Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
7-romans-ner / README.md
aeth0r's picture
Update README.md
7a7ae25 verified
|
raw
history blame
3.18 kB
metadata
dataset_info:
  features:
    - name: tokens
      sequence: string
    - name: labels
      sequence:
        class_label:
          names:
            '0': B-LOC
            '1': B-MISC
            '2': B-ORG
            '3': B-PER
            '4': I-LOC
            '5': I-MISC
            '6': I-ORG
            '7': I-PER
            '8': O
    - name: novel
      dtype: string
  splits:
    - name: train
      num_bytes: 21690413
      num_examples: 26785
  download_size: 3685914
  dataset_size: 21690413
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*

7-romans

This dataset contains 7 French novels, entirely annoted for the NER task. See the related alias resolution dataset.

Novel Autor Publication Year Nombre de tokens Number of characters
Les Trois Mousquetaires Alexandre Dumas 1849 294 989 213
Le Rouge et le Noir Stendhal 1854 216 445 318
Eugénie Grandet Honoré de Balzac 1855 80 659 107
Germinal Émile Zola 1885 220 273 102
Bel-Ami Guy de Maupassant 1901 138 156 150
Notre-Dame de Paris Victor Hugo 1904 221 351 536
Madame Bovary Gustave Flaubert 1910 148 861 175

This gold standard corpus was created in the context of a project at the ObTIC laboratory, Sorbonne University. The project was directed by Motasem Alrahabi, and annnotations were performed by Perrine Maurel, Una Faller and Romaric Parnasse.

The corpus was then used to train a CamemBERT NER model in collaboration with Arthur Amalvy and Vincent Labatut, from Avignon University.

Usage

>>> from datasets import load_dataset
>>> dataset = load_dataset("compnet-renard/7-romans-ner")
>>> dataset["train"][0]
{'tokens': ['Quand', 'la', 'caissière', 'lui', 'eut', 'rendu', 'la', 'monnaie', 'de', 'sa', 'pièce', 'de', 'cent', 'sous', ',', 'Georges', 'Duroy', 'sortit', 'du', 'restaurant', '.'], 'labels': [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 3, 7, 8, 8, 8, 8], 'novel': 'BelAmi'}

Citation

If you use this dataset in your research, please cite:

@InProceedings{Maurel2025,
  authors = {Maurel, P. and Amalvy, A. and Labatut, V. and Alrahabi, M.},
  title = {Du repérage à l’analyse : un modèle pour la reconnaissance d’entités nommées dans les textes littéraires en français},
  booktitle = {Digital Humanities 2025},
  year = {2025},
}