Datasets:

Modalities:
Audio
Image
Formats:
arrow
Size:
< 1K
Libraries:
Datasets
License:
Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
audio
audioduration (s)
4.08
9.32
mel
imagewidth (px)
352
803
instrument
class label
37 classes
slim
float32
1.68
8.32
bright
float32
1.47
8.59
dark
float32
1.5
8.09
sharp
float32
1.79
8.41
thick
float32
1.41
8.76
thin
float32
1.56
7.97
vigorous
float32
1.53
8.65
silvery
float32
1.12
8.74
raspy
float32
2.03
7.68
full
float32
2.79
7.71
coarse
float32
2.76
6.94
pure
float32
2.79
6.94
hoarse
float32
2.21
7.38
consonant
float32
2.15
7.65
mellow
float32
2.15
7.29
muddy
float32
1.91
8
0gao_hu
6.470588
6.676471
3.411765
7.176471
2.764706
6.588235
3.176471
6.088235
6.823529
3.205882
5.617647
4.676471
5.617647
4.647059
3.441176
4.323529
1er_hu
5.970588
6.176471
3.823529
5.970588
3.441176
5.588235
4.117647
5.441176
5.264706
4.264706
4.382353
4.882353
4.911765
6.176471
5.205883
4.323529
2zhong_hu
4.411765
4.941176
4.852941
4.882353
5.058824
4.588235
5.088235
4.882353
5.294117
5.205883
5.117647
5.029412
4.941176
5.852941
4.882353
4.441176
3ge_hu
2.647059
2.970588
6.764706
2.617647
7.588235
2.588235
7.558824
2.705882
3.235294
7.352941
4.735294
5.647059
4.117647
7.088235
7.176471
6.147059
4di_yin_ge_hu
1.676471
1.470588
8.088235
1.794118
8.764706
1.558824
8.647058
1.117647
4.205883
7.294117
6.941176
3
6.794117
3.617647
3.323529
8
5jing_hu
7.588235
7.676471
2.205882
8.058824
1.970588
7.205883
2.705882
7.882353
5.823529
3.852941
3.323529
6.235294
3.823529
5
3.676471
2.441176
6ban_hu
7.441176
7.529412
2.264706
8.323529
2.088235
7.205883
2.411765
7.558824
6.529412
2.941176
5.735294
4.705883
6.264706
3.941176
2.823529
3.294118
7bang_di
8.323529
8.588235
1.5
8.411765
1.411765
7.970588
1.529412
8.735294
5.147059
3.117647
3.029412
6.705883
3.382353
5.647059
2.970588
1.911765
8qu_di
6.264706
6.878788
2.970588
6.294117
3.176471
6.029412
3.382353
6.911765
4.294117
4.147059
2.764706
6.617647
3.441176
7.058824
5.294117
2.558824
9xin_di
4.764706
4.647059
5.272727
4.176471
4.852941
4.735294
4.558824
4.705883
4
4.911765
4.558824
5.264706
5.029412
5.882353
6.205883
5.235294
10da_di
5.058824
5.735294
4.205883
4.588235
4.411765
4.941176
4.441176
5.411765
3.382353
5.235294
3.823529
6.029412
3.852941
6.588235
6.176471
4.676471
11gao_yin_sheng
5.617647
6.117647
3.969697
5.882353
4.235294
5.941176
3.970588
5.147059
4.970588
4.5
4.470588
5.529412
4.441176
5.176471
4.764706
4.352941
12zhong_yin_sheng
3.794118
3.617647
6.176471
3.852941
6.323529
4.117647
6.029412
3.205882
4.058824
5.5
4.441176
5.030303
3.941176
5.382353
5.735294
5.647059
13di_yin_sheng
2.882353
3.029412
6.588235
2.970588
6.764706
3.529412
6.676471
2.705882
3.764706
6.176471
5
4.088235
4.558824
5.470588
4.705883
6.441176
14gao_yin_suo_na
7.176471
7.588235
2.794118
7.735294
2.441176
7.264706
2.941176
7.352941
6.441176
4.333333
4.705883
5.242424
5.323529
3.941176
2.794118
3.235294
15zhong_yin_suo_na
4.352941
5.911765
4.352941
6.117647
3.970588
6.205883
4.588235
5.029412
7.029412
4.558824
5.588235
4.705883
5.882353
3.617647
2.764706
4.117647
16ci_zhong_yin_suo_na
3.794118
