_id
stringlengths 24
24
| id
stringlengths 5
121
| author
stringlengths 2
42
| cardData
stringlengths 2
1.07M
⌀ | disabled
bool 2
classes | gated
null | lastModified
timestamp[ns] | likes
int64 0
7.56k
| trendingScore
float64 -1
307
| private
bool 1
class | sha
stringlengths 40
40
| description
stringlengths 0
6.67k
⌀ | downloads
int64 0
4.43M
| tags
sequencelengths 1
7.92k
| createdAt
timestamp[ns] | key
stringclasses 1
value | paperswithcode_id
stringclasses 648
values | citation
stringlengths 0
10.7k
⌀ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67b32145bac2756ce9a4a0fe | Congliu/Chinese-DeepSeek-R1-Distill-data-110k | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-21T02:18:08 | 307 | 307 | false | 8520b649430617c2be4490f424d251d09d835ed3 |
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1)
🤗 Hugging Face | 🤖 ModelScope | 🚀 Github | 📑 Blog
注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。
本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。
为什么开源这个数据?
R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。
为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下:
Math:共计36568个样本,
Exam:共计2432个样本,
STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k. | 1,949 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T11:45:09 | null | null |
|
679c0b5c32cf4c58bdcba8eb | facebook/natural_reasoning | facebook | {"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]} | false | null | 2025-02-21T06:02:40 | 149 | 149 | false | 99eea5dc6bfa45a925eb42600e81dc90377ba237 | NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response from… See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning. | 804 | [
"task_categories:text-generation",
"language:en",
"license:cc-by-nc-4.0",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.13124",
"region:us"
] | 2025-01-30T23:29:32 | null | null |
|
67aa021ced8d8663d42505cc | open-r1/OpenR1-Math-220k | open-r1 | {"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]} | false | null | 2025-02-18T11:45:27 | 396 | 106 | false | e4e141ec9dea9f8326f4d347be56105859b2bd68 |
OpenR1-Math-220k
Dataset description
OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5.
The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer.
The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k. | 18,280 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-10T13:41:48 | null | null |
|
6797e648de960c48ff034e54 | open-thoughts/OpenThoughts-114k | open-thoughts | {"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"} | false | null | 2025-02-20T07:16:57 | 582 | 83 | false | 56b06e3066a8163577ac93b24613a560e685d029 |
Open-Thoughts-114k
Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles!
Inspect the content with rich formatting with Curator Viewer.
Available Subsets
default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models:
ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train")
metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k. | 100,972 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"curator",
"synthetic"
] | 2025-01-27T20:02:16 | null | null |
|
67ac9b0ae2c56194379f17a9 | SakanaAI/AI-CUDA-Engineer-Archive | SakanaAI | {"tags": ["code"], "pretty_name": "The AI CUDA Engineer Archive", "license": "cc-by-4.0", "configs": [{"config_name": "default", "data_files": [{"split": "level_1", "path": "level_1.parquet"}, {"split": "level_2", "path": "level_2.parquet"}, {"split": "level_3", "path": "level_3.parquet"}]}]} | false | null | 2025-02-20T02:02:27 | 83 | 83 | false | 4edbe8d6d0b417e05aaf8ec7e23f78aecdc5516b |
The AI CUDA Engineer Archive 👷: Agentic CUDA Kernel Discovery, Optimization & Composition
We release The AI CUDA Engineer archive, a dataset consisting of approximately 30,000 CUDA kernels generated by The AI CUDA Engineer. It is released under the CC-By-4.0 license and can be accessed via HuggingFace and interactively visualized here. The dataset is based on the Kernel tasks provided in KernelBench and includes a torch reference implementation, torch, NCU and Clang-tidy profiling… See the full description on the dataset page: https://huggingface.co/datasets/SakanaAI/AI-CUDA-Engineer-Archive. | 4,619 | [
"license:cc-by-4.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"code"
] | 2025-02-12T12:58:50 | null | null |
|
67b3495a2f3994b7d95dde92 | Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-19T13:24:55 | 65 | 65 | false | 263435dc9a8cc822449b6f3531794486f8141be6 |
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1)
🤗 Hugging Face | 🤖 ModelScope | 🚀 Github | 📑 Blog
注意:该版本为,可以直接SFT使用的版本,将原始数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。
本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。
为什么开源这个数据?
R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。
为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下:
Math:共计36568个样本,
Exam:共计2432个样本,
STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT. | 1,061 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T14:36:10 | null | null |
|
676f70846bf205795346d2be | FreedomIntelligence/medical-o1-reasoning-SFT | FreedomIntelligence | {"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]} | false | null | 2025-02-22T05:15:38 | 267 | 59 | false | 61536c1d80b2c799df6800cc583897b77d2c86d2 |
News
[2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1.
[2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier.
Introduction
This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT. | 16,290 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"language:zh",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18925",
"region:us",
"medical",
"biology"
] | 2024-12-28T03:29:08 | null | null |
|
63990f21cc50af73d29ecfa3 | fka/awesome-chatgpt-prompts | fka | {"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]} | false | null | 2025-01-06T00:02:53 | 7,557 | 58 | false | 68ba7694e23014788dcc8ab5afe613824f45a05c | 🧠 Awesome ChatGPT Prompts [CSV dataset]
This is a Dataset Repository of Awesome ChatGPT Prompts
View All Prompts on GitHub
License
CC-0
| 11,646 | [
"task_categories:question-answering",
"license:cc0-1.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"ChatGPT"
] | 2022-12-13T23:47:45 | null | null |
|
66212f29fb07c3e05ad0432e | HuggingFaceFW/fineweb | HuggingFaceFW | {"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]} | false | null | 2025-01-31T14:10:44 | 1,983 | 41 | false | 0f039043b23fe1d4eed300b504aa4b4a68f1c7ba |
🍷 FineWeb
15 trillion tokens of the finest data the 🌐 web has to offer
What is it?
The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library.
🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb. | 375,587 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:10B<n<100B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2306.01116",
"arxiv:2109.07445",
"arxiv:2406.17557",
"doi:10.57967/hf/2493",
"region:us"
] | 2024-04-18T14:33:13 | null | null |
|
67a404bc8c6d42c5ec097433 | Anthropic/EconomicIndex | Anthropic | {"license": "mit", "pretty_name": "EconomicIndex", "tags": ["text"], "viewer": true, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "onet_task_mappings.csv"}]}]} | false | null | 2025-02-10T19:28:32 | 157 | 41 | false | 218b35116baa43c55beffe61f243bd81f5f84cf8 |
Overview
This directory contains O*NET task mapping and automation vs. augmentation data from "Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations." The data and provided analysis are described below.
Please see our blog post and paper for further visualizations and complete analysis.
Data
SOC_Structure.csv - Standard Occupational Classification (SOC) system hierarchy from the U.S. Department of Labor O*NET database… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/EconomicIndex. | 5,289 | [
"license:mit",
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"text"
] | 2025-02-06T00:39:24 | null | null |
|
67a4af5e4ccbc3656f0b4c7c | saiyan-world/Goku-MovieGenBench | saiyan-world | {"task_categories": ["text-to-video"]} | false | null | 2025-02-11T03:18:05 | 187 | 39 | false | fd41363957a6bf5370e573e422fc89e4ec450218 | This repository contains the data associated with the paper Goku: Flow Based Video Generative Foundation Models.
Project page: https://saiyan-world.github.io/goku/
| 53,111 | [
"task_categories:text-to-video",
"size_categories:1K<n<10K",
"modality:video",
"library:datasets",
"library:mlcroissant",
"arxiv:2502.04896",
"region:us"
] | 2025-02-06T12:47:26 | null | null |
|
67b10b708191c180b95adadc | smirki/UI_Reasoning_Dataset | smirki | {"license": "mit"} | false | null | 2025-02-19T19:33:32 | 36 | 36 | false | 3341ce16a2d1183312040680689ffcc1763b6f37 | null | 177 | [
"license:mit",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-15T21:47:28 | null | null |
|
67474c06bd2f2f20b81faef1 | zed-industries/zeta | zed-industries | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.jsonl"}, {"split": "eval", "path": "eval.jsonl"}, {"split": "dpo", "path": "dpo.jsonl"}]}], "license": "apache-2.0"} | false | null | 2025-02-17T16:02:10 | 73 | 33 | false | 070f4d409068321e988cceca06479e5e0821303b |
Dataset for Zeta
This dataset is split into three parts:
train.jsonl: Contains the training data for supervised fine-tuning.
dpo.jsonl: Contains the data for the direct preference optimization.
eval.jsonl: Contains the evaluation data for the Zeta dataset.
These files are generated from the markdown files in the respective directories.
Scripts
There are several scripts to help with data processing and evaluation:
script/pull-predictions: Pulls predictions from… See the full description on the dataset page: https://huggingface.co/datasets/zed-industries/zeta. | 5,219 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-11-27T16:42:46 | null | null |
|
67b375650c24a78b687a540f | arcinstitute/opengenome2 | arcinstitute | {"license": "apache-2.0"} | false | null | 2025-02-18T04:03:24 | 30 | 30 | false | dffb01a7fe9f6d1df1d83627d9e97241d72a8b20 | null | 641 | [
"license:apache-2.0",
"region:us"
] | 2025-02-17T17:44:05 | null | null |
|
67a879c659b2260f1a473715 | hkust-nlp/CodeIO-PyEdu-Reasoning | hkust-nlp | {} | false | null | 2025-02-13T10:55:55 | 36 | 28 | false | 72cf6aebc9c126550aa4360e909cb8d6cb62aefe |
CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
📑 Paper | 🌐 Project Page | 💾 Released Resources | 📦 Repo
This is the resource page of the CodeI/O collection on Huggingface, we highlight your currect position with a blue block.
