProjection_apply
k : Type u inst✝¹¹ : CommRing k G : Type u inst✝¹⁰ : Group G V : Type v inst✝⁹ : AddCommGroup V inst✝⁸ : Module k V inst✝⁷ : Module (MonoidAlgebra k G) V inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁵ : AddCommGroup W inst✝⁴ : Module k W inst✝³ : Module (MonoidAlgebra k G) W inst✝² : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), π (i v) = v inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : W ⊢ (equivariantProjection G π) v = ⅟↑(Fintype.card G) • ∑ g : G, (π.conjugate g) v
simp only [<a>LinearMap.equivariantProjection</a>, <a>LinearMap.smul_apply</a>, <a>LinearMap.sumOfConjugatesEquivariant_apply</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RepresentationTheory/Maschke.lean
MeasureTheory.Lp.simpleFunc.add_toSimpleFunc
α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) ⊢ ↑(toSimpleFunc (f + g)) =ᶠ[ae μ] ↑(toSimpleFunc f) + ↑(toSimpleFunc g)
filter_upwards [<a>MeasureTheory.Lp.simpleFunc.toSimpleFunc_eq_toFun</a> (f + g), <a>MeasureTheory.Lp.simpleFunc.toSimpleFunc_eq_toFun</a> f, <a>MeasureTheory.Lp.simpleFunc.toSimpleFunc_eq_toFun</a> g, <a>MeasureTheory.Lp.coeFn_add</a> (f : <a>MeasureTheory.Lp</a> E p μ) g] with _
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α ⊢ ↑(toSimpleFunc (f + g)) a✝ = ↑↑↑(f + g) a✝ → ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ → ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ → ↑↑(↑f + ↑g) a✝ = (↑↑↑f + ↑↑↑g) a✝ → ↑(toSimpleFunc (f + g)) a✝ = (↑(toSimpleFunc f) + ↑(toSimpleFunc g)) a✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.add_toSimpleFunc
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α ⊢ ↑(toSimpleFunc (f + g)) a✝ = ↑↑↑(f + g) a✝ → ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ → ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ → ↑↑(↑f + ↑g) a✝ = (↑↑↑f + ↑↑↑g) a✝ → ↑(toSimpleFunc (f + g)) a✝ = (↑(toSimpleFunc f) + ↑(toSimpleFunc g)) a✝
simp only [<a>AddSubgroup.coe_add</a>, <a>Pi.add_apply</a>]
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α ⊢ ↑(toSimpleFunc (f + g)) a✝ = ↑(↑↑f + ↑↑g) a✝ → ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ → ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ → ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝ → ↑(toSimpleFunc (f + g)) a✝ = ↑(toSimpleFunc f) a✝ + ↑(toSimpleFunc g) a✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.add_toSimpleFunc
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α ⊢ ↑(toSimpleFunc (f + g)) a✝ = ↑(↑↑f + ↑↑g) a✝ → ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ → ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ → ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝ → ↑(toSimpleFunc (f + g)) a✝ = ↑(toSimpleFunc f) a✝ + ↑(toSimpleFunc g) a✝
iterate 4 intro h; rw [h]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.add_toSimpleFunc
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α h✝¹ : ↑(toSimpleFunc (f + g)) a✝ = ↑(↑↑f + ↑↑g) a✝ h✝ : ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ h : ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ ⊢ ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝ → ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝
intro h
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α h✝² : ↑(toSimpleFunc (f + g)) a✝ = ↑(↑↑f + ↑↑g) a✝ h✝¹ : ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ h✝ : ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ h : ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝ ⊢ ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.add_toSimpleFunc
case h α : Type u_1 β : Type u_2 ι : Type u_3 E : Type u_4 F : Type u_5 𝕜 : Type u_6 inst✝² : MeasurableSpace α inst✝¹ : NormedAddCommGroup E inst✝ : NormedAddCommGroup F p : ℝ≥0∞ μ : Measure α f g : ↥(simpleFunc E p μ) a✝ : α h✝² : ↑(toSimpleFunc (f + g)) a✝ = ↑(↑↑f + ↑↑g) a✝ h✝¹ : ↑(toSimpleFunc f) a✝ = ↑↑↑f a✝ h✝ : ↑(toSimpleFunc g) a✝ = ↑↑↑g a✝ h : ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝ ⊢ ↑(↑↑f + ↑↑g) a✝ = ↑↑↑f a✝ + ↑↑↑g a✝