4.852941
5.558824
5.352941
4.735294
5.852941
4.941176
3.705882
7.529412
4.411765
6.294117
4.088235
6.5
2.676471
2.470588
5.058824
17di_yin_suo_na
4.845372
5.543692
6.411765
4.411765
6.147059
4.294117
6.529412
2.676471
6.941176
5.205883
6.676471
3.794118
6.352941
3.029412
2.205882
6.205883
18gao_yin_guan
5.941176
6
4.470588
7.235294
3.5
6.352941
3.470588
5.323529
7.676471
3.529412
6.911765
2.794118
7.382353
2.147059
2.147059
5.323529
19zhong_yin_guan
4.794117
5.382353
4.852941
5.029412
5.088235
4.764706
5
4.5
4.5
5.382353
5.176471
4.852941
4.970588
5.058824
5.264706
4.823529
20di_yin_guan
3.088235
3.176471
6.176471
3.764706
7.029412
3.529412
7.235294
2.735294
4.176471
6.617647
5.882353
4.411765
6
5.117647
4.441176
6.794117
21bei_di_yin_guan
2.176471
2.235294
7.147059
3.235294
7.911765
2.941176
7.941176
2.058824
4.352941
6.705883
6.911765
3.029412
6.382353
4.205883
3.470588
7.617647
22ba_wu
5.181818
5.558824
3.882353
4.264706
4.470588
4.411765
4.735294
6.088235
2.735294
5.794117
3.058824
6.794117
3.470588
6.970588
5.735294
3.588235
23xun
4.647059
3.323529
6.529412
3.205882
5.147059
4.911765
4.323529
3.382353
4.676471
4.5
5.794117
4.176471
6.823529
4.470588
6.264706
6.5
24xiao
4.882353
4.382353
5.676471
3.5
5.205883
4.529412
4.705883
4.058824
3.794118
5.352941
3.941176
5.911765
4.411765
6.794117
7.147059
5.235294
25liu_qin
6.882353
7.323529
3
6.352941
3.382353
6.029412
3.088235
7.5
4
5.235294
3.441176
5.941176
3.058824
6.363636
4.882353
3.058824
26xiao_ruan
6.882353
7.382353
2.911765
6.264706
3.117647
6.176471
2.970588
7.647059
3.647059
5.088235
3.264706
6.147059
3.294118
6.588235
5
2.794118
27pi_pa
7
6.941176
3.323529
5.794117
3.264706
6.352941
2.705882
7.205883
4.323529
4.235294
4.117647
5.235294
4.176471
5.705883
4.411765
3.352941
28yang_qin
5.794117
6.5
3.176471
5.058824
4.235294
4.647059
4.147059
6.529412
2.852941
5.676471
3.617647
5.323529
3.176471
6.647059
5.205883
5.147059
29zhong_ruan
4.470588
5.264706
4.941176
3.794118
6.147059
3.588235
6.088235
5.294117
2.882353
6.647059
4.147059
5.676471
3.176471
6.529412
5.617647
5.352941
30da_ruan
3.088235
4.088235
5.823529
2.588235
7.382353
2.676471
7.5
3.705882
2.029412
7.705883
3.411765
6.764706
2.411765
7.529412
6.911765
5.529412
31gu_zheng
5.764706
6.441176
3.529412
5.176471
4.176471
5.382353
4.205883
6.558824
3.617647
5.852941
3.529412
5.941176
3.176471
6.294117
5.212121
3.764706
32gu_qin
3.764706
4
5.735294
3.882353
6.205883
4.147059
6.088235
4.088235
4.235294
6.352941
5.382353
4.5
4.852941
4.735294
5.121212
5.764706
33kong_hou
5.088235
5.441176
4.294117
3.470588
5.941176
3.382353
5.941176
5.235294
2.617647
7.088235
3.205882
6.941176
2.205882
7.647059
7.294117
4.5
34san_xian
5.352941
4.823529
4.676471
4.676471
3.705882
6.264706
3.647059
5.411765
6.117647
3.676471
6.470588
3.352941
5.676471
4.382353
3.5
5
35yun_luo
6.441176
6.735294
3.441176
6.382353
2.764706
7.205883
2.588235
7.382353
5.176471
2.794118
4.764706
5.882353
4.235294
4.029412
4.029412
4.264706
36bian_zhong
5.205883
4.882353
5
4.794117
4.705883
5.5
4.205883
5.852941
4.676471
3.882353
5
5.794117
4.588235
4.647059
5.088235
5.941176

