Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
7.56k
trendingScore
float64
-1
307
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
4.43M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
key
stringclasses
1 value
paperswithcode_id
stringclasses
648 values
citation
stringlengths
0
10.7k
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
307
307
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
1,949
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
679c0b5c32cf4c58bdcba8eb
facebook/natural_reasoning
facebook
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]}
false
null
2025-02-21T06:02:40
149
149
false
99eea5dc6bfa45a925eb42600e81dc90377ba237
NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response from… See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning.
804
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us" ]
2025-01-30T23:29:32
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
396
106
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
18,280
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-02-20T07:16:57
582
83
false
56b06e3066a8163577ac93b24613a560e685d029
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
100,972
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67ac9b0ae2c56194379f17a9
SakanaAI/AI-CUDA-Engineer-Archive
SakanaAI
{"tags": ["code"], "pretty_name": "The AI CUDA Engineer Archive", "license": "cc-by-4.0", "configs": [{"config_name": "default", "data_files": [{"split": "level_1", "path": "level_1.parquet"}, {"split": "level_2", "path": "level_2.parquet"}, {"split": "level_3", "path": "level_3.parquet"}]}]}
false
null
2025-02-20T02:02:27
83
83
false
4edbe8d6d0b417e05aaf8ec7e23f78aecdc5516b
The AI CUDA Engineer Archive 👷: Agentic CUDA Kernel Discovery, Optimization & Composition We release The AI CUDA Engineer archive, a dataset consisting of approximately 30,000 CUDA kernels generated by The AI CUDA Engineer. It is released under the CC-By-4.0 license and can be accessed via HuggingFace and interactively visualized here. The dataset is based on the Kernel tasks provided in KernelBench and includes a torch reference implementation, torch, NCU and Clang-tidy profiling… See the full description on the dataset page: https://huggingface.co/datasets/SakanaAI/AI-CUDA-Engineer-Archive.
4,619
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
2025-02-12T12:58:50
null
null
67b3495a2f3994b7d95dde92
Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-19T13:24:55
65
65
false
263435dc9a8cc822449b6f3531794486f8141be6
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:该版本为,可以直接SFT使用的版本,将原始数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT.
1,061
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T14:36:10
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
267
59
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
16,290
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,557
58
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
11,646
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
1,983
41
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
375,587
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
67a404bc8c6d42c5ec097433
Anthropic/EconomicIndex
Anthropic
{"license": "mit", "pretty_name": "EconomicIndex", "tags": ["text"], "viewer": true, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "onet_task_mappings.csv"}]}]}
false
null
2025-02-10T19:28:32
157
41
false
218b35116baa43c55beffe61f243bd81f5f84cf8
Overview This directory contains O*NET task mapping and automation vs. augmentation data from "Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations." The data and provided analysis are described below. Please see our blog post and paper for further visualizations and complete analysis. Data SOC_Structure.csv - Standard Occupational Classification (SOC) system hierarchy from the U.S. Department of Labor O*NET database… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/EconomicIndex.
5,289
[ "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "text" ]
2025-02-06T00:39:24
null
null
67a4af5e4ccbc3656f0b4c7c
saiyan-world/Goku-MovieGenBench
saiyan-world
{"task_categories": ["text-to-video"]}
false
null
2025-02-11T03:18:05
187
39
false
fd41363957a6bf5370e573e422fc89e4ec450218
This repository contains the data associated with the paper Goku: Flow Based Video Generative Foundation Models. Project page: https://saiyan-world.github.io/goku/
53,111
[ "task_categories:text-to-video", "size_categories:1K<n<10K", "modality:video", "library:datasets", "library:mlcroissant", "arxiv:2502.04896", "region:us" ]
2025-02-06T12:47:26
null
null
67b10b708191c180b95adadc
smirki/UI_Reasoning_Dataset
smirki
{"license": "mit"}
false
null
2025-02-19T19:33:32
36
36
false
3341ce16a2d1183312040680689ffcc1763b6f37
null
177
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-15T21:47:28
null
null
67474c06bd2f2f20b81faef1
zed-industries/zeta
zed-industries
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.jsonl"}, {"split": "eval", "path": "eval.jsonl"}, {"split": "dpo", "path": "dpo.jsonl"}]}], "license": "apache-2.0"}
false
null
2025-02-17T16:02:10
73
33
false
070f4d409068321e988cceca06479e5e0821303b
Dataset for Zeta This dataset is split into three parts: train.jsonl: Contains the training data for supervised fine-tuning. dpo.jsonl: Contains the data for the direct preference optimization. eval.jsonl: Contains the evaluation data for the Zeta dataset. These files are generated from the markdown files in the respective directories. Scripts There are several scripts to help with data processing and evaluation: script/pull-predictions: Pulls predictions from… See the full description on the dataset page: https://huggingface.co/datasets/zed-industries/zeta.
5,219
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-27T16:42:46
null
null
67b375650c24a78b687a540f
arcinstitute/opengenome2
arcinstitute
{"license": "apache-2.0"}
false
null
2025-02-18T04:03:24
30
30
false
dffb01a7fe9f6d1df1d83627d9e97241d72a8b20
null
641
[ "license:apache-2.0", "region:us" ]
2025-02-17T17:44:05
null
null
67a879c659b2260f1a473715
hkust-nlp/CodeIO-PyEdu-Reasoning
hkust-nlp
{}
false
null
2025-02-13T10:55:55
36
28
false
72cf6aebc9c126550aa4360e909cb8d6cb62aefe
CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction 📑 Paper    |    🌐 Project Page    |    💾 Released Resources    |    📦 Repo This is the resource page of the CodeI/O collection on Huggingface, we highlight your currect position with a blue block. Dataset Dataset Link CodeI/O-PythonEdu-Reasoning 🤗 Please also check the raw data after our processing if you are interested:… See the full description on the dataset page: https://huggingface.co/datasets/hkust-nlp/CodeIO-PyEdu-Reasoning.
465
[ "arxiv:2502.07316", "region:us" ]
2025-02-09T09:47:50
null
null
67afd31dba726eda5c0846dc
google/smol
google
{"license": "cc-by-4.0", "task_categories": ["translation"], "pretty_name": "Smol", "size_categories": ["10K<n<100K"], "language": ["aa", "ab", "ace", "ach", "ady", "aeb", "af", "ahr", "aii", "ak", "alz", "am", "apc", "apd", "ar", "arn", "arz", "as", "av", "awa", "ay", "ayl", "ba", "bal", "ban", "bbc", "bci", "bem", "ber", "bew", "bfq", "bfy", "bgq", "bho", "bik", "bjn", "bm", "bns", "bo", "br", "bra", "brx", "bts", "btx", "bua", "bug", "ccp", "ce", "cgg", "ch", "chk", "chm", "ckb", "cnh", "crh", "crs", "ctg", "cv", "dhd", "din", "doi", "dov", "dv", "dyu", "dz", "ee", "efi", "en", "es", "fa", "ff", "fj", "fo", "fon", "fr", "fur", "gaa", "gn", "gom", "grt", "ha", "hi", "hil", "hne", "hoc", "hrx", "iba", "ig", "ilo", "iso", "iu", "jam", "kaa", "kac", "kbd", "kek", "kfy", "kg", "kha", "ki", "kl", "kr", "kri", "kru", "ks", "ktu", "kv", "lep", "lg", "li", "lif", "lij", "lmo", "ln", "ltg", "lu", "lua", "luo", "lus", "mad", "mag", "mai", "mak", "mam", "meo", "mfe", "mg", "mh", "min", "mjl", "mni", "mos", "ms", "mtr", "mwr", "nd", "ndc", "ne", "new", "nhe", "noe", "nr", "nso", "nus", "nv", "ny", "oc", "om", "os", "pa", "pag", "pam", "pap", "pcm", "pt", "qu", "quc", "rhg", "rn", "rom", "rw", "sa", "sah", "sat", "scl", "scn", "sd", "se", "sg", "sgj", "shn", "sjp", "skr", "sn", "so", "spv", "ss", "st", "sus", "sw", "syl", "szl", "tcy", "tet", "ti", "tiv", "tn", "to", "tpi", "trp", "ts", "tum", "ty", "tyv", "udm", "unr", "ve", "vec", "war", "wbr", "wo", "xh", "xnr", "xsr", "yo", "yua", "yue", "zap", "zh", "zu", "zza"], "configs": [{"config_name": "smolsent__en_es", "data_files": [{"split": "train", "path": "smolsent/en_es.jsonl"}]}, {"config_name": "smolsent__en_qu", "data_files": [{"split": "train", "path": "smolsent/en_qu.jsonl"}]}, {"config_name": "smolsent__en_ay", "data_files": [{"split": "train", "path": "smolsent/en_ay.jsonl"}]}, {"config_name": "smolsent__en_gn", "data_files": [{"split": "train", "path": "smolsent/en_gn.jsonl"}]}, {"config_name": "smolsent__en_bo", "data_files": [{"split": "train", "path": "smolsent/en_bo.jsonl"}]}, {"config_name": "smolsent__en_brx", "data_files": [{"split": "train", "path": "smolsent/en_brx.jsonl"}]}, {"config_name": "smolsent__en_pa-Arab", "data_files": [{"split": "train", "path": "smolsent/en_pa-Arab.jsonl"}]}, {"config_name": "smolsent__en_sat-Latn", "data_files": [{"split": "train", "path": "smolsent/en_sat-Latn.jsonl"}]}, {"config_name": "smolsent__en_sat", "data_files": [{"split": "train", "path": "smolsent/en_sat.jsonl"}]}, {"config_name": "