rw [h]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ (reflection s₁) p = (reflection s₂) p ↔ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
rw [<a>EuclideanGeometry.reflection_apply</a>, <a>EuclideanGeometry.reflection_apply</a>]
V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p) ↔ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p) ↔ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
constructor
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p) → ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) case mpr V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) → ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p) → ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
intro h
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p) ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p) ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
rw [← @<a>vsub_eq_zero_iff_eq</a> V, <a>vsub_vadd_eq_vsub_sub</a>, <a>vadd_vsub_assoc</a>, <a>add_comm</a>, <a>add_sub_assoc</a>, <a>vsub_sub_vsub_cancel_right</a>, ← <a>two_smul</a> ℝ ((<a>EuclideanGeometry.orthogonalProjection</a> s₁ p : P) -ᵥ <a>EuclideanGeometry.orthogonalProjection</a> s₂ p), <a>smul_eq_zero</a>] at h
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : 2 = 0 ∨ ↑((orthogonalProjection s₁) p) -ᵥ ↑((orthogonalProjection s₂) p) = 0 ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : 2 = 0 ∨ ↑((orthogonalProjection s₁) p) -ᵥ ↑((orthogonalProjection s₂) p) = 0 ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
norm_num at h
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
case mp V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p)
exact h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
case mpr V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P ⊢ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) → ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p)
intro h
case mpr V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) ⊢ ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq
case mpr V : Type u_1 P : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝³ : Nonempty ↥s₁ inst✝² : Nonempty ↥s₂ inst✝¹ : HasOrthogonalProjection s₁.direction inst✝ : HasOrthogonalProjection s₂.direction p : P h : ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) ⊢ ↑((orthogonalProjection s₁) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₁) p) = ↑((orthogonalProjection s₂) p) -ᵥ p +ᵥ ↑((orthogonalProjection s₂) p)
rw [h]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Euclidean/Basic.lean
Polynomial.rootMultiplicity_expand_pow
R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
obtain rfl | h0 := <a>eq_or_ne</a> f 0
case inl R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p r : R ⊢ rootMultiplicity r ((expand R (p ^ n)) 0) = p ^ n * rootMultiplicity (r ^ p ^ n) 0 case inr R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R h0 : f ≠ 0 ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Expand.lean
Polynomial.rootMultiplicity_expand_pow
case inr R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R h0 : f ≠ 0 ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
obtain ⟨g, hg, ndvd⟩ := f.exists_eq_pow_rootMultiplicity_mul_and_not_dvd h0 (r ^ p ^ n)
case inr.intro.intro R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R h0 : f ≠ 0 g : R[X] hg : f = (X - C (r ^ p ^ n)) ^ rootMultiplicity (r ^ p ^ n) f * g ndvd : ¬X - C (r ^ p ^ n) ∣ g ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Expand.lean
Polynomial.rootMultiplicity_expand_pow
case inr.intro.intro R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R h0 : f ≠ 0 g : R[X] hg : f = (X - C (r ^ p ^ n)) ^ rootMultiplicity (r ^ p ^ n) f * g ndvd : ¬X - C (r ^ p ^ n) ∣ g ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