Dataset Card for Chinese Musical Instruments Timbre Evaluation Database

The original dataset is sourced from the National Musical Instruments Timbre Evaluation Dataset, which includes subjective timbre evaluation scores using 16 terms such as bright, dark, raspy, etc., evaluated across 37 Chinese instruments and 24 Western instruments by Chinese participants with musical backgrounds in a subjective evaluation experiment. Additionally, it contains 10 spectrogram analysis reports for 10 instruments.

Based on the aforementioned original dataset, after data processing, we have constructed the default subset of the current integrated version of the dataset, dividing the Chinese section and the Western section into two splits. Each split consists of multiple data entries, with each entry structured across 18 columns. The Chinese split includes 37 entries, while the Western split comprises 24 entries. The first column of each data entry presents the instrument recordings in .wav format, sampled at a rate of 44,100 Hz. The second column provides the Chinese pinyin or English name of the instrument. The following 16 columns correspond to the 9-point scores of the 16 terms. This dataset is suitable for conducting timbre analysis of musical instruments and can also be utilized for various single or multiple regression tasks related to term scoring. The data structure of the default subset can be viewed in the viewer.

Dataset Structure

audio mel instrument_name slim / bright / ... / raspy (16 colums)
.wav, 44100Hz .jpg, 44100Hz string float(1-9)

Data Instances

.zip(.wav), .csv

Data Fields

Chinese instruments / Western instruments

Data Splits

Chinese, Western

Dataset Description

Dataset Summary

During the integration, we have crafted the Chinese part and the Non-Chinese part into two splits. Each split is composed of multiple data entries, with each entry structured across 18 columns. The Chinese split encompasses 37 entries, while the Non-Chinese split includes 24 entries. The premier column of each data entry presents the instrument recordings in the .wav format, sampled at a rate of 22,050 Hz. The second column provides the Chinese pinyin or English name of the instrument. The subsequent 16 columns correspond to the 9-point score of the 16 terms. This dataset is suitable for conducting timber analysis of musical instruments and can also be utilized for various single or multiple regression tasks related to term scoring.

Supported Tasks and Leaderboards

Musical Instruments Timbre Evaluation

Languages

Chinese, English

Usage

from datasets import load_dataset

ds = load_dataset("ccmusic-database/instrument_timbre")
for item in ds["Chinese"]:
    print(item)

for item in ds["Western"]:
    print(item)

Maintenance

GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/instrument_timbre
cd instrument_timbre

Mirror

https://www.modelscope.cn/datasets/ccmusic-database/instrument_timbre

Dataset Creation

Curation Rationale

Lack of a dataset for musical instruments timbre evaluation

Source Data

Initial Data Collection and Normalization

Zhaorui Liu, Monan Zhou

Annotations

Annotation process

Subjective timbre evaluation scores of 16 subjective timbre evaluation terms (such as bright, dark, raspy) on 37 Chinese national and 24 Non-Chinese terms rated by Chinese listeners in a subjective evaluation experiment

Who are the annotators?

Chinese music professionals

Considerations for Using the Data

Social Impact of Dataset

Promoting the development of AI in the music industry

Other Known Limitations

Limited data

Additional Information

Dataset Curators

Zijin Li

Reference & Evaluation

[1] Jiang W, Liu J, Zhang X, Wang S, Jiang Y. Analysis and Modeling of Timbre Perception Features in Musical Sounds. Applied Sciences. 2020; 10(3):789.

Citation Information

@article{Jiang2020AnalysisAM,
  title   = {Analysis and Modeling of Timbre Perception Features in Musical Sounds},
  author  = {Wei Jiang and Jingyu Liu and Xiaoyi Zhang and Shuang Wang and Yujian Jiang},
  journal = {Applied Sciences},
  year    = {2020},
  url     = {https://api.semanticscholar.org/CorpusID:210878781}
}

Contributions

Provide a dataset for musical instruments' timbre evaluation

Downloads last month
110

Collection including ccmusic-database/instrument_timbre