Dataset
Dataset
Link
CodeI/O-PythonEdu-Reasoning
🤗
Please also check the raw data after our processing if you are interested:… See the full description on the dataset page: https://huggingface.co/datasets/hkust-nlp/CodeIO-PyEdu-Reasoning. | 465 | [
"arxiv:2502.07316",
"region:us"
] | 2025-02-09T09:47:50 | null | null |
|
67afd31dba726eda5c0846dc | google/smol | google | {"license": "cc-by-4.0", "task_categories": ["translation"], "pretty_name": "Smol", "size_categories": ["10K<n<100K"], "language": ["aa", "ab", "ace", "ach", "ady", "aeb", "af", "ahr", "aii", "ak", "alz", "am", "apc", "apd", "ar", "arn", "arz", "as", "av", "awa", "ay", "ayl", "ba", "bal", "ban", "bbc", "bci", "bem", "ber", "bew", "bfq", "bfy", "bgq", "bho", "bik", "bjn", "bm", "bns", "bo", "br", "bra", "brx", "bts", "btx", "bua", "bug", "ccp", "ce", "cgg", "ch", "chk", "chm", "ckb", "cnh", "crh", "crs", "ctg", "cv", "dhd", "din", "doi", "dov", "dv", "dyu", "dz", "ee", "efi", "en", "es", "fa", "ff", "fj", "fo", "fon", "fr", "fur", "gaa", "gn", "gom", "grt", "ha", "hi", "hil", "hne", "hoc", "hrx", "iba", "ig", "ilo", "iso", "iu", "jam", "kaa", "kac", "kbd", "kek", "kfy", "kg", "kha", "ki", "kl", "kr", "kri", "kru", "ks", "ktu", "kv", "lep", "lg", "li", "lif", "lij", "lmo", "ln", "ltg", "lu", "lua", "luo", "lus", "mad", "mag", "mai", "mak", "mam", "meo", "mfe", "mg", "mh", "min", "mjl", "mni", "mos", "ms", "mtr", "mwr", "nd", "ndc", "ne", "new", "nhe", "noe", "nr", "nso", "nus", "nv", "ny", "oc", "om", "os", "pa", "pag", "pam", "pap", "pcm", "pt", "qu", "quc", "rhg", "rn", "rom", "rw", "sa", "sah", "sat", "scl", "scn", "sd", "se", "sg", "sgj", "shn", "sjp", "skr", "sn", "so", "spv", "ss", "st", "sus", "sw", "syl", "szl", "tcy", "tet", "ti", "tiv", "tn", "to", "tpi", "trp", "ts", "tum", "ty", "tyv", "udm", "unr", "ve", "vec", "war", "wbr", "wo", "xh", "xnr", "xsr", "yo", "yua", "yue", "zap", "zh", "zu", "zza"], "configs": [{"config_name": "smolsent__en_es", "data_files": [{"split": "train", "path": "smolsent/en_es.jsonl"}]}, {"config_name": "smolsent__en_qu", "data_files": [{"split": "train", "path": "smolsent/en_qu.jsonl"}]}, {"config_name": "smolsent__en_ay", "data_files": [{"split": "train", "path": "smolsent/en_ay.jsonl"}]}, {"config_name": "smolsent__en_gn", "data_files": [{"split": "train", "path": "smolsent/en_gn.jsonl"}]}, {"config_name": "smolsent__en_bo", "data_files": [{"split": "train", "path": "smolsent/en_bo.jsonl"}]}, {"config_name": "smolsent__en_brx", "data_files": [{"split": "train", "path": "smolsent/en_brx.jsonl"}]}, {"config_name": "smolsent__en_pa-Arab", "data_files": [{"split": "train", "path": "smolsent/en_pa-Arab.jsonl"}]}, {"config_name": "smolsent__en_sat-Latn", "data_files": [{"split": "train", "path": "smolsent/en_sat-Latn.jsonl"}]}, {"config_name": "smolsent__en_sat", "data_files": [{"split": "train", "path": "smolsent/en_sat.jsonl"}]}, {"config_name": "smolsent__en_sa", "data_files": [{"split": "train", "path": "smolsent/en_sa.jsonl"}]}, {"config_name": "smolsent__en_ks", "data_files": [{"split": "train", "path": "smolsent/en_ks.jsonl"}]}, {"config_name": "smolsent__en_ks-Deva", "data_files": [{"split": "train", "path": "smolsent/en_ks-Deva.jsonl"}]}, {"config_name": "smolsent__en_yue", "data_files": [{"split": "train", "path": "smolsent/en_yue.jsonl"}]}, {"config_name": "smolsent__en_lus", "data_files": [{"split": "train", "path": "smolsent/en_lus.jsonl"}]}, {"config_name": "smolsent__en_ff", "data_files": [{"split": "train", "path": "smolsent/en_ff.jsonl"}]}, {"config_name": "smolsent__en_kl", "data_files": [{"split": "train", "path": "smolsent/en_kl.jsonl"}]}, {"config_name": "smolsent__en_mni-Mtei", "data_files": [{"split": "train", "path": "smolsent/en_mni-Mtei.jsonl"}]}, {"config_name": "smolsent__en_af", "data_files": [{"split": "train", "path": "smolsent/en_af.jsonl"}]}, {"config_name": "smolsent__en_am", "data_files": [{"split": "train", "path": "smolsent/en_am.jsonl"}]}, {"config_name": "smolsent__en_ny", "data_files": [{"split": "train", "path": "smolsent/en_ny.jsonl"}]}, {"config_name": "smolsent__en_ha", "data_files": [{"split": "train", "path": "smolsent/en_ha.jsonl"}]}, {"config_name": "smolsent__en_ig", "data_files": [{"split": "train", "path": "smolsent/en_ig.jsonl"}]}, {"config_name": "smolsent__en_rw", "data_files": [{"split": "train", "path": "smolsent/en_rw.jsonl"}]}, {"config_name": "smolsent__en_ln", "data_files": [{"split": "train", "path": "smolsent/en_ln.jsonl"}]}, {"config_name": "smolsent__en_luo", "data_files": [{"split": "train", "path": "smolsent/en_luo.jsonl"}]}, {"config_name": "smolsent__en_pcm", "data_files": [{"split": "train", "path": "smolsent/en_pcm.jsonl"}]}, {"config_name": "smolsent__en_om", "data_files": [{"split": "train", "path": "smolsent/en_om.jsonl"}]}, {"config_name": "smolsent__en_nso", "data_files": [{"split": "train", "path": "smolsent/en_nso.jsonl"}]}, {"config_name": "smolsent__en_st", "data_files": [{"split": "train", "path": "smolsent/en_st.jsonl"}]}, {"config_name": "smolsent__en_sn", "data_files": [{"split": "train", "path": "smolsent/en_sn.jsonl"}]}, {"config_name": "smolsent__en_sw", "data_files": [{"split": "train", "path": "smolsent/en_sw.jsonl"}]}, {"config_name": "smolsent__en_ber-Latn", "data_files": [{"split": "train", "path": "smolsent/en_ber-Latn.jsonl"}]}, {"config_name": "smolsent__en_ak", "data_files": [{"split": "train", "path": "smolsent/en_ak.jsonl"}]}, {"config_name": "smolsent__en_zu", "data_files": [{"split": "train", "path": "smolsent/en_zu.jsonl"}]}, {"config_name": "smolsent__en_wo", "data_files": [{"split": "train", "path": "smolsent/en_wo.jsonl"}]}, {"config_name": "smolsent__en_so", "data_files": [{"split": "train", "path": "smolsent/en_so.jsonl"}]}, {"config_name": "smolsent__en_nd", "data_files": [{"split": "train", "path": "smolsent/en_nd.jsonl"}]}, {"config_name": "smolsent__en_mg", "data_files": [{"split": "train", "path": "smolsent/en_mg.jsonl"}]}, {"config_name": "smolsent__en_din", "data_files": [{"split": "train", "path": "smolsent/en_din.jsonl"}]}, {"config_name": "smolsent__en_gaa", "data_files": [{"split": "train", "path": "smolsent/en_gaa.jsonl"}]}, {"config_name": "smolsent__en_xh", "data_files": [{"split": "train", "path": "smolsent/en_xh.jsonl"}]}, {"config_name": "smolsent__en_ts", "data_files": [{"split": "train", "path": "smolsent/en_ts.jsonl"}]}, {"config_name": "smolsent__en_lg", "data_files": [{"split": "train", "path": "smolsent/en_lg.jsonl"}]}, {"config_name": "smolsent__en_bm", "data_files": [{"split": "train", "path": "smolsent/en_bm.jsonl"}]}, {"config_name": "smolsent__en_arz", "data_files": [{"split": "train", "path": "smolsent/en_arz.jsonl"}]}, {"config_name": "smolsent__en_ve", "data_files": [{"split": "train", "path": "smolsent/en_ve.jsonl"}]}, {"config_name": "smolsent__en_efi", "data_files": [{"split": "train", "path": "smolsent/en_efi.jsonl"}]}, {"config_name": "smolsent__en_dyu", "data_files": [{"split": "train", "path": "smolsent/en_dyu.jsonl"}]}, {"config_name": "smolsent__en_tn", "data_files": [{"split": "train", "path": "smolsent/en_tn.jsonl"}]}, {"config_name": "smolsent__en_rn", "data_files": [{"split": "train", "path": "smolsent/en_rn.jsonl"}]}, {"config_name": "smolsent__en_tiv", "data_files": [{"split": "train", "path": "smolsent/en_tiv.jsonl"}]}, {"config_name": "smolsent__en_mfe", "data_files": [{"split": "train", "path": "smolsent/en_mfe.jsonl"}]}, {"config_name": "smolsent__en_ti", "data_files": [{"split": "train", "path": "smolsent/en_ti.jsonl"}]}, {"config_name": "smolsent__en_sus", "data_files": [{"split": "train", "path": "smolsent/en_sus.jsonl"}]}, {"config_name": "smolsent__en_ndc", "data_files": [{"split": "train", "path": "smolsent/en_ndc.jsonl"}]}, {"config_name": "smolsent__en_ki", "data_files": [{"split": "train", "path": "smolsent/en_ki.jsonl"}]}, {"config_name": "smolsent__en_cgg", "data_files": [{"split": "train", "path": "smolsent/en_cgg.jsonl"}]}, {"config_name": "smolsent__en_bem", "data_files": [{"split": "train", "path": "smolsent/en_bem.jsonl"}]}, {"config_name": "smolsent__en_tum", "data_files": [{"split": "train", "path": "smolsent/en_tum.jsonl"}]}, {"config_name": "smolsent__en_nr", "data_files": [{"split": "train", "path": "smolsent/en_nr.jsonl"}]}, {"config_name": "smolsent__en_kr", "data_files": [{"split": "train", "path": "smolsent/en_kr.jsonl"}]}, {"config_name": "smolsent__en_fon", "data_files": [{"split": "train", "path": "smolsent/en_fon.jsonl"}]}, {"config_name": "smolsent__en_yo", "data_files": [{"split": "train", "path": "smolsent/en_yo.jsonl"}]}, {"config_name": "smolsent__en_ee", "data_files": [{"split": "train", "path": "smolsent/en_ee.jsonl"}]}, {"config_name": "smolsent__en_ar-MA", "data_files": [{"split": "train", "path": "smolsent/en_ar-MA.jsonl"}]}, {"config_name": "smolsent__en_apd", "data_files": [{"split": "train", "path": "smolsent/en_apd.jsonl"}]}, {"config_name": "smolsent__en_ss", "data_files": [{"split": "train", "path": "smolsent/en_ss.jsonl"}]}, {"config_name": "smolsent__en_ayl", "data_files": [{"split": "train", "path": "smolsent/en_ayl.jsonl"}]}, {"config_name": "smolsent__en_ktu", "data_files": [{"split": "train", "path": "smolsent/en_ktu.jsonl"}]}, {"config_name": "smolsent__en_aeb", "data_files": [{"split": "train", "path": "smolsent/en_aeb.jsonl"}]}, {"config_name": "smolsent__en_aa", "data_files": [{"split": "train", "path": "smolsent/en_aa.jsonl"}]}, {"config_name": "smolsent__en_lu", "data_files": [{"split": "train", "path": "smolsent/en_lu.jsonl"}]}, {"config_name": "smolsent__en_ach", "data_files": [{"split": "train", "path": "smolsent/en_ach.jsonl"}]}, {"config_name": "smolsent__en_alz", "data_files": [{"split": "train", "path": "smolsent/en_alz.jsonl"}]}, {"config_name": "smolsent__en_bci", "data_files": [{"split": "train", "path": "smolsent/en_bci.jsonl"}]}, {"config_name": "smolsent__en_dov", "data_files": [{"split": "train", "path": "smolsent/en_dov.jsonl"}]}, {"config_name": "smolsent__en_kg", "data_files": [{"split": "train", "path": "smolsent/en_kg.jsonl"}]}, {"config_name": "smolsent__en_mos", "data_files": [{"split": "train", "path": "smolsent/en_mos.jsonl"}]}, {"config_name": "smolsent__en_nqo", "data_files": [{"split": "train", "path": "smolsent/en_nqo.jsonl"}]}, {"config_name": "smolsent__en_ber", "data_files": [{"split": "train", "path": "smolsent/en_ber.jsonl"}]}, {"config_name": "smolsent__en_kri", "data_files": [{"split": "train", "path": "smolsent/en_kri.jsonl"}]}, {"config_name": "smoldoc__en_ki", "data_files": [{"split": "train", "path": "smoldoc/en_ki.jsonl"}]}, {"config_name": "smoldoc__en_ach", "data_files": [{"split": "train", "path": "smoldoc/en_ach.jsonl"}]}, {"config_name": "smoldoc__en_aa", "data_files": [{"split": "train", "path": "smoldoc/en_aa.jsonl"}]}, {"config_name": "smoldoc__en_bem", "data_files": [{"split": "train", "path": "smoldoc/en_bem.jsonl"}]}, {"config_name": "smoldoc__en_cgg", "data_files": [{"split": "train", "path": "smoldoc/en_cgg.jsonl"}]}, {"config_name": "smoldoc__en_din", "data_files": [{"split": "train", "path": "smoldoc/en_din.jsonl"}]}, {"config_name": "smoldoc__en_fon", "data_files": [{"split": "train", "path": "smoldoc/en_fon.jsonl"}]}, {"config_name": "smoldoc__en_gaa", "data_files": [{"split": "train", "path": "smoldoc/en_gaa.jsonl"}]}, {"config