Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
id
int64
1
8.88M
_priority
float64
-149.4
3.07k
8,877,703
3.6
8,877,702
4.8
8,877,701
1.2
8,877,700
15.6
8,877,699
22.8
8,877,698
10.8
8,877,697
3.6
8,877,696
3.6
8,877,695
2.4
8,877,694
2.4
8,877,693
4.8
8,877,692
2.4
8,877,691
2.4
8,877,690
8.4
8,877,689
1.2
8,877,688
4.8
8,877,687
3.6
8,877,686
1.2
8,877,685
1.2
8,877,684
4.8
8,877,683
2.4
8,877,682
1.2
8,877,681
10.8
8,877,680
22.8
8,877,679
3.6
8,877,678
4.8
8,877,677
1.2
8,877,676
3.6
8,877,675
3.6
8,877,674
14.4
8,877,673
13.2
8,877,672
2.4
8,877,671
9.6
8,877,670
7.2
8,877,669
1.2
8,877,668
6
8,877,667
3.6
8,877,666
3.6
8,877,665
20.4
8,877,664
6
8,877,663
25.2
8,877,662
2.4
8,877,661
1.2
8,877,660
2.4
8,877,659
16.8
8,877,658
3.6
8,877,657
4.8
8,877,656
8.4
8,877,655
3.6
8,877,654
2.4
8,877,653
3.6
8,877,652
3.6
8,877,651
10.8
8,877,650
3.6
8,877,649
2.4
8,877,648
4.8
8,877,647
3.6
8,877,646
6
8,877,645
3.6
8,877,644
10.8
8,877,643
20.4
8,877,642
1.2
8,877,641
2.4
8,877,640
1.2
8,877,639
3.6
8,877,638
2.4
8,877,637
3.6
8,877,636
3.6
8,877,635
3.6
8,877,634
2.4
8,877,633
7.2
8,877,632
19.2
8,877,631
1.2
8,877,630
1.2
8,877,629
3.6
8,877,628
2.4
8,877,627
9.6
8,877,626
2.4
8,877,625
3.6
8,877,624
4.8
8,877,623
4.8
8,877,622
10.8
8,877,621
7.2
8,877,620
4.8
8,877,619
1.2
8,877,618
4.8
8,877,617
1.2
8,877,616
2.4
8,877,615
14.4
8,877,614
9.6
8,877,613
6
8,877,612
10.8
8,877,611
1.2
8,877,610
1.2
8,877,609
4.8
8,877,608
3.6
8,877,607
2.4
8,877,606
4.8
8,877,605
2.4
8,877,604
8.4

dataproc5/tmp-danbooru2025-row-priorities

The repo contains priority scores by id for tag blancing task, as part of the dataproc5 pipeline.

import unibox as ub
from dataproc5.pipelines.danbooru.nodes import prepare_balancing_tags, select_balanced_images, prepare_row_priorities

dbr_df = ub.loads("hf://trojblue/danbooru2025-metadata").to_pandas()
tag_counts_all_df = ub.loads("hf://dataproc5/metrics-danbooru2025-alltime-tag-counts").to_pandas()

tag_df = prepare_balancing_tags(dbr_df, tag_counts_all_df, key_col="id")
dbr_df = dbr_df.merge(tag_df, on="id", how="left")

priority_df = prepare_row_priorities(dbr_df, column_name="_priority", key_col="id")
dbr_df = dbr_df.merge(priority_df, on="id", how="left")

# Then you can sort by the new priority
dbr_df.sort_values("_priority", ascending=False, inplace=True)
Downloads last month
60