smolsent__en_sa", "data_files": [{"split": "train", "path": "smolsent/en_sa.jsonl"}]}, {"config_name": "smolsent__en_ks", "data_files": [{"split": "train", "path": "smolsent/en_ks.jsonl"}]}, {"config_name": "smolsent__en_ks-Deva", "data_files": [{"split": "train", "path": "smolsent/en_ks-Deva.jsonl"}]}, {"config_name": "smolsent__en_yue", "data_files": [{"split": "train", "path": "smolsent/en_yue.jsonl"}]}, {"config_name": "smolsent__en_lus", "data_files": [{"split": "train", "path": "smolsent/en_lus.jsonl"}]}, {"config_name": "smolsent__en_ff", "data_files": [{"split": "train", "path": "smolsent/en_ff.jsonl"}]}, {"config_name": "smolsent__en_kl", "data_files": [{"split": "train", "path": "smolsent/en_kl.jsonl"}]}, {"config_name": "smolsent__en_mni-Mtei", "data_files": [{"split": "train", "path": "smolsent/en_mni-Mtei.jsonl"}]}, {"config_name": "smolsent__en_af", "data_files": [{"split": "train", "path": "smolsent/en_af.jsonl"}]}, {"config_name": "smolsent__en_am", "data_files": [{"split": "train", "path": "smolsent/en_am.jsonl"}]}, {"config_name": "smolsent__en_ny", "data_files": [{"split": "train", "path": "smolsent/en_ny.jsonl"}]}, {"config_name": "smolsent__en_ha", "data_files": [{"split": "train", "path": "smolsent/en_ha.jsonl"}]}, {"config_name": "smolsent__en_ig", "data_files": [{"split": "train", "path": "smolsent/en_ig.jsonl"}]}, {"config_name": "smolsent__en_rw", "data_files": [{"split": "train", "path": "smolsent/en_rw.jsonl"}]}, {"config_name": "smolsent__en_ln", "data_files": [{"split": "train", "path": "smolsent/en_ln.jsonl"}]}, {"config_name": "smolsent__en_luo", "data_files": [{"split": "train", "path": "smolsent/en_luo.jsonl"}]}, {"config_name": "smolsent__en_pcm", "data_files": [{"split": "train", "path": "smolsent/en_pcm.jsonl"}]}, {"config_name": "smolsent__en_om", "data_files": [{"split": "train", "path": "smolsent/en_om.jsonl"}]}, {"config_name": "smolsent__en_nso", "data_files": [{"split": "train", "path": "smolsent/en_nso.jsonl"}]}, {"config_name": "smolsent__en_st", "data_files": [{"split": "train", "path": "smolsent/en_st.jsonl"}]}, {"config_name": "smolsent__en_sn", "data_files": [{"split": "train", "path": "smolsent/en_sn.jsonl"}]}, {"config_name": "smolsent__en_sw", "data_files": [{"split": "train", "path": "smolsent/en_sw.jsonl"}]}, {"config_name": "smolsent__en_ber-Latn", "data_files": [{"split": "train", "path": "smolsent/en_ber-Latn.jsonl"}]}, {"config_name": "smolsent__en_ak", "data_files": [{"split": "train", "path": "smolsent/en_ak.jsonl"}]}, {"config_name": "smolsent__en_zu", "data_files": [{"split": "train", "path": "smolsent/en_zu.jsonl"}]}, {"config_name": "smolsent__en_wo", "data_files": [{"split": "train", "path": "smolsent/en_wo.jsonl"}]}, {"config_name": "smolsent__en_so", "data_files": [{"split": "train", "path": "smolsent/en_so.jsonl"}]}, {"config_name": "smolsent__en_nd", "data_files": [{"split": "train", "path": "smolsent/en_nd.jsonl"}]}, {"config_name": "smolsent__en_mg", "data_files": [{"split": "train", "path": "smolsent/en_mg.jsonl"}]}, {"config_name": "smolsent__en_din", "data_files": [{"split": "train", "path": "smolsent/en_din.jsonl"}]}, {"config_name": "smolsent__en_gaa", "data_files": [{"split": "train", "path": "smolsent/en_gaa.jsonl"}]}, {"config_name": "smolsent__en_xh", "data_files": [{"split": "train", "path": "smolsent/en_xh.jsonl"}]}, {"config_name": "smolsent__en_ts", "data_files": [{"split": "train", "path": "smolsent/en_ts.jsonl"}]}, {"config_name": "smolsent__en_lg", "data_files": [{"split": "train", "path": "smolsent/en_lg.jsonl"}]}, {"config_name": "smolsent__en_bm", "data_files": [{"split": "train", "path": "smolsent/en_bm.jsonl"}]}, {"config_name": "smolsent__en_arz", "data_files": [{"split": "train", "path": "smolsent/en_arz.jsonl"}]}, {"config_name": "smolsent__en_ve", "data_files": [{"split": "train", "path": "smolsent/en_ve.jsonl"}]}, {"config_name": "smolsent__en_efi", "data_files": [{"split": "train", "path": "smolsent/en_efi.jsonl"}]}, {"config_name": "smolsent__en_dyu", "data_files": [{"split": "train", "path": "smolsent/en_dyu.jsonl"}]}, {"config_name": "smolsent__en_tn", "data_files": [{"split": "train", "path": "smolsent/en_tn.jsonl"}]}, {"config_name": "smolsent__en_rn", "data_files": [{"split": "train", "path": "smolsent/en_rn.jsonl"}]}, {"config_name": "smolsent__en_tiv", "data_files": [{"split": "train", "path": "smolsent/en_tiv.jsonl"}]}, {"config_name": "smolsent__en_mfe", "data_files": [{"split": "train", "path": "smolsent/en_mfe.jsonl"}]}, {"config_name": "smolsent__en_ti", "data_files": [{"split": "train", "path": "smolsent/en_ti.jsonl"}]}, {"config_name": "smolsent__en_sus", "data_files": [{"split": "train", "path": "smolsent/en_sus.jsonl"}]}, {"config_name": "smolsent__en_ndc", "data_files": [{"split": "train", "path": "smolsent/en_ndc.jsonl"}]}, {"config_name": "smolsent__en_ki", "data_files": [{"split": "train", "path": "smolsent/en_ki.jsonl"}]}, {"config_name": "smolsent__en_cgg", "data_files": [{"split": "train", "path": "smolsent/en_cgg.jsonl"}]}, {"config_name": "smolsent__en_bem", "data_files": [{"split": "train", "path": "smolsent/en_bem.jsonl"}]}, {"config_name": "smolsent__en_tum", "data_files": [{"split": "train", "path": "smolsent/en_tum.jsonl"}]}, {"config_name": "smolsent__en_nr", "data_files": [{"split": "train", "path": "smolsent/en_nr.jsonl"}]}, {"config_name": "smolsent__en_kr", "data_files": [{"split": "train", "path": "smolsent/en_kr.jsonl"}]}, {"config_name": "smolsent__en_fon", "data_files": [{"split": "train", "path": "smolsent/en_fon.jsonl"}]}, {"config_name": "smolsent__en_yo", "data_files": [{"split": "train", "path": "smolsent/en_yo.jsonl"}]}, {"config_name": "smolsent__en_ee", "data_files": [{"split": "train", "path": "smolsent/en_ee.jsonl"}]}, {"config_name": "smolsent__en_ar-MA", "data_files": [{"split": "train", "path": "smolsent/en_ar-MA.jsonl"}]}, {"config_name": "smolsent__en_apd", "data_files": [{"split": "train", "path": "smolsent/en_apd.jsonl"}]}, {"config_name": "smolsent__en_ss", "data_files": [{"split": "train", "path": "smolsent/en_ss.jsonl"}]}, {"config_name": "smolsent__en_ayl", "data_files": [{"split": "train", "path": "smolsent/en_ayl.jsonl"}]}, {"config_name": "smolsent__en_ktu", "data_files": [{"split": "train", "path": "smolsent/en_ktu.jsonl"}]}, {"config_name": "smolsent__en_aeb", "data_files": [{"split": "train", "path": "smolsent/en_aeb.jsonl"}]}, {"config_name": "smolsent__en_aa", "data_files": [{"split": "train", "path": "smolsent/en_aa.jsonl"}]}, {"config_name": "smolsent__en_lu", "data_files": [{"split": "train", "path": "smolsent/en_lu.jsonl"}]}, {"config_name": "smolsent__en_ach", "data_files": [{"split": "train", "path": "smolsent/en_ach.jsonl"}]}, {"config_name": "smolsent__en_alz", "data_files": [{"split": "train", "path": "smolsent/en_alz.jsonl"}]}, {"config_name": "smolsent__en_bci", "data_files": [{"split": "train", "path": "smolsent/en_bci.jsonl"}]}, {"config_name": "smolsent__en_dov", "data_files": [{"split": "train", "path": "smolsent/en_dov.jsonl"}]}, {"config_name": "smolsent__en_kg", "data_files": [{"split": "train", "path": "smolsent/en_kg.jsonl"}]}, {"config_name": "smolsent__en_mos", "data_files": [{"split": "train", "path": "smolsent/en_mos.jsonl"}]}, {"config_name": "smolsent__en_nqo", "data_files": [{"split": "train", "path": "smolsent/en_nqo.jsonl"}]}, {"config_name": "smolsent__en_ber", "data_files": [{"split": "train", "path": "smolsent/en_ber.jsonl"}]}, {"config_name": "smolsent__en_kri", "data_files": [{"split": "train", "path": "smolsent/en_kri.jsonl"}]}, {"config_name": "smoldoc__en_ki", "data_files": [{"split": "train", "path": "smoldoc/en_ki.jsonl"}]}, {"config_name": "smoldoc__en_ach", "data_files": [{"split": "train", "path": "smoldoc/en_ach.jsonl"}]}, {"config_name": "smoldoc__en_aa", "data_files": [{"split": "train", "path": "smoldoc/en_aa.jsonl"}]}, {"config_name": "smoldoc__en_bem", "data_files": [{"split": "train", "path": "smoldoc/en_bem.jsonl"}]}, {"config_name": "smoldoc__en_cgg", "data_files": [{"split": "train", "path": "smoldoc/en_cgg.jsonl"}]}, {"config_name": "smoldoc__en_din", "data_files": [{"split": "train", "path": "smoldoc/en_din.jsonl"}]}, {"config_name": "smoldoc__en_fon", "data_files": [{"split": "train", "path": "smoldoc/en_fon.jsonl"}]}, {"config_name": "smoldoc__en_gaa", "data_files": [{"split": "train", "path": "smoldoc/en_gaa.jsonl"}]}, {"config_name": "smoldoc__en_kr", "data_files": [{"split": "train", "path": "smoldoc/en_kr.jsonl"}]}, {"config_name": "smoldoc__en_lu", "data_files": [{"split": "train", "path": "smoldoc/en_lu.jsonl"}]}, {"config_name": "smoldoc__en_mfe", "data_files": [{"split": "train", "path": "smoldoc/en_mfe.jsonl"}]}, {"config_name": "smoldoc__en_rn", "data_files": [{"split": "train", "path": "smoldoc/en_rn.jsonl"}]}, {"config_name": "smoldoc__en_nr", "data_files": [{"split": "train", "path": "smoldoc/en_nr.jsonl"}]}, {"config_name": "smoldoc__en_ts", "data_files": [{"split": "train", "path": "smoldoc/en_ts.jsonl"}]}, {"config_name": "smoldoc__en_tn", "data_files": [{"split": "train", "path": "smoldoc/en_tn.jsonl"}]}, {"config_name": "smoldoc__en_aeb", "data_files": [{"split": "train", "path": "smoldoc/en_aeb.jsonl"}]}, {"config_name": "smoldoc__en_ve", "data_files": [{"split": "train", "path": "smoldoc/en_ve.jsonl"}]}, {"config_name": "smoldoc__en_alz", "data_files": [