rw [<a>Polynomial.dvd_iff_isRoot</a>, ← <a>Polynomial.eval_X</a> (x := r), ← <a>Polynomial.eval_pow</a>, ← <a>Polynomial.isRoot_comp</a>, ← <a>Polynomial.expand_eq_comp_X_pow</a>] at ndvd
case inr.intro.intro R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R h0 : f ≠ 0 g : R[X] hg : f = (X - C (r ^ p ^ n)) ^ rootMultiplicity (r ^ p ^ n) f * g ndvd : ¬((expand R (p ^ n)) g).IsRoot r ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Expand.lean
Polynomial.rootMultiplicity_expand_pow
case inr.intro.intro R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p f : R[X] r : R h0 : f ≠ 0 g : R[X] hg : f = (X - C (r ^ p ^ n)) ^ rootMultiplicity (r ^ p ^ n) f * g ndvd : ¬((expand R (p ^ n)) g).IsRoot r ⊢ rootMultiplicity r ((expand R (p ^ n)) f) = p ^ n * rootMultiplicity (r ^ p ^ n) f
conv_lhs => rw [hg, <a>map_mul</a>, <a>map_pow</a>, <a>map_sub</a>, <a>Polynomial.expand_X</a>, <a>Polynomial.expand_C</a>, <a>map_pow</a>, ← <a>sub_pow_expChar_pow</a>, ← <a>pow_mul</a>, <a>mul_comm</a>, <a>Polynomial.rootMultiplicity_mul_X_sub_C_pow</a> (<a>Polynomial.expand_ne_zero</a> (<a>expChar_pow_pos</a> R p n) |>.<a>Iff.mpr</a> <| <a>right_ne_zero_of_mul</a> <| hg ▸ h0), <a>Polynomial.rootMultiplicity_eq_zero</a> ndvd, <a>zero_add</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Expand.lean
Polynomial.rootMultiplicity_expand_pow
case inl R : Type u inst✝¹ : CommRing R p n : ℕ inst✝ : ExpChar R p r : R ⊢ rootMultiplicity r ((expand R (p ^ n)) 0) = p ^ n * rootMultiplicity (r ^ p ^ n) 0
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Expand.lean
convexJoin_comm
ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s✝ t✝ s₁ s₂ t₁ t₂ u : Set E x y : E s t : Set E ⊢ ⋃ i₂ ∈ t, ⋃ i₁ ∈ s, segment 𝕜 i₁ i₂ = convexJoin 𝕜 t s
simp_rw [<a>convexJoin</a>, <a>segment_symm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Convex/Join.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ K₁.mapBifunctorShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x ≪≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) x).mapIso (K₁.mapBifunctorShift₂Iso K₂ F y) = (x * y).negOnePow • ((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorShift₂Iso K₂ F y ≪≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).mapIso (K₁.mapBifunctorShift₁Iso K₂ F x) ≪≫ (shiftFunctorComm (CochainComplex D ℤ) x y).app (K₁.mapBifunctor K₂ F)
ext1
case w C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ (K₁.mapBifunctorShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x ≪≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) x).mapIso (K₁.mapBifunctorShift₂Iso K₂ F y)).hom = ((x * y).negOnePow • ((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorShift₂Iso K₂ F y ≪≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).mapIso (K₁.mapBifunctorShift₁Iso K₂ F x) ≪≫ (shiftFunctorComm (CochainComplex D ℤ) x y).app (K₁.mapBifunctor K₂ F)).hom
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
case w C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ (K₁.mapBifunctorShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x ≪≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) x).mapIso (K₁.mapBifunctorShift₂Iso K₂ F y)).hom = ((x * y).negOnePow • ((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorShift₂Iso K₂ F y ≪≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).mapIso (K₁.mapBifunctorShift₁Iso K₂ F x) ≪≫ (shiftFunctorComm (CochainComplex D ℤ) x y).app (K₁.mapBifunctor K₂ F)).hom
dsimp [<a>CochainComplex.mapBifunctorShift₁Iso</a>, <a>CochainComplex.mapBifunctorShift₂Iso</a>]
