code_tokens
stringlengths
60
3.94k
label
int64
0
1
doc
stringlengths
16
98
docstring_tokens
stringlengths
0
1.41k
idx
stringlengths
13
17
code
stringlengths
87
6.4k
def toBase64 ( s ) : if isinstance ( s , str ) : s = s . encode ( "utf-8" ) return binascii . b2a_base64 ( s ) [ : - 1 ]
0
only python base64 has leading b
Represent string / bytes s as base64 omitting newlines
cosqa-train-16600
def toBase64(s): """Represent string / bytes s as base64, omitting newlines""" if isinstance(s, str): s = s.encode("utf-8") return binascii.b2a_base64(s)[:-1]
def downsample_with_striding ( array , factor ) : return array [ tuple ( np . s_ [ : : f ] for f in factor ) ]
0
resampling an array in python
Downsample x by factor using striding .
cosqa-train-16601
def downsample_with_striding(array, factor): """Downsample x by factor using striding. @return: The downsampled array, of the same type as x. """ return array[tuple(np.s_[::f] for f in factor)]
def energy_string_to_float ( string ) : energy_re = re . compile ( "(-?\d+\.\d+)" ) return float ( energy_re . match ( string ) . group ( 0 ) )
1
onvert string to float in python
Convert a string of a calculation energy e . g . - 1 . 2345 eV to a float .
cosqa-train-16602
def energy_string_to_float( string ): """ Convert a string of a calculation energy, e.g. '-1.2345 eV' to a float. Args: string (str): The string to convert. Return (float) """ energy_re = re.compile( "(-?\d+\.\d+)" ) return float( energy_re.match( string ).group(0) )
def shape_list ( l , shape , dtype ) : return np . array ( l , dtype = dtype ) . reshape ( shape )
1
reshape a list as an array in python
Shape a list of lists into the appropriate shape and data type
cosqa-train-16603
def shape_list(l,shape,dtype): """ Shape a list of lists into the appropriate shape and data type """ return np.array(l, dtype=dtype).reshape(shape)
def utime ( self , * args , * * kwargs ) : os . utime ( self . extended_path , * args , * * kwargs )
0
open a file in python based on modified date
Set the access and modified times of the file specified by path .
cosqa-train-16604
def utime(self, *args, **kwargs): """ Set the access and modified times of the file specified by path. """ os.utime(self.extended_path, *args, **kwargs)
def batchify ( data , batch_size ) : nbatch = data . shape [ 0 ] // batch_size data = data [ : nbatch * batch_size ] data = data . reshape ( ( batch_size , nbatch ) ) . T return data
1
reshape array from 4 to 2 dimensions in n\python
Reshape data into ( num_example batch_size )
cosqa-train-16605
def batchify(data, batch_size): """Reshape data into (num_example, batch_size)""" nbatch = data.shape[0] // batch_size data = data[:nbatch * batch_size] data = data.reshape((batch_size, nbatch)).T return data
def unpickle_file ( picklefile , * * kwargs ) : with open ( picklefile , 'rb' ) as f : return pickle . load ( f , * * kwargs )
0
open a pickled file in python
Helper function to unpickle data from picklefile .
cosqa-train-16606
def unpickle_file(picklefile, **kwargs): """Helper function to unpickle data from `picklefile`.""" with open(picklefile, 'rb') as f: return pickle.load(f, **kwargs)
def batchify ( data , batch_size ) : nbatch = data . shape [ 0 ] // batch_size data = data [ : nbatch * batch_size ] data = data . reshape ( ( batch_size , nbatch ) ) . T return data
0
reshape in python 3 dimenssionto 2 example
Reshape data into ( num_example batch_size )
cosqa-train-16607
def batchify(data, batch_size): """Reshape data into (num_example, batch_size)""" nbatch = data.shape[0] // batch_size data = data[:nbatch * batch_size] data = data.reshape((batch_size, nbatch)).T return data
def open_file ( file , mode ) : if hasattr ( file , "read" ) : return file if hasattr ( file , "open" ) : return file . open ( mode ) return open ( file , mode )
1
open an file for read or write python open
Open a file .
cosqa-train-16608
def open_file(file, mode): """Open a file. :arg file: file-like or path-like object. :arg str mode: ``mode`` argument for :func:`open`. """ if hasattr(file, "read"): return file if hasattr(file, "open"): return file.open(mode) return open(file, mode)
def render_none ( self , context , result ) : context . response . body = b'' del context . response . content_length return True
1
response object pythong content incomplete
Render empty responses .
