code_tokens
stringlengths
60
3.94k
label
int64
0
1
doc
stringlengths
16
98
docstring_tokens
stringlengths
0
1.41k
idx
stringlengths
13
17
code
stringlengths
87
6.4k
def add ( self , entity ) : result = self . _http_req ( 'connections' , method = 'POST' , payload = entity ) status = result [ 'status' ] if not status == 201 : raise ServiceRegistryError ( status , "Couldn't add entity" ) self . debug ( 0x01 , result ) return result [ 'decoded' ]
1
code python add entity function
Adds the supplied dict as a new entity
cosqa-train-15100
def add(self, entity): """ Adds the supplied dict as a new entity """ result = self._http_req('connections', method='POST', payload=entity) status = result['status'] if not status==201: raise ServiceRegistryError(status,"Couldn't add entity") self.debug(0x01,result) return result['decoded']
def polyline ( self , arr ) : for i in range ( 0 , len ( arr ) - 1 ) : self . line ( arr [ i ] [ 0 ] , arr [ i ] [ 1 ] , arr [ i + 1 ] [ 0 ] , arr [ i + 1 ] [ 1 ] )
1
python draw line through 2d array
Draw a set of lines
cosqa-train-15101
def polyline(self, arr): """Draw a set of lines""" for i in range(0, len(arr) - 1): self.line(arr[i][0], arr[i][1], arr[i + 1][0], arr[i + 1][1])
def accel_next ( self , * args ) : if self . get_notebook ( ) . get_current_page ( ) + 1 == self . get_notebook ( ) . get_n_pages ( ) : self . get_notebook ( ) . set_current_page ( 0 ) else : self . get_notebook ( ) . next_page ( ) return True
1
code to go to the next key without for loop python
Callback to go to the next tab . Called by the accel key .
cosqa-train-15102
def accel_next(self, *args): """Callback to go to the next tab. Called by the accel key. """ if self.get_notebook().get_current_page() + 1 == self.get_notebook().get_n_pages(): self.get_notebook().set_current_page(0) else: self.get_notebook().next_page() return True
def safe_dump ( data , stream = None , * * kwds ) : return yaml . dump ( data , stream = stream , Dumper = ODYD , * * kwds )
0
python dump dict yaml not
implementation of safe dumper using Ordered Dict Yaml Dumper
cosqa-train-15103
def safe_dump(data, stream=None, **kwds): """implementation of safe dumper using Ordered Dict Yaml Dumper""" return yaml.dump(data, stream=stream, Dumper=ODYD, **kwds)
def flatten_list ( l ) : return list ( chain . from_iterable ( repeat ( x , 1 ) if isinstance ( x , str ) else x for x in l ) )
0
combine python lists into a new list
Nested lists to single - level list does not split strings
cosqa-train-15104
def flatten_list(l): """ Nested lists to single-level list, does not split strings""" return list(chain.from_iterable(repeat(x,1) if isinstance(x,str) else x for x in l))
def display_pil_image ( im ) : from IPython . core import display b = BytesIO ( ) im . save ( b , format = 'png' ) data = b . getvalue ( ) ip_img = display . Image ( data = data , format = 'png' , embed = True ) return ip_img . _repr_png_ ( )
1
python dynamic image display
Displayhook function for PIL Images rendered as PNG .
cosqa-train-15105
def display_pil_image(im): """Displayhook function for PIL Images, rendered as PNG.""" from IPython.core import display b = BytesIO() im.save(b, format='png') data = b.getvalue() ip_img = display.Image(data=data, format='png', embed=True) return ip_img._repr_png_()
def process_docstring ( app , what , name , obj , options , lines ) : # pylint: disable=unused-argument # pylint: disable=too-many-arguments lines . extend ( _format_contracts ( what = what , obj = obj ) )
0
combine raw and docstring in python
React to a docstring event and append contracts to it .
cosqa-train-15106
def process_docstring(app, what, name, obj, options, lines): """React to a docstring event and append contracts to it.""" # pylint: disable=unused-argument # pylint: disable=too-many-arguments lines.extend(_format_contracts(what=what, obj=obj))
def load_member ( fqn ) : modulename , member_name = split_fqn ( fqn ) module = __import__ ( modulename , globals ( ) , locals ( ) , member_name ) return getattr ( module , member_name )
1
python dynamicly load a method from another python file
Loads and returns a class for a given fully qualified name .
cosqa-train-15107
def load_member(fqn): """Loads and returns a class for a given fully qualified name.""" modulename, member_name = split_fqn(fqn) module = __import__(modulename, globals(), locals(), member_name) return getattr(module, member_name)
def camel_to_underscore ( string ) : string = FIRST_CAP_RE . sub ( r'\1_\2' , string ) return ALL_CAP_RE . sub ( r'\1_\2' , string ) . lower ( )
1
common double underscore methods in python
Convert camelcase to lowercase and underscore .
cosqa-train-15108
def camel_to_underscore(string): """Convert camelcase to lowercase and underscore. Recipe from http://stackoverflow.com/a/1176023 Args: string (str): The string to convert. Returns: str: The converted string. """ string = FIRST_CAP_RE.sub(r'\1_\2', string) return ALL_CAP_RE.sub(r'\1_\2', string).lower()
def encode_list ( dynamizer , value ) : encoded_list = [ ] dict ( map ( dynamizer . raw_encode , value ) ) for v in value : encoded_type , encoded_value = dynamizer . raw_encode ( v ) encoded_list . append ( { encoded_type : encoded_value , } ) return 'L' , encoded_list
0
python dynamo output list of lists
Encode a list for the DynamoDB format
cosqa-train-15109
def encode_list(dynamizer, value): """ Encode a list for the DynamoDB format """ encoded_list = [] dict(map(dynamizer.raw_encode, value)) for v in value: encoded_type, encoded_value = dynamizer.raw_encode(v) encoded_list.append({ encoded_type: encoded_value, }) return 'L', encoded_list
def basic_word_sim ( word1 , word2 ) : return sum ( [ 1 for c in word1 if c in word2 ] ) / max ( len ( word1 ) , len ( word2 ) )
1
compare single words for similarity python
Simple measure of similarity : Number of letters in common / max length
cosqa-train-15110
def basic_word_sim(word1, word2): """ Simple measure of similarity: Number of letters in common / max length """ return sum([1 for c in word1 if c in word2]) / max(len(word1), len(word2))
def datetime_to_ms ( dt ) : seconds = calendar . timegm ( dt . utctimetuple ( ) ) return seconds * 1000 + int ( dt . microsecond / 1000 )
0
python elapsed time using datetime in minutes
Converts a datetime to a millisecond accuracy timestamp
cosqa-train-15111
def datetime_to_ms(dt): """ Converts a datetime to a millisecond accuracy timestamp """ seconds = calendar.timegm(dt.utctimetuple()) return seconds * 1000 + int(dt.microsecond / 1000)
def intersect ( d1 , d2 ) : return dict ( ( k , d1 [ k ] ) for k in d1 if k in d2 and d1 [ k ] == d2 [ k ] )
0
comparing identical keys between 2 dictionarys python then returning results
Intersect dictionaries d1 and d2 by key * and * value .
