Dataset Viewer
id
stringclasses 3
values | formula
stringclasses 3
values | system
stringclasses 1
value | bandgap_eV
float64 3.2
5.6
| structure_path
stringclasses 3
values |
---|---|---|---|---|
ABO3_0001
|
SrTiO3
|
perovskite
| 3.2 |
data/structures/ABO3_0001.xyz
|
ABO3_0002
|
BaZrO3
|
perovskite
| 5 |
data/structures/ABO3_0002.xyz
|
ABO3_0003
|
LaAlO3
|
perovskite
| 5.6 |
data/structures/ABO3_0003.xyz
|
AI4Materials Demo FAIR Perovskites
This is a teaching dataset demonstrating F.A.I.R. hosting on the Hugging Face Hub.
It contains a small table of oxide perovskites with band gaps and toy EXTXYZ structures.
Contents
data/table.csv
— main tabular datadata/records.jsonl
— line-delimited JSON mirrordata/structures/*.xyz
— example structures (EXTXYZ)metadata/schema.json
— JSON Schema for validationCITATION.cff
,LICENSE
— citation & reuse terms
Provenance
Synthetic examples generated for classroom demonstration on {datetime.utcnow().date()}.
How to load
from datasets import load_dataset
ds = load_dataset("cparidaAI/fair_dataset_demo", data_files={"train": "data/table.csv"})
print(ds)
Or download a structure file:
from huggingface_hub import hf_hub_download
path = hf_hub_download(repo_id="cparidaAI/fair_dataset_demo", filename="data/structures/ABO3_0001.xyz")
License
MIT. Please cite using CITATION.cff
.
F.A.I.R. checklist
- Findable: metadata, tags, README, (add DOI later via Zenodo)
- Accessible: public repo, open formats
- Interoperable: CSV/JSON/EXTXYZ, schema describes fields/units
- Reusable: license, clear citation, validation, examples
- Downloads last month
- 43