{"split": "train", "path": "smoldoc/en_alz.jsonl"}]}, {"config_name": "smoldoc__en_dov", "data_files": [{"split": "train", "path": "smoldoc/en_dov.jsonl"}]}, {"config_name": "smoldoc__en_dyu", "data_files": [{"split": "train", "path": "smoldoc/en_dyu.jsonl"}]}, {"config_name": "smoldoc__en_ayl", "data_files": [{"split": "train", "path": "smoldoc/en_ayl.jsonl"}]}, {"config_name": "smoldoc__en_ndc", "data_files": [{"split": "train", "path": "smoldoc/en_ndc.jsonl"}]}, {"config_name": "smoldoc__en_nd", "data_files": [{"split": "train", "path": "smoldoc/en_nd.jsonl"}]}, {"config_name": "smoldoc__en_tum", "data_files": [{"split": "train", "path": "smoldoc/en_tum.jsonl"}]}, {"config_name": "smoldoc__en_bci", "data_files": [{"split": "train", "path": "smoldoc/en_bci.jsonl"}]}, {"config_name": "smoldoc__en_ktu", "data_files": [{"split": "train", "path": "smoldoc/en_ktu.jsonl"}]}, {"config_name": "smoldoc__en_kg", "data_files": [{"split": "train", "path": "smoldoc/en_kg.jsonl"}]}, {"config_name": "smoldoc__en_apd", "data_files": [{"split": "train", "path": "smoldoc/en_apd.jsonl"}]}, {"config_name": "smoldoc__en_ss", "data_files": [{"split": "train", "path": "smoldoc/en_ss.jsonl"}]}, {"config_name": "smoldoc__en_efi", "data_files": [{"split": "train", "path": "smoldoc/en_efi.jsonl"}]}, {"config_name": "smoldoc__en_tiv", "data_files": [{"split": "train", "path": "smoldoc/en_tiv.jsonl"}]}, {"config_name": "smoldoc__en_mos", "data_files": [{"split": "train", "path": "smoldoc/en_mos.jsonl"}]}, {"config_name": "smoldoc__en_sus", "data_files": [{"split": "train", "path": "smoldoc/en_sus.jsonl"}]}, {"config_name": "smoldoc__en_nqo", "data_files": [{"split": "train", "path": "smoldoc/en_nqo.jsonl"}]}, {"config_name": "smoldoc__en_am", "data_files": [{"split": "train", "path": "smoldoc/en_am.jsonl"}]}, {"config_name": "smoldoc__en_sw", "data_files": [{"split": "train", "path": "smoldoc/en_sw.jsonl"}]}, {"config_name": "smoldoc__en_yo", "data_files": [{"split": "train", "path": "smoldoc/en_yo.jsonl"}]}, {"config_name": "smoldoc__en_ha", "data_files": [{"split": "train", "path": "smoldoc/en_ha.jsonl"}]}, {"config_name": "smoldoc__en_yue", "data_files": [{"split": "train", "path": "smoldoc/en_yue.jsonl"}]}, {"config_name": "smoldoc__en_ig", "data_files": [{"split": "train", "path": "smoldoc/en_ig.jsonl"}]}, {"config_name": "smoldoc__en_mg", "data_files": [{"split": "train", "path": "smoldoc/en_mg.jsonl"}]}, {"config_name": "smoldoc__en_om", "data_files": [{"split": "train", "path": "smoldoc/en_om.jsonl"}]}, {"config_name": "smoldoc__en_xh", "data_files": [{"split": "train", "path": "smoldoc/en_xh.jsonl"}]}, {"config_name": "smoldoc__en_ny", "data_files": [{"split": "train", "path": "smoldoc/en_ny.jsonl"}]}, {"config_name": "smoldoc__en_ln", "data_files": [{"split": "train", "path": "smoldoc/en_ln.jsonl"}]}, {"config_name": "smoldoc__en_wo", "data_files": [{"split": "train", "path": "smoldoc/en_wo.jsonl"}]}, {"config_name": "smoldoc__en_sn", "data_files": [{"split": "train", "path": "smoldoc/en_sn.jsonl"}]}, {"config_name": "smoldoc__en_rw", "data_files": [{"split": "train", "path": "smoldoc/en_rw.jsonl"}]}, {"config_name": "smoldoc__en_st", "data_files": [{"split": "train", "path": "smoldoc/en_st.jsonl"}]}, {"config_name": "smoldoc__en_ff", "data_files": [{"split": "train", "path": "smoldoc/en_ff.jsonl"}]}, {"config_name": "smoldoc__en_lg", "data_files": [{"split": "train", "path": "smoldoc/en_lg.jsonl"}]}, {"config_name": "smoldoc__en_luo", "data_files": [{"split": "train", "path": "smoldoc/en_luo.jsonl"}]}, {"config_name": "smoldoc__en_scn", "data_files": [{"split": "train", "path": "smoldoc/en_scn.jsonl"}]}, {"config_name": "smoldoc__en_ar-MA", "data_files": [{"split": "train", "path": "smoldoc/en_ar-MA.jsonl"}]}, {"config_name": "smoldoc__en_ti", "data_files": [{"split": "train", "path": "smoldoc/en_ti.jsonl"}]}, {"config_name": "smoldoc__en_zu", "data_files": [{"split": "train", "path": "smoldoc/en_zu.jsonl"}]}, {"config_name": "smoldoc__en_ak", "data_files": [{"split": "train", "path": "smoldoc/en_ak.jsonl"}]}, {"config_name": "smoldoc__en_arz", "data_files": [{"split": "train", "path": "smoldoc/en_arz.jsonl"}]}, {"config_name": "smoldoc__en_bm", "data_files": [{"split": "train", "path": "smoldoc/en_bm.jsonl"}]}, {"config_name": "smoldoc__en_so", "data_files": [{"split": "train", "path": "smoldoc/en_so.jsonl"}]}, {"config_name": "smoldoc__en_pcm", "data_files": [{"split": "train", "path": "smoldoc/en_pcm.jsonl"}]}, {"config_name": "smoldoc__en_nso", "data_files": [{"split": "train", "path": "smoldoc/en_nso.jsonl"}]}, {"config_name": "smoldoc__en_af", "data_files": [{"split": "train", "path": "smoldoc/en_af.jsonl"}]}, {"config_name": "smoldoc__en_ee", "data_files": [{"split": "train", "path": "smoldoc/en_ee.jsonl"}]}, {"config_name": "smoldoc__en_kri", "data_files": [{"split": "train", "path": "smoldoc/en_kri.jsonl"}]}, {"config_name": "smoldoc__en_ber-Latn", "data_files": [{"split": "train", "path": "smoldoc/en_ber-Latn.jsonl"}]}, {"config_name": "smoldoc__en_ber", "data_files": [{"split": "train", "path": "smoldoc/en_ber.jsonl"}]}, {"config_name": "smoldoc__en_kru", "data_files": [{"split": "train", "path": "smoldoc/en_kru.jsonl"}]}, {"config_name": "smoldoc__en_hoc-Wara", "data_files": [{"split": "train", "path": "smoldoc/en_hoc-Wara.jsonl"}]}, {"config_name": "smoldoc__en_bra", "data_files": [{"split": "train", "path": "smoldoc/en_bra.jsonl"}]}, {"config_name": "smoldoc__en_bgq", "data_files": [{"split": "train", "path": "smoldoc/en_bgq.jsonl"}]}, {"config_name": "smoldoc__en_trp", "data_files": [{"split": "train", "path": "smoldoc/en_trp.jsonl"}]}, {"config_name": "smoldoc__en_xsr-Tibt", "data_files": [{"split": "train", "path": "smoldoc/en_xsr-Tibt.jsonl"}]}, {"config_name": "smoldoc__en_grt-Latn", "data_files": [{"split": "train", "path": "smoldoc/en_grt-Latn.jsonl"}]}, {"config_name": "smoldoc__en_bfq", "data_files": [{"split": "train", "path": "smoldoc/en_bfq.jsonl"}]}, {"config_name": "smoldoc__en_ahr", "data_files": [{"split": "train", "path": "smoldoc/en_ahr.jsonl"}]}, {"config_name": "smoldoc__en_ccp-Latn", "data_files": [{"split": "train", "path": "smoldoc/en_ccp-Latn.jsonl"}]}, {"config_name": "smoldoc__en_xnr", "data_files": [{"split": "train", "path": "smoldoc/en_xnr.jsonl"}]}, {"config_name": "smoldoc__en_lep", "data_files": [{"split": "train", "path": "smoldoc/en_lep.jsonl"}]}, {"config_name": "smoldoc__en_kfy", "data_files": [{"split": "train", "path": "smoldoc/en_kfy.jsonl"}]}, {"config_name": "smoldoc__en_lif-Limb", "data_files": [{"split": "train", "path": "smoldoc/en_lif-Limb.jsonl"}]}, {"config_name": "smoldoc__en_mjl", "data_files": [{"split": "train", "path": "smoldoc/en_mjl.jsonl"}]}, {"config_name": "smoldoc__en_scl", "data_files": [{"split": "train", "path": "smoldoc/en_scl.jsonl"}]}, {"config_name": "smoldoc__en_unr-Deva", "data_files": [{"split": "train", "path": "smoldoc/en_unr-Deva.jsonl"}]}, {"config_name": "smoldoc__en_tcy", "data_files": [{"split": "train", "path": "smoldoc/en_tcy.jsonl"}]}, {"config_name": "smoldoc__en_sd-Deva", "data_files": [{"split": "train", "path": "smoldoc/en_sd-Deva.jsonl"}]}, {"config_name": "smoldoc__en_bns", "data_files": [{"split": "train", "path": "smoldoc/en_bns.jsonl"}]}, {"config_name": "smoldoc__en_wbr", "data_files": [{"split": "train", "path": "smoldoc/en_wbr.jsonl"}]}, {"config_name": "smoldoc__en_mtr", "data_files": [{"split": "train", "path": "smoldoc/en_mtr.jsonl"}]}, {"config_name": "smoldoc__en_sjp", "data_files": [{"split": "train", "path": "smoldoc/en_sjp.jsonl"}]}, {"config_name": "smoldoc__en_spv", "data_files": [{"split": "train", "path": "smoldoc/en_spv.jsonl"}]}, {"config_name": "smoldoc__en_ne", "data_files": [{"split": "train", "path": "smoldoc/en_ne.jsonl"}]}, {"config_name": "smoldoc__en_mag", "data_files": [{"split": "train", "path": "smoldoc/en_mag.jsonl"}]}, {"config_name": "smoldoc__en_sgj", "data_files": [{"split": "train", "path": "smoldoc/en_sgj.jsonl"}]}, {"config_name": "smoldoc__en_noe", "data_files": [{"split": "train", "path": "smoldoc/en_noe.jsonl"}]}, {"config_name": "smoldoc__en_doi", "data_files": [{"split": "train", "path": "smoldoc/en_doi.jsonl"}]}, {"config_name": "smoldoc__en_dhd", "data_files": [{"split": "train", "path": "smoldoc/en_dhd.jsonl"}]}, {"config_name": "smoldoc__en_bfy", "data_files": [{"split": "train", "path": "smoldoc/en_bfy.jsonl"}]}, {"config_name": "smoldoc__zh_sw", "data_files": [{"split": "train", "path": "smoldoc/zh_sw.jsonl"}]}, {"config_name": "smoldoc__ar_sw", "data_files": [{"split": "train", "path": "smoldoc/ar_sw.jsonl"}]}, {"config_name": "smoldoc__zh_am", "data_files": [{"split": "train", "path": "smoldoc/zh_am.jsonl"}]}, {"config_name": "smoldoc__ar_am", "data_files": [{"split": "train", "path": "smoldoc/ar_am.jsonl"}]}, {"config_name": "gatitos__en_fr-CA", "data_files": [{"split": "train", "path": "gatitos/en_fr-CA.jsonl"}]}, {"config_name": "gatitos__en_iu-Latn", "data_files": [{"split": "train", "path": "gatitos/en_iu-Latn.jsonl"}]}, {"config_name": "gatitos__en_pt-PT", "data_files": [{"split": "train", "path": "gatitos/en_pt-PT.jsonl"}]}, {"config_name": "gatitos__en_nhe", "data_files": [{"split": "train", "path": "gatitos/en_nhe.jsonl"}]}, {"config_name": "gatitos__en_aii", "data_files": [{"split": "train", "path": "gatitos/en_aii.jsonl"}]}, {"config_name": "gatitos