Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
ArXiv:
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 10,559 Bytes
3b70966
 
 
 
 
 
 
 
 
7374fac
3b70966
 
7374fac
 
 
 
 
 
 
 
 
3b70966
7374fac
3b70966
7374fac
 
 
 
b857966
3b70966
 
 
 
 
 
 
a245956
3b70966
 
 
 
 
 
 
 
 
 
 
a245956
3b70966
 
 
 
 
 
 
 
 
 
 
 
 
a245956
3b70966
 
 
 
a245956
3b70966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a245956
3b70966
 
 
 
7374fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b70966
 
7374fac
3b70966
 
7374fac
3b70966
 
c394758
7374fac
3b70966
7374fac
c394758
7374fac
3b70966
7374fac
c394758
7374fac
3b70966
7374fac
 
 
c394758
0fe892e
 
3b70966
 
 
 
 
 
 
 
 
 
 
 
 
0fe892e
 
 
 
c394758
0fe892e
 
 
 
 
 
 
 
 
 
 
 
 
 
3b70966
 
7374fac
 
 
3b70966
 
 
 
0fe892e
3b70966
 
 
 
 
 
 
 
 
7374fac
 
 
3b70966
aacfdf4
 
 
 
 
 
ac5396d
aacfdf4
 
3b70966
 
7374fac
3b70966
 
 
7374fac
3b70966
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
license: mit
task_categories:
- feature-extraction
- question-answering
language:
- en
tags:
- code
pretty_name: DeepScholarBench Dataset
size_categories:
- 1K<n<10K
configs:
- config_name: papers
  data_files: "papers_with_related_works.csv"
- config_name: citations
  data_files: "recovered_citations.csv" 
- config_name: important_citations
  data_files: "important_citations.csv"
- config_name: full
  data_files: ["papers_with_related_works.csv", "recovered_citations.csv", "important_citations.csv"]
---
# DeepScholarBench Dataset

[![Dataset](https://img.shields.io/badge/Dataset-deepscholar--bench%2FDeepScholarBench-blue)](https://huggingface.co/datasets/deepscholar-bench/DeepScholarBench)
[![GitHub](https://img.shields.io/badge/GitHub-deepscholar--bench-green)](https://github.com/guestrin-lab/deepscholar-bench)
[![License](https://img.shields.io/badge/License-MIT-yellow)](https://github.com/guestrin-lab/deepscholar-bench/blob/main/LICENSE)
[![Paper](https://img.shields.io/badge/Paper-arXiv%3A2508.20033-red)](https://arxiv.org/abs/2508.20033)
[![Leaderboard](https://img.shields.io/badge/Leaderboard-DeepScholar%20Bench-orange)](https://guestrin-lab.github.io/deepscholar-leaderboard/leaderboard/deepscholar_bench_leaderboard.html)

---

A comprehensive dataset of academic papers with extracted related works sections and recovered citations, designed for training and evaluating research generation systems.

## 📊 Dataset Overview

This dataset contains **63 academic papers** from ArXiv with their related works sections and **1630 recovered citations**, providing a rich resource for research generation and citation analysis tasks.

### 🎯 Use Cases

- **Research Generation**: Train models to generate related works sections
- **Citation Analysis**: Study citation patterns and relationships
- **Academic NLP**: Develop tools for academic text processing
- **Evaluation**: Benchmark research generation systems
- **Knowledge Discovery**: Analyze research trends and connections

## 📁 Dataset Structure

### 1. `papers_with_related_works.csv` (63 papers)

Contains academic papers with extracted related works sections in multiple formats:
| Column | Description |
|--------|-------------|
| `arxiv_id` | ArXiv identifier (e.g., "2506.02838v1") |
| `title` | Paper title |
| `authors` | Author names |
| `abstract` | Paper abstract |
| `categories` | ArXiv categories (e.g., "cs.AI, econ.GN") |
| `published_date` | Publication date |
| `updated_date` | Last update date |
| `abs_url` | ArXiv abstract URL |
| `arxiv_link` | Full ArXiv link |
| `publication_date` | Publication date |
| `raw_latex_related_works` | Raw LaTeX related works section |
| `clean_latex_related_works` | Cleaned LaTeX related works section |
| `pdf_related_works` | Related works extracted from PDF |