cosqa-train-15112
def intersect(d1, d2): """Intersect dictionaries d1 and d2 by key *and* value.""" return dict((k, d1[k]) for k in d1 if k in d2 and d1[k] == d2[k])
def add_index_alias ( es , index_name , alias_name ) : es . indices . put_alias ( index = index_name , name = terms_alias )
1
python elasticsearch change index setting
Add index alias to index_name
cosqa-train-15113
def add_index_alias(es, index_name, alias_name): """Add index alias to index_name""" es.indices.put_alias(index=index_name, name=terms_alias)
def compare ( string1 , string2 ) : if len ( string1 ) != len ( string2 ) : return False result = True for c1 , c2 in izip ( string1 , string2 ) : result &= c1 == c2 return result
1
comparing multiple strings in python
Compare two strings while protecting against timing attacks
cosqa-train-15114
def compare(string1, string2): """Compare two strings while protecting against timing attacks :param str string1: the first string :param str string2: the second string :returns: True if the strings are equal, False if not :rtype: :obj:`bool` """ if len(string1) != len(string2): return False result = True for c1, c2 in izip(string1, string2): result &= c1 == c2 return result
def all_documents ( index = INDEX_NAME ) : query = { 'query' : { 'match_all' : { } } } for result in raw_query ( query , index = index ) : yield result
1
python elasticsearch list indexes
Get all documents from the given index .
cosqa-train-15115
def all_documents(index=INDEX_NAME): """ Get all documents from the given index. Returns full Elasticsearch objects so you can get metadata too. """ query = { 'query': { 'match_all': {} } } for result in raw_query(query, index=index): yield result
def is_int ( string ) : try : a = float ( string ) b = int ( a ) except ValueError : return False else : return a == b
0
comparing string and int in python
Checks if a string is an integer . If the string value is an integer return True otherwise return False . Args : string : a string to test .
cosqa-train-15116
def is_int(string): """ Checks if a string is an integer. If the string value is an integer return True, otherwise return False. Args: string: a string to test. Returns: boolean """ try: a = float(string) b = int(a) except ValueError: return False else: return a == b
def all_documents ( index = INDEX_NAME ) : query = { 'query' : { 'match_all' : { } } } for result in raw_query ( query , index = index ) : yield result
1
python elasticsearch return hits
Get all documents from the given index .
cosqa-train-15117
def all_documents(index=INDEX_NAME): """ Get all documents from the given index. Returns full Elasticsearch objects so you can get metadata too. """ query = { 'query': { 'match_all': {} } } for result in raw_query(query, index=index): yield result
def compute_ssim ( image1 , image2 , gaussian_kernel_sigma = 1.5 , gaussian_kernel_width = 11 ) : gaussian_kernel_1d = get_gaussian_kernel ( gaussian_kernel_width , gaussian_kernel_sigma ) return SSIM ( image1 , gaussian_kernel_1d ) . ssim_value ( image2 )
1
comparison of two image using python sse
Computes SSIM .
cosqa-train-15118
def compute_ssim(image1, image2, gaussian_kernel_sigma=1.5, gaussian_kernel_width=11): """Computes SSIM. Args: im1: First PIL Image object to compare. im2: Second PIL Image object to compare. Returns: SSIM float value. """ gaussian_kernel_1d = get_gaussian_kernel( gaussian_kernel_width, gaussian_kernel_sigma) return SSIM(image1, gaussian_kernel_1d).ssim_value(image2)
def add_exec_permission_to ( target_file ) : mode = os . stat ( target_file ) . st_mode os . chmod ( target_file , mode | stat . S_IXUSR )
1
python enable executable permisions on file
Add executable permissions to the file
cosqa-train-15119
def add_exec_permission_to(target_file): """Add executable permissions to the file :param target_file: the target file whose permission to be changed """ mode = os.stat(target_file).st_mode os.chmod(target_file, mode | stat.S_IXUSR)
def get_average_color ( colors ) : c = reduce ( color_reducer , colors ) total = len ( colors ) return tuple ( v / total for v in c )
0
compute average color value in python
Calculate the average color from the list of colors where each color is a 3 - tuple of ( r g b ) values .
cosqa-train-15120
def get_average_color(colors): """Calculate the average color from the list of colors, where each color is a 3-tuple of (r, g, b) values. """ c = reduce(color_reducer, colors) total = len(colors) return tuple(v / total for v in c)
def set_strict ( self , value ) : assert isinstance ( value , bool ) self . __settings . set_strict ( value )
1
python enable strict mode
Set the strict mode active / disable
cosqa-train-15121
def set_strict(self, value): """ Set the strict mode active/disable :param value: :type value: bool """ assert isinstance(value, bool) self.__settings.set_strict(value)
def distance_matrix ( trains1 , trains2 , cos , tau ) : return dissimilarity_matrix ( trains1 , trains2 , cos , tau , "distance" )
0
compute dissimilarity matrix for categorical data python
Return the * bipartite * ( rectangular ) distance matrix between the observations in the first and the second list .