_name": "smoldoc__en_kr", "data_files": [{"split": "train", "path": "smoldoc/en_kr.jsonl"}]}, {"config_name": "smoldoc__en_lu", "data_files": [{"split": "train", "path": "smoldoc/en_lu.jsonl"}]}, {"config_name": "smoldoc__en_mfe", "data_files": [{"split": "train", "path": "smoldoc/en_mfe.jsonl"}]}, {"config_name": "smoldoc__en_rn", "data_files": [{"split": "train", "path": "smoldoc/en_rn.jsonl"}]}, {"config_name": "smoldoc__en_nr", "data_files": [{"split": "train", "path": "smoldoc/en_nr.jsonl"}]}, {"config_name": "smoldoc__en_ts", "data_files": [{"split": "train", "path": "smoldoc/en_ts.jsonl"}]}, {"config_name": "smoldoc__en_tn", "data_files": [{"split": "train", "path": "smoldoc/en_tn.jsonl"}]}, {"config_name": "smoldoc__en_aeb", "data_files": [{"split": "train", "path": "smoldoc/en_aeb.jsonl"}]}, {"config_name": "smoldoc__en_ve", "data_files": [{"split": "train", "path": "smoldoc/en_ve.jsonl"}]}, {"config_name": "smoldoc__en_alz", "data_files": [{"split": "train", "path": "smoldoc/en_alz.jsonl"}]}, {"config_name": "smoldoc__en_dov", "data_files": [{"split": "train", "path": "smoldoc/en_dov.jsonl"}]}, {"config_name": "smoldoc__en_dyu", "data_files": [{"split": "train", "path": "smoldoc/en_dyu.jsonl"}]}, {"config_name": "smoldoc__en_ayl", "data_files": [{"split": "train", "path": "smoldoc/en_ayl.jsonl"}]}, {"config_name": "smoldoc__en_ndc", "data_files": [{"split": "train", "path": "smoldoc/en_ndc.jsonl"}]}, {"config_name": "smoldoc__en_nd", "data_files": [{"split": "train", "path": "smoldoc/en_nd.jsonl"}]}, {"config_name": "smoldoc__en_tum", "data_files": [{"split": "train", "path": "smoldoc/en_tum.jsonl"}]}, {"config_name": "smoldoc__en_bci", "data_files": [{"split": "train", "path": "smoldoc/en_bci.jsonl"}]}, {"config_name": "smoldoc__en_ktu", "data_files": [{"split": "train", "path": "smoldoc/en_ktu.jsonl"}]}, {"config_name": "smoldoc__en_kg", "data_files": [{"split": "train", "path": "smoldoc/en_kg.jsonl"}]}, {"config_name": "smoldoc__en_apd", "data_files": [{"split": "train", "path": "smoldoc/en_apd.jsonl"}]}, {"config_name": "smoldoc__en_ss", "data_files": [{"split": "train", "path": "smoldoc/en_ss.jsonl"}]}, {"config_name": "smoldoc__en_efi", "data_files": [{"split": "train", "path": "smoldoc/en_efi.jsonl"}]}, {"config_name": "smoldoc__en_tiv", "data_files": [{"split": "train", "path": "smoldoc/en_tiv.jsonl"}]}, {"config_name": "smoldoc__en_mos", "data_files": [{"split": "train", "path": "smoldoc/en_mos.jsonl"}]}, {"config_name": "smoldoc__en_sus", "data_files": [{"split": "train", "path": "smoldoc/en_sus.jsonl"}]}, {"config_name": "smoldoc__en_nqo", "data_files": [{"split": "train", "path": "smoldoc/en_nqo.jsonl"}]}, {"config_name": "smoldoc__en_am", "data_files": [{"split": "train", "path": "smoldoc/en_am.jsonl"}]}, {"config_name": "smoldoc__en_sw", "data_files": [{"split": "train", "path": "smoldoc/en_sw.jsonl"}]}, {"config_name": "smoldoc__en_yo", "data_files": [{"split": "train", "path": "smoldoc/en_yo.jsonl"}]}, {"config_name": "smoldoc__en_ha", "data_files": [{"split": "train", "path": "smoldoc/en_ha.jsonl"}]}, {"config_name": "smoldoc__en_yue", "data_files": [{"split": "train", "path": "smoldoc/en_yue.jsonl"}]}, {"config_name": "smoldoc__en_ig", "data_files": [{"split": "train", "path": "smoldoc/en_ig.jsonl"}]}, {"config_name": "smoldoc__en_mg", "data_files": [{"split": "train", "path": "smoldoc/en_mg.jsonl"}]}, {"config_name": "smoldoc__en_om", "data_files": [{"split": "train", "path": "smoldoc/en_om.jsonl"}]}, {"config_name": "smoldoc__en_xh", "data_files": [{"split": "train", "path": "smoldoc/en_xh.jsonl"}]}, {"config_name": "smoldoc__en_ny", "data_files": [{"split": "train", "path": "smoldoc/en_ny.jsonl"}]}, {"config_name": "smoldoc__en_ln", "data_files": [{"split": "train", "path": "smoldoc/en_ln.jsonl"}]}, {"config_name": "smoldoc__en_wo", "data_files": [{"split": "train", "path": "smoldoc/en_wo.jsonl"}]}, {"config_name": "smoldoc__en_sn", "data_files": [{"split": "train", "path": "smoldoc/en_sn.jsonl"}]}, {"config_name": "smoldoc__en_rw", "data_files": [{"split": "train", "path": "smoldoc/en_rw.jsonl"}]}, {"config_name": "smoldoc__en_st", "data_files": [{"split": "train", "path": "smoldoc/en_st.jsonl"}]}, {"config_name": "smoldoc__en_ff", "data_files": [{"split": "train", "path": "smoldoc/en_ff.jsonl"}]}, {"config_name": "smoldoc__en_lg", "data_files": [{"split": "train", "path": "smoldoc/en_lg.jsonl"}]}, {"config_name": "smoldoc__en_luo", "data_files": [{"split": "train", "path": "smoldoc/en_luo.jsonl"}]}, {"config_name": "smoldoc__en_scn", "data_files": [{"split": "train", "path": "smoldoc/en_scn.jsonl"}]}, {"config_name": "smoldoc__en_ar-MA", "data_files": [{"split": "train", "path": "smoldoc/en_ar-MA.jsonl"}]}, {"config_name": "smoldoc__en_ti", "data_files": [{"split": "train", "path": "smoldoc/en_ti.jsonl"}]}, {"config_name": "smoldoc__en_zu", "data_files": [{"split": "train", "path": "smoldoc/en_zu.jsonl"}]}, {"config_name": "smoldoc__en_ak", "data_files": [{"split": "train", "path": "smoldoc/en_ak.jsonl"}]}, {"config_name": "smoldoc__en_arz", "data_files": [{"split": "train", "path": "smoldoc/en_arz.jsonl"}]}, {"config_name": "smoldoc__en_bm", "data_files": [{"split": "train", "path": "smoldoc/en_bm.jsonl"}]}, {"config_name": "smoldoc__en_so", "data_files": [{"split": "train", "path": "smoldoc/en_so.jsonl"}]}, {"config_name": "smoldoc__en_pcm", "data_files": [{"split": "train", "path": "smoldoc/en_pcm.jsonl"}]}, {"config_name": "smoldoc__en_nso", "data_files": [{"split": "train", "path": "smoldoc/en_nso.jsonl"}]}, {"config_name": "smoldoc__en_af", "data_files": [{"split": "train", "path": "smoldoc/en_af.jsonl"}]}, {"config_name": "smoldoc__en_ee", "data_files": [{"split": "train", "path": "smoldoc/en_ee.jsonl"}]}, {"config_name": "smoldoc__en_kri", "data_files": [{"split": "train", "path": "smoldoc/en_kri.jsonl"}]}, {"config_name": "smoldoc__en_ber-Latn", "data_files": [{"split": "train", "path": "smoldoc/en_ber-Latn.jsonl"}]}, {"config_name": "smoldoc__en_ber", "data_files": [{"split": "train", "path": "smoldoc/en_ber.jsonl"}]}, {"config_name": "smoldoc__en_kru", "data_files": [{"split": "train", "path": "smoldoc/en_kru.jsonl"}]}, {"config_name": "smoldoc__en_hoc-Wara", "data_files": [{"split": "train", "path": "smoldoc/en_hoc-Wara.jsonl"}]}, {"config_name": "smoldoc__en_bra", "data_files": [{"split": "train", "path": "smoldoc/en_bra.jsonl"}]}, {"config_name": "smoldoc__en_bgq", "data_files": [{"split": "train", "path": "smoldoc/en_bgq.jsonl"}]}, {"config_name": "smoldoc__en_trp", "data_files": [{"split": "train", "path": "smoldoc/en_trp.jsonl"}]}, {"config_name": "smoldoc__en_xsr-Tibt", "data_files": [{"split": "train", "path": "smoldoc/en_xsr-Tibt.jsonl"}]}, {"config_name": "smoldoc__en_grt-Latn", "data_files": [{"split": "train", "path": "smoldoc/en_grt-Latn.jsonl"}]}, {"config_name": "smoldoc__en_bfq", "data_files": [{"split": "train", "path": "smoldoc/en_bfq.jsonl"}]}, {"config_name": "smoldoc__en_ahr", "data_files": [{"split": "train", "path": "smoldoc/en_ahr.jsonl"}]}, {"config_name": "smoldoc__en_ccp-Latn", "data_files": [{"split": "train", "path": "smoldoc/en_ccp-Latn.jsonl"}]}, {"config_name": "smoldoc__en_xnr", "data_files": [{"split": "train", "path": "smoldoc/en_xnr.jsonl"}]}, {"config_name": "smoldoc__en_lep", "data_files": [{"split": "train", "path": "smoldoc/en_lep.jsonl"}]}, {"config_name": "smoldoc__en_kfy", "data_files": [{"split": "train", "path": "smoldoc/en_kfy.jsonl"}]}, {"config_name": "smoldoc__en_lif-Limb", "data_files": [{"split": "train", "path": "smoldoc/en_lif-Limb.jsonl"}]}, {"config_name": "smoldoc__en_mjl", "data_files": [{"split": "train", "path": "smoldoc/en_mjl.jsonl"}]}, {"config_name": "smoldoc__en_scl", "data_files": [{"split": "train", "path": "smoldoc/en_scl.jsonl"}]}, {"config_name": "smoldoc__en_unr-Deva", "data_files": [{"split": "train", "path": "smoldoc/en_unr-Deva.jsonl"}]}, {"config_name": "smoldoc__en_tcy", "data_files": [{"split": "train", "path": "smoldoc/en_tcy.jsonl"}]}, {"config_name": "smoldoc__en_sd-Deva", "data_files": [{"split": "train", "path": "smoldoc/en_sd-Deva.jsonl"}]}, {"config_name": "smoldoc__en_bns", "data_files": [{"split": "train", "path": "smoldoc/en_bns.jsonl"}]}, {"config_name": "smoldoc__en_wbr", "data_files": [{"split": "train", "path": "smoldoc/en_wbr.jsonl"}]}, {"config_name": "smoldoc__en_mtr", "data_files": [{"split": "train", "path": "smoldoc/en_mtr.jsonl"}]}, {"config_name": "smoldoc__en_sjp", "data_files": [{"split": "train", "path": "smoldoc/en_sjp.jsonl"}]}, {"config_name": "smoldoc__en_spv", "data_files": [{"split": "train", "path": "smoldoc/en_spv.jsonl"}]}, {"config_name": "smoldoc__en_ne", "data_files": [{"split": "train", "path": "smoldoc/en_ne.jsonl"}]}, {"config_name": "smoldoc__en_mag", "data_files": [{"split": "train", "path": "smoldoc/en_mag.jsonl"}]}, {"config_name": "smoldoc__en_sgj", "data_files": [{"split": "train", "path": "smoldoc/en_sgj.jsonl"}]}, {"config_name": "smoldoc__en_noe", "data_files": [{"split": "train", "path": "smoldoc/en_noe.jsonl"}]}, {"config_name": "smoldoc__en_doi", "data_files": [{"split": "train", "path": "smoldoc/en_doi.jsonl"}]}, {"config_name": "smoldoc__en_dhd", "data_files": [{"split": "train", "path": "smoldoc/en_dhd.jsonl"}]}, {"config_name": "smoldoc__en_bfy", "data_files": [{"split": "train", "path": "smoldoc/en_bfy.jsonl"}]}, {"config_name": "smoldoc__zh_sw", "data_files": [{"split": "train", "path": "smoldoc/zh_sw.jsonl"}]}, {"config_name": "smoldoc__ar_sw", "data_files": [{"split": "train", "path": "smoldoc/ar_sw.jsonl"}]}, {"config_name": "smoldoc__zh_am", "data_files": [{"split": "train", "path": "smoldoc/zh_am.jsonl"}]}, {"config_name": "smoldoc__ar_am", "data_files": [{"split": "train", "path": "smoldoc/ar_am.jsonl"}]}, {"config_name": "gatitos__en_fr-CA", "data_files": [{"split": "train", "path": "gatitos/en_fr-CA.jsonl"}]}, {"config_name": "gatitos__en_iu-Latn", "data_files": [{"split": "train", "path": "gatitos/en_iu-Latn.jsonl"}]}, {"config_name": "gatitos__en_pt-PT", "data_files": [{"split": "train", "path": "gatitos/en_pt-PT.jsonl"}]}, {"config_name": "gatitos__en_nhe", "data_files": [{"split": "train", "path": "gatitos/en_nhe.jsonl"}]}, {"config_name": "gatitos__en_aii", "data_files": [{"split": "train", "path": "gatitos/en_aii.jsonl"}]}, {"config_name": "gatitos__en_bjn", "data_files": [{"split": "train", "path": "gatitos/en_bjn.jsonl"}]}, {"config_name": "gatitos__en_bjn-Arab", "data_files": [{"split": "train", "path": "gatitos/en_bjn-Arab.jsonl"}]}, {"config_name": "gatitos__en_bci", "data_files": [{"split": "train", "path": "gatitos/en_bci.jsonl"}]}, {"config_name": "gatitos__en_bem", "data_files": [{"split": "train", "path": "gatitos/en_bem.jsonl"}]}, {"config_name": "gatitos__en_bua", "data_files": [{"split": "train", "path": "gatitos/en_bua.jsonl"}]}, {"config_name": "gatitos__en_dov", "data_files": [{"split": "train", "path": "gatitos/en_dov.jsonl"}]}, {"config_name": "gatitos__en_fur", "data_files": [{"split": "train", "path": "gatitos/en_fur.jsonl"}]}, {"config_name": "gatitos__en_hrx", "data_files": [{"split": "train", "path": "gatitos/en_hrx.jsonl"}]}, {"config_name": "gatitos__en_kr", "data_files": [{"split": "train", "path": "gatitos/en_kr.jsonl"}]}, {"config_name": "gatitos__en_alz", "data_files": [