Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
f89c69f
·
verified ·
1 Parent(s): a13c931

Upload folder using huggingface_hub

Browse files
main/README.md CHANGED
@@ -5488,7 +5488,7 @@ Editing at Scale", many thanks to their contribution!
5488
 
5489
  This implementation of Flux Kontext allows users to pass multiple reference images. Each image is encoded separately, and the resulting latent vectors are concatenated.
5490
 
5491
- As explained in Section 3 of [the paper](https://arxiv.org/pdf/2506.15742), the model's sequence concatenation mechanism can extend its capabilities to handle multiple reference images. However, note that the current version of Flux Kontext was not trained for this use case. In practice, stacking along the first axis does not yield correct results, while stacking along the other two axes appears to work.
5492
 
5493
  ## Example Usage
5494
 
 
5488
 
5489
  This implementation of Flux Kontext allows users to pass multiple reference images. Each image is encoded separately, and the resulting latent vectors are concatenated.
5490
 
5491
+ As explained in Section 3 of [the paper](https://huggingface.co/papers/2506.15742), the model's sequence concatenation mechanism can extend its capabilities to handle multiple reference images. However, note that the current version of Flux Kontext was not trained for this use case. In practice, stacking along the first axis does not yield correct results, while stacking along the other two axes appears to work.
5492
 
5493
  ## Example Usage
5494
 
main/regional_prompting_stable_diffusion.py CHANGED
@@ -490,7 +490,7 @@ class RegionalPromptingStableDiffusionPipeline(
490
  def prepare_extra_step_kwargs(self, generator, eta):
491
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
492
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
493
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
494
  # and should be between [0, 1]
495
 
496
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -841,7 +841,7 @@ class RegionalPromptingStableDiffusionPipeline(
841
  num_images_per_prompt (`int`, *optional*, defaults to 1):
842
  The number of images to generate per prompt.
843
  eta (`float`, *optional*, defaults to 0.0):
844
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
845
  to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
846
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
847
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
@@ -872,7 +872,7 @@ class RegionalPromptingStableDiffusionPipeline(
872
  [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
873
  guidance_rescale (`float`, *optional*, defaults to 0.0):
874
  Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
875
- Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
876
  using zero terminal SNR.
877
  clip_skip (`int`, *optional*):
878
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
@@ -1062,7 +1062,7 @@ class RegionalPromptingStableDiffusionPipeline(
1062
  noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1063
 
1064
  if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1065
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1066
  noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1067
 
1068
  # compute the previous noisy sample x_t -> x_t-1
@@ -1668,7 +1668,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
1668
  r"""
1669
  Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
1670
  Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
1671
- Flawed](https://arxiv.org/pdf/2305.08891.pdf).
1672
 
1673
  Args:
1674
  noise_cfg (`torch.Tensor`):
 
490
  def prepare_extra_step_kwargs(self, generator, eta):
491
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
492
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
493
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
494
  # and should be between [0, 1]
495
 
496
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
 
841
  num_images_per_prompt (`int`, *optional*, defaults to 1):
842
  The number of images to generate per prompt.
843
  eta (`float`, *optional*, defaults to 0.0):
844
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
845
  to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
846
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
847
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
 
872
  [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
873
  guidance_rescale (`float`, *optional*, defaults to 0.0):
874
  Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
875
+ Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
876
  using zero terminal SNR.
877
  clip_skip (`int`, *optional*):
878
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
 
1062
  noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1063
 
1064
  if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1065
+ # Based on 3.4. in https://huggingface.co/papers/2305.08891
1066
  noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1067
 
1068
  # compute the previous noisy sample x_t -> x_t-1
 
1668
  r"""
1669
  Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
1670
  Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
1671
+ Flawed](https://huggingface.co/papers/2305.08891).
1672
 
1673
  Args:
1674
  noise_cfg (`torch.Tensor`):