cosqa-train-15122
def distance_matrix(trains1, trains2, cos, tau): """ Return the *bipartite* (rectangular) distance matrix between the observations in the first and the second list. Convenience function; equivalent to ``dissimilarity_matrix(trains1, trains2, cos, tau, "distance")``. Refer to :func:`pymuvr.dissimilarity_matrix` for full documentation. """ return dissimilarity_matrix(trains1, trains2, cos, tau, "distance")
def get_enum_from_name ( self , enum_name ) : return next ( ( e for e in self . enums if e . name == enum_name ) , None )
1
python enum get name
Return an enum from a name Args : enum_name ( str ) : name of the enum Returns : Enum
cosqa-train-15123
def get_enum_from_name(self, enum_name): """ Return an enum from a name Args: enum_name (str): name of the enum Returns: Enum """ return next((e for e in self.enums if e.name == enum_name), None)
def _cal_dist2center ( X , center ) : dmemb2cen = scipy . spatial . distance . cdist ( X , center . reshape ( 1 , X . shape [ 1 ] ) , metric = 'seuclidean' ) return ( np . sum ( dmemb2cen ) )
0
compute distance from centroid in python
Calculate the SSE to the cluster center
cosqa-train-15124
def _cal_dist2center(X, center): """ Calculate the SSE to the cluster center """ dmemb2cen = scipy.spatial.distance.cdist(X, center.reshape(1,X.shape[1]), metric='seuclidean') return(np.sum(dmemb2cen))
def get_enum_from_name ( self , enum_name ) : return next ( ( e for e in self . enums if e . name == enum_name ) , None )
0
python enum get names
Return an enum from a name Args : enum_name ( str ) : name of the enum Returns : Enum
cosqa-train-15125
def get_enum_from_name(self, enum_name): """ Return an enum from a name Args: enum_name (str): name of the enum Returns: Enum """ return next((e for e in self.enums if e.name == enum_name), None)
def accuracy ( conf_matrix ) : total , correct = 0.0 , 0.0 for true_response , guess_dict in conf_matrix . items ( ) : for guess , count in guess_dict . items ( ) : if true_response == guess : correct += count total += count return correct / total
0
confusion matrix doesn't match accuracy python
Given a confusion matrix returns the accuracy . Accuracy Definition : http : // research . ics . aalto . fi / events / eyechallenge2005 / evaluation . shtml
cosqa-train-15126
def accuracy(conf_matrix): """ Given a confusion matrix, returns the accuracy. Accuracy Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml """ total, correct = 0.0, 0.0 for true_response, guess_dict in conf_matrix.items(): for guess, count in guess_dict.items(): if true_response == guess: correct += count total += count return correct/total
def EnumValueName ( self , enum , value ) : return self . enum_types_by_name [ enum ] . values_by_number [ value ] . name
1
python enum get value by name
Returns the string name of an enum value .
cosqa-train-15127
def EnumValueName(self, enum, value): """Returns the string name of an enum value. This is just a small helper method to simplify a common operation. Args: enum: string name of the Enum. value: int, value of the enum. Returns: string name of the enum value. Raises: KeyError if either the Enum doesn't exist or the value is not a valid value for the enum. """ return self.enum_types_by_name[enum].values_by_number[value].name
def accuracy ( conf_matrix ) : total , correct = 0.0 , 0.0 for true_response , guess_dict in conf_matrix . items ( ) : for guess , count in guess_dict . items ( ) : if true_response == guess : correct += count total += count return correct / total
0
confusion matrix example code in python
Given a confusion matrix returns the accuracy . Accuracy Definition : http : // research . ics . aalto . fi / events / eyechallenge2005 / evaluation . shtml
cosqa-train-15128
def accuracy(conf_matrix): """ Given a confusion matrix, returns the accuracy. Accuracy Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml """ total, correct = 0.0, 0.0 for true_response, guess_dict in conf_matrix.items(): for guess, count in guess_dict.items(): if true_response == guess: correct += count total += count return correct/total
def write_enum ( fo , datum , schema ) : index = schema [ 'symbols' ] . index ( datum ) write_int ( fo , index )
0
python enum value to enumerator
An enum is encoded by a int representing the zero - based position of the symbol in the schema .
cosqa-train-15129
def write_enum(fo, datum, schema): """An enum is encoded by a int, representing the zero-based position of the symbol in the schema.""" index = schema['symbols'].index(datum) write_int(fo, index)
def confusion_matrix ( self ) : return plot . confusion_matrix ( self . y_true , self . y_pred , self . target_names , ax = _gen_ax ( ) )
0
confusion matrix visualization python
Confusion matrix plot
cosqa-train-15130
def confusion_matrix(self): """Confusion matrix plot """ return plot.confusion_matrix(self.y_true, self.y_pred, self.target_names, ax=_gen_ax())
def native_conn ( self ) : if self . __native is None : self . __native = self . _get_connection ( ) return self . __native
0
connexion get instance python
Native connection object .
cosqa-train-15131
def native_conn(self): """Native connection object.""" if self.__native is None: self.__native = self._get_connection() return self.__native
def raise_os_error ( _errno , path = None ) : msg = "%s: '%s'" % ( strerror ( _errno ) , path ) if path else strerror ( _errno ) raise OSError ( _errno , msg )
0
python errno already in use
Helper for raising the correct exception under Python 3 while still being able to raise the same common exception class in Python 2 . 7 .
cosqa-train-15132
def raise_os_error(_errno, path=None): """ Helper for raising the correct exception under Python 3 while still being able to raise the same common exception class in Python 2.7. """ msg = "%s: '%s'" % (strerror(_errno), path) if path else strerror(_errno) raise OSError(_errno, msg)
def _make_cmd_list ( cmd_list ) : cmd = '' for i in cmd_list : cmd = cmd + '"' + i + '",' cmd = cmd [ : - 1 ] return cmd
1
construct string with list python
Helper function to easily create the proper json formated string from a list of strs : param cmd_list : list of strings : return : str json formatted
cosqa-train-15133
def _make_cmd_list(cmd_list): """ Helper function to easily create the proper json formated string from a list of strs :param cmd_list: list of strings :return: str json formatted """ cmd = '' for i in cmd_list: cmd = cmd + '"' + i + '",' cmd = cmd[:-1] return cmd
def quote ( s , unsafe = '/' ) : res = s . replace ( '%' , '%25' ) for c in unsafe : res = res . replace ( c , '%' + ( hex ( ord ( c ) ) . upper ( ) ) [ 2 : ] ) return res
1
python escape percent symbol in format
Pass in a dictionary that has unsafe characters as the keys and the percent encoded value as the value .
cosqa-train-15134
def quote(s, unsafe='/'): """Pass in a dictionary that has unsafe characters as the keys, and the percent encoded value as the value.""" res = s.replace('%', '%25') for c in unsafe: res = res.replace(c, '%' + (hex(ord(c)).upper())[2:]) return res
def eintr_retry ( exc_type , f , * args , * * kwargs ) : while True : try : return f ( * args , * * kwargs ) except exc_type as exc : if exc . errno != EINTR : raise else : break
0
continue in try excpet python
Calls a function . If an error of the given exception type with interrupted system call ( EINTR ) occurs calls the function again .
cosqa-train-15135
def eintr_retry(exc_type, f, *args, **kwargs): """Calls a function. If an error of the given exception type with interrupted system call (EINTR) occurs calls the function again. """ while True: try: return f(*args, **kwargs) except exc_type as exc: if exc.errno != EINTR: raise else: break
def asynchronous ( function , event ) : thread = Thread ( target = synchronous , args = ( function , event ) ) thread . daemon = True thread . start ( )
0
python event loop synchronous call
Runs the function asynchronously taking care of exceptions .
cosqa-train-15136
def asynchronous(function, event): """ Runs the function asynchronously taking care of exceptions. """ thread = Thread(target=synchronous, args=(function, event)) thread.daemon = True thread.start()
def get_number ( s , cast = int ) : import string d = "" . join ( x for x in str ( s ) if x in string . digits ) return cast ( d )
0
converts a string into a number in python
Try to get a number out of a string and cast it .
