File size: 10,559 Bytes
3b70966 7374fac 3b70966 7374fac 3b70966 7374fac 3b70966 7374fac b857966 3b70966 a245956 3b70966 a245956 3b70966 a245956 3b70966 a245956 3b70966 a245956 3b70966 7374fac 3b70966 7374fac 3b70966 7374fac 3b70966 c394758 7374fac 3b70966 7374fac c394758 7374fac 3b70966 7374fac c394758 7374fac 3b70966 7374fac c394758 0fe892e 3b70966 0fe892e c394758 0fe892e 3b70966 7374fac 3b70966 0fe892e 3b70966 7374fac 3b70966 aacfdf4 ac5396d aacfdf4 3b70966 7374fac 3b70966 7374fac 3b70966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
license: mit
task_categories:
- feature-extraction
- question-answering
language:
- en
tags:
- code
pretty_name: DeepScholarBench Dataset
size_categories:
- 1K<n<10K
configs:
- config_name: papers
data_files: "papers_with_related_works.csv"
- config_name: citations
data_files: "recovered_citations.csv"
- config_name: important_citations
data_files: "important_citations.csv"
- config_name: full
data_files: ["papers_with_related_works.csv", "recovered_citations.csv", "important_citations.csv"]
---
# DeepScholarBench Dataset
[](https://huggingface.co/datasets/deepscholar-bench/DeepScholarBench)
[](https://github.com/guestrin-lab/deepscholar-bench)
[](https://github.com/guestrin-lab/deepscholar-bench/blob/main/LICENSE)
[](https://arxiv.org/abs/2508.20033)
[](https://guestrin-lab.github.io/deepscholar-leaderboard/leaderboard/deepscholar_bench_leaderboard.html)
---
A comprehensive dataset of academic papers with extracted related works sections and recovered citations, designed for training and evaluating research generation systems.
## 📊 Dataset Overview
This dataset contains **63 academic papers** from ArXiv with their related works sections and **1630 recovered citations**, providing a rich resource for research generation and citation analysis tasks.
### 🎯 Use Cases
- **Research Generation**: Train models to generate related works sections
- **Citation Analysis**: Study citation patterns and relationships
- **Academic NLP**: Develop tools for academic text processing
- **Evaluation**: Benchmark research generation systems
- **Knowledge Discovery**: Analyze research trends and connections
## 📁 Dataset Structure
### 1. `papers_with_related_works.csv` (63 papers)
Contains academic papers with extracted related works sections in multiple formats:
| Column | Description |
|--------|-------------|
| `arxiv_id` | ArXiv identifier (e.g., "2506.02838v1") |
| `title` | Paper title |
| `authors` | Author names |
| `abstract` | Paper abstract |
| `categories` | ArXiv categories (e.g., "cs.AI, econ.GN") |
| `published_date` | Publication date |
| `updated_date` | Last update date |
| `abs_url` | ArXiv abstract URL |
| `arxiv_link` | Full ArXiv link |
| `publication_date` | Publication date |
| `raw_latex_related_works` | Raw LaTeX related works section |
| `clean_latex_related_works` | Cleaned LaTeX related works section |
| `pdf_related_works` | Related works extracted from PDF |
### 2. `recovered_citations.csv` (1630 citations)
Contains individual citations with recovered metadata:
| Column | Description |
|--------|-------------|
| `parent_paper_title` | Title of the paper containing the citation |
| `parent_paper_arxiv_id` | ArXiv ID of the parent paper |
| `citation_shorthand` | Citation key (e.g., "NBERw21340") |
| `raw_citation_text` | Raw citation text from LaTeX |
| `cited_paper_title` | Title of the cited paper |
| `cited_paper_arxiv_link` | ArXiv link if available |
| `cited_paper_abstract` | Abstract of the cited paper |
| `has_metadata` | Whether metadata was successfully recovered |
| `is_arxiv_paper` | Whether the cited paper is from ArXiv |
| `bib_paper_authors` | Authors of the cited paper |
| `bib_paper_year` | Publication year |
| `bib_paper_month` | Publication month |
| `bib_paper_url` | URL of the cited paper |
| `bib_paper_doi` | DOI of the cited paper |
| `bib_paper_journal` | Journal name |
| `original_title` | Original title from citation metadata |
| `search_res_title` | Title from search results |
| `search_res_url` | URL from search results |
| `search_res_content` | Content snippet from search results |
### 3. `important_citations.csv` (1,050 citations)
Contains enhanced citations with full paper metadata and content:
| Column | Description |
|--------|-------------|
| `parent_paper_title` | Title of the paper containing the citation |
| `parent_paper_arxiv_id` | ArXiv ID of the parent paper |
| `citation_shorthand` | Citation key (e.g., "NBERw21340") |
| `raw_citation_text` | Raw citation text from LaTeX |
| `cited_paper_title` | Title of the cited paper |
| `cited_paper_arxiv_link` | ArXiv link if available |
| `cited_paper_abstract` | Abstract of the cited paper |
| `has_metadata` | Whether metadata was successfully recovered |
| `is_arxiv_paper` | Whether the cited paper is from ArXiv |
| `cited_paper_authors` | Authors of the cited paper |
| `bib_paper_year` | Publication year |
| `bib_paper_month` | Publication month |
| `bib_paper_url` | URL of the cited paper |
| `bib_paper_doi` | DOI of the cited paper |
| `bib_paper_journal` | Journal name |
| `original_title` | Original title from citation metadata |
| `search_res_title` | Title from search results |
| `search_res_url` | URL from search results |
| `search_res_content` | Content snippet from search results |