{"split": "train", "path": "gatitos/en_alz.jsonl"}]}, {"config_name": "gatitos__en_luo", "data_files": [{"split": "train", "path": "gatitos/en_luo.jsonl"}]}, {"config_name": "gatitos__en_pap", "data_files": [{"split": "train", "path": "gatitos/en_pap.jsonl"}]}, {"config_name": "gatitos__en_sg", "data_files": [{"split": "train", "path": "gatitos/en_sg.jsonl"}]}, {"config_name": "gatitos__en_sus", "data_files": [{"split": "train", "path": "gatitos/en_sus.jsonl"}]}, {"config_name": "gatitos__en_ty", "data_files": [{"split": "train", "path": "gatitos/en_ty.jsonl"}]}, {"config_name": "gatitos__en_ab", "data_files": [{"split": "train", "path": "gatitos/en_ab.jsonl"}]}, {"config_name": "gatitos__en_nqo", "data_files": [{"split": "train", "path": "gatitos/en_nqo.jsonl"}]}, {"config_name": "gatitos__en_hne", "data_files": [{"split": "train", "path": "gatitos/en_hne.jsonl"}]}, {"config_name": "gatitos__en_cgg", "data_files": [{"split": "train", "path": "gatitos/en_cgg.jsonl"}]}, {"config_name": "gatitos__en_kv", "data_files": [{"split": "train", "path": "gatitos/en_kv.jsonl"}]}, {"config_name": "gatitos__en_kg", "data_files": [{"split": "train", "path": "gatitos/en_kg.jsonl"}]}, {"config_name": "gatitos__en_lij", "data_files": [{"split": "train", "path": "gatitos/en_lij.jsonl"}]}, {"config_name": "gatitos__en_li", "data_files": [{"split": "train", "path": "gatitos/en_li.jsonl"}]}, {"config_name": "gatitos__en_lmo", "data_files": [{"split": "train", "path": "gatitos/en_lmo.jsonl"}]}, {"config_name": "gatitos__en_mos", "data_files": [{"split": "train", "path": "gatitos/en_mos.jsonl"}]}, {"config_name": "gatitos__en_szl", "data_files": [{"split": "train", "path": "gatitos/en_szl.jsonl"}]}, {"config_name": "gatitos__en_ss", "data_files": [{"split": "train", "path": "gatitos/en_ss.jsonl"}]}, {"config_name": "gatitos__en_tiv", "data_files": [{"split": "train", "path": "gatitos/en_tiv.jsonl"}]}, {"config_name": "gatitos__en_btx", "data_files": [{"split": "train", "path": "gatitos/en_btx.jsonl"}]}, {"config_name": "gatitos__en_fj", "data_files": [{"split": "train", "path": "gatitos/en_fj.jsonl"}]}, {"config_name": "gatitos__en_iso", "data_files": [{"split": "train", "path": "gatitos/en_iso.jsonl"}]}, {"config_name": "gatitos__en_ltg", "data_files": [{"split": "train", "path": "gatitos/en_ltg.jsonl"}]}, {"config_name": "gatitos__en_lua", "data_files": [{"split": "train", "path": "gatitos/en_lua.jsonl"}]}, {"config_name": "gatitos__en_pag", "data_files": [{"split": "train", "path": "gatitos/en_pag.jsonl"}]}, {"config_name": "gatitos__en_rn", "data_files": [{"split": "train", "path": "gatitos/en_rn.jsonl"}]}, {"config_name": "gatitos__en_sat-Latn", "data_files": [{"split": "train", "path": "gatitos/en_sat-Latn.jsonl"}]}, {"config_name": "gatitos__en_sat", "data_files": [{"split": "train", "path": "gatitos/en_sat.jsonl"}]}, {"config_name": "gatitos__en_ch", "data_files": [{"split": "train", "path": "gatitos/en_ch.jsonl"}]}, {"config_name": "gatitos__en_crh", "data_files": [{"split": "train", "path": "gatitos/en_crh.jsonl"}]}, {"config_name": "gatitos__en_efi", "data_files": [{"split": "train", "path": "gatitos/en_efi.jsonl"}]}, {"config_name": "gatitos__en_ki", "data_files": [{"split": "train", "path": "gatitos/en_ki.jsonl"}]}, {"config_name": "gatitos__en_trp", "data_files": [{"split": "train", "path": "gatitos/en_trp.jsonl"}]}, {"config_name": "gatitos__en_mam", "data_files": [{"split": "train", "path": "gatitos/en_mam.jsonl"}]}, {"config_name": "gatitos__en_tyv", "data_files": [{"split": "train", "path": "gatitos/en_tyv.jsonl"}]}, {"config_name": "gatitos__en_tum", "data_files": [{"split": "train", "path": "gatitos/en_tum.jsonl"}]}, {"config_name": "gatitos__en_din", "data_files": [{"split": "train", "path": "gatitos/en_din.jsonl"}]}, {"config_name": "gatitos__en_ks", "data_files": [{"split": "train", "path": "gatitos/en_ks.jsonl"}]}, {"config_name": "gatitos__en_ndc", "data_files": [{"split": "train", "path": "gatitos/en_ndc.jsonl"}]}, {"config_name": "gatitos__en_ban", "data_files": [{"split": "train", "path": "gatitos/en_ban.jsonl"}]}, {"config_name": "gatitos__en_bal", "data_files": [{"split": "train", "path": "gatitos/en_bal.jsonl"}]}, {"config_name": "gatitos__en_ba", "data_files": [{"split": "train", "path": "gatitos/en_ba.jsonl"}]}, {"config_name": "gatitos__en_bts", "data_files": [{"split": "train", "path": "gatitos/en_bts.jsonl"}]}, {"config_name": "gatitos__en_bbc", "data_files": [{"split": "train", "path": "gatitos/en_bbc.jsonl"}]}, {"config_name": "gatitos__en_bew", "data_files": [{"split": "train", "path": "gatitos/en_bew.jsonl"}]}, {"config_name": "gatitos__en_br", "data_files": [{"split": "train", "path": "gatitos/en_br.jsonl"}]}, {"config_name": "gatitos__en_bik", "data_files": [{"split": "train", "path": "gatitos/en_bik.jsonl"}]}, {"config_name": "gatitos__en_ctg", "data_files": [{"split": "train", "path": "gatitos/en_ctg.jsonl"}]}, {"config_name": "gatitos__en_chk", "data_files": [{"split": "train", "path": "gatitos/en_chk.jsonl"}]}, {"config_name": "gatitos__en_fo", "data_files": [{"split": "train", "path": "gatitos/en_fo.jsonl"}]}, {"config_name": "gatitos__en_dz", "data_files": [{"split": "train", "path": "gatitos/en_dz.jsonl"}]}, {"config_name": "gatitos__en_gaa", "data_files": [{"split": "train", "path": "gatitos/en_gaa.jsonl"}]}, {"config_name": "gatitos__en_quc", "data_files": [{"split": "train", "path": "gatitos/en_quc.jsonl"}]}, {"config_name": "gatitos__en_kbd", "data_files": [{"split": "train", "path": "gatitos/en_kbd.jsonl"}]}, {"config_name": "gatitos__en_kaa", "data_files": [{"split": "train", "path": "gatitos/en_kaa.jsonl"}]}, {"config_name": "gatitos__en_meo", "data_files": [{"split": "train", "path": "gatitos/en_meo.jsonl"}]}, {"config_name": "gatitos__en_ktu", "data_files": [{"split": "train", "path": "gatitos/en_ktu.jsonl"}]}, {"config_name": "gatitos__en_chm", "data_files": [{"split": "train", "path": "gatitos/en_chm.jsonl"}]}, {"config_name": "gatitos__en_mfe", "data_files": [{"split": "train", "path": "gatitos/en_mfe.jsonl"}]}, {"config_name": "gatitos__en_pcm", "data_files": [{"split": "train", "path": "gatitos/en_pcm.jsonl"}]}, {"config_name": "gatitos__en_nd", "data_files": [{"split": "train", "path": "gatitos/en_nd.jsonl"}]}, {"config_name": "gatitos__en_se", "data_files": [{"split": "train", "path": "gatitos/en_se.jsonl"}]}, {"config_name": "gatitos__en_oc", "data_files": [{"split": "train", "path": "gatitos/en_oc.jsonl"}]}, {"config_name": "gatitos__en_os", "data_files": [{"split": "train", "path": "gatitos/en_os.jsonl"}]}, {"config_name": "gatitos__en_rhg-Latn", "data_files": [{"split": "train", "path": "gatitos/en_rhg-Latn.jsonl"}]}, {"config_name": "gatitos__en_rom", "data_files": [{"split": "train", "path": "gatitos/en_rom.jsonl"}]}, {"config_name": "gatitos__en_skr", "data_files": [{"split": "train", "path": "gatitos/en_skr.jsonl"}]}, {"config_name": "gatitos__en_shn", "data_files": [{"split": "train", "path": "gatitos/en_shn.jsonl"}]}, {"config_name": "gatitos__en_ber-Latn", "data_files": [{"split": "train", "path": "gatitos/en_ber-Latn.jsonl"}]}, {"config_name": "gatitos__en_ber", "data_files": [{"split": "train", "path": "gatitos/en_ber.jsonl"}]}, {"config_name": "gatitos__en_tet", "data_files": [{"split": "train", "path": "gatitos/en_tet.jsonl"}]}, {"config_name": "gatitos__en_bo", "data_files": [{"split": "train", "path": "gatitos/en_bo.jsonl"}]}, {"config_name": "gatitos__en_tpi", "data_files": [{"split": "train", "path": "gatitos/en_tpi.jsonl"}]}, {"config_name": "gatitos__en_to", "data_files": [{"split": "train", "path": "gatitos/en_to.jsonl"}]}, {"config_name": "gatitos__en_tn", "data_files": [{"split": "train", "path": "gatitos/en_tn.jsonl"}]}, {"config_name": "gatitos__en_aeb", "data_files": [{"split": "train", "path": "gatitos/en_aeb.jsonl"}]}, {"config_name": "gatitos__en_udm", "data_files": [{"split": "train", "path": "gatitos/en_udm.jsonl"}]}, {"config_name": "gatitos__en_ve", "data_files": [{"split": "train", "path": "gatitos/en_ve.jsonl"}]}, {"config_name": "gatitos__en_vec", "data_files": [{"split": "train", "path": "gatitos/en_vec.jsonl"}]}, {"config_name": "gatitos__en_sah", "data_files": [{"split": "train", "path": "gatitos/en_sah.jsonl"}]}, {"config_name": "gatitos__en_yua", "data_files": [{"split": "train", "path": "gatitos/en_yua.jsonl"}]}, {"config_name": "gatitos__en_zza", "data_files": [{"split": "train", "path": "gatitos/en_zza.jsonl"}]}, {"config_name": "gatitos__en_ace", "data_files": [{"split": "train", "path": "gatitos/en_ace.jsonl"}]}, {"config_name": "gatitos__en_ach", "data_files": [{"split": "train", "path": "gatitos/en_ach.jsonl"}]}, {"config_name": "gatitos__en_ady", "data_files": [{"split": "train", "path": "gatitos/en_ady.jsonl"}]}, {"config_name": "gatitos__en_aa", "data_files": [{"split": "train", "path": "gatitos/en_aa.jsonl"}]}, {"config_name": "gatitos__en_awa", "data_files": [{"split": "train", "path": "gatitos/en_awa.jsonl"}]}, {"config_name": "gatitos__en_bug", "data_files": [{"split": "train", "path": "gatitos/en_bug.jsonl"}]}, {"config_name": "gatitos__en_ce", "data_files": [{"split": "train", "path": "gatitos/en_ce.jsonl"}]}, {"config_name": "gatitos__en_cv", "data_files": [{"split": "train", "path": "gatitos/en_cv.jsonl"}]}, {"config_name": "gatitos__en_fa-AF", "data_files": [{"split": "train", "path": "gatitos/en_fa-AF.jsonl"}]}, {"config_name": "gatitos__en_dyu", "data_files": [{"split": "train", "path": "gatitos/en_dyu.jsonl"}]}, {"config_name": "gatitos__yue_zh-Hant", "data_files": [{"split": "train", "path": "gatitos/yue_zh-Hant.jsonl"}]}, {"config_name": "gatitos__zh-Hant_yue", "data_files": [{"split": "train", "path": "gatitos/zh-Hant_yue.jsonl"}]}, {"config_name": "gatitos__yue_zh", "data_files": [{"split": "train", "path": "gatitos/yue_zh.jsonl"}]}, {"config_name": "gatitos__zh_yue", "data_files": [{"split": "train", "path": "gatitos/zh_yue.jsonl"}]}, {"config_name": "gatitos__en_yue", "data_files": [{"split": "train", "path": "gatitos/en_yue.jsonl"}]}, {"config_name": "gatitos__en_arz", "data_files": [{"split": "train", "path": "gatitos/en_arz.jsonl"}]}, {"config_name": "gatitos__en_cnh", "data_files": [{"split": "train", "path": "gatitos/en_cnh.jsonl"}]}, {"config_name": "gatitos__en_hil", "data_files": [{"split": "train", "path": "gatitos/en_hil.jsonl"}]}, {"config_name": "gatitos__en_iba", "data_files": [{"split": "train", "path": "gatitos/en_iba.jsonl"}]}, {"config_name": "gatitos__en_iu", "data_files": [{"split": "train", "path": "gatitos/en_iu.jsonl"}]}, {"config_name": "gatitos__en_kac", "data_files": [{"split": "train", "path": "gatitos/en_kac.jsonl"}]}, {"config_name": "gatitos__en_pa-Arab", "data_files": [{"split": "train", "path": "gatitos/en_pa-Arab.jsonl"}]}, {"config_name": "gatitos__en_ayl", "data_files": [{"split": "train", "path": "gatitos/en_ayl.jsonl"}]}, {"config_name": "gatitos__en_mad", "data_files": [{"split": "train", "path": "gatitos/en_mad.jsonl"}]}, {"config_name": "gatitos__en_mak", "data_files": [{"split": "train", "path": "gatitos/en_mak.jsonl"}]}, {"config_name": "gatitos__en_ms-Arab", "data_files": [{"split": "train", "path": "gatitos/en_ms-Arab.jsonl"}]}, {"config_name": "gatitos__en_arn", "data_files": [{"split": "train", "path": "gatitos/en_arn.jsonl"}]}, {"config