__en_bjn", "data_files": [{"split": "train", "path": "gatitos/en_bjn.jsonl"}]}, {"config_name": "gatitos__en_bjn-Arab", "data_files": [{"split": "train", "path": "gatitos/en_bjn-Arab.jsonl"}]}, {"config_name": "gatitos__en_bci", "data_files": [{"split": "train", "path": "gatitos/en_bci.jsonl"}]}, {"config_name": "gatitos__en_bem", "data_files": [{"split": "train", "path": "gatitos/en_bem.jsonl"}]}, {"config_name": "gatitos__en_bua", "data_files": [{"split": "train", "path": "gatitos/en_bua.jsonl"}]}, {"config_name": "gatitos__en_dov", "data_files": [{"split": "train", "path": "gatitos/en_dov.jsonl"}]}, {"config_name": "gatitos__en_fur", "data_files": [{"split": "train", "path": "gatitos/en_fur.jsonl"}]}, {"config_name": "gatitos__en_hrx", "data_files": [{"split": "train", "path": "gatitos/en_hrx.jsonl"}]}, {"config_name": "gatitos__en_kr", "data_files": [{"split": "train", "path": "gatitos/en_kr.jsonl"}]}, {"config_name": "gatitos__en_alz", "data_files": [{"split": "train", "path": "gatitos/en_alz.jsonl"}]}, {"config_name": "gatitos__en_luo", "data_files": [{"split": "train", "path": "gatitos/en_luo.jsonl"}]}, {"config_name": "gatitos__en_pap", "data_files": [{"split": "train", "path": "gatitos/en_pap.jsonl"}]}, {"config_name": "gatitos__en_sg", "data_files": [{"split": "train", "path": "gatitos/en_sg.jsonl"}]}, {"config_name": "gatitos__en_sus", "data_files": [{"split": "train", "path": "gatitos/en_sus.jsonl"}]}, {"config_name": "gatitos__en_ty", "data_files": [{"split": "train", "path": "gatitos/en_ty.jsonl"}]}, {"config_name": "gatitos__en_ab", "data_files": [{"split": "train", "path": "gatitos/en_ab.jsonl"}]}, {"config_name": "gatitos__en_nqo", "data_files": [{"split": "train", "path": "gatitos/en_nqo.jsonl"}]}, {"config_name": "gatitos__en_hne", "data_files": [{"split": "train", "path": "gatitos/en_hne.jsonl"}]}, {"config_name": "gatitos__en_cgg", "data_files": [{"split": "train", "path": "gatitos/en_cgg.jsonl"}]}, {"config_name": "gatitos__en_kv", "data_files": [{"split": "train", "path": "gatitos/en_kv.jsonl"}]}, {"config_name": "gatitos__en_kg", "data_files": [{"split": "train", "path": "gatitos/en_kg.jsonl"}]}, {"config_name": "gatitos__en_lij", "data_files": [{"split": "train", "path": "gatitos/en_lij.jsonl"}]}, {"config_name": "gatitos__en_li", "data_files": [{"split": "train", "path": "gatitos/en_li.jsonl"}]}, {"config_name": "gatitos__en_lmo", "data_files": [{"split": "train", "path": "gatitos/en_lmo.jsonl"}]}, {"config_name": "gatitos__en_mos", "data_files": [{"split": "train", "path": "gatitos/en_mos.jsonl"}]}, {"config_name": "gatitos__en_szl", "data_files": [{"split": "train", "path": "gatitos/en_szl.jsonl"}]}, {"config_name": "gatitos__en_ss", "data_files": [{"split": "train", "path": "gatitos/en_ss.jsonl"}]}, {"config_name": "gatitos__en_tiv", "data_files": [{"split": "train", "path": "gatitos/en_tiv.jsonl"}]}, {"config_name": "gatitos__en_btx", "data_files": [{"split": "train", "path": "gatitos/en_btx.jsonl"}]}, {"config_name": "gatitos__en_fj", "data_files": [{"split": "train", "path": "gatitos/en_fj.jsonl"}]}, {"config_name": "gatitos__en_iso", "data_files": [{"split": "train", "path": "gatitos/en_iso.jsonl"}]}, {"config_name": "gatitos__en_ltg", "data_files": [{"split": "train", "path": "gatitos/en_ltg.jsonl"}]}, {"config_name": "gatitos__en_lua", "data_files": [{"split": "train", "path": "gatitos/en_lua.jsonl"}]}, {"config_name": "gatitos__en_pag", "data_files": [{"split": "train", "path": "gatitos/en_pag.jsonl"}]}, {"config_name": "gatitos__en_rn", "data_files": [{"split": "train", "path": "gatitos/en_rn.jsonl"}]}, {"config_name": "gatitos__en_sat-Latn", "data_files": [{"split": "train", "path": "gatitos/en_sat-Latn.jsonl"}]}, {"config_name": "gatitos__en_sat", "data_files": [{"split": "train", "path": "gatitos/en_sat.jsonl"}]}, {"config_name": "gatitos__en_ch", "data_files": [{"split": "train", "path": "gatitos/en_ch.jsonl"}]}, {"config_name": "gatitos__en_crh", "data_files": [{"split": "train", "path": "gatitos/en_crh.jsonl"}]}, {"config_name": "gatitos__en_efi", "data_files": [{"split": "train", "path": "gatitos/en_efi.jsonl"}]}, {"config_name": "gatitos__en_ki", "data_files": [{"split": "train", "path": "gatitos/en_ki.jsonl"}]}, {"config_name": "gatitos__en_trp", "data_files": [{"split": "train", "path": "gatitos/en_trp.jsonl"}]}, {"config_name": "gatitos__en_mam", "data_files": [{"split": "train", "path": "gatitos/en_mam.jsonl"}]}, {"config_name": "gatitos__en_tyv", "data_files": [{"split": "train", "path": "gatitos/en_tyv.jsonl"}]}, {"config_name": "gatitos__en_tum", "data_files": [{"split": "train", "path": "gatitos/en_tum.jsonl"}]}, {"config_name": "gatitos__en_din", "data_files": [{"split": "train", "path": "gatitos/en_din.jsonl"}]}, {"config_name": "gatitos__en_ks", "data_files": [{"split": "train", "path": "gatitos/en_ks.jsonl"}]}, {"config_name": "gatitos__en_ndc", "data_files": [{"split": "train", "path": "gatitos/en_ndc.jsonl"}]}, {"config_name": "gatitos__en_ban", "data_files": [{"split": "train", "path": "gatitos/en_ban.jsonl"}]}, {"config_name": "gatitos__en_bal", "data_files": [{"split": "train", "path": "gatitos/en_bal.jsonl"}]}, {"config_name": "gatitos__en_ba", "data_files": [{"split": "train", "path": "gatitos/en_ba.jsonl"}]}, {"config_name": "gatitos__en_bts", "data_files": [{"split": "train", "path": "gatitos/en_bts.jsonl"}]}, {"config_name": "gatitos__en_bbc", "data_files": [{"split": "train", "path": "gatitos/en_bbc.jsonl"}]}, {"config_name": "gatitos__en_bew", "data_files": [{"split": "train", "path": "gatitos/en_bew.jsonl"}]}, {"config_name": "gatitos__en_br", "data_files": [{"split": "train", "path": "gatitos/en_br.jsonl"}]}, {"config_name": "gatitos__en_bik", "data_files": [{"split": "train", "path": "gatitos/en_bik.jsonl"}]}, {"config_name": "gatitos__en_ctg", "data_files": [{"split": "train", "path": "gatitos/en_ctg.jsonl"}]}, {"config_name": "gatitos__en_chk", "data_files": [{"split": "train", "path": "gatitos/en_chk.jsonl"}]}, {"config_name": "gatitos__en_fo", "data_files": [{"split": "train", "path": "gatitos/en_fo.jsonl"}]}, {"config_name": "gatitos__en_dz", "data_files": [{"split": "train", "path": "gatitos/en_dz.jsonl"}]}, {"config_name": "gatitos__en_gaa", "data_files": [{"split": "train", "path": "gatitos/en_gaa.jsonl"}]}, {"config_name": "gatitos__en_quc", "data_files": [{"split": "train", "path": "gatitos/en_quc.jsonl"}]}, {"config_name": "gatitos__en_kbd", "data_files": [{"split": "train", "path": "gatitos/en_kbd.jsonl"}]}, {"config_name": "gatitos__en_kaa", "data_files": [{"split": "train", "path": "gatitos/en_kaa.jsonl"}]}, {"config_name": "gatitos__en_meo", "data_files": [{"split": "train", "path": "gatitos/en_meo.jsonl"}]}, {"config_name": "gatitos__en_ktu", "data_files": [{"split": "train", "path": "gatitos/en_ktu.jsonl"}]}, {"config_name": "gatitos__en_chm", "data_files": [{"split": "train", "path": "gatitos/en_chm.jsonl"}]}, {"config_name": "gatitos__en_mfe", "data_files": [{"split": "train", "path": "gatitos/en_mfe.jsonl"}]}, {"config_name": "gatitos__en_pcm", "data_files": [{"split": "train", "path": "gatitos/en_pcm.jsonl"}]}, {"config_name": "gatitos__en_nd", "data_files": [{"split": "train", "path": "gatitos/en_nd.jsonl"}]}, {"config_name": "gatitos__en_se", "data_files": [{"split": "train", "path": "gatitos/en_se.jsonl"}]}, {"config_name": "gatitos__en_oc", "data_files": [{"split": "train", "path": "gatitos/en_oc.jsonl"}]}, {"config_name": "gatitos__en_os", "data_files": [{"split": "train", "path": "gatitos/en_os.jsonl"}]}, {"config_name": "gatitos__en_rhg-Latn", "data_files": [{"split": "train", "path": "gatitos/en_rhg-Latn.jsonl"}]}, {"config_name": "gatitos__en_rom", "data_files": [{"split": "train", "path": "gatitos/en_rom.jsonl"}]}, {"config_name": "gatitos__en_skr", "data_files": [{"split": "train", "path": "gatitos/en_skr.jsonl"}]}, {"config_name": "gatitos__en_shn", "data_files": [{"split": "train", "path": "gatitos/en_shn.jsonl"}]}, {"config_name": "gatitos__en_ber-Latn", "data_files": [{"split": "train", "path": "gatitos/en_ber-Latn.jsonl"}]}, {"config_name": "gatitos__en_ber", "data_files": [{"split": "train", "path": "gatitos/en_ber.jsonl"}]}, {"config_name": "gatitos__en_tet", "data_files": [{"split": "train", "path": "gatitos/en_tet.jsonl"}]}, {"config_name": "gatitos__en_bo", "data_files": [{"split": "train", "path": "gatitos/en_bo.jsonl"}]}, {"config_name": "gatitos__en_tpi", "data_files": [{"split": "train", "path": "gatitos/en_tpi.jsonl"}]}, {"config_name": "gatitos__en_to", "data_files": [{"split": "train", "path": "gatitos/en_to.jsonl"}]}, {"config_name": "gatitos__en_tn", "data_files": [{"split": "train", "path": "gatitos/en_tn.jsonl"}]}, {"config_name": "gatitos__en_aeb", "data_files": [{"split": "train", "path": "gatitos/en_aeb.jsonl"}]}, {"config_name": "gatitos__en_udm", "data_files": [{"split": "train", "path": "gatitos/en_udm.jsonl"}]}, {"config_name": "gatitos__en_ve", "data_files": [{"split": "train", "path": "gatitos/en_ve.jsonl"}]}, {"config_name": "gatitos__en_vec", "data_files": [{"split": "train", "path": "gatitos/en_vec.jsonl"}]}, {"config_name": "gatitos__en_sah", "data_files": [{"split": "train", "path": "gatitos/en_sah.jsonl"}]}, {"config_name": "gatitos__en_yua", "data_files": [{"split": "train", "path": "gatitos/en_yua.jsonl"}]}, {"config_name": "gatitos__en_zza", "data_files