cosqa-train-16609
def render_none(self, context, result): """Render empty responses.""" context.response.body = b'' del context.response.content_length return True
def getfirstline ( file , default ) : with open ( file , 'rb' ) as fh : content = fh . readlines ( ) if len ( content ) == 1 : return content [ 0 ] . decode ( 'utf-8' ) . strip ( '\n' ) return default
1
open and read first line in a file python
Returns the first line of a file .
cosqa-train-16610
def getfirstline(file, default): """ Returns the first line of a file. """ with open(file, 'rb') as fh: content = fh.readlines() if len(content) == 1: return content[0].decode('utf-8').strip('\n') return default
def do_restart ( self , line ) : self . bot . _frame = 0 self . bot . _namespace . clear ( ) self . bot . _namespace . update ( self . bot . _initial_namespace )
0
restart discord bot with command python
Attempt to restart the bot .
cosqa-train-16611
def do_restart(self, line): """ Attempt to restart the bot. """ self.bot._frame = 0 self.bot._namespace.clear() self.bot._namespace.update(self.bot._initial_namespace)
def execfile ( fname , variables ) : with open ( fname ) as f : code = compile ( f . read ( ) , fname , 'exec' ) exec ( code , variables )
1
open compiled python file
This is builtin in python2 but we have to roll our own on py3 .
cosqa-train-16612
def execfile(fname, variables): """ This is builtin in python2, but we have to roll our own on py3. """ with open(fname) as f: code = compile(f.read(), fname, 'exec') exec(code, variables)
def extract_module_locals ( depth = 0 ) : f = sys . _getframe ( depth + 1 ) global_ns = f . f_globals module = sys . modules [ global_ns [ '__name__' ] ] return ( module , f . f_locals )
0
retrieve global variables from function python
Returns ( module locals ) of the funciton depth frames away from the caller
cosqa-train-16613
def extract_module_locals(depth=0): """Returns (module, locals) of the funciton `depth` frames away from the caller""" f = sys._getframe(depth + 1) global_ns = f.f_globals module = sys.modules[global_ns['__name__']] return (module, f.f_locals)
def read ( * args ) : return io . open ( os . path . join ( HERE , * args ) , encoding = "utf-8" ) . read ( )
1
open files in python without decoding
Reads complete file contents .
cosqa-train-16614
def read(*args): """Reads complete file contents.""" return io.open(os.path.join(HERE, *args), encoding="utf-8").read()
def get_class_method ( cls_or_inst , method_name ) : cls = cls_or_inst if isinstance ( cls_or_inst , type ) else cls_or_inst . __class__ meth = getattr ( cls , method_name , None ) if isinstance ( meth , property ) : meth = meth . fget elif isinstance ( meth , cached_property ) : meth = meth . func return meth
1
return a method from a method python
Returns a method from a given class or instance . When the method doest not exist it returns None . Also works with properties and cached properties .
cosqa-train-16615
def get_class_method(cls_or_inst, method_name): """ Returns a method from a given class or instance. When the method doest not exist, it returns `None`. Also works with properties and cached properties. """ cls = cls_or_inst if isinstance(cls_or_inst, type) else cls_or_inst.__class__ meth = getattr(cls, method_name, None) if isinstance(meth, property): meth = meth.fget elif isinstance(meth, cached_property): meth = meth.func return meth
def imdecode ( image_path ) : import os assert os . path . exists ( image_path ) , image_path + ' not found' im = cv2 . imread ( image_path ) return im
0
opencv python image not found
Return BGR image read by opencv
cosqa-train-16616
def imdecode(image_path): """Return BGR image read by opencv""" import os assert os.path.exists(image_path), image_path + ' not found' im = cv2.imread(image_path) return im
def items ( self ) : return [ ( value_descriptor . name , value_descriptor . number ) for value_descriptor in self . _enum_type . values ]
1
return all values in python enum in tuple
Return a list of the ( name value ) pairs of the enum .
cosqa-train-16617
def items(self): """Return a list of the (name, value) pairs of the enum. These are returned in the order they were defined in the .proto file. """ return [(value_descriptor.name, value_descriptor.number) for value_descriptor in self._enum_type.values]
def _openpyxl_read_xl ( xl_path : str ) : try : wb = load_workbook ( filename = xl_path , read_only = True ) except : raise else : return wb
1
opening blank workbook using python openpyxl
Use openpyxl to read an Excel file .