_name": "gatitos__en_mwr", "data_files": [{"split": "train", "path": "gatitos/en_mwr.jsonl"}]}, {"config_name": "gatitos__en_min", "data_files": [{"split": "train", "path": "gatitos/en_min.jsonl"}]}, {"config_name": "gatitos__en_nv", "data_files": [{"split": "train", "path": "gatitos/en_nv.jsonl"}]}, {"config_name": "gatitos__en_nr", "data_files": [{"split": "train", "path": "gatitos/en_nr.jsonl"}]}, {"config_name": "gatitos__en_apd", "data_files": [{"split": "train", "path": "gatitos/en_apd.jsonl"}]}, {"config_name": "gatitos__en_tcy", "data_files": [{"split": "train", "path": "gatitos/en_tcy.jsonl"}]}, {"config_name": "gatitos__en_scn", "data_files": [{"split": "train", "path": "gatitos/en_scn.jsonl"}]}, {"config_name": "gatitos__en_war", "data_files": [{"split": "train", "path": "gatitos/en_war.jsonl"}]}, {"config_name": "gatitos__en_mh", "data_files": [{"split": "train", "path": "gatitos/en_mh.jsonl"}]}, {"config_name": "gatitos__en_crs", "data_files": [{"split": "train", "path": "gatitos/en_crs.jsonl"}]}, {"config_name": "gatitos__en_jam", "data_files": [{"split": "train", "path": "gatitos/en_jam.jsonl"}]}, {"config_name": "gatitos__en_brx", "data_files": [{"split": "train", "path": "gatitos/en_brx.jsonl"}]}, {"config_name": "gatitos__en_fon", "data_files": [{"split": "train", "path": "gatitos/en_fon.jsonl"}]}, {"config_name": "gatitos__en_wo", "data_files": [{"split": "train", "path": "gatitos/en_wo.jsonl"}]}, {"config_name": "gatitos__en_kha", "data_files": [{"split": "train", "path": "gatitos/en_kha.jsonl"}]}, {"config_name": "gatitos__en_pam", "data_files": [{"split": "train", "path": "gatitos/en_pam.jsonl"}]}, {"config_name": "gatitos__en_zap", "data_files": [{"split": "train", "path": "gatitos/en_zap.jsonl"}]}, {"config_name": "gatitos__en_av", "data_files": [{"split": "train", "path": "gatitos/en_av.jsonl"}]}, {"config_name": "gatitos__en_ar-MA", "data_files": [{"split": "train", "path": "gatitos/en_ar-MA.jsonl"}]}, {"config_name": "gatitos__en_mag", "data_files": [{"split": "train", "path": "gatitos/en_mag.jsonl"}]}, {"config_name": "gatitos__en_crh-Latn", "data_files": [{"split": "train", "path": "gatitos/en_crh-Latn.jsonl"}]}, {"config_name": "gatitos__en_kek", "data_files": [{"split": "train", "path": "gatitos/en_kek.jsonl"}]}, {"config_name": "gatitos__en_apc", "data_files": [{"split": "train", "path": "gatitos/en_apc.jsonl"}]}, {"config_name": "gatitos__en_syl", "data_files": [{"split": "train", "path": "gatitos/en_syl.jsonl"}]}, {"config_name": "gatitos__en_nus", "data_files": [{"split": "train", "path": "gatitos/en_nus.jsonl"}]}, {"config_name": "gatitos__en_ks-Deva", "data_files": [{"split": "train", "path": "gatitos/en_ks-Deva.jsonl"}]}, {"config_name": "gatitos__en_new", "data_files": [{"split": "train", "path": "gatitos/en_new.jsonl"}]}, {"config_name": "gatitos__en_lg", "data_files": [{"split": "train", "path": "gatitos/en_lg.jsonl"}]}, {"config_name": "gatitos__en_ay", "data_files": [{"split": "train", "path": "gatitos/en_ay.jsonl"}]}, {"config_name": "gatitos__en_es", "data_files": [{"split": "train", "path": "gatitos/en_es.jsonl"}]}, {"config_name": "gatitos__en_as", "data_files": [{"split": "train", "path": "gatitos/en_as.jsonl"}]}, {"config_name": "gatitos__en_doi", "data_files": [{"split": "train", "path": "gatitos/en_doi.jsonl"}]}, {"config_name": "gatitos__en_ckb", "data_files": [{"split": "train", "path": "gatitos/en_ckb.jsonl"}]}, {"config_name": "gatitos__en_ee", "data_files": [{"split": "train", "path": "gatitos/en_ee.jsonl"}]}, {"config_name": "gatitos__en_gn", "data_files": [{"split": "train", "path": "gatitos/en_gn.jsonl"}]}, {"config_name": "gatitos__en_qu", "data_files": [{"split": "train", "path": "gatitos/en_qu.jsonl"}]}, {"config_name": "gatitos__en_gom", "data_files": [{"split": "train", "path": "gatitos/en_gom.jsonl"}]}, {"config_name": "gatitos__en_ilo", "data_files": [{"split": "train", "path": "gatitos/en_ilo.jsonl"}]}, {"config_name": "gatitos__en_kri", "data_files": [{"split": "train", "path": "gatitos/en_kri.jsonl"}]}, {"config_name": "gatitos__en_kl", "data_files": [{"split": "train", "path": "gatitos/en_kl.jsonl"}]}, {"config_name": "gatitos__en_lus", "data_files": [{"split": "train", "path": "gatitos/en_lus.jsonl"}]}, {"config_name": "gatitos__en_fr", "data_files": [{"split": "train", "path": "gatitos/en_fr.jsonl"}]}, {"config_name": "gatitos__en_ts", "data_files": [{"split": "train", "path": "gatitos/en_ts.jsonl"}]}, {"config_name": "gatitos__en_ln", "data_files": [{"split": "train", "path": "gatitos/en_ln.jsonl"}]}, {"config_name": "gatitos__en_sa", "data_files": [{"split": "train", "path": "gatitos/en_sa.jsonl"}]}, {"config_name": "gatitos__en_hi", "data_files": [{"split": "train", "path": "gatitos/en_hi.jsonl"}]}, {"config_name": "gatitos__en_nso", "data_files": [{"split": "train", "path": "gatitos/en_nso.jsonl"}]}, {"config_name": "gatitos__en_ak", "data_files": [{"split": "train", "path": "gatitos/en_ak.jsonl"}]}, {"config_name": "gatitos__en_ff", "data_files": [{"split": "train", "path": "gatitos/en_ff.jsonl"}]}, {"config_name": "gatitos__en_om", "data_files": [{"split": "train", "path": "gatitos/en_om.jsonl"}]}, {"config_name": "gatitos__en_bho", "data_files": [{"split": "train", "path": "gatitos/en_bho.jsonl"}]}, {"config_name": "gatitos__en_mai", "data_files": [{"split": "train", "path": "gatitos/en_mai.jsonl"}]}, {"config_name": "gatitos__en_bm", "data_files": [{"split": "train", "path": "gatitos/en_bm.jsonl"}]}, {"config_name": "gatitos__en_ti", "data_files": [{"split": "train", "path": "gatitos/en_ti.jsonl"}]}, {"config_name": "gatitos__en_dv", "data_files": [{"split": "train", "path": "gatitos/en_dv.jsonl"}]}, {"config_name": "gatitos__en_mni-Mtei", "data_files": [{"split": "train", "path": "gatitos/en_mni-Mtei.jsonl"}]}]} | false | null | 2025-02-20T22:17:10 | 26 | 26 | false | d05b2e227adc45eaebdf62afef6dc618fe07a924 |
SMOL
SMOL (Set for Maximal Overall Leverage) is a collection professional
translations into 221 Low-Resource Languages, for the purpose of training
translation models, and otherwise increasing the representations of said
languages in NLP and technology.
Please read the SMOL Paper and the
GATITOS Paper for a much more
thorough description!
There are four resources in this directory:
SmolDoc: document-level translations into 100 languages
SmolSent: sentence-level translations into 81… See the full description on the dataset page: https://huggingface.co/datasets/google/smol. | 83 | [
"task_categories:translation",
"language:aa",
"language:ab",
"language:ace",
"language:ach",
"language:ady",
"language:aeb",
"language:af",
"language:ahr",
"language:aii",
"language:ak",
"language:alz",
"language:am",
"language:apc",
"language:apd",
"language:ar",
"language:arn",
"language:arz",
"language:as",
"language:av",
"language:awa",
"language:ay",
"language:ayl",
"language:ba",
"language:bal",
"language:ban",
"language:bbc",
"language:bci",
"language:bem",
"language:ber",
"language:bew",
"language:bfq",
"language:bfy",
"language:bgq",
"language:bho",
"language:bik",
"language:bjn",
"language:bm",
"language:bns",
"language:bo",
"language:br",
"language:bra",
"language:brx",
"language:bts",
"language:btx",
"language:bua",
"language:bug",
"language:ccp",
"language:ce",
"language:cgg",
"language:ch",
"language:chk",
"language:chm",
"language:ckb",
"language:cnh",
"language:crh",
"language:crs",
"language:ctg",
"language:cv",
"language:dhd",
"language:din",
"language:doi",
"language:dov",
"language:dv",
"language:dyu",
"language:dz",
"language:ee",
"language:efi",
"language:en",
"language:es",
"language:fa",
"language:ff",
"language:fj",
"language:fo",
"language:fon",
"language:fr",
"language:fur",
"language:gaa",
"language:gn",
"language:gom",
"language:grt",
"language:ha",
"language:hi",
"language:hil",
"language:hne",
"language:hoc",
"language:hrx",
"language:iba",
"language:ig",
"language:ilo",
"language:iso",
"language:iu",
"language:jam",
"language:kaa",
"language:kac",
"language:kbd",
"language:kek",
"language:kfy",
"language:kg",
"language:kha",
"language:ki",
"language:kl",
"language:kr",
"language:kri",
"language:kru",
"language:ks",
"language:ktu",
"language:kv",
"language:lep",
"language:lg",
"language:li",
"language:lif",
"language:lij",
"language:lmo",
"language:ln",
"language:ltg",
"language:lu",
"language:lua",
"language:luo",
"language:lus",
"language:mad",
"language:mag",
"language:mai",
"language:mak",
"language:mam",
"language:meo",
"language:mfe",
"language:mg",
"language:mh",
"language:min",
"language:mjl",
"language:mni",
"language:mos",
"language:ms",
"language:mtr",
"language:mwr",
"language:nd",
"language:ndc",
"language:ne",
"language:new",
"language:nhe",
"language:noe",
"language:nr",
"language:nso",
"language:nus",
"language:nv",
"language:ny",
"language:oc",
"language:om",
"language:os",
"language:pa",
"language:pag",
"language:pam",
"language:pap",
"language:pcm",
"language:pt",
"language:qu",
"language:quc",
"language:rhg",
"language:rn",
"language:rom",
"language:rw",
"language:sa",
"language:sah",
"language:sat",
"language:scl",
"language:scn",
"language:sd",
"language:se",
"language:sg",
"language:sgj",
"language:shn",
"language:sjp",
"language:skr",
"language:sn",
"language:so",
"language:spv",
"language:ss",
"language:st",
"language:sus",
"language:sw",
"language:syl",
"language:szl",
"language:tcy",
"language:tet",
"language:ti",
"language:tiv",
"language:tn",
"language:to",
"language:tpi",
"language:trp",
"language:ts",
"language:tum",
"language:ty",
"language:tyv",
"language:udm",
"language:unr",
"language:ve",
"language:vec",
"language:war",
"language:wbr",
"language:wo",
"language:xh",
"language:xnr",
"language:xsr",
"language:yo",
"language:yua",
"language:yue",
"language:zap",
"language:zh",
"language:zu",
"language:zza",
"license:cc-by-4.0",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.12301",
"arxiv:2303.15265",
"region:us"
] | 2025-02-14T23:34:53 | null | null |
|
67b2407eba726eda5ca0657a | Selvakumarduraipandian/Thirukural | Selvakumarduraipandian | {"license": "mit", "dataset_info": {"features": [{"name": "ID", "dtype": "int64"}, {"name": "Adhigaram_ID", "dtype": "int64"}, {"name": "Paal", "dtype": "string"}, {"name": "Iyal", "dtype": "string"}, {"name": "Adhigaram", "dtype": "string"}, {"name": "Kural", "dtype": "string"}, {"name": "Transliteration", "dtype": "string"}, {"name": "Vilakam", "dtype": "string"}, {"name": "Couplet", "dtype": "string"}, {"name": "Chapter", "dtype": "string"}, {"name": "Section", "dtype": "string"}, {"name": "Athigaram", "dtype": "string"}, {"name": "Kalaingar_Urai", "dtype": "string"}, {"name": "Parimezhalagar_Urai", "dtype": "string"}, {"name": "M_Varadharajanar", "dtype": "string"}, {"name": "Solomon_Pappaiya", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4216819, "num_examples": 1330}], "download_size": 1519400, "dataset_size": 4216819}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "language": ["ta", "en"], "tags": ["thirukural", "tamil"], "pretty_name": "Thiruvalluvar", "size_categories": ["n<1K"]} | false | null | 2025-02-17T02:25:05 | 26 | 26 | false | 001231c8ad9c1e08ca71b836559754aedbb0b983 |
📖 திருக்குறள் Dataset
🔹 Introduction
இந்த dataset-ல் திருக்குறள், அதன் விளக்கம், பாடப்பிரிவுகள் மற்றும் பல உரைகள் உள்ளன.