": [{"split": "train", "path": "gatitos/en_zza.jsonl"}]}, {"config_name": "gatitos__en_ace", "data_files": [{"split": "train", "path": "gatitos/en_ace.jsonl"}]}, {"config_name": "gatitos__en_ach", "data_files": [{"split": "train", "path": "gatitos/en_ach.jsonl"}]}, {"config_name": "gatitos__en_ady", "data_files": [{"split": "train", "path": "gatitos/en_ady.jsonl"}]}, {"config_name": "gatitos__en_aa", "data_files": [{"split": "train", "path": "gatitos/en_aa.jsonl"}]}, {"config_name": "gatitos__en_awa", "data_files": [{"split": "train", "path": "gatitos/en_awa.jsonl"}]}, {"config_name": "gatitos__en_bug", "data_files": [{"split": "train", "path": "gatitos/en_bug.jsonl"}]}, {"config_name": "gatitos__en_ce", "data_files": [{"split": "train", "path": "gatitos/en_ce.jsonl"}]}, {"config_name": "gatitos__en_cv", "data_files": [{"split": "train", "path": "gatitos/en_cv.jsonl"}]}, {"config_name": "gatitos__en_fa-AF", "data_files": [{"split": "train", "path": "gatitos/en_fa-AF.jsonl"}]}, {"config_name": "gatitos__en_dyu", "data_files": [{"split": "train", "path": "gatitos/en_dyu.jsonl"}]}, {"config_name": "gatitos__yue_zh-Hant", "data_files": [{"split": "train", "path": "gatitos/yue_zh-Hant.jsonl"}]}, {"config_name": "gatitos__zh-Hant_yue", "data_files": [{"split": "train", "path": "gatitos/zh-Hant_yue.jsonl"}]}, {"config_name": "gatitos__yue_zh", "data_files": [{"split": "train", "path": "gatitos/yue_zh.jsonl"}]}, {"config_name": "gatitos__zh_yue", "data_files": [{"split": "train", "path": "gatitos/zh_yue.jsonl"}]}, {"config_name": "gatitos__en_yue", "data_files": [{"split": "train", "path": "gatitos/en_yue.jsonl"}]}, {"config_name": "gatitos__en_arz", "data_files": [{"split": "train", "path": "gatitos/en_arz.jsonl"}]}, {"config_name": "gatitos__en_cnh", "data_files": [{"split": "train", "path": "gatitos/en_cnh.jsonl"}]}, {"config_name": "gatitos__en_hil", "data_files": [{"split": "train", "path": "gatitos/en_hil.jsonl"}]}, {"config_name": "gatitos__en_iba", "data_files": [{"split": "train", "path": "gatitos/en_iba.jsonl"}]}, {"config_name": "gatitos__en_iu", "data_files": [{"split": "train", "path": "gatitos/en_iu.jsonl"}]}, {"config_name": "gatitos__en_kac", "data_files": [{"split": "train", "path": "gatitos/en_kac.jsonl"}]}, {"config_name": "gatitos__en_pa-Arab", "data_files": [{"split": "train", "path": "gatitos/en_pa-Arab.jsonl"}]}, {"config_name": "gatitos__en_ayl", "data_files": [{"split": "train", "path": "gatitos/en_ayl.jsonl"}]}, {"config_name": "gatitos__en_mad", "data_files": [{"split": "train", "path": "gatitos/en_mad.jsonl"}]}, {"config_name": "gatitos__en_mak", "data_files": [{"split": "train", "path": "gatitos/en_mak.jsonl"}]}, {"config_name": "gatitos__en_ms-Arab", "data_files": [{"split": "train", "path": "gatitos/en_ms-Arab.jsonl"}]}, {"config_name": "gatitos__en_arn", "data_files": [{"split": "train", "path": "gatitos/en_arn.jsonl"}]}, {"config_name": "gatitos__en_mwr", "data_files": [{"split": "train", "path": "gatitos/en_mwr.jsonl"}]}, {"config_name": "gatitos__en_min", "data_files": [{"split": "train", "path": "gatitos/en_min.jsonl"}]}, {"config_name": "gatitos__en_nv", "data_files": [{"split": "train", "path": "gatitos/en_nv.jsonl"}]}, {"config_name": "gatitos__en_nr", "data_files": [{"split": "train", "path": "gatitos/en_nr.jsonl"}]}, {"config_name": "gatitos__en_apd", "data_files": [{"split": "train", "path": "gatitos/en_apd.jsonl"}]}, {"config_name": "gatitos__en_tcy", "data_files": [{"split": "train", "path": "gatitos/en_tcy.jsonl"}]}, {"config_name": "gatitos__en_scn", "data_files": [{"split": "train", "path": "gatitos/en_scn.jsonl"}]}, {"config_name": "gatitos__en_war", "data_files": [{"split": "train", "path": "gatitos/en_war.jsonl"}]}, {"config_name": "gatitos__en_mh", "data_files": [{"split": "train", "path": "gatitos/en_mh.jsonl"}]}, {"config_name": "gatitos__en_crs", "data_files": [{"split": "train", "path": "gatitos/en_crs.jsonl"}]}, {"config_name": "gatitos__en_jam", "data_files": [{"split": "train", "path": "gatitos/en_jam.jsonl"}]}, {"config_name": "gatitos__en_brx", "data_files": [{"split": "train", "path": "gatitos/en_brx.jsonl"}]}, {"config_name": "gatitos__en_fon", "data_files": [{"split": "train", "path": "gatitos/en_fon.jsonl"}]}, {"config_name": "gatitos__en_wo", "data_files": [{"split": "train", "path": "gatitos/en_wo.jsonl"}]}, {"config_name": "gatitos__en_kha", "data_files": [{"split": "train", "path": "gatitos/en_kha.jsonl"}]}, {"config_name": "gatitos__en_pam", "data_files": [{"split": "train", "path": "gatitos/en_pam.jsonl"}]}, {"config_name": "gatitos__en_zap", "data_files": [{"split": "train", "path": "gatitos/en_zap.jsonl"}]}, {"config_name": "gatitos__en_av", "data_files": [{"split": "train", "path": "gatitos/en_av.jsonl"}]}, {"config_name": "gatitos__en_ar-MA", "data_files": [{"split": "train", "path": "gatitos/en_ar-MA.jsonl"}]}, {"config_name": "gatitos__en_mag", "data_files": [{"split": "train", "path": "gatitos/en_mag.jsonl"}]}, {"config_name": "gatitos__en_crh-Latn", "data_files": [{"split": "train", "path": "gatitos/en_crh-Latn.jsonl"}]}, {"config_name": "gatitos__en_kek", "data_files": [{"split": "train", "path": "gatitos/en_kek.jsonl"}]}, {"config_name": "gatitos__en_apc", "data_files": [{"split": "train", "path": "gatitos/en_apc.jsonl"}]}, {"config_name": "gatitos__en_syl", "data_files": [{"split": "train", "path": "gatitos/en_syl.jsonl"}]}, {"config_name": "gatitos__en_nus", "data_files": [{"split": "train", "path": "gatitos/en_nus.jsonl"}]}, {"config_name": "gatitos__en_ks-Deva", "data_files": [{"split": "train", "path": "gatitos/en_ks-Deva.jsonl"}]}, {"config_name": "gatitos__en_new", "data_files": [{"split": "train", "path": "gatitos/en_new.jsonl"}]}, {"config_name": "gatitos__en_lg", "data_files": [{"split": "train", "path": "gatitos/en_lg.jsonl"}]}, {"config_name": "gatitos__en_ay", "data_files": [{"split": "train", "path": "gatitos/en_ay.jsonl"}]}, {"config_name": "gatitos__en_es", "data_files": [{"split": "train", "path": "gatitos/en_es.jsonl"}]}, {"config_name": "gatitos__en_as", "data_files": [{"split": "train", "path": "gatitos/en_as.jsonl"}]}, {"config_name": "gatitos__en_doi", "data_files": [{"split": "train", "path": "gatitos/en_doi.jsonl"}]}, {"config_name": "gatitos__en_ckb", "data_files": [{"split": "train", "path": "gatitos/en_ckb.jsonl"}]}, {"config_name": "gatitos__en_ee", "data_files": [{"split": "train", "path": "gatitos/en_ee.jsonl"}]}, {"config_name": "gatitos__en_gn", "data_files": [{"split": "train", "path": "gatitos/en_gn.jsonl"}]}, {"config_name": "gatitos__en_qu", "data_files": [{"split": "train", "path": "gatitos/en_qu.jsonl"}]}, {"config_name": "gatitos__en_gom", "data_files": [{"split": "train", "path": "gatitos/en_gom.jsonl"}]}, {"config_name": "gatitos__en_ilo", "data_files": [{"split": "train", "path": "gatitos/en_ilo.jsonl"}]}, {"config_name": "gatitos__en_kri", "data_files": [{"split": "train", "path": "gatitos/en_kri.jsonl"}]}, {"config_name": "gatitos__en_kl", "data_files": [{"split": "train", "path": "gatitos/en_kl.jsonl"}]}, {"config_name": "gatitos__en_lus", "data_files": [{"split": "train", "path": "gatitos/en_lus.jsonl"}]}, {"config_name": "gatitos__en_fr", "data_files": [{"split": "train", "path": "gatitos/en_fr.jsonl"}]}, {"config_name": "gatitos__en_ts", "data_files": [{"split": "train", "path": "gatitos/en_ts.jsonl"}]}, {"config_name": "gatitos__en_ln", "data_files": [{"split": "train", "path": "gatitos/en_ln.jsonl"}]}, {"config_name": "gatitos__en_sa", "data_files": [{"split": "train", "path": "gatitos/en_sa.jsonl"}]}, {"config_name": "gatitos__en_hi", "data_files": [{"split": "train", "path": "gatitos/en_hi.jsonl"}]}, {"config_name": "gatitos__en_nso", "data_files": [{"split": "train", "path": "gatitos/en_nso.jsonl"}]}, {"config_name": "gatitos__en_ak", "data_files": [{"split": "train", "path": "gatitos/en_ak.jsonl"}]}, {"config_name": "gatitos__en_ff", "data_files": [{"split": "train", "path": "gatitos/en_ff.jsonl"}]}, {"config_name": "gatitos__en_om", "data_files": [{"split": "train", "path": "gatitos/en_om.jsonl"}]}, {"config_name": "gatitos__en_bho", "data_files": [{"split": "train", "path": "gatitos/en_bho.jsonl"}]}, {"config_name": "gatitos__en_mai", "data_files": [{"split": "train", "path": "gatitos/en_mai.jsonl"}]}, {"config_name": "gatitos__en_bm", "data_files": [{"split": "train", "path": "gatitos/en_bm.jsonl"}]}, {"config_name": "gatitos__en_ti", "data_files": [{"split": "train", "path": "gatitos/en_ti.jsonl"}]}, {"config_name": "gatitos__en_dv", "data_files": [{"split": "train", "path": "gatitos/en_dv.jsonl"}]}, {"config_name": "gatitos__en_mni-Mtei", "data_files": [{"split": "train", "path": "gatitos/en_mni-Mtei.jsonl"}]}]}
false
null
2025-02-20T22:17:10
26
26
false
d05b2e227adc45eaebdf62afef6dc618fe07a924
SMOL SMOL (Set for Maximal Overall Leverage) is a collection professional translations into 221 Low-Resource Languages, for the purpose of training translation models, and otherwise increasing the representations of said languages in NLP and technology. Please read the SMOL Paper and the GATITOS Paper for a much more thorough description! There are four resources in this directory: SmolDoc: document-level translations into 100 languages SmolSent: sentence-level translations into 81… See the full description on the dataset page: https://huggingface.co/datasets/google/smol.