cosqa-train-16618
def _openpyxl_read_xl(xl_path: str): """ Use openpyxl to read an Excel file. """ try: wb = load_workbook(filename=xl_path, read_only=True) except: raise else: return wb
def get_column_keys_and_names ( table ) : ins = inspect ( table ) return ( ( k , c . name ) for k , c in ins . mapper . c . items ( ) )
0
return columns names python
Return a generator of tuples k c such that k is the name of the python attribute for the column and c is the name of the column in the sql table .
cosqa-train-16619
def get_column_keys_and_names(table): """ Return a generator of tuples k, c such that k is the name of the python attribute for the column and c is the name of the column in the sql table. """ ins = inspect(table) return ((k, c.name) for k, c in ins.mapper.c.items())
def naturalsortkey ( s ) : return [ int ( part ) if part . isdigit ( ) else part for part in re . split ( '([0-9]+)' , s ) ]
0
order a number in a string python
Natural sort order
cosqa-train-16620
def naturalsortkey(s): """Natural sort order""" return [int(part) if part.isdigit() else part for part in re.split('([0-9]+)', s)]
def get_X0 ( X ) : if pandas_available and isinstance ( X , pd . DataFrame ) : assert len ( X ) == 1 x = np . array ( X . iloc [ 0 ] ) else : x , = X return x
0
return only the first column of an array python
Return zero - th element of a one - element data container .
cosqa-train-16621
def get_X0(X): """ Return zero-th element of a one-element data container. """ if pandas_available and isinstance(X, pd.DataFrame): assert len(X) == 1 x = np.array(X.iloc[0]) else: x, = X return x
def project ( self , other ) : n = other . normalized ( ) return self . dot ( n ) * n
0
orthonormalize 1 vector corresponding to another python
Return one vector projected on the vector other
cosqa-train-16622
def project(self, other): """Return one vector projected on the vector other""" n = other.normalized() return self.dot(n) * n
def preprocess ( string ) : string = unicode ( string , encoding = "utf-8" ) # convert diacritics to simpler forms string = regex1 . sub ( lambda x : accents [ x . group ( ) ] , string ) # remove all rest of the unwanted characters return regex2 . sub ( '' , string ) . encode ( 'utf-8' )
0
return the string after removing all alphabets python
Preprocess string to transform all diacritics and remove other special characters than appropriate : param string : : return :
cosqa-train-16623
def preprocess(string): """ Preprocess string to transform all diacritics and remove other special characters than appropriate :param string: :return: """ string = unicode(string, encoding="utf-8") # convert diacritics to simpler forms string = regex1.sub(lambda x: accents[x.group()], string) # remove all rest of the unwanted characters return regex2.sub('', string).encode('utf-8')
def timestamp ( format = DATEFMT , timezone = 'Africa/Johannesburg' ) : return formatdate ( datetime . now ( tz = pytz . timezone ( timezone ) ) )
0
output current timezone python
Return current datetime with timezone applied [ all timezones ] print sorted ( pytz . all_timezones )
cosqa-train-16624
def timestamp(format=DATEFMT, timezone='Africa/Johannesburg'): """ Return current datetime with timezone applied [all timezones] print sorted(pytz.all_timezones) """ return formatdate(datetime.now(tz=pytz.timezone(timezone)))
def _try_lookup ( table , value , default = "" ) : try : string = table [ value ] except KeyError : string = default return string
0
returning a value from a python try function
try to get a string from the lookup table return instead of key error
cosqa-train-16625
def _try_lookup(table, value, default = ""): """ try to get a string from the lookup table, return "" instead of key error """ try: string = table[ value ] except KeyError: string = default return string
def write_pid_file ( ) : pidfile = os . path . basename ( sys . argv [ 0 ] ) [ : - 3 ] + '.pid' # strip .py, add .pid with open ( pidfile , 'w' ) as fh : fh . write ( "%d\n" % os . getpid ( ) ) fh . close ( )
0
outputting pid to file linux python
Write a file with the PID of this server instance .