Selvakumar Duraipandian, one of the developers of thirukural.ai, has contributed to this dataset, making it a valuable resource for various language models and chatbot applications.
இதை Natural Language Processing (NLP) மற்றும் Chatbot Fine-tuning போன்ற Machine Learning வேலைகளுக்கு பயன்படுத்தலாம்.
📂 Dataset Structure
இந்த dataset… See the full description on the dataset page: https://huggingface.co/datasets/Selvakumarduraipandian/Thirukural. | 309 | [
"language:ta",
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"thirukural",
"tamil"
] | 2025-02-16T19:46:06 | null | null |
|
67b1c1c6626cd81034787da1 | bethgelab/CuratedThoughts | bethgelab | {"dataset_info": [{"config_name": "OpenR1-Math-220k-default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4695959427.499899, "num_examples": 88662}], "download_size": 1998085149, "dataset_size": 4695959427.499899}, {"config_name": "OpenThoughts-114k-math-default", "features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "generated_token_count", "dtype": "int64"}, {"name": "correct", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 1730254099.6693895, "num_examples": 66076}], "download_size": 641561198, "dataset_size": 1730254099.6693895}, {"config_name": "OpenThoughts-114k-metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3939535262.6895933, "num_examples": 89909}], "download_size": 2029522975, "dataset_size": 3939535262.6895933}, {"config_name": "OpenThoughts-metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3939535262.6895933, "num_examples": 89909}], "download_size": 2029539149, "dataset_size": 3939535262.6895933}], "configs": [{"config_name": "OpenR1-Math-220k-default", "data_files": [{"split": "train", "path": "OpenR1-Math-220k-default/train-*"}]}, {"config_name": "OpenThoughts-114k-math-default", "data_files": [{"split": "train", "path": "OpenThoughts-114k-math-default/train-*"}]}, {"config_name": "OpenThoughts-114k-metadata", "data_files": [{"split": "train", "path": "OpenThoughts-114k-metadata/train-*"}]}]} | false | null | 2025-02-17T18:30:30 | 24 | 24 | false | 1ee49035a0e31e432e40f23d56961dc794becde2 |
CuratedThoughts: Data Curation for RL Training Datasets
Andreas Hochlehnert¹*, Hardik Bhatnagar¹*, Vishaal Udandarao¹, Ameya Prabhu¹, Matthias Bethge¹
* - shared first authors, ¹ - Tübingen AI Center, University of Tübingen
Since the release of DeepSeek-R1 and its reinforcement learning-based reasoning approach, new datasets such as Open-R1 and OpenThoughts have been introduced. These datasets are used for various post-training approaches like supervised fine-tuning (SFT) and Group… See the full description on the dataset page: https://huggingface.co/datasets/bethgelab/CuratedThoughts. | 106 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-16T10:45:26 | null | null |
|
67a557ba9330ead027242110 | simplescaling/s1K-1.1 | simplescaling | {"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 49199523.039611965, "num_examples": 1000}], "download_size": 21114789, "dataset_size": 49199523.039611965}} | false | null | 2025-02-11T01:57:20 | 54 | 22 | false | f5c785c8cd829fb3c26bf9e0e27f75b53415480d |
Dataset Card for s1K
Dataset Summary
s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance.
Usage
# pip install -q datasets
from datasets import load_dataset
ds = load_dataset("simplescaling/s1K-1.1")["train"]
ds[0]
Dataset Structure
Data Instances
An example looks as follows:
{
'solution': '1. **Rewrite the function using… See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K-1.1. | 2,555 | [
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2501.19393",
"region:us"
] | 2025-02-07T00:45:46 | null | null |
|
67b6e7221a0bf9e8a70c385e | m-a-p/SuperGPQA | m-a-p | {"license": "mit", "task_categories": ["text2text-generation"], "language": ["en"], "size_categories": ["10K<n<100K"]} | false | null | 2025-02-22T14:03:38 | 20 | 20 | false | a39ec2ca198867829fdf03b86fff55b5a5303838 | This repository contains the data presented in SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines.
| 87 | [
"task_categories:text2text-generation",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.14739",
"region:us"
] | 2025-02-20T08:26:10 | null | null |
|
67b6a0871f86150091723b46 | PrimeIntellect/SYNTHETIC-1 | PrimeIntellect | {"dataset_info": {"features": [{"name": "response_id", "dtype": "string"}, {"name": "problem_id", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "in_source_id", "dtype": "string"}, {"name": "hf_dataset_name", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "gold_standard_solution", "dtype": "string"}, {"name": "llm_response", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "verification_result_info", "dtype": "string"}, {"name": "metadata", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 55101910464, "num_examples": 1994262}], "download_size": 26387270354, "dataset_size": 55101910464}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0"} | false | null | 2025-02-21T02:22:19 | 19 | 19 | false | f08fe8ccdb5be7ea7d3645179aa0361a8ad0a37e |
SYNTHETIC-1: Two Million Crowdsourced Reasoning Traces from Deepseek-R1
SYNTHETIC-1 is a reasoning dataset obtained from Deepseek-R1, generated with crowdsourced compute and annotated with diverse verifiers such as LLM judges or symbolic mathematics verifiers. This is the raw version of the dataset, without any filtering for correctness - Filtered datasets specifically for fine-tuning as well as our 7B model can be found in our 🤗 SYNTHETIC-1 Collection.
The dataset consists of the… See the full description on the dataset page: https://huggingface.co/datasets/PrimeIntellect/SYNTHETIC-1. | 598 | [
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2304.12244",
"region:us"
] | 2025-02-20T03:24:55 | null | null |
|
6695831f2d25bd04e969b0a2 | AI-MO/NuminaMath-CoT | AI-MO | {"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2495457595.0398345, "num_examples": 859494}, {"name": "test", "num_bytes": 290340.31593470514, "num_examples": 100}], "download_size": 1234351634, "dataset_size": 2495747935.355769}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["aimo", "math"], "pretty_name": "NuminaMath CoT"} | false | null | 2024-11-25T05:31:43 | 403 | 18 | false | 9d8d210c9f6a36c8f3cd84045668c9b7800ef517 |
Dataset Card for NuminaMath CoT
Dataset Summary
Approximately 860k math problems, where each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs and mathematics discussion forums. The processing steps include (a) OCR from the original PDFs, (b) segmentation… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-CoT. | 11,393 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"aimo",
"math"
] | 2024-07-15T20:14:23 | null | null |
|
66bc06dc6da7aec8413d35ba | NousResearch/hermes-function-calling-v1 | NousResearch | {"license": "apache-2.0", "task_categories": ["text-generation", "question-answering", "feature-extraction"], "language": ["en"], "configs": [{"config_name": "func_calling_singleturn", "data_files": "func-calling-singleturn.json", "default": true}, {"config_name": "func_calling", "data_files": "func-calling.json"}, {"config_name": "glaive_func_calling", "data_files": "glaive-function-calling-5k.json"}, {"config_name": "json_mode_agentic", "data_files": "json-mode-agentic.json"}, {"config_name": "json_mode_singleturn", "data_files": "json-mode-singleturn.json"}]} | false | null | 2024-08-30T06:07:08 | 251 | 18 | false | 8f025148382537ba84cd325e1834b706e1461692 |
Hermes Function-Calling V1
This dataset is the compilation of structured output and function calling data used in the Hermes 2 Pro series of models.
This repository contains a structured output dataset with function-calling conversations, json-mode, agentic json-mode and structured extraction samples, designed to train LLM models in performing function calls and returning structured output based on natural language instructions. The dataset features various conversational… See the full description on the dataset page: https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1. | 1,093 | [
"task_categories:text-generation",
"task_categories:question-answering",
"task_categories:feature-extraction",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-08-14T01:22:36 | null | null |
|
67a9f247188f29a956a34a04 | AI-MO/NuminaMath-1.5 | AI-MO | {"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "post-training"], "pretty_name": "NuminaMath 1.5"} | false | null | 2025-02-10T13:28:01 | 107 | 18 | false | 649859605995b1d46eb29389ed9851782a47322e |
Dataset Card for NuminaMath 1.5
Dataset Summary
This is the second iteration of the popular NuminaMath dataset, bringing high quality post-training data for approximately 900k competition-level math problems. Each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-1.5. | 2,010 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"math",
"post-training"
] | 2025-02-10T12:34:15 | null | null |
|
67954a35c16b74e280f72f15 | ServiceNow-AI/R1-Distill-SFT | ServiceNow-AI | {"license": "cc-by-nc-sa-4.0", "configs": [{"config_name": "v0", "data_files": [{"split": "train", "path": "v0/train-*"}]}, {"config_name": "v1", "data_files": [{"split": "train", "path": "v1/train-*"}]}], "dataset_info": [{"config_name": "v0", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1279431141, "num_examples": 171647}], "download_size": 554111459, "dataset_size": 1279431141}, {"config_name": "v1", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "reannotated_messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source_dataset", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 25783989151, "num_examples": 1679162}], "download_size": 11128580062, "dataset_size": 25783989151}]} | false | null | 2025-02-08T22:46:58 | 254 | 16 | false | 16e851e107d928b9069dcce428a2d3d7154e5353 |
🔉 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 - 𝗥𝟭-𝗗𝗶𝘀𝘁𝗶𝗹𝗹-𝗦𝗙𝗧 Dataset
Lewis Tunstall, Ed Beeching, Loubna Ben Allal, Clem Delangue 🤗 and others at Hugging Face announced today that they are - 𝗼𝗽𝗲𝗻𝗹𝘆 𝗿𝗲𝗽𝗿𝗼𝗱𝘂𝗰𝗶𝗻𝗴 𝗥𝟭 🔥
We at 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 (ServiceNow Language Models) have been cooking up something as well.
Inspired by Open-r1, we have decided to open source the data stage-by-stage to support the open source community.
𝗕𝗼𝗼𝗸𝗺𝗮𝗿𝗸 this page!