cosqa-train-15137
def get_number(s, cast=int): """ Try to get a number out of a string, and cast it. """ import string d = "".join(x for x in str(s) if x in string.digits) return cast(d)
def _expand ( self , str , local_vars = { } ) : return ninja_syntax . expand ( str , self . vars , local_vars )
1
python expandvars non defined
Expand $vars in a string .
cosqa-train-15138
def _expand(self, str, local_vars={}): """Expand $vars in a string.""" return ninja_syntax.expand(str, self.vars, local_vars)
def str2bytes ( x ) : if type ( x ) is bytes : return x elif type ( x ) is str : return bytes ( [ ord ( i ) for i in x ] ) else : return str2bytes ( str ( x ) )
1
converty str to bytes python
Convert input argument to bytes
cosqa-train-15139
def str2bytes(x): """Convert input argument to bytes""" if type(x) is bytes: return x elif type(x) is str: return bytes([ ord(i) for i in x ]) else: return str2bytes(str(x))
def end_block ( self ) : self . current_indent -= 1 # If we did not add a new line automatically yet, now it's the time! if not self . auto_added_line : self . writeln ( ) self . auto_added_line = True
1
python expect indent block
Ends an indentation block leaving an empty line afterwards
cosqa-train-15140
def end_block(self): """Ends an indentation block, leaving an empty line afterwards""" self.current_indent -= 1 # If we did not add a new line automatically yet, now it's the time! if not self.auto_added_line: self.writeln() self.auto_added_line = True
def copy ( self ) : return self . __class__ ( self . operations . copy ( ) , self . collection , self . document )
1
copy without referencing python
Return a shallow copy .
cosqa-train-15141
def copy(self): """Return a shallow copy.""" return self.__class__(self.operations.copy(), self.collection, self.document)
def tanimoto_coefficient ( a , b ) : return sum ( map ( lambda ( x , y ) : float ( x ) * float ( y ) , zip ( a , b ) ) ) / sum ( [ - sum ( map ( lambda ( x , y ) : float ( x ) * float ( y ) , zip ( a , b ) ) ) , sum ( map ( lambda x : float ( x ) ** 2 , a ) ) , sum ( map ( lambda x : float ( x ) ** 2 , b ) ) ] )
0
cosine similarity python between users
Measured similarity between two points in a multi - dimensional space .
cosqa-train-15142
def tanimoto_coefficient(a, b): """Measured similarity between two points in a multi-dimensional space. Returns: 1.0 if the two points completely overlap, 0.0 if the two points are infinitely far apart. """ return sum(map(lambda (x,y): float(x)*float(y), zip(a,b))) / sum([ -sum(map(lambda (x,y): float(x)*float(y), zip(a,b))), sum(map(lambda x: float(x)**2, a)), sum(map(lambda x: float(x)**2, b))])
def update ( self , other_dict ) : for key , value in iter_multi_items ( other_dict ) : MultiDict . add ( self , key , value )
0
python extend dictionary with other dictionary
update () extends rather than replaces existing key lists .
cosqa-train-15143
def update(self, other_dict): """update() extends rather than replaces existing key lists.""" for key, value in iter_multi_items(other_dict): MultiDict.add(self, key, value)
def empty_line_count_at_the_end ( self ) : count = 0 for line in self . lines [ : : - 1 ] : if not line or line . isspace ( ) : count += 1 else : break return count
1
count empty spaces in a line python
Return number of empty lines at the end of the document .
cosqa-train-15144
def empty_line_count_at_the_end(self): """ Return number of empty lines at the end of the document. """ count = 0 for line in self.lines[::-1]: if not line or line.isspace(): count += 1 else: break return count
def update ( self , other_dict ) : for key , value in iter_multi_items ( other_dict ) : MultiDict . add ( self , key , value )
0
python extending dict using list comprehension
update () extends rather than replaces existing key lists .
cosqa-train-15145
def update(self, other_dict): """update() extends rather than replaces existing key lists.""" for key, value in iter_multi_items(other_dict): MultiDict.add(self, key, value)
def num_leaves ( tree ) : if tree . is_leaf : return 1 else : return num_leaves ( tree . left_child ) + num_leaves ( tree . right_child )
1
count node and children in tree python
Determine the number of leaves in a tree
cosqa-train-15146
def num_leaves(tree): """Determine the number of leaves in a tree""" if tree.is_leaf: return 1 else: return num_leaves(tree.left_child) + num_leaves(tree.right_child)
def resources ( self ) : return [ self . pdf . getPage ( i ) for i in range ( self . pdf . getNumPages ( ) ) ]
1
python extract 5 pages at a time from pdf
Retrieve contents of each page of PDF
cosqa-train-15147
def resources(self): """Retrieve contents of each page of PDF""" return [self.pdf.getPage(i) for i in range(self.pdf.getNumPages())]
def count_list ( the_list ) : count = the_list . count result = [ ( item , count ( item ) ) for item in set ( the_list ) ] result . sort ( ) return result
1
count unique values in a list python
Generates a count of the number of times each unique item appears in a list
cosqa-train-15148
def count_list(the_list): """ Generates a count of the number of times each unique item appears in a list """ count = the_list.count result = [(item, count(item)) for item in set(the_list)] result.sort() return result
def best ( self ) : b = ( - 1e999999 , None ) for k , c in iteritems ( self . counts ) : b = max ( b , ( c , k ) ) return b [ 1 ]
0
counting the highest number in coloumn using python
Returns the element with the highest probability .
cosqa-train-15149
def best(self): """ Returns the element with the highest probability. """ b = (-1e999999, None) for k, c in iteritems(self.counts): b = max(b, (c, k)) return b[1]
def jaccard ( c_1 , c_2 ) : nom = np . intersect1d ( c_1 , c_2 ) . size denom = np . union1d ( c_1 , c_2 ) . size return nom / denom
1
python fast jaccard similarity
Calculates the Jaccard similarity between two sets of nodes . Called by mroc .
cosqa-train-15150
def jaccard(c_1, c_2): """ Calculates the Jaccard similarity between two sets of nodes. Called by mroc. Inputs: - c_1: Community (set of nodes) 1. - c_2: Community (set of nodes) 2. Outputs: - jaccard_similarity: The Jaccard similarity of these two communities. """ nom = np.intersect1d(c_1, c_2).size denom = np.union1d(c_1, c_2).size return nom/denom
def array_dim ( arr ) : dim = [ ] while True : try : dim . append ( len ( arr ) ) arr = arr [ 0 ] except TypeError : return dim
1
couting length of list in python
Return the size of a multidimansional array .