case w C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ (HomologicalComplex₂.total.map (K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂)).totalShift₁Iso x).hom) ≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) x).map (HomologicalComplex₂.total.map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₂Iso y).hom) = (x * y).negOnePow • (HomologicalComplex₂.total.map (((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj ((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁)).obj K₂).totalShift₂Iso y).hom) ≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).map (HomologicalComplex₂.total.map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₁Iso x).hom) ≫ (shiftFunctorComm (CochainComplex D ℤ) x y).hom.app (K₁.mapBifunctor K₂ F)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
case w C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ (HomologicalComplex₂.total.map (K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂)).totalShift₁Iso x).hom) ≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) x).map (HomologicalComplex₂.total.map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₂Iso y).hom) = (x * y).negOnePow • (HomologicalComplex₂.total.map (((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj ((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁)).obj K₂).totalShift₂Iso y).hom) ≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).map (HomologicalComplex₂.total.map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom (ComplexShape.up ℤ) ≫ ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₁Iso x).hom) ≫ (shiftFunctorComm (CochainComplex D ℤ) x y).hom.app (K₁.mapBifunctor K₂ F)
rw [<a>CategoryTheory.Functor.map_comp</a>, <a>CategoryTheory.Functor.map_comp</a>, <a>CategoryTheory.Category.assoc</a>, <a>CategoryTheory.Category.assoc</a>, <a>CategoryTheory.Category.assoc</a>, ← <a>HomologicalComplex₂.totalShift₁Iso_hom_naturality_assoc</a>, <a>HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom</a>, ← <a>HomologicalComplex₂.totalShift₂Iso_hom_naturality_assoc</a>, <a>CategoryTheory.Linear.comp_units_smul</a>, <a>CategoryTheory.Linear.comp_units_smul</a>, <a>smul_left_cancel_iff</a>, ← <a>HomologicalComplex₂.total.map_comp_assoc</a>, ← <a>HomologicalComplex₂.total.map_comp_assoc</a>, ← <a>HomologicalComplex₂.total.map_comp_assoc</a>]
case w C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ HomologicalComplex₂.total.map (((K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom ≫ (HomologicalComplex₂.shiftFunctor₁ D x).map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom) ≫ (HomologicalComplex₂.shiftFunctor₁₂CommIso D x y).hom.app (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)) (ComplexShape.up ℤ) ≫ (((HomologicalComplex₂.shiftFunctor₁ D x).obj (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)).totalShift₂Iso y).hom ≫ (CategoryTheory.shiftFunctor (HomologicalComplex D (ComplexShape.up ℤ)) y).map ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₁Iso x).hom ≫ (shiftFunctorComm (CochainComplex D ℤ) x y).hom.app ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).total (ComplexShape.up ℤ)) = HomologicalComplex₂.total.map ((((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom ≫ (HomologicalComplex₂.shiftFunctor₂ D y).map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom) (ComplexShape.up ℤ) ≫ (((HomologicalComplex₂.shiftFunctor₁ D x).obj (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)).totalShift₂Iso y).hom ≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).map ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₁Iso x).hom ≫ (shiftFunctorComm (CochainComplex D ℤ) x y).hom.app (K₁.mapBifunctor K₂ F)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