KEY DETAILS:
⚗️ Distilled… See the full description on the dataset page: https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT. | 7,117 | [
"license:cc-by-nc-sa-4.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-25T20:31:49 | null | null |
|
67b1ea86ce03f9a057f98b26 | GAIR/LIMR | GAIR | null | false | null | 2025-02-17T15:25:12 | 16 | 16 | false | 1832f825ee992a86a5be6d5b17d1e1a8c925df53 |
LIMR: Less is More for RL Scaling
📄 Paper |
🌐 Dataset |
📘 Model
Releases
[2025/02/17] We're releasing the following components:
🛠️ LIM Tools: Implementation of our Learning Impact Measurement methodology
🚀 Training & Evaluation: Complete implementation of our training pipeline and evaluation scripts
🔥 LIMR Dataset: Our curated dataset of 1,389 mathematical questions
🤖 LIMR Model: Model training on the LIMR dataset.
Overview… See the full description on the dataset page: https://huggingface.co/datasets/GAIR/LIMR. | 140 | [
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-16T13:39:18 | null | null |
|
67a30890c325b01e8918060a | GAIR/LIMO | GAIR | {"language": ["en"], "size_categories": ["n<1K"], "license": "apache-2.0"} | false | null | 2025-02-10T07:42:21 | 111 | 15 | false | b60f4462da9d927930b9c9bd43399cf875564416 | Dataset for LIMO: Less is More for Reasoning
Usage
from datasets import load_dataset
dataset = load_dataset("GAIR/LIMO", split="train")
Citation
If you find our dataset useful, please cite:
@misc{ye2025limoreasoning,
title={LIMO: Less is More for Reasoning},
author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
year={2025},
eprint={2502.03387},
archivePrefix={arXiv},
primaryClass={cs.CL}… See the full description on the dataset page: https://huggingface.co/datasets/GAIR/LIMO. | 4,689 | [
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.03387",
"region:us"
] | 2025-02-05T06:43:28 | null | null |
|
67aad81d078cdf445287aff4 | sequelbox/Raiden-DeepSeek-R1 | sequelbox | {"license": "apache-2.0", "tags": ["raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b"], "language": ["en"], "task_categories": ["text-generation"], "size_categories": ["10K<n<100K"]} | false | null | 2025-02-11T05:07:15 | 35 | 15 | false | 139160c6e781e3544f74a1bafafa3343bce9de7c | Raiden-DeepSeek-R1 is a dataset containing creative-reasoning and analytic-reasoning responses, testing the limits of DeepSeek R1's reasoning skills!
This dataset contains:
63k 'creative_content' and 'analytical_reasoning' prompts from microsoft/orca-agentinstruct-1M-v1, with all responses generated by deepseek-ai/DeepSeek-R1.
Responses demonstrate the reasoning capabilities of DeepSeek's 685b parameter R1 reasoning model.
Responses have not been filtered or edited at all: the Raiden dataset… See the full description on the dataset page: https://huggingface.co/datasets/sequelbox/Raiden-DeepSeek-R1. | 552 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:csv",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"raiden",
"creative",
"analytical",
"reasoning",
"rational",
"deepseek",
"r1",
"685b"
] | 2025-02-11T04:54:53 | null | null |
|
67b7a9729107c46e94c9c47d | PrimeIntellect/SYNTHETIC-1-SFT-Data | PrimeIntellect | {"dataset_info": {"features": [{"name": "response_id", "dtype": "string"}, {"name": "problem_id", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8338942891, "num_examples": 894086}], "download_size": 3638559349, "dataset_size": 8338942891}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0"} | false | null | 2025-02-21T02:21:56 | 15 | 15 | false | e8d30e75e8da4fdb176b7aa0c345eb88a8bbf2e8 |
SYNTHETIC-1: Two Million Crowdsourced Reasoning Traces from Deepseek-R1
SYNTHETIC-1 is a reasoning dataset obtained from Deepseek-R1, generated with crowdsourced compute and annotated with diverse verifiers such as LLM judges or symbolic mathematics verifiers. This is the SFT version of the dataset - the raw data and preference dataset can be found in our 🤗 SYNTHETIC-1 Collection.
The dataset consists of the following tasks and verifiers that were implemented in our library… See the full description on the dataset page: https://huggingface.co/datasets/PrimeIntellect/SYNTHETIC-1-SFT-Data. | 87 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2304.12244",
"region:us"
] | 2025-02-20T22:15:14 | null | null |
|
625552d2b339bb03abe3432d | openai/gsm8k | openai | {"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]} | false | null | 2024-01-04T12:05:15 | 590 | 14 | false | e53f048856ff4f594e959d75785d2c2d37b678ee |
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve.
Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k. | 338,200 | [
"task_categories:text2text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"source_datasets:original",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2110.14168",
"region:us",
"math-word-problems"
] | 2022-04-12T10:22:10 | gsm8k | null |
|
678f6b0c2705196b8a1c6c86 | bespokelabs/Bespoke-Stratos-17k | bespokelabs | {"license": "apache-2.0", "language": ["en"], "tags": ["curator", "synthetic"]} | false | null | 2025-01-31T00:00:38 | 277 | 14 | false | 9e9adba943911a9fc44dffcb30aaa18dc96ae6df |
Bespoke-Stratos-17k
We replicated and improved the Berkeley Sky-T1 data pipeline using SFT distillation data
from DeepSeek-R1 to create Bespoke-Stratos-17k -- a reasoning dataset of questions, reasoning traces, and answers.
This data was used to train:
Bespoke-Stratos-32B, a 32B reasoning model which is a fine-tune of Qwen-2.5-32B-Instruct
Bespoke-Stratos-7B, a 7B reasoning model which is a fine-tune of Qwen-2.5-7B-Instruct.
Metrics for Bespoke-Stratos-32B… See the full description on the dataset page: https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k. | 94,364 | [
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"curator",
"synthetic"
] | 2025-01-21T09:38:20 | null | null |
|
6791fcbb49c4df6d798ca7c9 | cais/hle | cais | {"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 276479149, "num_examples": 2700}], "download_size": 266651469, "dataset_size": 276479149}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]} | false | null | 2025-02-15T00:05:49 | 246 | 14 | false | 1a9f4713d5a6bc9b7988db7c42e1dccdf41d1f43 |
Humanity's Last Exam
🌐 Website | 📄 Paper | GitHub
Center for AI Safety & Scale AI
Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,700 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co/datasets/cais/hle. | 7,071 | [
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-23T08:24:27 | null | null |
|
679ae77de7f671635d858841 | cognitivecomputations/dolphin-r1 | cognitivecomputations | {"license": "apache-2.0", "configs": [{"config_name": "nonreasoning", "data_files": [{"split": "train", "path": "dolphin-r1-nonreasoning.jsonl"}]}, {"config_name": "reasoning-deepseek", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-deepseek.jsonl"}]}, {"config_name": "reasoning-flash", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-flash.jsonl"}]}]} | false | null | 2025-01-30T18:51:36 | 262 | 14 | false | f6ac651b3911352ce9bc6d3340c98a66007feb88 |
Dolphin R1 🐬
An Apache-2.0 dataset curated by Eric Hartford and Cognitive Computations
Discord: https://discord.gg/cognitivecomputations
Sponsors
Our appreciation for the generous sponsors of Dolphin R1 - Without whom this dataset could not exist.
Dria https://x.com/driaforall - Inference Sponsor (DeepSeek)
Chutes https://x.com/rayon_labs - Inference Sponsor (Flash)
Crusoe Cloud - Compute Sponsor
Andreessen Horowitz - provided the grant that originally launched… See the full description on the dataset page: https://huggingface.co/datasets/cognitivecomputations/dolphin-r1. | 5,578 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-30T02:44:13 | null | null |
|
67a4d31993e9cebec5433082 | google/wmt24pp | google | {"license": "apache-2.0", "language": ["ar", "bg", "bn", "ca", "da", "de", "el", "es", "et", "fa", "fi", "fr", "gu", "he", "hi", "hr", "hu", "id", "is", "it", "ja", "kn", "ko", "lt", "lv", "ml", "mr", "nl", "no", "pa", "pl", "pt", "ro", "ru", "sk", "sl", "sr", "sv", "sw", "ta", "te", "th", "tr", "uk", "ur", "vi", "zh", "zu"], "task_categories": ["translation"], "size_categories": ["10K<n<100K"], "configs": [{"config_name": "en-ar_EG", "data_files": [{"split": "train", "path": "en-ar_EG.jsonl"}]}, {"config_name": "en-ar_SA", "data_files": [{"split": "train", "path": "en-ar_SA.jsonl"}]}, {"config_name": "en-bg_BG", "data_files": [{"split": "train", "path": "en-bg_BG.jsonl"}]}, {"config_name": "en-bn_IN", "data_files": [{"split": "train", "path": "en-bn_IN.jsonl"}]}, {"config_name": "en-ca_ES", "data_files": [{"split": "train", "path": "en-ca_ES.jsonl"}]}, {"config_name": "en-cs_CZ", "data_files": [{"split": "train", "path": "en-cs_CZ.jsonl"}]}, {"config_name": "en-da_DK", "data_files": [{"split": "train", "path": "en-da_DK.jsonl"}]}, {"config_name": "en-de_DE", "data_files": [{"split": "train", "path": "en-de_DE.jsonl"}]}, {"config_name": "en-el_GR", "data_files": [{"split": "train", "path": "en-el_GR.jsonl"}]}, {"config_name": "en-es_MX", "data_files": [{"split": "train", "path": "en-es_MX.jsonl"}]}, {"config_name": "en-et_EE", "data_files": [{"split": "train", "path": "en-et_EE.jsonl"}]}, {"config_name": "en-fa_IR", "data_files": [{"split": "train", "path": "en-fa_IR.jsonl"}]}, {"config_name": "en-fi_FI", "data_files": [{"split": "train", "path": "en-fi_FI.jsonl"}]}, {"config_name": "en-fil_PH", "data_files": [{"split": "train", "path": "en-fil_PH.jsonl"}]}, {"config_name": "en-fr_CA", "data_files": [{"split": "train", "path": "en-fr_CA.jsonl"}]}, {"config_name": "en-fr_FR", "data_files": [{"split": "train", "path": "en-fr_FR.jsonl"}]}, {"config_name": "en-gu_IN", "data_files": [{"split": "train", "path": "en-gu_IN.jsonl"}]}, {"config_name": "en-he_IL", "data_files": [{"split": "train", "path": "en-he_IL.jsonl"}]}, {"config_name": "en-hi_IN", "data_files": [{"split": "train", "path": "en-hi_IN.jsonl"}]}, {"config_name": "en-hr_HR", "data_files": [{"split": "train", "path": "en-hr_HR.jsonl"}]}, {"config_name": "en-hu_HU", "data_files": [{"split": "train", "path": "en-hu_HU.jsonl"}]}, {"config_name": "en-id_ID", "data_files": [{"split": "train", "path": "en-id_ID.jsonl"}]}, {"config_name": "en-is_IS", "data_files": [{"split": "train", "path": "en-is_IS.jsonl"}]}, {"config_name": "en-it_IT", "data_files": [{"split": "train", "path": "en-it_IT.jsonl"}]}, {"config_name": "en-ja_JP", "data_files": [{"split": "train", "path": "en-ja_JP.jsonl"}]}, {"config_name": "en-kn_IN", "data_files": [{"split": "train", "path": "en-kn_IN.jsonl"}]}, {"config_name": "en-ko_KR", "data_files": [{"split": "train", "path": "en-ko_KR.jsonl"}]}, {"config_name": "en-lt_LT", "data_files": [{"split": "train", "path": "en-lt_LT.jsonl"}]}, {"config_name": "en-lv_LV", "data_files": [{"split": "train", "path": "en-lv_LV.jsonl"}]}, {"config_name": "en-ml_IN", "data_files": [{"split": "train", "path": "en-ml_IN.jsonl"}]}, {"config_name": "en-mr_IN", "data_files": [{"split": "train", "path": "en-mr_IN.jsonl"}]}, {"config_name": "en-nl_NL", "data_files": [{"split": "train", "path": "en-nl_NL.jsonl"}]}, {"config_name": "en-no_NO", "data_files": [{"split": "train", "path": "en-no_NO.jsonl"}]}, {"config_name": "en-pa_IN", "data_files": [{"split": "train", "path": "en-pa_IN.jsonl"}]}, {"config_name": "en-pl_PL", "data_files": [{"split": "train", "path": "en-pl_PL.jsonl"}]}, {"config_name": "en-pt_BR", "data_files": [{"split": "train", "path": "en-pt_BR.jsonl"}]}, {"config_name": "en-pt_PT", "data_files": [{"split": "train", "path": "en-pt_PT.jsonl"}]}, {"config_name": "en-ro_RO", "data_files": [{"split": "train", "path": "en-ro_RO.jsonl"}]}, {"config_name": "en-ru_RU", "data_files": [{"split": "train", "path": "en-ru_RU.jsonl"}]}, {"config_name": "en-sk_SK", "data_files": [{"split": "train", "path": "en-sk_SK.jsonl"}]}, {"config_name": "en-sl_SI", "data_files": [{"split": "train", "path": "en-sl_SI.jsonl"}]}, {"config_name": "en-sr_RS", "data_files": [{"split": "train", "path": "en-sr_RS.jsonl"}]}, {"config_name": "en-sv_SE", "data_files": [{"split": "train", "path": "en-sv_SE.jsonl"}]}, {"config_name": "en-sw_KE", "data_files": [{"split": "train", "path": "en-sw_KE.jsonl"}]}, {"config_name": "en-sw_TZ", "data_files": [{"split": "train", "path": "en-sw_TZ.jsonl"}]}, {"config_name": "en-ta_IN", "data_files": [{"split": "train", "path": "en-ta_IN.jsonl"}]}, {"config_name": "en-te_IN", "data_files": [{"split": "train", "path": "en-te_IN.jsonl"}]}, {"config_name": "en-th_TH", "data_files": [{"split": "train", "path": "en-th_TH.jsonl"}]}, {"config_name": "en-tr_TR", "data_files": [{"split": "train", "path": "en-tr_TR.jsonl"}]}, {"config_name": "en-uk_UA", "data_files": [{"split": "train", "path": "en-uk_UA.jsonl"}]}, {"config_name": "en-ur_PK", "data_files": [{"split": "train", "path": "en-ur_PK.jsonl"}]}, {"config_name": "en-vi_VN", "data_files": [{"split": "train", "path": "en-vi_VN.jsonl"}]}, {"config_name": "en-zh_CN", "data_files": [{"split": "train", "path": "en-zh_CN.jsonl"}]}, {"config_name": "en-zh_TW", "data_files": [{"split": "train", "path": "en-zh_TW.jsonl"}]}, {"config_name": "en-zu_ZA", "data_files": [{"split": "train", "path": "en-zu_ZA.jsonl"}]}]} | false | null | 2025-02-19T16:37:15 | 13 | 13 | false | a3564b47ba4aa30e69a2bb72f6b00eaa49dd50a3 |
WMT24++
This repository contains the human translation and post-edit data for the 55 en->xx language pairs released in
the publication
WMT24++: Expanding the Language Coverage of WMT24 to 55 Languages & Dialects.