cosqa-train-15151
def array_dim(arr): """Return the size of a multidimansional array. """ dim = [] while True: try: dim.append(len(arr)) arr = arr[0] except TypeError: return dim
def stft ( func = None , * * kwparams ) : from numpy . fft import fft , ifft ifft_r = lambda * args : ifft ( * args ) . real return stft . base ( transform = fft , inverse_transform = ifft_r ) ( func , * * kwparams )
1
python fft from real data
Short Time Fourier Transform for real data keeping the full FFT block .
cosqa-train-15152
def stft(func=None, **kwparams): """ Short Time Fourier Transform for real data keeping the full FFT block. Same to the default STFT strategy, but with new defaults. This is the same to: .. code-block:: python stft.base(transform=numpy.fft.fft, inverse_transform=lambda *args: numpy.fft.ifft(*args).real) See ``stft.base`` docs for more. """ from numpy.fft import fft, ifft ifft_r = lambda *args: ifft(*args).real return stft.base(transform=fft, inverse_transform=ifft_r)(func, **kwparams)
def covariance ( self , pt0 , pt1 ) : x = np . array ( [ pt0 [ 0 ] , pt1 [ 0 ] ] ) y = np . array ( [ pt0 [ 1 ] , pt1 [ 1 ] ] ) names = [ "n1" , "n2" ] return self . covariance_matrix ( x , y , names = names ) . x [ 0 , 1 ]
1
covariance matrix between two vectors in python
get the covarince between two points implied by Vario2d
cosqa-train-15153
def covariance(self,pt0,pt1): """ get the covarince between two points implied by Vario2d Parameters ---------- pt0 : (iterable of len 2) first point x and y pt1 : (iterable of len 2) second point x and y Returns ------- cov : float covariance between pt0 and pt1 """ x = np.array([pt0[0],pt1[0]]) y = np.array([pt0[1],pt1[1]]) names = ["n1","n2"] return self.covariance_matrix(x,y,names=names).x[0,1]
def Output ( self ) : self . Open ( ) self . Header ( ) self . Body ( ) self . Footer ( )
1
python figure whole page
Output all sections of the page .
cosqa-train-15154
def Output(self): """Output all sections of the page.""" self.Open() self.Header() self.Body() self.Footer()
def coerce ( self , value ) : if isinstance ( value , dict ) : value = [ value ] if not isiterable_notstring ( value ) : value = [ value ] return [ coerce_single_instance ( self . lookup_field , v ) for v in value ]
0
covert type of list python
Convert from whatever is given to a list of scalars for the lookup_field .
cosqa-train-15155
def coerce(self, value): """Convert from whatever is given to a list of scalars for the lookup_field.""" if isinstance(value, dict): value = [value] if not isiterable_notstring(value): value = [value] return [coerce_single_instance(self.lookup_field, v) for v in value]
def chmod_add_excute ( filename ) : st = os . stat ( filename ) os . chmod ( filename , st . st_mode | stat . S_IEXEC )
0
python file chmod permission
Adds execute permission to file . : param filename : : return :
cosqa-train-15156
def chmod_add_excute(filename): """ Adds execute permission to file. :param filename: :return: """ st = os.stat(filename) os.chmod(filename, st.st_mode | stat.S_IEXEC)
def unique ( _list ) : ret = [ ] for item in _list : if item not in ret : ret . append ( item ) return ret
0
craete empty python set
Makes the list have unique items only and maintains the order
cosqa-train-15157
def unique(_list): """ Makes the list have unique items only and maintains the order list(set()) won't provide that :type _list list :rtype: list """ ret = [] for item in _list: if item not in ret: ret.append(item) return ret
def file_writelines_flush_sync ( path , lines ) : fp = open ( path , 'w' ) try : fp . writelines ( lines ) flush_sync_file_object ( fp ) finally : fp . close ( )
0
python file flush api
Fill file at
cosqa-train-15158
def file_writelines_flush_sync(path, lines): """ Fill file at @path with @lines then flush all buffers (Python and system buffers) """ fp = open(path, 'w') try: fp.writelines(lines) flush_sync_file_object(fp) finally: fp.close()
def __copy__ ( self ) : return self . __class__ . load ( self . dump ( ) , context = self . context )
1
create a deepcopy of self in python
A magic method to implement shallow copy behavior .
cosqa-train-15159
def __copy__(self): """A magic method to implement shallow copy behavior.""" return self.__class__.load(self.dump(), context=self.context)
def get_lines ( handle , line ) : for i , l in enumerate ( handle ) : if i == line : return l
0
python file get index of the line
Get zero - indexed line from an open file - like .
cosqa-train-15160
def get_lines(handle, line): """ Get zero-indexed line from an open file-like. """ for i, l in enumerate(handle): if i == line: return l
def mkdir ( dir , enter ) : if not os . path . exists ( dir ) : os . makedirs ( dir )
1
create a dir in python
Create directory with template for topic of the current environment
cosqa-train-15161
def mkdir(dir, enter): """Create directory with template for topic of the current environment """ if not os.path.exists(dir): os.makedirs(dir)
def get_time ( filename ) : ts = os . stat ( filename ) . st_mtime return datetime . datetime . utcfromtimestamp ( ts )
0
python file modified time datetime
Get the modified time for a file as a datetime instance
cosqa-train-15162
def get_time(filename): """ Get the modified time for a file as a datetime instance """ ts = os.stat(filename).st_mtime return datetime.datetime.utcfromtimestamp(ts)
def write_file ( filename , content ) : print 'Generating {0}' . format ( filename ) with open ( filename , 'wb' ) as out_f : out_f . write ( content )
0
create a file and write a string to it in python
Create the file with the given content
cosqa-train-15163
def write_file(filename, content): """Create the file with the given content""" print 'Generating {0}'.format(filename) with open(filename, 'wb') as out_f: out_f.write(content)
def make_file_read_only ( file_path ) : old_permissions = os . stat ( file_path ) . st_mode os . chmod ( file_path , old_permissions & ~ WRITE_PERMISSIONS )
0
python file not running with permissions set to 644
Removes the write permissions for the given file for owner groups and others .
cosqa-train-15164
def make_file_read_only(file_path): """ Removes the write permissions for the given file for owner, groups and others. :param file_path: The file whose privileges are revoked. :raise FileNotFoundError: If the given file does not exist. """ old_permissions = os.stat(file_path).st_mode os.chmod(file_path, old_permissions & ~WRITE_PERMISSIONS)
def beta_pdf ( x , a , b ) : bc = 1 / beta ( a , b ) fc = x ** ( a - 1 ) sc = ( 1 - x ) ** ( b - 1 ) return bc * fc * sc
1
create a function for the normal distrubution pdf python
Beta distirbution probability density function .