cosqa-train-16626
def write_pid_file(): """Write a file with the PID of this server instance. Call when setting up a command line testserver. """ pidfile = os.path.basename(sys.argv[0])[:-3] + '.pid' # strip .py, add .pid with open(pidfile, 'w') as fh: fh.write("%d\n" % os.getpid()) fh.close()
def inverse ( d ) : output = { } for k , v in unwrap ( d ) . items ( ) : output [ v ] = output . get ( v , [ ] ) output [ v ] . append ( k ) return output
0
reverse the dictionary in python
reverse the k : v pairs
cosqa-train-16627
def inverse(d): """ reverse the k:v pairs """ output = {} for k, v in unwrap(d).items(): output[v] = output.get(v, []) output[v].append(k) return output
def region_from_segment ( image , segment ) : x , y , w , h = segment return image [ y : y + h , x : x + w ]
0
overlay segmentation onto image linux python
given a segment ( rectangle ) and an image returns it s corresponding subimage
cosqa-train-16628
def region_from_segment(image, segment): """given a segment (rectangle) and an image, returns it's corresponding subimage""" x, y, w, h = segment return image[y:y + h, x:x + w]
def _round_half_hour ( record ) : k = record . datetime + timedelta ( minutes = - ( record . datetime . minute % 30 ) ) return datetime ( k . year , k . month , k . day , k . hour , k . minute , 0 )
0
round a date to the nearest hour python
Round a time DOWN to half nearest half - hour .
cosqa-train-16629
def _round_half_hour(record): """ Round a time DOWN to half nearest half-hour. """ k = record.datetime + timedelta(minutes=-(record.datetime.minute % 30)) return datetime(k.year, k.month, k.day, k.hour, k.minute, 0)
def unpack2D ( _x ) : _x = np . atleast_2d ( _x ) x = _x [ : , 0 ] y = _x [ : , 1 ] return x , y
0
ow to make x and y in same dimension in python
Helper function for splitting 2D data into x and y component to make equations simpler
cosqa-train-16630
def unpack2D(_x): """ Helper function for splitting 2D data into x and y component to make equations simpler """ _x = np.atleast_2d(_x) x = _x[:, 0] y = _x[:, 1] return x, y
def __round_time ( self , dt ) : round_to = self . _resolution . total_seconds ( ) seconds = ( dt - dt . min ) . seconds rounding = ( seconds + round_to / 2 ) // round_to * round_to return dt + timedelta ( 0 , rounding - seconds , - dt . microsecond )
0
round to nearest minute timestamp python
Round a datetime object to a multiple of a timedelta dt : datetime . datetime object default now .
cosqa-train-16631
def __round_time(self, dt): """Round a datetime object to a multiple of a timedelta dt : datetime.datetime object, default now. """ round_to = self._resolution.total_seconds() seconds = (dt - dt.min).seconds rounding = (seconds + round_to / 2) // round_to * round_to return dt + timedelta(0, rounding - seconds, -dt.microsecond)
def resize_image_with_crop_or_pad ( img , target_height , target_width ) : h , w = target_height , target_width max_h , max_w , c = img . shape # crop img = crop_center ( img , min ( max_h , h ) , min ( max_w , w ) ) # pad padded_img = np . zeros ( shape = ( h , w , c ) , dtype = img . dtype ) padded_img [ : img . shape [ 0 ] , : img . shape [ 1 ] , : img . shape [ 2 ] ] = img return padded_img
0
pad image to bounding box python
Crops and / or pads an image to a target width and height .
cosqa-train-16632
def resize_image_with_crop_or_pad(img, target_height, target_width): """ Crops and/or pads an image to a target width and height. Resizes an image to a target width and height by either cropping the image or padding it with zeros. NO CENTER CROP. NO CENTER PAD. (Just fill bottom right or crop bottom right) :param img: Numpy array representing the image. :param target_height: Target height. :param target_width: Target width. :return: The cropped and padded image. """ h, w = target_height, target_width max_h, max_w, c = img.shape # crop img = crop_center(img, min(max_h, h), min(max_w, w)) # pad padded_img = np.zeros(shape=(h, w, c), dtype=img.dtype) padded_img[:img.shape[0], :img.shape[1], :img.shape[2]] = img return padded_img
def py3round ( number ) : if abs ( round ( number ) - number ) == 0.5 : return int ( 2.0 * round ( number / 2.0 ) ) return int ( round ( number ) )
1
round up float to two decimal places in python 3
Unified rounding in all python versions .