case w C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ HomologicalComplex₂.total.map (((K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom ≫ (HomologicalComplex₂.shiftFunctor₁ D x).map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom) ≫ (HomologicalComplex₂.shiftFunctor₁₂CommIso D x y).hom.app (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)) (ComplexShape.up ℤ) ≫ (((HomologicalComplex₂.shiftFunctor₁ D x).obj (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)).totalShift₂Iso y).hom ≫ (CategoryTheory.shiftFunctor (HomologicalComplex D (ComplexShape.up ℤ)) y).map ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₁Iso x).hom ≫ (shiftFunctorComm (CochainComplex D ℤ) x y).hom.app ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).total (ComplexShape.up ℤ)) = HomologicalComplex₂.total.map ((((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom ≫ (HomologicalComplex₂.shiftFunctor₂ D y).map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom) (ComplexShape.up ℤ) ≫ (((HomologicalComplex₂.shiftFunctor₁ D x).obj (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)).totalShift₂Iso y).hom ≫ (CategoryTheory.shiftFunctor (CochainComplex D ℤ) y).map ((((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂).totalShift₁Iso x).hom ≫ (shiftFunctorComm (CochainComplex D ℤ) x y).hom.app (K₁.mapBifunctor K₂ F)
congr 2
case w.e_a.e_φ C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ ((K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom ≫ (HomologicalComplex₂.shiftFunctor₁ D x).map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom) ≫ (HomologicalComplex₂.shiftFunctor₁₂CommIso D x y).hom.app (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂) = (((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom ≫ (HomologicalComplex₂.shiftFunctor₂ D y).map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
case w.e_a.e_φ C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F ⊢ ((K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom ≫ (HomologicalComplex₂.shiftFunctor₁ D x).map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom) ≫ (HomologicalComplex₂.shiftFunctor₁₂CommIso D x y).hom.app (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂) = (((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom ≫ (HomologicalComplex₂.shiftFunctor₂ D y).map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom
ext a b
case w.e_a.e_φ.h.h C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F a b : ℤ ⊢ ((((K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom ≫ (HomologicalComplex₂.shiftFunctor₁ D x).map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom) ≫ (HomologicalComplex₂.shiftFunctor₁₂CommIso D x y).hom.app (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)).f a).f b = (((((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom ≫ (HomologicalComplex₂.shiftFunctor₂ D y).map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom).f a).f b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
case w.e_a.e_φ.h.h C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F a b : ℤ ⊢ ((((K₁.mapBifunctorHomologicalComplexShift₁Iso ((CategoryTheory.shiftFunctor (CochainComplex C₂ ℤ) y).obj K₂) F x).hom ≫ (HomologicalComplex₂.shiftFunctor₁ D x).map (K₁.mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom) ≫ (HomologicalComplex₂.shiftFunctor₁₂CommIso D x y).hom.app (((F.mapBifunctorHomologicalComplex (ComplexShape.up ℤ) (ComplexShape.up ℤ)).obj K₁).obj K₂)).f a).f b = (((((CategoryTheory.shiftFunctor (CochainComplex C₁ ℤ) x).obj K₁).mapBifunctorHomologicalComplexShift₂Iso K₂ F y).hom ≫ (HomologicalComplex₂.shiftFunctor₂ D y).map (K₁.mapBifunctorHomologicalComplexShift₁Iso K₂ F x).hom).f a).f b
dsimp [<a>HomologicalComplex₂.shiftFunctor₁₂CommIso</a>]
case w.e_a.e_φ.h.h C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F a b : ℤ ⊢ (𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y))) ≫ 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y)))) ≫ 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y))) = 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y))) ≫ 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y)))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso
