Datasets:

Modalities:
Tabular
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
session_id
stringlengths
36
36
cw_internal_id
int64
2k
87.2M
timestamp
float64
28.5M
1.74B
0027bc2c-5c6f-4563-b8a0-97b1feba7726
1,857,728
29,061,127
0027bc2c-5c6f-4563-b8a0-97b1feba7726
21,240,508
29,061,165
0027bc2c-5c6f-4563-b8a0-97b1feba7726
5,558,047
29,061,165
0027bc2c-5c6f-4563-b8a0-97b1feba7726
36,337,943
29,061,199
0027bc2c-5c6f-4563-b8a0-97b1feba7726
14,450,997
29,061,204
0027bc2c-5c6f-4563-b8a0-97b1feba7726
81,485,999
29,061,814
0027bc2c-5c6f-4563-b8a0-97b1feba7726
54,962,751
29,061,823
0027bc2c-5c6f-4563-b8a0-97b1feba7726
11,090,617
29,061,861
007887cd-0702-460d-ab15-4f33949b8831
42,941,355
29,094,225
007887cd-0702-460d-ab15-4f33949b8831
85,599,734
29,094,227
007887cd-0702-460d-ab15-4f33949b8831
58,243,266
29,094,272
007887cd-0702-460d-ab15-4f33949b8831
18,076,387
29,094,361
007887cd-0702-460d-ab15-4f33949b8831
83,280,307
29,094,394
007887cd-0702-460d-ab15-4f33949b8831
65,227,562
29,094,627
007887cd-0702-460d-ab15-4f33949b8831
15,903,723
29,094,867
00ba5fd6-89cb-4181-b08c-12447c7edf52
63,665,725
29,097,766
00ba5fd6-89cb-4181-b08c-12447c7edf52
8,719,486
29,097,774
00ba5fd6-89cb-4181-b08c-12447c7edf52
69,188,089
29,097,778
00ba5fd6-89cb-4181-b08c-12447c7edf52
47,171,450
29,097,778
00ba5fd6-89cb-4181-b08c-12447c7edf52
18,256,593
29,097,779
00ba5fd6-89cb-4181-b08c-12447c7edf52
62,522,248
29,097,798
00ba5fd6-89cb-4181-b08c-12447c7edf52
22,092,648
29,097,812
00ba5fd6-89cb-4181-b08c-12447c7edf52
86,999,837
29,097,814
00ba5fd6-89cb-4181-b08c-12447c7edf52
60,873,872
29,097,816
011cb182-5886-4751-b074-b6548b144e32
21,028,771
29,092,860
011cb182-5886-4751-b074-b6548b144e32
60,206,422
29,092,861
011cb182-5886-4751-b074-b6548b144e32
55,351,827
29,092,862
011cb182-5886-4751-b074-b6548b144e32
12,240,395
29,092,863
011cb182-5886-4751-b074-b6548b144e32
79,332,576
29,092,864
011cb182-5886-4751-b074-b6548b144e32
49,453,095
29,092,865
011cb182-5886-4751-b074-b6548b144e32
682,754
29,092,866
011cb182-5886-4751-b074-b6548b144e32
53,051,165
29,092,867
011cb182-5886-4751-b074-b6548b144e32
31,561,114
29,092,868
011cb182-5886-4751-b074-b6548b144e32
37,899,273
29,092,869
011cb182-5886-4751-b074-b6548b144e32
51,331,542
29,092,870
011cb182-5886-4751-b074-b6548b144e32
83,752,447
29,092,871
011cb182-5886-4751-b074-b6548b144e32
44,223,834
29,092,872
0149be01-9981-4ad2-88a2-851e60c4cabd
75,478,720
29,058,522
0149be01-9981-4ad2-88a2-851e60c4cabd
15,151,340
29,058,542
0149be01-9981-4ad2-88a2-851e60c4cabd
23,444,642
29,058,557
0149be01-9981-4ad2-88a2-851e60c4cabd
80,056,418
29,058,560
0149be01-9981-4ad2-88a2-851e60c4cabd
43,915,277
29,058,574
0149be01-9981-4ad2-88a2-851e60c4cabd
67,412,965
29,058,575
0149be01-9981-4ad2-88a2-851e60c4cabd
22,200,052
29,058,576
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
21,203,311
28,868,160
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
43,727,794
28,868,180
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
10,635,023
28,868,200
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
38,094,022
28,868,210
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
15,119,863
28,868,220
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
8,281,586
28,868,230
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
69,106,177
28,868,250
01c191d4-7f1b-4b38-a886-b04e2e5b1e1b
56,046,082
28,868,260
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
61,626,757
29,083,095
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
68,065,684
29,083,105
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
63,729,511
29,083,110
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
19,654,719
29,083,113
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
72,246,614
29,083,136
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
85,228,902
29,083,145
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
46,666,677
29,083,147
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
72,210,525
29,083,148
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
4,481,144
29,083,155
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
43,583,187
29,083,205
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
2,022,267
29,083,262
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
57,188,101
29,083,280
02e924ee-ccb7-4306-bf7e-2dee0674f4ee
45,065,426
29,083,282
032f7077-c29a-4e8c-a306-239af6318f68
53,392,483
29,052,490
032f7077-c29a-4e8c-a306-239af6318f68
79,425,403
29,052,520
032f7077-c29a-4e8c-a306-239af6318f68
78,324,810
29,052,545
032f7077-c29a-4e8c-a306-239af6318f68
79,330,141
29,052,580
032f7077-c29a-4e8c-a306-239af6318f68
38,903,655
29,052,635
032f7077-c29a-4e8c-a306-239af6318f68
53,000,070
29,052,660
032f7077-c29a-4e8c-a306-239af6318f68
30,019,712
29,052,660
03416268-77cd-4d68-bfc4-53b02d634185
30,660,663
29,092,820
03416268-77cd-4d68-bfc4-53b02d634185
57,787,430
29,092,830
03416268-77cd-4d68-bfc4-53b02d634185
71,016,329
29,092,865
03416268-77cd-4d68-bfc4-53b02d634185
29,105,829
29,092,875
03416268-77cd-4d68-bfc4-53b02d634185
45,791,447
29,092,878
03416268-77cd-4d68-bfc4-53b02d634185
4,962,846
29,092,885
03416268-77cd-4d68-bfc4-53b02d634185
58,146,828
29,092,890
03416268-77cd-4d68-bfc4-53b02d634185
49,911,703
29,092,898
0378bc97-d211-4464-9216-b067395849ff
9,535,084
29,046,544
0378bc97-d211-4464-9216-b067395849ff
63,082,701
29,046,544
0378bc97-d211-4464-9216-b067395849ff
44,365,008
29,046,545
0378bc97-d211-4464-9216-b067395849ff
5,703,846
29,046,545
0378bc97-d211-4464-9216-b067395849ff
50,228,968
29,046,545
0378bc97-d211-4464-9216-b067395849ff
86,248,559
29,046,548
0378bc97-d211-4464-9216-b067395849ff
69,090,435
29,046,549
0378bc97-d211-4464-9216-b067395849ff
34,195,851
29,046,549
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
23,549,134
29,073,356
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
67,915,148
29,073,380
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
35,134,010
29,073,397
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
2,938,081
29,073,406
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
70,001,146
29,073,447
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
69,852,019
29,073,476
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
46,851,152
29,073,487
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
36,187,285
29,073,489
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
1,853,168
29,073,491
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
37,273,698
29,073,493
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
35,749,359
29,073,499
04335f93-03f3-4cbb-a3a4-1ce9803bf4cf
83,437,309
29,073,513
End of preview. Expand in Data Studio