cosqa-train-16633
def py3round(number): """Unified rounding in all python versions.""" if abs(round(number) - number) == 0.5: return int(2.0 * round(number / 2.0)) return int(round(number))
def _parse ( self , date_str , format = '%Y-%m-%d' ) : rv = pd . to_datetime ( date_str , format = format ) if hasattr ( rv , 'to_pydatetime' ) : rv = rv . to_pydatetime ( ) return rv
0
panda python parse datetime
helper function for parsing FRED date string into datetime
cosqa-train-16634
def _parse(self, date_str, format='%Y-%m-%d'): """ helper function for parsing FRED date string into datetime """ rv = pd.to_datetime(date_str, format=format) if hasattr(rv, 'to_pydatetime'): rv = rv.to_pydatetime() return rv
def home ( ) : return dict ( links = dict ( api = '{}{}' . format ( request . url , PREFIX [ 1 : ] ) ) ) , HTTPStatus . OK
0
route has get and post just return postpython service
Temporary helper function to link to the API routes
cosqa-train-16635
def home(): """Temporary helper function to link to the API routes""" return dict(links=dict(api='{}{}'.format(request.url, PREFIX[1:]))), \ HTTPStatus.OK
def parse_comments_for_file ( filename ) : return [ parse_comment ( strip_stars ( comment ) , next_line ) for comment , next_line in get_doc_comments ( read_file ( filename ) ) ]
0
parsing comments with python
Return a list of all parsed comments in a file . Mostly for testing & interactive use .
cosqa-train-16636
def parse_comments_for_file(filename): """ Return a list of all parsed comments in a file. Mostly for testing & interactive use. """ return [parse_comment(strip_stars(comment), next_line) for comment, next_line in get_doc_comments(read_file(filename))]
def is_valid_row ( cls , row ) : for k in row . keys ( ) : if row [ k ] is None : return False return True
1
row is not empty in python check
Indicates whether or not the given row contains valid data .
cosqa-train-16637
def is_valid_row(cls, row): """Indicates whether or not the given row contains valid data.""" for k in row.keys(): if row[k] is None: return False return True
def sub ( name , func , * * kwarg ) : sp = subparsers . add_parser ( name , * * kwarg ) sp . set_defaults ( func = func ) sp . arg = sp . add_argument return sp
1
pass defined parser object to subparser python
Add subparser
cosqa-train-16638
def sub(name, func,**kwarg): """ Add subparser """ sp = subparsers.add_parser(name, **kwarg) sp.set_defaults(func=func) sp.arg = sp.add_argument return sp
def web ( host , port ) : from . webserver . web import get_app get_app ( ) . run ( host = host , port = port )
0
running a webserver with python
Start web application
cosqa-train-16639
def web(host, port): """Start web application""" from .webserver.web import get_app get_app().run(host=host, port=port)
def as_float_array ( a ) : return np . asarray ( a , dtype = np . quaternion ) . view ( ( np . double , 4 ) )
0
pass isfinite result to array python
View the quaternion array as an array of floats
cosqa-train-16640
def as_float_array(a): """View the quaternion array as an array of floats This function is fast (of order 1 microsecond) because no data is copied; the returned quantity is just a "view" of the original. The output view has one more dimension (of size 4) than the input array, but is otherwise the same shape. """ return np.asarray(a, dtype=np.quaternion).view((np.double, 4))
def run ( self ) : self . signal_init ( ) self . listen_init ( ) self . logger . info ( 'starting' ) self . loop . start ( )
0
running multiple event loops python
Run the event loop .
cosqa-train-16641
def run(self): """Run the event loop.""" self.signal_init() self.listen_init() self.logger.info('starting') self.loop.start()
def dict_jsonp ( param ) : if not isinstance ( param , dict ) : param = dict ( param ) return jsonp ( param )
0
pass json paramater python
Convert the parameter into a dictionary before calling jsonp if it s not already one
cosqa-train-16642
def dict_jsonp(param): """Convert the parameter into a dictionary before calling jsonp, if it's not already one""" if not isinstance(param, dict): param = dict(param) return jsonp(param)
def file_read ( filename ) : fobj = open ( filename , 'r' ) source = fobj . read ( ) fobj . close ( ) return source
0
safely open and close a file in python 3
Read a file and close it . Returns the file source .
cosqa-train-16643
def file_read(filename): """Read a file and close it. Returns the file source.""" fobj = open(filename,'r'); source = fobj.read(); fobj.close() return source
def trigger ( self , target : str , trigger : str , parameters : Dict [ str , Any ] = { } ) : pass
0
pass paramters to a function that calls another function python
Calls the specified Trigger of another Area with the optionally given parameters .