83
[ "task_categories:translation", "language:aa", "language:ab", "language:ace", "language:ach", "language:ady", "language:aeb", "language:af", "language:ahr", "language:aii", "language:ak", "language:alz", "language:am", "language:apc", "language:apd", "language:ar", "language:arn", "language:arz", "language:as", "language:av", "language:awa", "language:ay", "language:ayl", "language:ba", "language:bal", "language:ban", "language:bbc", "language:bci", "language:bem", "language:ber", "language:bew", "language:bfq", "language:bfy", "language:bgq", "language:bho", "language:bik", "language:bjn", "language:bm", "language:bns", "language:bo", "language:br", "language:bra", "language:brx", "language:bts", "language:btx", "language:bua", "language:bug", "language:ccp", "language:ce", "language:cgg", "language:ch", "language:chk", "language:chm", "language:ckb", "language:cnh", "language:crh", "language:crs", "language:ctg", "language:cv", "language:dhd", "language:din", "language:doi", "language:dov", "language:dv", "language:dyu", "language:dz", "language:ee", "language:efi", "language:en", "language:es", "language:fa", "language:ff", "language:fj", "language:fo", "language:fon", "language:fr", "language:fur", "language:gaa", "language:gn", "language:gom", "language:grt", "language:ha", "language:hi", "language:hil", "language:hne", "language:hoc", "language:hrx", "language:iba", "language:ig", "language:ilo", "language:iso", "language:iu", "language:jam", "language:kaa", "language:kac", "language:kbd", "language:kek", "language:kfy", "language:kg", "language:kha", "language:ki", "language:kl", "language:kr", "language:kri", "language:kru", "language:ks", "language:ktu", "language:kv", "language:lep", "language:lg", "language:li", "language:lif", "language:lij", "language:lmo", "language:ln", "language:ltg", "language:lu", "language:lua", "language:luo", "language:lus", "language:mad", "language:mag", "language:mai", "language:mak", "language:mam", "language:meo", "language:mfe", "language:mg", "language:mh", "language:min", "language:mjl", "language:mni", "language:mos", "language:ms", "language:mtr", "language:mwr", "language:nd", "language:ndc", "language:ne", "language:new", "language:nhe", "language:noe", "language:nr", "language:nso", "language:nus", "language:nv", "language:ny", "language:oc", "language:om", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcm", "language:pt", "language:qu", "language:quc", "language:rhg", "language:rn", "language:rom", "language:rw", "language:sa", "language:sah", "language:sat", "language:scl", "language:scn", "language:sd", "language:se", "language:sg", "language:sgj", "language:shn", "language:sjp", "language:skr", "language:sn", "language:so", "language:spv", "language:ss", "language:st", "language:sus", "language:sw", "language:syl", "language:szl", "language:tcy", "language:tet", "language:ti", "language:tiv", "language:tn", "language:to", "language:tpi", "language:trp", "language:ts", "language:tum", "language:ty", "language:tyv", "language:udm", "language:unr", "language:ve", "language:vec", "language:war", "language:wbr", "language:wo", "language:xh", "language:xnr", "language:xsr", "language:yo", "language:yua", "language:yue", "language:zap", "language:zh", "language:zu", "language:zza", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.12301", "arxiv:2303.15265", "region:us" ]
2025-02-14T23:34:53
null
null
67b2407eba726eda5ca0657a
Selvakumarduraipandian/Thirukural
Selvakumarduraipandian
{"license": "mit", "dataset_info": {"features": [{"name": "ID", "dtype": "int64"}, {"name": "Adhigaram_ID", "dtype": "int64"}, {"name": "Paal", "dtype": "string"}, {"name": "Iyal", "dtype": "string"}, {"name": "Adhigaram", "dtype": "string"}, {"name": "Kural", "dtype": "string"}, {"name": "Transliteration", "dtype": "string"}, {"name": "Vilakam", "dtype": "string"}, {"name": "Couplet", "dtype": "string"}, {"name": "Chapter", "dtype": "string"}, {"name": "Section", "dtype": "string"}, {"name": "Athigaram", "dtype": "string"}, {"name": "Kalaingar_Urai", "dtype": "string"}, {"name": "Parimezhalagar_Urai", "dtype": "string"}, {"name": "M_Varadharajanar", "dtype": "string"}, {"name": "Solomon_Pappaiya", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4216819, "num_examples": 1330}], "download_size": 1519400, "dataset_size": 4216819}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "language": ["ta", "en"], "tags": ["thirukural", "tamil"], "pretty_name": "Thiruvalluvar", "size_categories": ["n<1K"]}
false
null
2025-02-17T02:25:05
26
26
false
001231c8ad9c1e08ca71b836559754aedbb0b983
📖 திருக்குறள் Dataset 🔹 Introduction இந்த dataset-ல் திருக்குறள், அதன் விளக்கம், பாடப்பிரிவுகள் மற்றும் பல உரைகள் உள்ளன. Selvakumar Duraipandian, one of the developers of thirukural.ai, has contributed to this dataset, making it a valuable resource for various language models and chatbot applications. இதை Natural Language Processing (NLP) மற்றும் Chatbot Fine-tuning போன்ற Machine Learning வேலைகளுக்கு பயன்படுத்தலாம். 📂 Dataset Structure இந்த dataset… See the full description on the dataset page: https://huggingface.co/datasets/Selvakumarduraipandian/Thirukural.
309
[ "language:ta", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "thirukural", "tamil" ]
2025-02-16T19:46:06
null
null
67b1c1c6626cd81034787da1
bethgelab/CuratedThoughts
bethgelab
{"dataset_info": [{"config_name": "OpenR1-Math-220k-default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4695959427.499899, "num_examples": 88662}], "download_size": 1998085149, "dataset_size": 4695959427.499899}, {"config_name": "OpenThoughts-114k-math-default", "features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "generated_token_count", "dtype": "int64"}, {"name": "correct", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 1730254099.6693895, "num_examples": 66076}], "download_size": 641561198, "dataset_size": 1730254099.6693895}, {"config_name": "OpenThoughts-114k-metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3939535262.6895933, "num_examples": 89909}], "download_size": 2029522975, "dataset_size": 3939535262.6895933}, {"config_name": "OpenThoughts-metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3939535262.6895933, "num_examples": 89909}], "download_size": 2029539149, "dataset_size": 3939535262.6895933}], "configs": [{"config_name": "OpenR1-Math-220k-default", "data_files": [{"split": "train", "path": "OpenR1-Math-220k-default/train-*"}]}, {"config_name": "OpenThoughts-114k-math-default", "data_files": [{"split": "train", "path": "OpenThoughts-114k-math-default/train-*"}]}, {"config_name": "OpenThoughts-114k-metadata", "data_files": [{"split": "train", "path": "OpenThoughts-114k-metadata/train-*"}]}]}
false
null
2025-02-17T18:30:30
24
24
false
1ee49035a0e31e432e40f23d56961dc794becde2
CuratedThoughts: Data Curation for RL Training Datasets Andreas Hochlehnert¹*, Hardik Bhatnagar¹*, Vishaal Udandarao¹, Ameya Prabhu¹, Matthias Bethge¹ * - shared first authors, ¹ - Tübingen AI Center, University of Tübingen Since the release of DeepSeek-R1 and its reinforcement learning-based reasoning approach, new datasets such as Open-R1 and OpenThoughts have been introduced. These datasets are used for various post-training approaches like supervised fine-tuning (SFT) and Group… See the full description on the dataset page: https://huggingface.co/datasets/bethgelab/CuratedThoughts.
106
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T10:45:26
null
null
67a557ba9330ead027242110
simplescaling/s1K-1.1
simplescaling
{"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 49199523.039611965, "num_examples": 1000}], "download_size": 21114789, "dataset_size": 49199523.039611965}}
false
null
2025-02-11T01:57:20
54
22
false
f5c785c8cd829fb3c26bf9e0e27f75b53415480d
Dataset Card for s1K Dataset Summary s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance. Usage # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K-1.1")["train"] ds[0] Dataset Structure Data Instances An example looks as follows: { 'solution': '1. **Rewrite the function using… See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K-1.1.
2,555
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us" ]
2025-02-07T00:45:46
null
null
67b6e7221a0bf9e8a70c385e
m-a-p/SuperGPQA
m-a-p
{"license": "mit", "task_categories": ["text2text-generation"], "language": ["en"], "size_categories": ["10K<n<100K"]}
false
null
2025-02-22T14:03:38
20
20
false
a39ec2ca198867829fdf03b86fff55b5a5303838
This repository contains the data presented in SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines.
87
[ "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.14739", "region:us" ]
2025-02-20T08:26:10
null
null
67b6a0871f86150091723b46
PrimeIntellect/SYNTHETIC-1
PrimeIntellect
{"dataset_info": {"features": [{"name": "response_id", "dtype": "string"}, {"name": "problem_id", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "in_source_id", "dtype": "string"}, {"name": "hf_dataset_name", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "gold_standard_solution", "dtype": "string"}, {"name": "llm_response", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "verification_result_info", "dtype": "string"}, {"name": "metadata", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 55101910464, "num_examples": 1994262}], "download_size": 26387270354, "dataset_size": 55101910464}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0"}
false
null
2025-02-21T02:22:19
19
19
false
f08fe8ccdb5be7ea7d3645179aa0361a8ad0a37e
SYNTHETIC-1: Two Million Crowdsourced Reasoning Traces from Deepseek-R1 SYNTHETIC-1 is a reasoning dataset obtained from Deepseek-R1, generated with crowdsourced compute and annotated with diverse verifiers such as LLM judges or symbolic mathematics verifiers. This is the raw version of the dataset, without any filtering for correctness - Filtered datasets specifically for fine-tuning as well as our 7B model can be found in our 🤗 SYNTHETIC-1 Collection. The dataset consists of the… See the full description on the dataset page: https://huggingface.co/datasets/PrimeIntellect/SYNTHETIC-1.
598
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2304.12244", "region:us" ]
2025-02-20T03:24:55
null
null
6695831f2d25bd04e969b0a2
AI-MO/NuminaMath-CoT
AI-MO
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2495457595.0398345, "num_examples": 859494}, {"name": "test", "num_bytes": 290340.31593470514, "num_examples": 100}], "download_size": 1234351634, "dataset_size": 2495747935.355769}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["aimo", "math"], "pretty_name": "NuminaMath CoT"}
false
null
2024-11-25T05:31:43
403
18
false
9d8d210c9f6a36c8f3cd84045668c9b7800ef517
Dataset Card for NuminaMath CoT Dataset Summary Approximately 860k math problems, where each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs and mathematics discussion forums. The processing steps include (a) OCR from the original PDFs, (b) segmentation… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-CoT.
11,393
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "aimo", "math" ]
2024-07-15T20:14:23
null
null
66bc06dc6da7aec8413d35ba
NousResearch/hermes-function-calling-v1
NousResearch
{"license": "apache-2.0", "task_categories": ["text-generation", "question-answering", "feature-extraction"], "language": ["en"], "configs": [{"config_name": "func_calling_singleturn", "data_files": "func-calling-singleturn.json", "default": true}, {"config_name": "func_calling", "data_files": "func-calling.json"}, {"config_name": "glaive_func_calling", "data_files": "glaive-function-calling-5k.json"}, {"config_name": "json_mode_agentic", "data_files": "json-mode-agentic.json"}, {"config_name": "json_mode_singleturn", "data_files": "json-mode-singleturn.json"}]}
false
null
2024-08-30T06:07:08
251
18
false
8f025148382537ba84cd325e1834b706e1461692
Hermes Function-Calling V1 This dataset is the compilation of structured output and function calling data used in the Hermes 2 Pro series of models. This repository contains a structured output dataset with function-calling conversations, json-mode, agentic json-mode and structured extraction samples, designed to train LLM models in performing function calls and returning structured output based on natural language instructions. The dataset features various conversational… See the full description on the dataset page: https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1.
1,093
[ "task_categories:text-generation", "task_categories:question-answering", "task_categories:feature-extraction", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-08-14T01:22:36
null
null
67a9f247188f29a956a34a04
AI-MO/NuminaMath-1.5
AI-MO
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "post-training"], "pretty_name": "NuminaMath 1.5"}
false
null
2025-02-10T13:28:01
107
18
false
649859605995b1d46eb29389ed9851782a47322e
Dataset Card for NuminaMath 1.5 Dataset Summary This is the second iteration of the popular NuminaMath dataset, bringing high quality post-training data for approximately 900k competition-level math problems. Each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-1.5.
2,010
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "math", "post-training" ]
2025-02-10T12:34:15
null
null
67954a35c16b74e280f72f15
ServiceNow-AI/R1-Distill-SFT
ServiceNow-AI
{"license": "cc-by-nc-sa-4.0", "configs": [{"config_name": "v0", "data_files": [{"split": "train", "path": "v0/train-*"}]}, {"config_name": "v1", "data_files": [{"split": "train", "path": "v1/train-*"}]}], "dataset_info": [{"config_name": "v0", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1279431141, "num_examples": 171647}], "download_size": 554111459, "dataset_size": 1279431141}, {"config_name": "v1", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "reannotated_messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source_dataset", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 25783989151, "num_examples": 1679162}], "download_size": 11128580062, "dataset_size": 25783989151}]}
false
null
2025-02-08T22:46:58
254
16
false
16e851e107d928b9069dcce428a2d3d7154e5353
🔉 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 - 𝗥𝟭-𝗗𝗶𝘀𝘁𝗶𝗹𝗹-𝗦𝗙𝗧 Dataset Lewis Tunstall, Ed Beeching, Loubna Ben Allal, Clem Delangue 🤗 and others at Hugging Face announced today that they are - 𝗼𝗽𝗲𝗻𝗹𝘆 𝗿𝗲𝗽𝗿𝗼𝗱𝘂𝗰𝗶𝗻𝗴 𝗥𝟭 🔥 We at 𝗦𝗟𝗔𝗠 𝗹𝗮𝗯 (ServiceNow Language Models) have been cooking up something as well. Inspired by Open-r1, we have decided to open source the data stage-by-stage to support the open source community. 𝗕𝗼𝗼𝗸𝗺𝗮𝗿𝗸 this page! KEY DETAILS: ⚗️ Distilled… See the full description on the dataset page: https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT.