### 2. `recovered_citations.csv` (1630 citations)

Contains individual citations with recovered metadata:

| Column | Description |
|--------|-------------|
| `parent_paper_title` | Title of the paper containing the citation |
| `parent_paper_arxiv_id` | ArXiv ID of the parent paper |
| `citation_shorthand` | Citation key (e.g., "NBERw21340") |
| `raw_citation_text` | Raw citation text from LaTeX |
| `cited_paper_title` | Title of the cited paper |
| `cited_paper_arxiv_link` | ArXiv link if available |
| `cited_paper_abstract` | Abstract of the cited paper |
| `has_metadata` | Whether metadata was successfully recovered |
| `is_arxiv_paper` | Whether the cited paper is from ArXiv |
| `bib_paper_authors` | Authors of the cited paper |
| `bib_paper_year` | Publication year |
| `bib_paper_month` | Publication month |
| `bib_paper_url` | URL of the cited paper |
| `bib_paper_doi` | DOI of the cited paper |
| `bib_paper_journal` | Journal name |
| `original_title` | Original title from citation metadata |
| `search_res_title` | Title from search results |
| `search_res_url` | URL from search results |
| `search_res_content` | Content snippet from search results |

### 3. `important_citations.csv` (1,050 citations)

Contains enhanced citations with full paper metadata and content:

| Column | Description |
|--------|-------------|
| `parent_paper_title` | Title of the paper containing the citation |
| `parent_paper_arxiv_id` | ArXiv ID of the parent paper |
| `citation_shorthand` | Citation key (e.g., "NBERw21340") |
| `raw_citation_text` | Raw citation text from LaTeX |
| `cited_paper_title` | Title of the cited paper |
| `cited_paper_arxiv_link` | ArXiv link if available |
| `cited_paper_abstract` | Abstract of the cited paper |
| `has_metadata` | Whether metadata was successfully recovered |
| `is_arxiv_paper` | Whether the cited paper is from ArXiv |
| `cited_paper_authors` | Authors of the cited paper |
| `bib_paper_year` | Publication year |
| `bib_paper_month` | Publication month |
| `bib_paper_url` | URL of the cited paper |
| `bib_paper_doi` | DOI of the cited paper |
| `bib_paper_journal` | Journal name |
| `original_title` | Original title from citation metadata |
| `search_res_title` | Title from search results |
| `search_res_url` | URL from search results |
| `search_res_content` | Content snippet from search results |
| `arxiv_id` | ArXiv ID of the parent paper |
| `arxiv_link` | ArXiv link of the parent paper |
| `publication_date` | Publication date of the parent paper |
| `title` | Title of the parent paper |
| `abstract` | Abstract of the parent paper |
| `raw_latex_related_works` | Raw LaTeX related works section |
| `related_work_section` | Processed related works section |
| `pdf_related_works` | Related works extracted from PDF |
| `cited_paper_content` | Full content of the cited paper |

## ⚙️ Dataset Configurations

| Configuration | Description | Files | Records | Use Case |
|---------------|-------------|--------|---------|----------|
| `papers` | Academic papers only | `papers_with_related_works.csv` | 63 papers | Research generation, content analysis |
| `citations` | Citations only | `recovered_citations.csv` | 1,630 citations | Citation analysis, relationship mapping |
| `important_citations` | Enhanced citations with metadata | `important_citations.csv` | 1,050 citations | Advanced citation analysis, paper-citation linking |