cosqa-train-15165
def beta_pdf(x, a, b): """Beta distirbution probability density function.""" bc = 1 / beta(a, b) fc = x ** (a - 1) sc = (1 - x) ** (b - 1) return bc * fc * sc
def file_read ( filename ) : fobj = open ( filename , 'r' ) source = fobj . read ( ) fobj . close ( ) return source
0
python file open and close
Read a file and close it . Returns the file source .
cosqa-train-15166
def file_read(filename): """Read a file and close it. Returns the file source.""" fobj = open(filename,'r'); source = fobj.read(); fobj.close() return source
def list_of_lists_to_dict ( l ) : d = { } for key , val in l : d . setdefault ( key , [ ] ) . append ( val ) return d
1
create a list to a dictionary python
Convert list of key value lists to dict
cosqa-train-15167
def list_of_lists_to_dict(l): """ Convert list of key,value lists to dict [['id', 1], ['id', 2], ['id', 3], ['foo': 4]] {'id': [1, 2, 3], 'foo': [4]} """ d = {} for key, val in l: d.setdefault(key, []).append(val) return d
def parse_comments_for_file ( filename ) : return [ parse_comment ( strip_stars ( comment ) , next_line ) for comment , next_line in get_doc_comments ( read_file ( filename ) ) ]
1
python file with comments
Return a list of all parsed comments in a file . Mostly for testing & interactive use .
cosqa-train-15168
def parse_comments_for_file(filename): """ Return a list of all parsed comments in a file. Mostly for testing & interactive use. """ return [parse_comment(strip_stars(comment), next_line) for comment, next_line in get_doc_comments(read_file(filename))]
def rnormal ( mu , tau , size = None ) : return np . random . normal ( mu , 1. / np . sqrt ( tau ) , size )
0
create a normal distribution in python
Random normal variates .
cosqa-train-15169
def rnormal(mu, tau, size=None): """ Random normal variates. """ return np.random.normal(mu, 1. / np.sqrt(tau), size)
def _fill_array_from_list ( the_list , the_array ) : for i , val in enumerate ( the_list ) : the_array [ i ] = val return the_array
0
python fill and replace list
Fill an array from a list
cosqa-train-15170
def _fill_array_from_list(the_list, the_array): """Fill an `array` from a `list`""" for i, val in enumerate(the_list): the_array[i] = val return the_array
def force_iterable ( f ) : def wrapper ( * args , * * kwargs ) : r = f ( * args , * * kwargs ) if hasattr ( r , '__iter__' ) : return r else : return [ r ] return wrapper
0
create an iterable in python
Will make any functions return an iterable objects by wrapping its result in a list .
cosqa-train-15171
def force_iterable(f): """Will make any functions return an iterable objects by wrapping its result in a list.""" def wrapper(*args, **kwargs): r = f(*args, **kwargs) if hasattr(r, '__iter__'): return r else: return [r] return wrapper
def fillna ( series_or_arr , missing_value = 0.0 ) : if pandas . notnull ( missing_value ) : if isinstance ( series_or_arr , ( numpy . ndarray ) ) : series_or_arr [ numpy . isnan ( series_or_arr ) ] = missing_value else : series_or_arr . fillna ( missing_value , inplace = True ) return series_or_arr
1
python fill missing values in two columns
Fill missing values in pandas objects and numpy arrays .
cosqa-train-15172
def fillna(series_or_arr, missing_value=0.0): """Fill missing values in pandas objects and numpy arrays. Arguments --------- series_or_arr : pandas.Series, numpy.ndarray The numpy array or pandas series for which the missing values need to be replaced. missing_value : float, int, str The value to replace the missing value with. Default 0.0. Returns ------- pandas.Series, numpy.ndarray The numpy array or pandas series with the missing values filled. """ if pandas.notnull(missing_value): if isinstance(series_or_arr, (numpy.ndarray)): series_or_arr[numpy.isnan(series_or_arr)] = missing_value else: series_or_arr.fillna(missing_value, inplace=True) return series_or_arr
def join_cols ( cols ) : return ", " . join ( [ i for i in cols ] ) if isinstance ( cols , ( list , tuple , set ) ) else cols
1
create column in python by joining columns
Join list of columns into a string for a SQL query
cosqa-train-15173
def join_cols(cols): """Join list of columns into a string for a SQL query""" return ", ".join([i for i in cols]) if isinstance(cols, (list, tuple, set)) else cols
def fillna ( series_or_arr , missing_value = 0.0 ) : if pandas . notnull ( missing_value ) : if isinstance ( series_or_arr , ( numpy . ndarray ) ) : series_or_arr [ numpy . isnan ( series_or_arr ) ] = missing_value else : series_or_arr . fillna ( missing_value , inplace = True ) return series_or_arr
1
python filling missing values with fillna
Fill missing values in pandas objects and numpy arrays .
cosqa-train-15174
def fillna(series_or_arr, missing_value=0.0): """Fill missing values in pandas objects and numpy arrays. Arguments --------- series_or_arr : pandas.Series, numpy.ndarray The numpy array or pandas series for which the missing values need to be replaced. missing_value : float, int, str The value to replace the missing value with. Default 0.0. Returns ------- pandas.Series, numpy.ndarray The numpy array or pandas series with the missing values filled. """ if pandas.notnull(missing_value): if isinstance(series_or_arr, (numpy.ndarray)): series_or_arr[numpy.isnan(series_or_arr)] = missing_value else: series_or_arr.fillna(missing_value, inplace=True) return series_or_arr
def force_iterable ( f ) : def wrapper ( * args , * * kwargs ) : r = f ( * args , * * kwargs ) if hasattr ( r , '__iter__' ) : return r else : return [ r ] return wrapper
1
create custom iterable python 3
Will make any functions return an iterable objects by wrapping its result in a list .
