tmp_depth / README.md
ericonaldo's picture
initial commit
f43bed4 verified
---
license: mit
task_categories:
- depth-estimation
size_categories:
- n>1T
---
# ByteDepth Dataset
ByteDepth is a multi-camera depth estimation dataset containing synchronized depth, color, and auxiliary data captured from various 3D cameras. The dataset provides comprehensive depth sensing from multiple cameras in various in-door scenarios, making it ideal for developing and evaluating depth estimation algorithms.
## Dataset Overview
- **Purpose**: Multi-camera depth estimation research and benchmarking
- **Total Sessions**: 39 recording sessions
- **Uncompressed Size**: ~2.7TB
- **Data Collection System**: [Multi-Camera Depth Recording System](https://github.com/Ericonaldo/depth_recording)
- **License**: MIT
## Quick Start
### Data Extraction
The dataset is provided as split archive files. To extract the complete dataset:
```bash
cat recorded_data.tar.part.* | tar -xvf -
```
This will create a `recorded_data` folder containing all 39 recording sessions.
## Dataset Structure
### Archive Organization
```
recorded_data_packed/
├── recorded_data.tar.part.000
├── recorded_data.tar.part.001
├── ...
└── recorded_data.tar.part.136
```
### Extracted Data Structure
After extraction, the data is organized as follows:
```
recorded_data/
└── YYYYMMDD_HHMM/ # Timestamp-based session folder (39 sessions total)
├── camera_realsense_455/ # Intel RealSense D455
│ ├── depth_000.png # 16-bit depth images
│ ├── color_000.png # 8-bit color images
│ └── ...
├── camera_realsense_d405/ # Intel RealSense D405
│ ├── depth_000.png
│ ├── color_000.png
│ └── ...
├── camera_realsense_d415/ # Intel RealSense D415
│ ├── depth_000.png
│ ├── color_000.png
│ └── ...
├── camera_realsense_d435/ # Intel RealSense D435
│ ├── depth_000.png
│ ├── color_000.png
│ └── ...
├── camera_realsense_l515/ # Intel RealSense L515
│ ├── depth_000.png
│ ├── color_000.png
│ └── ...
├── camera_kinect/ # Microsoft Azure Kinect
│ ├── depth_000.png # 16-bit depth images
│ ├── color_000.png # 8-bit color images
│ ├── ir_000.png # Infrared images
│ └── ...
├── camera_zed2i_neural/ # Stereolabs ZED2i (Neural mode)
│ ├── raw_depth_000.npy # 32-bit float depth arrays
│ ├── depth_000.png # 16-bit depth images
│ ├── color_000.png # Color images
│ ├── pcd_000.npy # Point cloud data (X,Y,Z)
│ ├── normal_000.npy # Surface normal vectors
│ └── ...
├── camera_zed2i_performance/
├── camera_zed2i_quality/
├── camera_zed2i_ultra/
└── ...
```
## Camera Systems and Specifications
The dataset includes data collected by our [depth recording toolkit](https://github.com/Ericonaldo/depth_recording):
### Intel RealSense Cameras
- **Models**: D405, D415, D435, D455, L515
- **Output**: `depth_xxx.png` (16-bit), `color_xxx.png` (8-bit)
### Microsoft Azure Kinect
- **Depth Resolution**: Wide FOV unbinned
- **Output**: `depth_xxx.png` (16-bit), `color_xxx.png` (8-bit), `ir_xxx.png` (infrared)
### Stereolabs ZED2i
- **Depth Resolution**: 1280×720
- **Depth Modes**: 4 different modes (neural, performance, quality, ultra)
- **Output**:
- `raw_depth_xxx.npy` (32-bit float depth arrays)
- `depth_xxx.png` (16-bit depth images)
- `color_xxx.png` (8-bit color images)
- `pcd_xxx.npy` (point cloud data)
- `normal_xxx.npy` (surface normal vectors)
## Data Formats
### File Types and Specifications
| Data Type | Format | Bit Depth | Description |
|-----------|--------|-----------|-------------|
| Depth Images | PNG | 16-bit | Standard depth maps |
| Color Images | PNG | 8-bit RGB | Color/texture images |
| Raw Depth | NPY | 32-bit float | High-precision depth (ZED2i only) |
| Point Clouds | NPY | 32-bit float | 3D point coordinates (X,Y,Z) |
| Surface Normals | NPY | 32-bit float | Surface normal vectors |
| Infrared | PNG | 8-bit | IR images (Kinect only) |
### Depth Data
The unit of the depth data is 'mm' for most of the cameras, which means that we can obtain the 'm'-scale by dividing the raw depth by 1000.
Note that RealSense D405/L515 has different scales, which are 2500 and 10000, respectively. In other words, we should divide the raw depth by 2500 and 10000 to obtain the 'm'-scale depth.
### File Naming Convention
- Sequential numbering: `xxx` represents frame index (000, 001, 002, ...)
- Synchronized capture: Same frame numbers across cameras represent simultaneous capture
- Camera identification: Folder names clearly identify camera type and model
## License
This dataset is released under the MIT License.