7,117
[ "license:cc-by-nc-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-25T20:31:49
null
null
67b1ea86ce03f9a057f98b26
GAIR/LIMR
GAIR
null
false
null
2025-02-17T15:25:12
16
16
false
1832f825ee992a86a5be6d5b17d1e1a8c925df53
LIMR: Less is More for RL Scaling 📄 Paper   |   🌐 Dataset   |   📘 Model Releases [2025/02/17] We're releasing the following components: 🛠️ LIM Tools: Implementation of our Learning Impact Measurement methodology 🚀 Training & Evaluation: Complete implementation of our training pipeline and evaluation scripts 🔥 LIMR Dataset: Our curated dataset of 1,389 mathematical questions 🤖 LIMR Model: Model training on the LIMR dataset. Overview… See the full description on the dataset page: https://huggingface.co/datasets/GAIR/LIMR.
140
[ "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T13:39:18
null
null
67a30890c325b01e8918060a
GAIR/LIMO
GAIR
{"language": ["en"], "size_categories": ["n<1K"], "license": "apache-2.0"}
false
null
2025-02-10T07:42:21
111
15
false
b60f4462da9d927930b9c9bd43399cf875564416
Dataset for LIMO: Less is More for Reasoning Usage from datasets import load_dataset dataset = load_dataset("GAIR/LIMO", split="train") Citation If you find our dataset useful, please cite: @misc{ye2025limoreasoning, title={LIMO: Less is More for Reasoning}, author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu}, year={2025}, eprint={2502.03387}, archivePrefix={arXiv}, primaryClass={cs.CL}… See the full description on the dataset page: https://huggingface.co/datasets/GAIR/LIMO.
4,689
[ "language:en", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.03387", "region:us" ]
2025-02-05T06:43:28
null
null
67aad81d078cdf445287aff4
sequelbox/Raiden-DeepSeek-R1
sequelbox
{"license": "apache-2.0", "tags": ["raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b"], "language": ["en"], "task_categories": ["text-generation"], "size_categories": ["10K<n<100K"]}
false
null
2025-02-11T05:07:15
35
15
false
139160c6e781e3544f74a1bafafa3343bce9de7c
Raiden-DeepSeek-R1 is a dataset containing creative-reasoning and analytic-reasoning responses, testing the limits of DeepSeek R1's reasoning skills! This dataset contains: 63k 'creative_content' and 'analytical_reasoning' prompts from microsoft/orca-agentinstruct-1M-v1, with all responses generated by deepseek-ai/DeepSeek-R1. Responses demonstrate the reasoning capabilities of DeepSeek's 685b parameter R1 reasoning model. Responses have not been filtered or edited at all: the Raiden dataset… See the full description on the dataset page: https://huggingface.co/datasets/sequelbox/Raiden-DeepSeek-R1.
552
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "raiden", "creative", "analytical", "reasoning", "rational", "deepseek", "r1", "685b" ]
2025-02-11T04:54:53
null
null
67b7a9729107c46e94c9c47d
PrimeIntellect/SYNTHETIC-1-SFT-Data
PrimeIntellect
{"dataset_info": {"features": [{"name": "response_id", "dtype": "string"}, {"name": "problem_id", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8338942891, "num_examples": 894086}], "download_size": 3638559349, "dataset_size": 8338942891}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0"}
false
null
2025-02-21T02:21:56
15
15
false
e8d30e75e8da4fdb176b7aa0c345eb88a8bbf2e8
SYNTHETIC-1: Two Million Crowdsourced Reasoning Traces from Deepseek-R1 SYNTHETIC-1 is a reasoning dataset obtained from Deepseek-R1, generated with crowdsourced compute and annotated with diverse verifiers such as LLM judges or symbolic mathematics verifiers. This is the SFT version of the dataset - the raw data and preference dataset can be found in our 🤗 SYNTHETIC-1 Collection. The dataset consists of the following tasks and verifiers that were implemented in our library… See the full description on the dataset page: https://huggingface.co/datasets/PrimeIntellect/SYNTHETIC-1-SFT-Data.
87
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2304.12244", "region:us" ]
2025-02-20T22:15:14
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
590
14
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
338,200
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
678f6b0c2705196b8a1c6c86
bespokelabs/Bespoke-Stratos-17k
bespokelabs
{"license": "apache-2.0", "language": ["en"], "tags": ["curator", "synthetic"]}
false
null
2025-01-31T00:00:38
277
14
false
9e9adba943911a9fc44dffcb30aaa18dc96ae6df
Bespoke-Stratos-17k We replicated and improved the Berkeley Sky-T1 data pipeline using SFT distillation data from DeepSeek-R1 to create Bespoke-Stratos-17k -- a reasoning dataset of questions, reasoning traces, and answers. This data was used to train: Bespoke-Stratos-32B, a 32B reasoning model which is a fine-tune of Qwen-2.5-32B-Instruct Bespoke-Stratos-7B, a 7B reasoning model which is a fine-tune of Qwen-2.5-7B-Instruct. Metrics for Bespoke-Stratos-32B… See the full description on the dataset page: https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k.
94,364
[ "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-21T09:38:20
null
null
6791fcbb49c4df6d798ca7c9
cais/hle
cais
{"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 276479149, "num_examples": 2700}], "download_size": 266651469, "dataset_size": 276479149}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-02-15T00:05:49
246
14
false
1a9f4713d5a6bc9b7988db7c42e1dccdf41d1f43
Humanity's Last Exam 🌐 Website | 📄 Paper | GitHub Center for AI Safety & Scale AI Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,700 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co/datasets/cais/hle.
7,071
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-23T08:24:27
null
null
679ae77de7f671635d858841
cognitivecomputations/dolphin-r1
cognitivecomputations
{"license": "apache-2.0", "configs": [{"config_name": "nonreasoning", "data_files": [{"split": "train", "path": "dolphin-r1-nonreasoning.jsonl"}]}, {"config_name": "reasoning-deepseek", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-deepseek.jsonl"}]}, {"config_name": "reasoning-flash", "data_files": [{"split": "train", "path": "dolphin-r1-reasoning-flash.jsonl"}]}]}
false
null
2025-01-30T18:51:36
262
14
false
f6ac651b3911352ce9bc6d3340c98a66007feb88
Dolphin R1 🐬 An Apache-2.0 dataset curated by Eric Hartford and Cognitive Computations Discord: https://discord.gg/cognitivecomputations Sponsors Our appreciation for the generous sponsors of Dolphin R1 - Without whom this dataset could not exist. Dria https://x.com/driaforall - Inference Sponsor (DeepSeek) Chutes https://x.com/rayon_labs - Inference Sponsor (Flash) Crusoe Cloud - Compute Sponsor Andreessen Horowitz - provided the grant that originally launched… See the full description on the dataset page: https://huggingface.co/datasets/cognitivecomputations/dolphin-r1.
5,578
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-30T02:44:13
null
null
67a4d31993e9cebec5433082
google/wmt24pp
google
{"license": "apache-2.0", "language": ["ar", "bg", "bn", "ca", "da", "de", "el", "es", "et", "fa", "fi", "fr", "gu", "he", "hi", "hr", "hu", "id", "is", "it", "ja", "kn", "ko", "lt", "lv", "ml", "mr", "nl", "no", "pa", "pl", "pt", "ro", "ru", "sk", "sl", "sr", "sv", "sw", "ta", "te", "th", "tr", "uk", "ur", "vi", "zh", "zu"], "task_categories": ["translation"], "size_categories": ["10K<n<100K"], "configs": [{"config_name": "en-ar_EG", "data_files": [{"split": "train", "path": "en-ar_EG.jsonl"}]}, {"config_name": "en-ar_SA", "data_files": [{"split": "train", "path": "en-ar_SA.jsonl"}]}, {"config_name": "en-bg_BG", "data_files": [{"split": "train", "path": "en-bg_BG.jsonl"}]}, {"config_name": "en-bn_IN", "data_files": [{"split": "train", "path": "en-bn_IN.jsonl"}]}, {"config_name": "en-ca_ES", "data_files": [{"split": "train", "path": "en-ca_ES.jsonl"}]}, {"config_name": "en-cs_CZ", "data_files": [{"split": "train", "path": "en-cs_CZ.jsonl"}]}, {"config_name": "en-da_DK", "data_files": [{"split": "train", "path": "en-da_DK.jsonl"}]}, {"config_name": "en-de_DE", "data_files": [{"split": "train", "path": "en-de_DE.jsonl"}]}, {"config_name": "en-el_GR", "data_files": [{"split": "train", "path": "en-el_GR.jsonl"}]}, {"config_name": "en-es_MX", "data_files": [{"split": "train", "path": "en-es_MX.jsonl"}]}, {"config_name": "en-et_EE", "data_files": [{"split": "train", "path": "en-et_EE.jsonl"}]}, {"config_name": "en-fa_IR", "data_files": [{"split": "train", "path": "en-fa_IR.jsonl"}]}, {"config_name": "en-fi_FI", "data_files": [{"split": "train", "path": "en-fi_FI.jsonl"}]}, {"config_name": "en-fil_PH", "data_files": [{"split": "train", "path": "en-fil_PH.jsonl"}]}, {"config_name": "en-fr_CA", "data_files": [{"split": "train", "path": "en-fr_CA.jsonl"}]}, {"config_name": "en-fr_FR", "data_files": [{"split": "train", "path": "en-fr_FR.jsonl"}]}, {"config_name": "en-gu_IN", "data_files": [{"split": "train", "path": "en-gu_IN.jsonl"}]}, {"config_name": "en-he_IL", "data_files": [{"split": "train", "path": "en-he_IL.jsonl"}]}, {"config_name": "en-hi_IN", "data_files": [{"split": "train", "path": "en-hi_IN.jsonl"}]}, {"config_name": "en-hr_HR", "data_files": [{"split": "train", "path": "en-hr_HR.jsonl"}]}, {"config_name": "en-hu_HU", "data_files": [{"split": "train", "path": "en-hu_HU.jsonl"}]}, {"config_name": "en-id_ID", "data_files": [{"split": "train", "path": "en-id_ID.jsonl"}]}, {"config_name": "en-is_IS", "data_files": [{"split": "train", "path": "en-is_IS.jsonl"}]}, {"config_name": "en-it_IT", "data_files": [{"split": "train", "path": "en-it_IT.jsonl"}]}, {"config_name": "en-ja_JP", "data_files": [{"split": "train", "path": "en-ja_JP.jsonl"}]}, {"config_name": "en-kn_IN", "data_files": [{"split": "train", "path": "en-kn_IN.jsonl"}]}, {"config_name": "en-ko_KR", "data_files": [{"split": "train", "path": "en-ko_KR.jsonl"}]}, {"config_name": "en-lt_LT", "data_files": [{"split": "train", "path": "en-lt_LT.jsonl"}]}, {"config_name": "en-lv_LV", "data_files": [{"split": "train", "path": "en-lv_LV.jsonl"}]}, {"config_name": "en-ml_IN", "data_files": [{"split": "train", "path": "en-ml_IN.jsonl"}]}, {"config_name": "en-mr_IN", "data_files": [{"split": "train", "path": "en-mr_IN.jsonl"}]}, {"config_name": "en-nl_NL", "data_files": [{"split": "train", "path": "en-nl_NL.jsonl"}]}, {"config_name": "en-no_NO", "data_files": [{"split": "train", "path": "en-no_NO.jsonl"}]}, {"config_name": "en-pa_IN", "data_files": [{"split": "train", "path": "en-pa_IN.jsonl"}]}, {"config_name": "en-pl_PL", "data_files": [{"split": "train", "path": "en-pl_PL.jsonl"}]}, {"config_name": "en-pt_BR", "data_files": [{"split": "train", "path": "en-pt_BR.jsonl"}]}, {"config_name": "en-pt_PT", "data_files": [{"split": "train", "path": "en-pt_PT.jsonl"}]}, {"config_name": "en-ro_RO", "data_files": [{"split": "train", "path": "en-ro_RO.jsonl"}]}, {"config_name": "en-ru_RU", "data_files": [{"split": "train", "path": "en-ru_RU.jsonl"}]}, {"config_name": "en-sk_SK", "data_files": [{"split": "train", "path": "en-sk_SK.jsonl"}]}, {"config_name": "en-sl_SI", "data_files": [{"split": "train", "path": "en-sl_SI.jsonl"}]}, {"config_name": "en-sr_RS", "data_files": [{"split": "train", "path": "en-sr_RS.jsonl"}]}, {"config_name": "en-sv_SE", "data_files": [{"split": "train", "path": "en-sv_SE.jsonl"}]}, {"config_name": "en-sw_KE", "data_files": [{"split": "train", "path": "en-sw_KE.jsonl"}]}, {"config_name": "en-sw_TZ", "data_files": [{"split": "train", "path": "en-sw_TZ.jsonl"}]}, {"config_name": "en-ta_IN", "data_files": [{"split": "train", "path": "en-ta_IN.jsonl"}]}, {"config_name": "en-te_IN", "data_files": [{"split": "train", "path": "en-te_IN.jsonl"}]}, {"config_name": "en-th_TH", "data_files": [{"split": "train", "path": "en-th_TH.jsonl"}]}, {"config_name": "en-tr_TR", "data_files": [{"split": "train", "path": "en-tr_TR.jsonl"}]}, {"config_name": "en-uk_UA", "data_files": [{"split": "train", "path": "en-uk_UA.jsonl"}]}, {"config_name": "en-ur_PK", "data_files": [{"split": "train", "path": "en-ur_PK.jsonl"}]}, {"config_name": "en-vi_VN", "data_files": [{"split": "train", "path": "en-vi_VN.jsonl"}]}, {"config_name": "en-zh_CN", "data_files": [{"split": "train", "path": "en-zh_CN.jsonl"}]}, {"config_name": "en-zh_TW", "data_files": [{"split": "train", "path": "en-zh_TW.jsonl"}]}, {"config_name": "en-zu_ZA", "data_files": [{"split": "train", "path": "en-zu_ZA.jsonl"}]}]}
false
null
2025-02-19T16:37:15
13
13
false
a3564b47ba4aa30e69a2bb72f6b00eaa49dd50a3
WMT24++ This repository contains the human translation and post-edit data for the 55 en->xx language pairs released in the publication WMT24++: Expanding the Language Coverage of WMT24 to 55 Languages & Dialects. If you are interested in the MT/LLM system outputs and automatic metric scores, please see MTME. If you are interested in the images of the source URLs for each document, please see here. Schema Each language pair is stored in its own jsonl file. Each row is… See the full description on the dataset page: https://huggingface.co/datasets/google/wmt24pp.
