Datasets:
Tasks:
Tabular Classification
Modalities:
Tabular
Languages:
No linguistic content
Size:
100K<n<1M
License:
language: | |
- zxx | |
license: cc-by-4.0 | |
tags: | |
- chemistry | |
- mass-spectrometry | |
- isotopic-patterns | |
- tabular | |
- chlorine | |
pretty_name: Cl-Containing Compound (MS1 Features) | |
size_categories: | |
- 100K<n<1M | |
source_datasets: | |
- pubchem | |
task_categories: | |
- tabular-classification | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: 80%_618272_train_binary.rds | |
- split: test | |
path: 20%_154568_test_binary.rds | |
- config_name: csv | |
data_files: | |
- split: train | |
path: train.csv | |
- split: test | |
path: test.csv | |
dataset_info: | |
features: | |
- name: mz0 | |
dtype: float32 | |
- name: int2_o_int0 | |
dtype: float32 | |
- name: int1_o_int0 | |
dtype: float32 | |
- name: RI2_RI1 | |
dtype: float32 | |
- name: mz_2_0 | |
dtype: float32 | |
- name: mz_1_0 | |
dtype: float32 | |
- name: has_cl | |
dtype: int8 | |
config_name: default | |
# Dataset Summary | |
Binary classification of chlorine presence using simulated MS1 isotopic patterns. Inputs are six engineered features; label has_cl indicates Cl-containing (1) vs non-Cl (0). | |
## Data Sources and Generation | |
- Simulated MS1 peaks (M, M+1, M+2, M+3, M+4) for PubChem molecular formulas. | |
- Counts: 968,442 non-Cl; 386,420 Cl (1Cl: 185,303; 2Cl: 117,566; 3–5Cl: 83,551). | |
- Features: mz0, int2_o_int0, int1_o_int0, RI2_RI1, mz_2_0, mz_1_0. | |
- Class balancing: downsampled non-Cl to 386,420 (total 772,840). | |
- Splits: 80% train (618,272), 20% test (154,568). | |
- Files: 968442_non_cl_filter_S10.rds, 386420_cl_data.rds, 80%_618272_train_binary.rds, 20%_154568_test_binary.rds. | |
## How train.csv and test.csv were created | |
- Source splits come from the RDS files above: 80%_618272_train_binary.rds (train) and 20%_154568_test_binary.rds (test). | |
- Conversion was done locally using Python with pyreadr and pandas (see `data/converter.ipynb`). | |
- Steps: | |
1. Read each .rds table using pyreadr.read_r(...) | |
2. Optionally cast numeric columns to float32/int32 for compact CSVs | |
3. Save to CSV with index=False as `train.csv` and `test.csv` | |
Example code used: | |
```python | |
import pyreadr, pandas as pd | |
train_df = next(iter(pyreadr.read_r("80%_618272_train_binary.rds").values())) | |
test_df = next(iter(pyreadr.read_r("20%_154568_test_binary.rds").values())) | |
train_df.to_csv("train.csv", index=False) | |
test_df.to_csv("test.csv", index=False) | |
``` | |
## Features | |
- mz0: m/z of M | |
- int2_o_int0: intensity ratio M+2/M | |
- int1_o_int0: intensity ratio M+1/M | |
- RI2_RI1: (M+2/M) − (M+1/M) | |
- mz_2_0: m/z(M+2) − m/z(M) | |
- mz_1_0: m/z(M+1) − m/z(M) | |
- has_cl: target label (0/1) | |
## Usage | |
```python | |
from datasets import load_dataset | |
# Load CSVs from the Hub using the CSV builder | |
ds = load_dataset( | |
"csv", | |
data_files={ | |
"train": "hf://datasets/chen1028/Cl-Containing-Compound/train.csv", | |
"test": "hf://datasets/chen1028/Cl-Containing-Compound/test.csv", | |
} | |
) | |
``` | |
## Citation | |
```bibtex | |
@article{doi:10.1021/acs.analchem.3c05124, | |
author = {Zhao, Tingting and Wawryk, Nicholas J. P. and Xing, Shipei and Low, Brian and Li, Gigi and Yu, Huaxu and Wang, Yukai and Shen, Qiming and Li, Xing-Fang and Huan, Tao}, | |
title = {ChloroDBPFinder: Machine Learning-Guided Recognition of Chlorinated Disinfection Byproducts from Nontargeted LC-HRMS Analysis}, | |
journal = {Analytical Chemistry}, | |
volume = {96}, | |
number = {6}, | |
pages = {2590-2598}, | |
year = {2024}, | |
doi = {10.1021/acs.analchem.3c05124}, | |
note = {PMID: 38294426}, | |
url = {https://doi.org/10.1021/acs.analchem.3c05124}, | |
``` |