ClueWeb-Reco:

ClueWeb-Reco as Webpage Recommendation Hidden Test

ClueWeb-Reco is a dataset constructed by mapping real-life U.S. browsing history to publicly available websites in the English subset of ClueWeb22-B dataset. Its synthetic nature ensures strong privacy guarantee while it closely mirrors real user interactions and reveals real-life performance of recommder systems.

ClueWeb-Reco serves as the hidden test set of the ORBIT benchmark. The task simulates real-world user browsing behavior, where a model is given a sequence of user interactions in terms of ClueWeb page IDs, and must predict the next item a user will engage with from the candidate pool of ClueWeb22-B English subset.

ClueWeb-Reco follows sequential leave-one-out splitting method and is splitted into validation and test set. That is, or each sequence grouped by user or sessions with length n, the first n − 2 items are used as user history input to for validation to predict the validation target, which is the (n − 1)th item. The nth item is reserved as the target for the test set while the previous n − 1 items are given as test input.

We provide input and ground truth for the validation set. The target of the test set is hidden to avoid possible data leakage and ensure the effectiveness and integrity of the benchmark.

Source Files

-- cwid_to_id.tsv: mapping bewteen official ClueWeb22 docids of ClueWeb-Reco's candidate pool to ClueWeb-Reco internal docids. All the IDs in the below files are represented as ClueWeb-Reco internal docids.

Splits in pure interaction format

  • interaction_splits:
    • valid_inter_input.tsv: input for validation dataset
    • valid_inter_target.tsv: validation dataset ground truth
    • test_inter_input.tsv: input for testing dataset (ground truth hidden)

Splits in ordered ClueWeb id list format

  • ordered_id_splits:
    • valid_input.tsv: input for validation dataset
    • valid_target.tsv: validation dataset ground truth
    • test_input.tsv: input for testing dataset (ground truth hidden)

Utility files for ClueWebApi usage and example processing on the ordered ClueWeb id list format

  • cw_data_processing:
    • ClueWeb22Api.py: API to retrieve ClueWeb document information from official ClueWeb22 docids
    • example_dataset.py: example to load input data sequences with ClueWeb22Api

Note

The ClueWeb-Reco dataset was collected, stored, released, and is maintained by our team at Carnegie Mellon University.

Downloads last month
15