| `arxiv_id` | ArXiv ID of the parent paper |
| `arxiv_link` | ArXiv link of the parent paper |
| `publication_date` | Publication date of the parent paper |
| `title` | Title of the parent paper |
| `abstract` | Abstract of the parent paper |
| `raw_latex_related_works` | Raw LaTeX related works section |
| `related_work_section` | Processed related works section |
| `pdf_related_works` | Related works extracted from PDF |
| `cited_paper_content` | Full content of the cited paper |
## ⚙️ Dataset Configurations
| Configuration | Description | Files | Records | Use Case |
|---------------|-------------|--------|---------|----------|
| `papers` | Academic papers only | `papers_with_related_works.csv` | 63 papers | Research generation, content analysis |
| `citations` | Citations only | `recovered_citations.csv` | 1,630 citations | Citation analysis, relationship mapping |
| `important_citations` | Enhanced citations with metadata | `important_citations.csv` | 1,050 citations | Advanced citation analysis, paper-citation linking |
## 🚀 Quick Start
### Loading from Hugging Face Hub (Recommended)
```python
from datasets import load_dataset
# Load papers dataset
papers = load_dataset("deepscholar-bench/DeepScholarBench", name="papers")["train"]
print(f"Loaded {len(papers)} papers")
# Load citations dataset
citations = load_dataset("deepscholar-bench/DeepScholarBench", name="citations")["train"]
print(f"Loaded {len(citations)} citations")
# Load important citations with enhanced metadata
important_citations = load_dataset("deepscholar-bench/DeepScholarBench", name="important_citations")["train"]
print(f"Loaded {len(important_citations)} important citations")
# Convert to pandas for analysis
papers_df = papers.to_pandas()
citations_df = citations.to_pandas()
important_citations_df = important_citations.to_pandas()
```
### Example: Extract Related Works for a Paper
```python
# Get a specific paper
paper = papers_df[papers_df['arxiv_id'] == '2506.02838v1'].iloc[0]
print(f"Title: {paper['title']}")
print(f"Related Works:\n{paper['clean_latex_related_works']}")
# Get all citations for this paper
paper_citations = citations_df[citations_df['parent_paper_arxiv_id'] == '2506.02838v1']
print(f"Number of citations: {len(paper_citations)}")
```
### Example: Working with Important Citations
```python
# Load important citations (enhanced with paper metadata)
important_citations = load_dataset("deepscholar-bench/DeepScholarBench", name="important_citations")["train"]
# This configuration includes both citation data AND the parent paper information
sample = important_citations[0]
print(f"Citation: {sample['cited_paper_title']}")
print(f"Parent Paper: {sample['title']}")
print(f"Paper Abstract: {sample['abstract'][:200]}...")
print(f"Related Work Section: {sample['related_work_section'][:200]}...")
# Analyze citation patterns
important_df = important_citations.to_pandas()
print(f"Citations with full paper content: {important_df['cited_paper_content'].notna().sum()}")
print(f"Citations with related work sections: {important_df['related_work_section'].notna().sum()}")
```
## 📈 Dataset Statistics
- **Total Papers**: 63
- **Total Citations**: 1,630
- **Important Citations**: 1,050
- **Date Range**: 2024-2025 (recent papers)
## 🔧 Data Collection Process
This dataset was created using the [DeepScholarBench](https://github.com/guestrin-lab/deepscholar-bench) pipeline:
1. **ArXiv Scraping**: Collected papers by category and date range
2. **Author Filtering**: Focused on high-impact researchers (h-index ≥ 25)
3. **LaTeX Extraction**: Extracted related works sections from LaTeX source
4. **Citation Recovery**: Resolved citations and recovered metadata
5. **Quality Filtering**: Ensured data quality and completeness
## 📚 Related Resources
- **[GitHub Repository](https://github.com/guestrin-lab/deepscholar-bench)**: Full source code and documentation
- **[Data Pipeline](https://github.com/guestrin-lab/deepscholar-bench/tree/main/data_pipeline)**: Tools for collecting similar datasets
- **[Evaluation Framework](https://github.com/guestrin-lab/deepscholar-bench/tree/main/eval)**: Framework for evaluating research generation systems
## 🏆 Leaderboard
We maintain a leaderboard to track the performance of various models on the DeepScholarBench evaluation tasks:
- **[Official Leaderboard](https://guestrin-lab.github.io/deepscholar-leaderboard/leaderboard/deepscholar_bench_leaderboard.html)**: Live rankings of model performance
- **Evaluation Metrics**: Models are evaluated on relevance, coverage, and citation accuracy as described in the [evaluation guide](https://github.com/guestrin-lab/deepscholar-bench/tree/main/eval)
- **Submission Process**: Submit your results via this [Form](https://docs.google.com/forms/d/e/1FAIpQLSeug4igDHhVUU3XnrUSeMVRUJFKlHP28i8fcBAu_LHCkqdV1g/viewform)
## 🤝 Contributing
We welcome contributions to improve this dataset! Please see the [main repository](https://github.com/guestrin-lab/deepscholar-bench) for contribution guidelines.
## 📄 License
This dataset is released under the MIT License. See the [LICENSE](https://github.com/guestrin-lab/deepscholar-bench/blob/main/LICENSE) file for details.
---
**Note**: This dataset is actively maintained and updated. Check the GitHub repository for the latest version and additional resources. |