cosqa-train-15175
def force_iterable(f): """Will make any functions return an iterable objects by wrapping its result in a list.""" def wrapper(*args, **kwargs): r = f(*args, **kwargs) if hasattr(r, '__iter__'): return r else: return [r] return wrapper
def filter_dict ( d , keys ) : return { k : v for k , v in d . items ( ) if k in keys }
1
python filter a dict by condition on key
Creates a new dict from an existing dict that only has the given keys
cosqa-train-15176
def filter_dict(d, keys): """ Creates a new dict from an existing dict that only has the given keys """ return {k: v for k, v in d.items() if k in keys}
def a2s ( a ) : s = np . zeros ( ( 6 , ) , 'f' ) # make the a matrix for i in range ( 3 ) : s [ i ] = a [ i ] [ i ] s [ 3 ] = a [ 0 ] [ 1 ] s [ 4 ] = a [ 1 ] [ 2 ] s [ 5 ] = a [ 0 ] [ 2 ] return s
0
create matrix using for python
convert 3 3 a matrix to 6 element s list ( see Tauxe 1998 )
cosqa-train-15177
def a2s(a): """ convert 3,3 a matrix to 6 element "s" list (see Tauxe 1998) """ s = np.zeros((6,), 'f') # make the a matrix for i in range(3): s[i] = a[i][i] s[3] = a[0][1] s[4] = a[1][2] s[5] = a[0][2] return s
def str2int ( string_with_int ) : return int ( "" . join ( [ char for char in string_with_int if char in string . digits ] ) or 0 )
0
python filter integer from string
Collect digits from a string
cosqa-train-15178
def str2int(string_with_int): """ Collect digits from a string """ return int("".join([char for char in string_with_int if char in string.digits]) or 0)
def sp_rand ( m , n , a ) : if m == 0 or n == 0 : return spmatrix ( [ ] , [ ] , [ ] , ( m , n ) ) nnz = min ( max ( 0 , int ( round ( a * m * n ) ) ) , m * n ) nz = matrix ( random . sample ( range ( m * n ) , nnz ) , tc = 'i' ) return spmatrix ( normal ( nnz , 1 ) , nz % m , matrix ( [ int ( ii ) for ii in nz / m ] ) , ( m , n ) )
1
create random sparse matrix python
Generates an mxn sparse d matrix with round ( a * m * n ) nonzeros .
cosqa-train-15179
def sp_rand(m,n,a): """ Generates an mxn sparse 'd' matrix with round(a*m*n) nonzeros. """ if m == 0 or n == 0: return spmatrix([], [], [], (m,n)) nnz = min(max(0, int(round(a*m*n))), m*n) nz = matrix(random.sample(range(m*n), nnz), tc='i') return spmatrix(normal(nnz,1), nz%m, matrix([int(ii) for ii in nz/m]), (m,n))
def filter_dict_by_key ( d , keys ) : return { k : v for k , v in d . items ( ) if k in keys }
0
python filtering keys in dict
Filter the dict * d * to remove keys not in * keys * .
cosqa-train-15180
def filter_dict_by_key(d, keys): """Filter the dict *d* to remove keys not in *keys*.""" return {k: v for k, v in d.items() if k in keys}
def prt_nts ( data_nts , prtfmt = None , prt = sys . stdout , nt_fields = None , * * kws ) : prt_txt ( prt , data_nts , prtfmt , nt_fields , * * kws )
1
create unknown number of names to print in python
Print list of namedtuples into a table using prtfmt .
cosqa-train-15181
def prt_nts(data_nts, prtfmt=None, prt=sys.stdout, nt_fields=None, **kws): """Print list of namedtuples into a table using prtfmt.""" prt_txt(prt, data_nts, prtfmt, nt_fields, **kws)
def iter_finds ( regex_obj , s ) : if isinstance ( regex_obj , str ) : for m in re . finditer ( regex_obj , s ) : yield m . group ( ) else : for m in regex_obj . finditer ( s ) : yield m . group ( )
0
python finditer match multiple patterns
Generate all matches found within a string for a regex and yield each match as a string
cosqa-train-15182
def iter_finds(regex_obj, s): """Generate all matches found within a string for a regex and yield each match as a string""" if isinstance(regex_obj, str): for m in re.finditer(regex_obj, s): yield m.group() else: for m in regex_obj.finditer(s): yield m.group()
def flattened_nested_key_indices ( nested_dict ) : outer_keys , inner_keys = collect_nested_keys ( nested_dict ) combined_keys = list ( sorted ( set ( outer_keys + inner_keys ) ) ) return { k : i for ( i , k ) in enumerate ( combined_keys ) }
0
creating a dictionary python with keys and outer dictionary
Combine the outer and inner keys of nested dictionaries into a single ordering .
cosqa-train-15183
def flattened_nested_key_indices(nested_dict): """ Combine the outer and inner keys of nested dictionaries into a single ordering. """ outer_keys, inner_keys = collect_nested_keys(nested_dict) combined_keys = list(sorted(set(outer_keys + inner_keys))) return {k: i for (i, k) in enumerate(combined_keys)}
def split_every ( n , iterable ) : items = iter ( iterable ) return itertools . takewhile ( bool , ( list ( itertools . islice ( items , n ) ) for _ in itertools . count ( ) ) )
0
python first n elements from iterable
Returns a generator that spits an iteratable into n - sized chunks . The last chunk may have less than n elements .
cosqa-train-15184
def split_every(n, iterable): """Returns a generator that spits an iteratable into n-sized chunks. The last chunk may have less than n elements. See http://stackoverflow.com/a/22919323/503377.""" items = iter(iterable) return itertools.takewhile(bool, (list(itertools.islice(items, n)) for _ in itertools.count()))
def highpass ( cutoff ) : R = thub ( exp ( cutoff - pi ) , 2 ) return ( 1 - R ) / ( 1 + R * z ** - 1 )
0
creating a low pass filter in python
This strategy uses an exponential approximation for cut - off frequency calculation found by matching the one - pole Laplace lowpass filter and mirroring the resulting filter to get a highpass .
cosqa-train-15185
def highpass(cutoff): """ This strategy uses an exponential approximation for cut-off frequency calculation, found by matching the one-pole Laplace lowpass filter and mirroring the resulting filter to get a highpass. """ R = thub(exp(cutoff - pi), 2) return (1 - R) / (1 + R * z ** -1)
def add_column ( filename , column , formula , force = False ) : columns = parse_formula ( formula ) logger . info ( "Running file: %s" % filename ) logger . debug ( " Reading columns: %s" % columns ) data = fitsio . read ( filename , columns = columns ) logger . debug ( ' Evaluating formula: %s' % formula ) col = eval ( formula ) col = np . asarray ( col , dtype = [ ( column , col . dtype ) ] ) insert_columns ( filename , col , force = force ) return True
1
python fits add a column
Add a column to a FITS file .
cosqa-train-15186
def add_column(filename,column,formula,force=False): """ Add a column to a FITS file. ADW: Could this be replaced by a ftool? """ columns = parse_formula(formula) logger.info("Running file: %s"%filename) logger.debug(" Reading columns: %s"%columns) data = fitsio.read(filename,columns=columns) logger.debug(' Evaluating formula: %s'%formula) col = eval(formula) col = np.asarray(col,dtype=[(column,col.dtype)]) insert_columns(filename,col,force=force) return True
def parse_comments_for_file ( filename ) : return [ parse_comment ( strip_stars ( comment ) , next_line ) for comment , next_line in get_doc_comments ( read_file ( filename ) ) ]
0
creating a python list from file with comments
Return a list of all parsed comments in a file . Mostly for testing & interactive use .