## 🚀 Quick Start

### Loading from Hugging Face Hub (Recommended)

```python
from datasets import load_dataset

# Load papers dataset
papers = load_dataset("deepscholar-bench/DeepScholarBench", name="papers")["train"]
print(f"Loaded {len(papers)} papers")

# Load citations dataset  
citations = load_dataset("deepscholar-bench/DeepScholarBench", name="citations")["train"]
print(f"Loaded {len(citations)} citations")

# Load important citations with enhanced metadata
important_citations = load_dataset("deepscholar-bench/DeepScholarBench", name="important_citations")["train"]
print(f"Loaded {len(important_citations)} important citations")

# Convert to pandas for analysis
papers_df = papers.to_pandas()
citations_df = citations.to_pandas()
important_citations_df = important_citations.to_pandas()
```

### Example: Extract Related Works for a Paper

```python
# Get a specific paper
paper = papers_df[papers_df['arxiv_id'] == '2506.02838v1'].iloc[0]
print(f"Title: {paper['title']}")
print(f"Related Works:\n{paper['clean_latex_related_works']}")

# Get all citations for this paper
paper_citations = citations_df[citations_df['parent_paper_arxiv_id'] == '2506.02838v1']
print(f"Number of citations: {len(paper_citations)}")
```

### Example: Working with Important Citations

```python
# Load important citations (enhanced with paper metadata)
important_citations = load_dataset("deepscholar-bench/DeepScholarBench", name="important_citations")["train"]

# This configuration includes both citation data AND the parent paper information
sample = important_citations[0]
print(f"Citation: {sample['cited_paper_title']}")
print(f"Parent Paper: {sample['title']}")
print(f"Paper Abstract: {sample['abstract'][:200]}...")
print(f"Related Work Section: {sample['related_work_section'][:200]}...")

# Analyze citation patterns
important_df = important_citations.to_pandas()
print(f"Citations with full paper content: {important_df['cited_paper_content'].notna().sum()}")
print(f"Citations with related work sections: {important_df['related_work_section'].notna().sum()}")
```

## 📈 Dataset Statistics

- **Total Papers**: 63
- **Total Citations**: 1,630
- **Important Citations**: 1,050
- **Date Range**: 2024-2025 (recent papers)

## 🔧 Data Collection Process

This dataset was created using the [DeepScholarBench](https://github.com/guestrin-lab/deepscholar-bench) pipeline:

1. **ArXiv Scraping**: Collected papers by category and date range
2. **Author Filtering**: Focused on high-impact researchers (h-index ≥ 25)
3. **LaTeX Extraction**: Extracted related works sections from LaTeX source
4. **Citation Recovery**: Resolved citations and recovered metadata
5. **Quality Filtering**: Ensured data quality and completeness

## 📚 Related Resources

- **[GitHub Repository](https://github.com/guestrin-lab/deepscholar-bench)**: Full source code and documentation
- **[Data Pipeline](https://github.com/guestrin-lab/deepscholar-bench/tree/main/data_pipeline)**: Tools for collecting similar datasets
- **[Evaluation Framework](https://github.com/guestrin-lab/deepscholar-bench/tree/main/eval)**: Framework for evaluating research generation systems

## 🏆 Leaderboard

We maintain a leaderboard to track the performance of various models on the DeepScholarBench evaluation tasks:

- **[Official Leaderboard](https://guestrin-lab.github.io/deepscholar-leaderboard/leaderboard/deepscholar_bench_leaderboard.html)**: Live rankings of model performance
- **Evaluation Metrics**: Models are evaluated on relevance, coverage, and citation accuracy as described in the [evaluation guide](https://github.com/guestrin-lab/deepscholar-bench/tree/main/eval)
- **Submission Process**: Submit your results via this [Form](https://docs.google.com/forms/d/e/1FAIpQLSeug4igDHhVUU3XnrUSeMVRUJFKlHP28i8fcBAu_LHCkqdV1g/viewform)


## 🤝 Contributing

We welcome contributions to improve this dataset! Please see the [main repository](https://github.com/guestrin-lab/deepscholar-bench) for contribution guidelines.

## 📄 License

This dataset is released under the MIT License. See the [LICENSE](https://github.com/guestrin-lab/deepscholar-bench/blob/main/LICENSE) file for details.

---

**Note**: This dataset is actively maintained and updated. Check the GitHub repository for the latest version and additional resources.