case w.e_a.e_φ.h.h C₁ : Type u_1 C₂ : Type u_2 D : Type u_3 inst✝⁸ : Category.{u_5, u_1} C₁ inst✝⁷ : Category.{u_6, u_2} C₂ inst✝⁶ : Category.{u_4, u_3} D inst✝⁵ : Preadditive C₁ inst✝⁴ : Preadditive C₂ inst✝³ : Preadditive D K₁ : CochainComplex C₁ ℤ K₂ : CochainComplex C₂ ℤ F : C₁ ⥤ C₂ ⥤ D inst✝² : F.Additive inst✝¹ : ∀ (X₁ : C₁), (F.obj X₁).Additive x y : ℤ inst✝ : K₁.HasMapBifunctor K₂ F a b : ℤ ⊢ (𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y))) ≫ 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y)))) ≫ 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y))) = 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y))) ≫ 𝟙 ((F.obj (K₁.X (a + x))).obj (K₂.X (b + y)))
simp only [<a>CategoryTheory.Category.id_comp</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/BifunctorShift.lean
DFinsupp.toMultiset_lt_toMultiset
α : Type u_1 β : α → Type u_2 inst✝ : DecidableEq α f g : Π₀ (_a : α), ℕ ⊢ toMultiset f < toMultiset g ↔ f < g
simp_rw [← <a>Multiset.toDFinsupp_lt_toDFinsupp</a>, <a>DFinsupp.toMultiset_toDFinsupp</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/DFinsupp/Multiset.lean
Cardinal.toENat_strictMonoOn
⊢ StrictMonoOn (⇑toENat) (Iic ℵ₀)
simp only [← <a>Cardinal.range_ofENat</a>, <a>StrictMonoOn</a>, <a>Set.forall_mem_range</a>, <a>Cardinal.toENat_ofENat</a>, <a>Cardinal.ofENat_lt_ofENat</a>]
⊢ ∀ (i i_1 : ℕ∞), i < i_1 → i < i_1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/ENat.lean
Cardinal.toENat_strictMonoOn
⊢ ∀ (i i_1 : ℕ∞), i < i_1 → i < i_1
exact fun _ _ ↦ <a>id</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/ENat.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f ⊢ ∫⁻ (a : α), ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
simp_rw [← <a>iSup_apply</a>]
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
let p : α → (β → <a>ENNReal</a>) → Prop := fun x f' => <a>Directed</a> <a>LE.le</a> f'
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
have hp : ∀ᵐ x ∂μ, p x fun i => f i x := by filter_upwards [] with x i j obtain ⟨z, hz₁, hz₂⟩ := h_directed i j exact ⟨z, hz₁ x, hz₂ x⟩
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
convert <a>MeasureTheory.lintegral_iSup_directed_of_measurable</a> (<a>aeSeq.measurable</a> hf p) h_ae_seq_directed using 1
case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ∫⁻ (a : α), ⨆ b, aeSeq hf p b a ∂?m.323592 case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ⨆ b, ∫⁻ (a : α), f b a ∂μ = ⨆ b, ∫⁻ (a : α), aeSeq hf p b a ∂?m.323592 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ Measure α
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' ⊢ ∀ᵐ (x : α) ∂μ, p x fun i => f i x
filter_upwards [] with x i j
case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' x : α i j : β ⊢ ∃ z, (fun i => f i x) i ≤ (fun i => f i x) z ∧ (fun i => f i x) j ≤ (fun i => f i x) z
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' x : α i j : β ⊢ ∃ z, (fun i => f i x) i ≤ (fun i => f i x) z ∧ (fun i => f i x) j ≤ (fun i => f i x) z
obtain ⟨z, hz₁, hz₂⟩ := h_directed i j
case h.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' x : α i j z : β hz₁ : f i ≤ f z hz₂ : f j ≤ f z ⊢ ∃ z, (fun i => f i x) i ≤ (fun i => f i x) z ∧ (fun i => f i x) j ≤ (fun i => f i x) z
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' x : α i j z : β hz₁ : f i ≤ f z hz₂ : f j ≤ f z ⊢ ∃ z, (fun i => f i x) i ≤ (fun i => f i x) z ∧ (fun i => f i x) j ≤ (fun i => f i x) z
exact ⟨z, hz₁ x, hz₂ x⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x ⊢ Directed LE.le (aeSeq hf p)
intro b₁ b₂
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ : β ⊢ ∃ z, aeSeq hf p b₁ ≤ aeSeq hf p z ∧ aeSeq hf p b₂ ≤ aeSeq hf p z