cosqa-train-15187
def parse_comments_for_file(filename): """ Return a list of all parsed comments in a file. Mostly for testing & interactive use. """ return [parse_comment(strip_stars(comment), next_line) for comment, next_line in get_doc_comments(read_file(filename))]
def default_static_path ( ) : fdir = os . path . dirname ( __file__ ) return os . path . abspath ( os . path . join ( fdir , '../assets/' ) )
1
python flask css background relative path
Return the path to the javascript bundle
cosqa-train-15188
def default_static_path(): """ Return the path to the javascript bundle """ fdir = os.path.dirname(__file__) return os.path.abspath(os.path.join(fdir, '../assets/'))
def Timestamp ( year , month , day , hour , minute , second ) : return datetime . datetime ( year , month , day , hour , minute , second )
1
creating a python object with datetime variables
Constructs an object holding a datetime / timestamp value .
cosqa-train-15189
def Timestamp(year, month, day, hour, minute, second): """Constructs an object holding a datetime/timestamp value.""" return datetime.datetime(year, month, day, hour, minute, second)
def initialize_api ( flask_app ) : if not flask_restplus : return api = flask_restplus . Api ( version = "1.0" , title = "My Example API" ) api . add_resource ( HelloWorld , "/hello" ) blueprint = flask . Blueprint ( "api" , __name__ , url_prefix = "/api" ) api . init_app ( blueprint ) flask_app . register_blueprint ( blueprint )
0
python flask for production
Initialize an API .
cosqa-train-15190
def initialize_api(flask_app): """Initialize an API.""" if not flask_restplus: return api = flask_restplus.Api(version="1.0", title="My Example API") api.add_resource(HelloWorld, "/hello") blueprint = flask.Blueprint("api", __name__, url_prefix="/api") api.init_app(blueprint) flask_app.register_blueprint(blueprint)
def from_json ( cls , json_doc ) : try : d = json . load ( json_doc ) except AttributeError : # catch the read() error d = json . loads ( json_doc ) return cls . from_dict ( d )
1
creating object from json in python
Parse a JSON string and build an entity .
cosqa-train-15191
def from_json(cls, json_doc): """Parse a JSON string and build an entity.""" try: d = json.load(json_doc) except AttributeError: # catch the read() error d = json.loads(json_doc) return cls.from_dict(d)
def logout ( cache ) : cache . set ( flask . session [ 'auth0_key' ] , None ) flask . session . clear ( ) return True
1
python flask how to clear session data and cookies
Logs out the current session by removing it from the cache . This is expected to only occur when a session has
cosqa-train-15192
def logout(cache): """ Logs out the current session by removing it from the cache. This is expected to only occur when a session has """ cache.set(flask.session['auth0_key'], None) flask.session.clear() return True
async def restart ( request ) : def wait_and_restart ( ) : log . info ( 'Restarting server' ) sleep ( 1 ) os . system ( 'kill 1' ) Thread ( target = wait_and_restart ) . start ( ) return web . json_response ( { "message" : "restarting" } )
0
cron to restart python killed
Returns OK then waits approximately 1 second and restarts container
cosqa-train-15193
async def restart(request): """ Returns OK, then waits approximately 1 second and restarts container """ def wait_and_restart(): log.info('Restarting server') sleep(1) os.system('kill 1') Thread(target=wait_and_restart).start() return web.json_response({"message": "restarting"})
def lambda_failure_response ( * args ) : response_data = jsonify ( ServiceErrorResponses . _LAMBDA_FAILURE ) return make_response ( response_data , ServiceErrorResponses . HTTP_STATUS_CODE_502 )
0
python flask how to return 404
Helper function to create a Lambda Failure Response
cosqa-train-15194
def lambda_failure_response(*args): """ Helper function to create a Lambda Failure Response :return: A Flask Response """ response_data = jsonify(ServiceErrorResponses._LAMBDA_FAILURE) return make_response(response_data, ServiceErrorResponses.HTTP_STATUS_CODE_502)
def pointer ( self ) : return ctypes . cast ( ctypes . pointer ( ctypes . c_uint8 . from_buffer ( self . mapping , 0 ) ) , ctypes . c_void_p )
0
cuda get memory address of variable python
Get a ctypes void pointer to the memory mapped region .
cosqa-train-15195
def pointer(self): """Get a ctypes void pointer to the memory mapped region. :type: ctypes.c_void_p """ return ctypes.cast(ctypes.pointer(ctypes.c_uint8.from_buffer(self.mapping, 0)), ctypes.c_void_p)
def cumsum ( inlist ) : newlist = copy . deepcopy ( inlist ) for i in range ( 1 , len ( newlist ) ) : newlist [ i ] = newlist [ i ] + newlist [ i - 1 ] return newlist
1
cumulative product of a list in python
Returns a list consisting of the cumulative sum of the items in the passed list .
cosqa-train-15196
def cumsum(inlist): """ Returns a list consisting of the cumulative sum of the items in the passed list. Usage: lcumsum(inlist) """ newlist = copy.deepcopy(inlist) for i in range(1, len(newlist)): newlist[i] = newlist[i] + newlist[i - 1] return newlist
def handleFlaskPostRequest ( flaskRequest , endpoint ) : if flaskRequest . method == "POST" : return handleHttpPost ( flaskRequest , endpoint ) elif flaskRequest . method == "OPTIONS" : return handleHttpOptions ( ) else : raise exceptions . MethodNotAllowedException ( )
1
python flask if method is post
Handles the specified flask request for one of the POST URLS Invokes the specified endpoint to generate a response .
cosqa-train-15197
def handleFlaskPostRequest(flaskRequest, endpoint): """ Handles the specified flask request for one of the POST URLS Invokes the specified endpoint to generate a response. """ if flaskRequest.method == "POST": return handleHttpPost(flaskRequest, endpoint) elif flaskRequest.method == "OPTIONS": return handleHttpOptions() else: raise exceptions.MethodNotAllowedException()
def screen_cv2 ( self ) : pil_image = self . screen . convert ( 'RGB' ) cv2_image = np . array ( pil_image ) pil_image . close ( ) # Convert RGB to BGR cv2_image = cv2_image [ : , : , : : - 1 ] return cv2_image
0
cv2 python imshow gray screen
cv2 Image of current window screen
cosqa-train-15198
def screen_cv2(self): """cv2 Image of current window screen""" pil_image = self.screen.convert('RGB') cv2_image = np.array(pil_image) pil_image.close() # Convert RGB to BGR cv2_image = cv2_image[:, :, ::-1] return cv2_image
def init_app ( self , app ) : app . config . from_pyfile ( '{0}.cfg' . format ( app . name ) , silent = True )
1
python flask init py file
Initialize Flask application .
cosqa-train-15199
def init_app(self, app): """Initialize Flask application.""" app.config.from_pyfile('{0}.cfg'.format(app.name), silent=True)