Dataset Viewer
Auto-converted to Parquet
id
stringclasses
3 values
formula
stringclasses
3 values
system
stringclasses
1 value
bandgap_eV
float64
3.2
5.6
structure_path
stringclasses
3 values
ABO3_0001
SrTiO3
perovskite
3.2
data/structures/ABO3_0001.xyz
ABO3_0002
BaZrO3
perovskite
5
data/structures/ABO3_0002.xyz
ABO3_0003
LaAlO3
perovskite
5.6
data/structures/ABO3_0003.xyz

AI4Materials Demo FAIR Perovskites

This is a teaching dataset demonstrating F.A.I.R. hosting on the Hugging Face Hub.
It contains a small table of oxide perovskites with band gaps and toy EXTXYZ structures.

Contents

  • data/table.csv — main tabular data
  • data/records.jsonl — line-delimited JSON mirror
  • data/structures/*.xyz — example structures (EXTXYZ)
  • metadata/schema.json — JSON Schema for validation
  • CITATION.cff, LICENSE — citation & reuse terms

Provenance

Synthetic examples generated for classroom demonstration on {datetime.utcnow().date()}.

How to load

from datasets import load_dataset
ds = load_dataset("cparidaAI/fair_dataset_demo", data_files={"train": "data/table.csv"})
print(ds)

Or download a structure file:

from huggingface_hub import hf_hub_download
path = hf_hub_download(repo_id="cparidaAI/fair_dataset_demo", filename="data/structures/ABO3_0001.xyz")

License

MIT. Please cite using CITATION.cff.

F.A.I.R. checklist

  • Findable: metadata, tags, README, (add DOI later via Zenodo)
  • Accessible: public repo, open formats
  • Interoperable: CSV/JSON/EXTXYZ, schema describes fields/units
  • Reusable: license, clear citation, validation, examples
Downloads last month
43