You need to agree to share your contact information to access this dataset
The information you provide will be collected, stored, processed and shared in accordance with the Meta Privacy Policy.
Log in or Sign Up to review the conditions and access this dataset content.
SA-Co/VEval Dataset
License each domain has its own License
- SA-Co/VEval - SA-V: CC-BY-NC 4.0
- SA-Co/VEval - YT-Temporal-1B: CC-BY-NC 4.0
- SA-Co/VEval - SmartGlasses: CC-by-4.0
SA-Co/VEval is an evaluation dataset comprising of 3 domains, each domain has a val and test split.
- SA-Co/VEval - SA-V: videos are from the SA-V dataset
- SA-Co/VEval - YT-Temporal-1B: videos are from the YT-Temporal-1B
- SA-Co/VEval - SmartGlasses: egocentric videos from Smart Glasses
This Hugging Face dataset repo contains the following contents:
datasets/facebook/SACo-VEval/tree/main/
├── annotation/
│ ├── saco_veval_sav_test.json
│ ├── saco_veval_sav_val.json
│ ├── saco_veval_smartglasses_test.json
│ ├── saco_veval_smartglasses_val.json
│ ├── saco_veval_yt1b_test.json
│ ├── saco_veval_yt1b_val.json
└── media/
├── saco_sg.tar.gz
└── yt1b_start_end_time.json
- annotation
- all the GT json files
- media
saco_sg.tar.gz: the preprocessed JPEGImages for SA-Co/VEval - SmartGlassesyt1b_start_end_time.json: the Youtube video ids and the start and end time used in SA-Co/VEval - YT-Temporal-1B
More detail to prepare the complete SA-Co/VEval Dataset can be found in the SAM 3 Github.
Annotation Format
The format is similar to the YTVIS format.
In the annotation json, e.g. saco_veval_sav_test.json there are 5 fields:
- info:
- A dict containing the dataset info
- E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-Co/VEval SA-V Test'}
- videos
- A list of videos that are used in the current annotation json
- It contains {id, video_name, file_names, height, width, length}
- annotations
- A list of positive masklets and their related info
- It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase}
- video_id should match to the
videos - idfield above - category_id should match to the
categories - idfield below - segmentations is a list of RLE
- video_id should match to the
- categories
- A globally used noun phrase id map, which is true across all 3 domains.
- It contains {id, name}
- name is the noun phrase
- video_np_pairs
- A list of video-np pairs, including both positive and negative used in the current annotation json
- It contains {id, video_id, category_id, noun_phrase, num_masklets}
- video_id should match the
videos - idabove - category_id should match the
categories - idabove - when
num_masklets > 0it is a positive video-np pair, and the presenting masklets can be found in the annotations field - when
num_masklets = 0it is a negative video-np pair, meaning no masklet presenting at all
- video_id should match the
data {
"info": info
"videos": [video]
"annotations": [annotation]
"categories": [category]
"video_np_pairs": [video_np_pair]
}
video {
"id": int
"video_name": str # e.g. sav_000000
"file_names": List[str]
"height": int
"width": width
"length": length
}
annotation {
"id": int
"segmentations": List[RLE]
"bboxes": List[List[int, int, int, int]]
"areas": List[int]
"iscrowd": int
"video_id": str
"height": int
"width": int
"category_id": int
"noun_phrase": str
}
category {
"id": int
"name": str
}
video_np_pair {
"id": int
"video_id": str
"category_id": int
"noun_phrase": str
"num_masklets" int
}
SAM 3 Github sam3/examples/saco_veval_vis_example.ipynb shows some examples of the data format and data visualization.
- Downloads last month
- 77