217
[ "task_categories:translation", "language:ar", "language:bg", "language:bn", "language:ca", "language:da", "language:de", "language:el", "language:es", "language:et", "language:fa", "language:fi", "language:fr", "language:gu", "language:he", "language:hi", "language:hr", "language:hu", "language:id", "language:is", "language:it", "language:ja", "language:kn", "language:ko", "language:lt", "language:lv", "language:ml", "language:mr", "language:nl", "language:no", "language:pa", "language:pl", "language:pt", "language:ro", "language:ru", "language:sk", "language:sl", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:th", "language:tr", "language:uk", "language:ur", "language:vi", "language:zh", "language:zu", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.12404", "region:us" ]
2025-02-06T15:19:53
null
null
67ad1d5c100c4bfc7203184e
jonathan-roberts1/zerobench
jonathan-roberts1
{"pretty_name": "ZeroBench", "dataset_info": {"features": [{"name": "question_id", "dtype": "string"}, {"name": "question_text", "dtype": "string"}, {"name": "question_images_decoded", "sequence": "image"}, {"name": "question_answer", "dtype": "string"}, {"name": "question_images", "sequence": "string"}, {"name": "image_attribution", "dtype": "string"}], "splits": [{"name": "zerobench", "num_bytes": 65839214, "num_examples": 100}, {"name": "zerobench_subquestions", "num_bytes": 238205906, "num_examples": 334}], "download_size": 128199662, "dataset_size": 304045120}, "configs": [{"config_name": "default", "data_files": [{"split": "zerobench", "path": "data/zerobench-*"}, {"split": "zerobench_subquestions", "path": "data/zerobench_subquestions-*"}]}], "task_categories": ["image-text-to-text"]}
false
null
2025-02-21T12:39:06
13
13
false
9b8e37e5d5e17498b207e428fdd4109ba6bbb6ca
ZeroBench: An Impossible* Visual Benchmark for Contemporary Large Multimodal Models 🌐 Project Page | 📄 Paper | GitHub *Given the recent rapid progress on benchmarks, we do not imagine ZeroBench will remain "impossible" for long! Get involved! A key challenge in this regime of difficult questions is human verification and quality control. Despite the checks we have carried out, it is likely that errors remain in some questions. We welcome help red teaming ZeroBench to find… See the full description on the dataset page: https://huggingface.co/datasets/jonathan-roberts1/zerobench.
337
[ "task_categories:image-text-to-text", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.09696", "region:us" ]
2025-02-12T22:14:52
null
null
67b67c88194f0442be699a30
opendiffusionai/laion2b-23ish-woman-solo
opendiffusionai
{"size_categories": ["10K<n<100K"]}
false
null
2025-02-20T05:26:43
13
13
false
72f63640580f6e23a67e4f232b3522f3502e2fd2
Overview All images have a woman in them, solo, at APPROXIMATELY 2:3 aspect ratio. These images are HUMAN CURATED. I have personally gone through every one at least once. Additionally, there are no visible watermarks, the quality and focus are good, and it should not be confusing for AI training There should be a little over 15k images here. Note that there is a wide variety of body sizes, from size 0, to perhaps size 18 There are also THREE choices of captions: the really bad "alt… See the full description on the dataset page: https://huggingface.co/datasets/opendiffusionai/laion2b-23ish-woman-solo.
73
[ "size_categories:10K<n<100K", "format:json", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-20T00:51:20
null
null
67b6ca1869defaba21e05c5a
xlangai/AgentTrek
xlangai
{"language": ["en"]}
false
null
2025-02-20T06:53:46
13
13
false
32aabe6fb48d8e2e7dae1678e6ff05ba23725b2c
AgentTrek Data Collection AgentTrek dataset is the training dataset for the Web agent AgentTrek-1.0-32B. It consists of a total of 52,594 dialogue turns, specifically designed to train a language model for performing web-based tasks, such as browsing and web shopping. The dialogues in this dataset simulate interactions where the agent assists users in tasks like searching for information, comparing products, making purchasing decisions, and navigating websites. Dataset… See the full description on the dataset page: https://huggingface.co/datasets/xlangai/AgentTrek.
23
[ "language:en", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.09605", "region:us" ]
2025-02-20T06:22:16
null
null
65fc5a783bc54054aa2e6e62
gretelai/synthetic_text_to_sql
gretelai
{"license": "apache-2.0", "task_categories": ["question-answering", "table-question-answering", "text-generation"], "language": ["en"], "tags": ["synthetic", "SQL", "text-to-SQL", "code"], "size_categories": ["100K<n<1M"]}
false
null
2024-05-10T22:30:56
486
12
false
273a86f5f290e8d61b6767a9ff690c82bc990dc4
Image generated by DALL-E. See prompt for more details synthetic_text_to_sql gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. Please see our release blogpost for more details. The dataset includes: 105,851 records partitioned into 100,000 train and 5,851 test records ~23M total tokens, including ~12M SQL tokens Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql.
3,273
[ "task_categories:question-answering", "task_categories:table-question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2306.05685", "region:us", "synthetic", "SQL", "text-to-SQL", "code" ]
2024-03-21T16:04:08
null
null
6655eb19d17e141dcb546ed5
HuggingFaceFW/fineweb-edu
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb-Edu", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}], "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T15:56:54
633
12
false
4863ab07d7520451e6f73e2912ad8bfee7d97c11
📚 FineWeb-Edu 1.3 trillion tokens of the finest educational data the 🌐 web has to offer Paper: https://arxiv.org/abs/2406.17557 What is it? 📚 FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We then… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
541,953
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "arxiv:2404.14219", "arxiv:2401.10020", "arxiv:2109.07445", "doi:10.57967/hf/2497", "region:us" ]
2024-05-28T14:32:57
null
null
67a18053cad6d171c909e3c1
lmarena-ai/arena-human-preference-100k
lmarena-ai
{"size_categories": ["100K<n<1M"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/arena-*"}]}]}
false
null
2025-02-11T23:48:51
30
12
false
72e85b3ddc9c81bf7b659d6b03d4126dfd8fb34a
Overview This dataset contains leaderboard conversation data collected between June 2024 and August 2024. It includes English human preference evaluations used to develop Arena Explorer. Additionally, we provide an embedding file, which contains precomputed embeddings for the English conversations. These embeddings are used in the topic modeling pipeline to categorize and analyze these conversations. For a detailed exploration of the dataset and analysis methods, refer to the… See the full description on the dataset page: https://huggingface.co/datasets/lmarena-ai/arena-human-preference-100k.
381
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2403.04132", "region:us" ]
2025-02-04T02:49:55
null
null
67a89e79556fa47a174b6c7b
agentica-org/DeepScaleR-Preview-Dataset
agentica-org
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"]}
false
null
2025-02-10T09:51:18
62
12
false
b6ae8c60f5c1f2b594e2140b91c49c9ad0949e29
Data Our training dataset consists of approximately 40,000 unique mathematics problem-answer pairs compiled from: AIME (American Invitational Mathematics Examination) problems (1984-2023) AMC (American Mathematics Competition) problems (prior to 2023) Omni-MATH dataset Still dataset Format Each row in the JSON dataset contains: problem: The mathematical question text, formatted with LaTeX notation. solution: Offical solution to the problem, including LaTeX formatting… See the full description on the dataset page: https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset.
1,177
[ "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-09T12:24:25
null
null
67ab61aa0f2948137657d69d
CausalLM/Retrieval-SFT-Chat
CausalLM
{"license": "wtfpl", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh", "ja", "de"], "tags": ["synthetic"], "size_categories": ["100K<n<1M"]}
false
null
2025-02-14T22:09:30
49
12
false
e892744de3945bae4cbde7d514fb5b85fb9b293e
Retrieval-Based Multi-Turn Chat SFT Synthetic Data A year ago, we released CausalLM/Refined-Anime-Text, a thematic subset of a dataset generated using the then state-of-the-art LLMs. This dataset comprises 1 million entries synthesized through long-context models that rewrote multi-document web text inputs, intended for continued pre-training. We are pleased to note that this data has been employed in various training scenarios and in studies concerning data and internet culture. In… See the full description on the dataset page: https://huggingface.co/datasets/CausalLM/Retrieval-SFT-Chat.
244
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "language:ja", "language:de", "license:wtfpl", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "synthetic" ]
2025-02-11T14:41:46
null
null
67ac8c807ccaf131c3c68af7
open-r1/OpenR1-Math-Raw
open-r1
{"license": "apache-2.0", "language": ["en"], "dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "problem_is_valid", "dtype": "string"}, {"name": "solution_is_valid", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "synthetic", "dtype": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "generations_count", "dtype": "int64"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correct_count", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 19144782231, "num_examples": 516499}], "download_size": 8022181704, "dataset_size": 19144782231}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-02-12T13:32:15
69
11
false
4cbd48dbec7e96690598221505860fd36b86d23f
OpenR1-Math-Raw Dataset description OpenR1-Math-Raw is a large-scale dataset for mathematical reasoning. It consists of 516k math problems sourced from AI-MO/NuminaMath-1.5 with 1 to 8 reasoning traces generated by DeepSeek R1. The traces were verified using Math Verify, but we recommend additionally annotating the correctness with LLM-as-judge for higher recall. The dataset contains: 516,499 problems 1,209,403 R1-generated solutions, with 2.3 solutions per problem on… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-Raw.
1,412
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-12T11:56:48
null
null

Hugging Face Hub Stats

Updated Daily

Downloads last month
5,067

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 11