If you are interested in the MT/LLM system outputs and automatic metric scores, please see MTME.
If you are interested in the images of the source URLs for each document, please see here.
Schema
Each language pair is stored in its own jsonl file.
Each row is… See the full description on the dataset page: https://huggingface.co/datasets/google/wmt24pp. | 217 | [
"task_categories:translation",
"language:ar",
"language:bg",
"language:bn",
"language:ca",
"language:da",
"language:de",
"language:el",
"language:es",
"language:et",
"language:fa",
"language:fi",
"language:fr",
"language:gu",
"language:he",
"language:hi",
"language:hr",
"language:hu",
"language:id",
"language:is",
"language:it",
"language:ja",
"language:kn",
"language:ko",
"language:lt",
"language:lv",
"language:ml",
"language:mr",
"language:nl",
"language:no",
"language:pa",
"language:pl",
"language:pt",
"language:ro",
"language:ru",
"language:sk",
"language:sl",
"language:sr",
"language:sv",
"language:sw",
"language:ta",
"language:te",
"language:th",
"language:tr",
"language:uk",
"language:ur",
"language:vi",
"language:zh",
"language:zu",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.12404",
"region:us"
] | 2025-02-06T15:19:53 | null | null |
|
67ad1d5c100c4bfc7203184e | jonathan-roberts1/zerobench | jonathan-roberts1 | {"pretty_name": "ZeroBench", "dataset_info": {"features": [{"name": "question_id", "dtype": "string"}, {"name": "question_text", "dtype": "string"}, {"name": "question_images_decoded", "sequence": "image"}, {"name": "question_answer", "dtype": "string"}, {"name": "question_images", "sequence": "string"}, {"name": "image_attribution", "dtype": "string"}], "splits": [{"name": "zerobench", "num_bytes": 65839214, "num_examples": 100}, {"name": "zerobench_subquestions", "num_bytes": 238205906, "num_examples": 334}], "download_size": 128199662, "dataset_size": 304045120}, "configs": [{"config_name": "default", "data_files": [{"split": "zerobench", "path": "data/zerobench-*"}, {"split": "zerobench_subquestions", "path": "data/zerobench_subquestions-*"}]}], "task_categories": ["image-text-to-text"]} | false | null | 2025-02-21T12:39:06 | 13 | 13 | false | 9b8e37e5d5e17498b207e428fdd4109ba6bbb6ca |
ZeroBench: An Impossible* Visual Benchmark for Contemporary Large Multimodal Models
🌐 Project Page | 📄 Paper | GitHub
*Given the recent rapid progress on benchmarks, we do not imagine ZeroBench will remain "impossible" for long!
Get involved!
A key challenge in this regime of difficult questions is human verification and quality control. Despite the checks we have carried out, it is likely that errors remain in some questions. We welcome help red teaming ZeroBench to find… See the full description on the dataset page: https://huggingface.co/datasets/jonathan-roberts1/zerobench. | 337 | [
"task_categories:image-text-to-text",
"size_categories:n<1K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.09696",
"region:us"
] | 2025-02-12T22:14:52 | null | null |
|
67b67c88194f0442be699a30 | opendiffusionai/laion2b-23ish-woman-solo | opendiffusionai | {"size_categories": ["10K<n<100K"]} | false | null | 2025-02-20T05:26:43 | 13 | 13 | false | 72f63640580f6e23a67e4f232b3522f3502e2fd2 |
Overview
All images have a woman in them, solo, at APPROXIMATELY 2:3 aspect ratio.
These images are HUMAN CURATED. I have personally gone through every one at least once.
Additionally, there are no visible watermarks, the quality and focus are good, and it should not be confusing for AI training
There should be a little over 15k images here.
Note that there is a wide variety of body sizes, from size 0, to perhaps size 18
There are also THREE choices of captions: the really bad "alt… See the full description on the dataset page: https://huggingface.co/datasets/opendiffusionai/laion2b-23ish-woman-solo. | 73 | [
"size_categories:10K<n<100K",
"format:json",
"modality:image",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-20T00:51:20 | null | null |
|
67b6ca1869defaba21e05c5a | xlangai/AgentTrek | xlangai | {"language": ["en"]} | false | null | 2025-02-20T06:53:46 | 13 | 13 | false | 32aabe6fb48d8e2e7dae1678e6ff05ba23725b2c |
AgentTrek Data Collection
AgentTrek dataset is the training dataset for the Web agent AgentTrek-1.0-32B. It consists of a total of 52,594 dialogue turns, specifically designed to train a language model for performing web-based tasks, such as browsing and web shopping. The dialogues in this dataset simulate interactions where the agent assists users in tasks like searching for information, comparing products, making purchasing decisions, and navigating websites.
Dataset… See the full description on the dataset page: https://huggingface.co/datasets/xlangai/AgentTrek. | 23 | [
"language:en",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2412.09605",
"region:us"
] | 2025-02-20T06:22:16 | null | null |
|
65fc5a783bc54054aa2e6e62 | gretelai/synthetic_text_to_sql | gretelai | {"license": "apache-2.0", "task_categories": ["question-answering", "table-question-answering", "text-generation"], "language": ["en"], "tags": ["synthetic", "SQL", "text-to-SQL", "code"], "size_categories": ["100K<n<1M"]} | false | null | 2024-05-10T22:30:56 | 486 | 12 | false | 273a86f5f290e8d61b6767a9ff690c82bc990dc4 |
Image generated by DALL-E. See prompt for more details
synthetic_text_to_sql
gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples,
designed and generated using Gretel Navigator, and released under Apache 2.0.
Please see our release blogpost for more details.
The dataset includes:
105,851 records partitioned into 100,000 train and 5,851 test records
~23M total tokens, including ~12M SQL tokens
Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql. | 3,273 | [
"task_categories:question-answering",
"task_categories:table-question-answering",
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2306.05685",
"region:us",
"synthetic",
"SQL",
"text-to-SQL",
"code"
] | 2024-03-21T16:04:08 | null | null |
|
6655eb19d17e141dcb546ed5 | HuggingFaceFW/fineweb-edu | HuggingFaceFW | {"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb-Edu", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}], "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]} | false | null | 2025-01-31T15:56:54 | 633 | 12 | false | 4863ab07d7520451e6f73e2912ad8bfee7d97c11 |
📚 FineWeb-Edu
1.3 trillion tokens of the finest educational data the 🌐 web has to offer
Paper: https://arxiv.org/abs/2406.17557
What is it?
📚 FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version.
To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We then… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu. | 541,953 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:1B<n<10B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2406.17557",
"arxiv:2404.14219",
"arxiv:2401.10020",
"arxiv:2109.07445",
"doi:10.57967/hf/2497",
"region:us"
] | 2024-05-28T14:32:57 | null | null |
|
67a18053cad6d171c909e3c1 | lmarena-ai/arena-human-preference-100k | lmarena-ai | {"size_categories": ["100K<n<1M"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/arena-*"}]}]} | false | null | 2025-02-11T23:48:51 | 30 | 12 | false | 72e85b3ddc9c81bf7b659d6b03d4126dfd8fb34a |
Overview
This dataset contains leaderboard conversation data collected between June 2024 and August 2024.
It includes English human preference evaluations used to develop Arena Explorer.
Additionally, we provide an embedding file, which contains precomputed embeddings for the English conversations.
These embeddings are used in the topic modeling pipeline to categorize and analyze these conversations.
For a detailed exploration of the dataset and analysis methods, refer to the… See the full description on the dataset page: https://huggingface.co/datasets/lmarena-ai/arena-human-preference-100k. | 381 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2403.04132",
"region:us"
] | 2025-02-04T02:49:55 | null | null |
|
67a89e79556fa47a174b6c7b | agentica-org/DeepScaleR-Preview-Dataset | agentica-org | {"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"]} | false | null | 2025-02-10T09:51:18 | 62 | 12 | false | b6ae8c60f5c1f2b594e2140b91c49c9ad0949e29 |
Data
Our training dataset consists of approximately 40,000 unique mathematics problem-answer pairs compiled from:
AIME (American Invitational Mathematics Examination) problems (1984-2023)
AMC (American Mathematics Competition) problems (prior to 2023)
Omni-MATH dataset
Still dataset
Format
Each row in the JSON dataset contains:
problem: The mathematical question text, formatted with LaTeX notation.
solution: Offical solution to the problem, including LaTeX formatting… See the full description on the dataset page: https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset. | 1,177 | [
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-09T12:24:25 | null | null |
|
67ab61aa0f2948137657d69d | CausalLM/Retrieval-SFT-Chat | CausalLM | {"license": "wtfpl", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh", "ja", "de"], "tags": ["synthetic"], "size_categories": ["100K<n<1M"]} | false | null | 2025-02-14T22:09:30 | 49 | 12 | false | e892744de3945bae4cbde7d514fb5b85fb9b293e |
Retrieval-Based Multi-Turn Chat SFT Synthetic Data
A year ago, we released CausalLM/Refined-Anime-Text, a thematic subset of a dataset generated using the then state-of-the-art LLMs. This dataset comprises 1 million entries synthesized through long-context models that rewrote multi-document web text inputs, intended for continued pre-training. We are pleased to note that this data has been employed in various training scenarios and in studies concerning data and internet culture.
In… See the full description on the dataset page: https://huggingface.co/datasets/CausalLM/Retrieval-SFT-Chat. | 244 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"language:zh",
"language:ja",
"language:de",
"license:wtfpl",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"synthetic"
] | 2025-02-11T14:41:46 | null | null |
|
67ac8c807ccaf131c3c68af7 | open-r1/OpenR1-Math-Raw | open-r1 | {"license": "apache-2.0", "language": ["en"], "dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "problem_is_valid", "dtype": "string"}, {"name": "solution_is_valid", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "synthetic", "dtype": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "generations_count", "dtype": "int64"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correct_count", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19144782231, "num_examples": 516499}], "download_size": 8022181704, "dataset_size": 19144782231}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2025-02-12T13:32:15 | 69 | 11 | false | 4cbd48dbec7e96690598221505860fd36b86d23f |
OpenR1-Math-Raw
Dataset description
OpenR1-Math-Raw is a large-scale dataset for mathematical reasoning. It consists of 516k math problems sourced from AI-MO/NuminaMath-1.5 with 1 to 8 reasoning traces generated by DeepSeek R1.
The traces were verified using Math Verify, but we recommend additionally annotating the correctness with LLM-as-judge for higher recall.
The dataset contains:
516,499 problems
1,209,403 R1-generated solutions, with 2.3 solutions per problem on… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-Raw. | 1,412 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-12T11:56:48 | null | null |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 5,067
Data Sourcing report
powered
by
Spawning.aiNo elements in this dataset have been identified as either opted-out, or opted-in, by their creator.