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ : β ⊢ ∃ z, aeSeq hf p b₁ ≤ aeSeq hf p z ∧ aeSeq hf p b₂ ≤ aeSeq hf p z
obtain ⟨z, hz₁, hz₂⟩ := h_directed b₁ b₂
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z ⊢ ∃ z, aeSeq hf p b₁ ≤ aeSeq hf p z ∧ aeSeq hf p b₂ ≤ aeSeq hf p z
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case intro.intro.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z ⊢ aeSeq hf p b₂ ≤ aeSeq hf p z
intro x
case intro.intro.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α ⊢ aeSeq hf p b₂ x ≤ aeSeq hf p z x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case intro.intro.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α ⊢ aeSeq hf p b₂ x ≤ aeSeq hf p z x
by_cases hx : x ∈ <a>aeSeqSet</a> hf p
case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∈ aeSeqSet hf p ⊢ aeSeq hf p b₂ x ≤ aeSeq hf p z x case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∉ aeSeqSet hf p ⊢ aeSeq hf p b₂ x ≤ aeSeq hf p z x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∈ aeSeqSet hf p ⊢ aeSeq hf p b₂ x ≤ aeSeq hf p z x
repeat rw [<a>aeSeq.aeSeq_eq_fun_of_mem_aeSeqSet</a> hf hx]
case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∈ aeSeqSet hf p ⊢ f b₂ x ≤ f z x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∈ aeSeqSet hf p ⊢ f b₂ x ≤ f z x
apply_rules [hz₁, hz₂]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∈ aeSeqSet hf p ⊢ f b₂ x ≤ aeSeq hf p z x
rw [<a>aeSeq.aeSeq_eq_fun_of_mem_aeSeqSet</a> hf hx]
case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∈ aeSeqSet hf p ⊢ f b₂ x ≤ f z x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∉ aeSeqSet hf p ⊢ aeSeq hf p b₂ x ≤ aeSeq hf p z x
simp only [<a>aeSeq</a>, hx, <a>if_false</a>]
case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∉ aeSeqSet hf p ⊢ ⋯.some ≤ ⋯.some
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x b₁ b₂ z : β hz₁ : f b₁ ≤ f z hz₂ : f b₂ ≤ f z x : α hx : x ∉ aeSeqSet hf p ⊢ ⋯.some ≤ ⋯.some
exact <a>le_rfl</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ∫⁻ (a : α), ⨆ b, aeSeq hf p b a ∂?m.323592
simp_rw [← <a>iSup_apply</a>]
case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ∫⁻ (a : α), (⨆ i, aeSeq hf p i) a ∂?m.323592
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ∫⁻ (a : α), (⨆ i, aeSeq hf p i) a ∂?m.323592
rw [<a>MeasureTheory.lintegral_congr_ae</a> (<a>aeSeq.iSup</a> hf hp).<a>Filter.EventuallyEq.symm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ ⨆ b, ∫⁻ (a : α), f b a ∂μ = ⨆ b, ∫⁻ (a : α), aeSeq hf p b a ∂μ
congr 1
case h.e'_3.e_s α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ (fun b => ∫⁻ (a : α), f b a ∂μ) = fun b => ∫⁻ (a : α), aeSeq hf p b a ∂μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.e'_3.e_s α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) ⊢ (fun b => ∫⁻ (a : α), f b a ∂μ) = fun b => ∫⁻ (a : α), aeSeq hf p b a ∂μ
ext1 b
case h.e'_3.e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) b : β ⊢ ∫⁻ (a : α), f b a ∂μ = ∫⁻ (a : α), aeSeq hf p b a ∂μ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.e'_3.e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) b : β ⊢ ∫⁻ (a : α), f b a ∂μ = ∫⁻ (a : α), aeSeq hf p b a ∂μ
rw [<a>MeasureTheory.lintegral_congr_ae</a>]
case h.e'_3.e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) b : β ⊢ f b =ᶠ[ae μ] aeSeq hf p b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_iSup_directed
case h.e'_3.e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) b : β ⊢ f b =ᶠ[ae μ] aeSeq hf p b
apply <a>Filter.EventuallyEq.symm</a>
case h.e'_3.e_s.h.H α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x x_1 => x ≤ x_1) f p : α → (β → ℝ≥0∞) → Prop := fun x f' => Directed LE.le f' hp : ∀ᵐ (x : α) ∂μ, p x fun i => f i x h_ae_seq_directed : Directed LE.le (aeSeq hf p) b : β ⊢ aeSeq hf p b =ᶠ[ae μ] f b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/Lebesgue.lean