cosqa-train-16644
def trigger(self, target: str, trigger: str, parameters: Dict[str, Any]={}): """Calls the specified Trigger of another Area with the optionally given parameters. Args: target: The name of the target Area. trigger: The name of the Trigger. parameters: The parameters of the function call. """ pass
def cat_acc ( y_true , y_pred ) : return np . mean ( y_true . argmax ( axis = 1 ) == y_pred . argmax ( axis = 1 ) )
0
same validation accuracy in python model
Categorical accuracy
cosqa-train-16645
def cat_acc(y_true, y_pred): """Categorical accuracy """ return np.mean(y_true.argmax(axis=1) == y_pred.argmax(axis=1))
def tanimoto_coefficient ( a , b ) : return sum ( map ( lambda ( x , y ) : float ( x ) * float ( y ) , zip ( a , b ) ) ) / sum ( [ - sum ( map ( lambda ( x , y ) : float ( x ) * float ( y ) , zip ( a , b ) ) ) , sum ( map ( lambda x : float ( x ) ** 2 , a ) ) , sum ( map ( lambda x : float ( x ) ** 2 , b ) ) ] )
0
pearsons cooefficient between 2 matricess in python
Measured similarity between two points in a multi - dimensional space .
cosqa-train-16646
def tanimoto_coefficient(a, b): """Measured similarity between two points in a multi-dimensional space. Returns: 1.0 if the two points completely overlap, 0.0 if the two points are infinitely far apart. """ return sum(map(lambda (x,y): float(x)*float(y), zip(a,b))) / sum([ -sum(map(lambda (x,y): float(x)*float(y), zip(a,b))), sum(map(lambda x: float(x)**2, a)), sum(map(lambda x: float(x)**2, b))])
def flatten ( l , types = ( list , float ) ) : l = [ item if isinstance ( item , types ) else [ item ] for item in l ] return [ item for sublist in l for item in sublist ]
0
saticlly type python lists
Flat nested list of lists into a single list .
cosqa-train-16647
def flatten(l, types=(list, float)): """ Flat nested list of lists into a single list. """ l = [item if isinstance(item, types) else [item] for item in l] return [item for sublist in l for item in sublist]
def dft ( blk , freqs , normalize = True ) : dft_data = ( sum ( xn * cexp ( - 1j * n * f ) for n , xn in enumerate ( blk ) ) for f in freqs ) if normalize : lblk = len ( blk ) return [ v / lblk for v in dft_data ] return list ( dft_data )
0
perform fft on data with python
Complex non - optimized Discrete Fourier Transform
cosqa-train-16648
def dft(blk, freqs, normalize=True): """ Complex non-optimized Discrete Fourier Transform Finds the DFT for values in a given frequency list, in order, over the data block seen as periodic. Parameters ---------- blk : An iterable with well-defined length. Don't use this function with Stream objects! freqs : List of frequencies to find the DFT, in rad/sample. FFT implementations like numpy.fft.ftt finds the coefficients for N frequencies equally spaced as ``line(N, 0, 2 * pi, finish=False)`` for N frequencies. normalize : If True (default), the coefficient sums are divided by ``len(blk)``, and the coefficient for the DC level (frequency equals to zero) is the mean of the block. If False, that coefficient would be the sum of the data in the block. Returns ------- A list of DFT values for each frequency, in the same order that they appear in the freqs input. Note ---- This isn't a FFT implementation, and performs :math:`O(M . N)` float pointing operations, with :math:`M` and :math:`N` equals to the length of the inputs. This function can find the DFT for any specific frequency, with no need for zero padding or finding all frequencies in a linearly spaced band grid with N frequency bins at once. """ dft_data = (sum(xn * cexp(-1j * n * f) for n, xn in enumerate(blk)) for f in freqs) if normalize: lblk = len(blk) return [v / lblk for v in dft_data] return list(dft_data)
def pickle_save ( thing , fname ) : pickle . dump ( thing , open ( fname , "wb" ) , pickle . HIGHEST_PROTOCOL ) return thing
0
save a pickle file for python 3 in python 2
save something to a pickle file
cosqa-train-16649
def pickle_save(thing,fname): """save something to a pickle file""" pickle.dump(thing, open(fname,"wb"),pickle.HIGHEST_PROTOCOL) return thing
def replace_list ( items , match , replacement ) : return [ replace ( item , match , replacement ) for item in items ]
0
perform string replace with string in list item python
Replaces occurrences of a match string in a given list of strings and returns a list of new strings . The match string can be a regex expression .
cosqa-train-16650
def replace_list(items, match, replacement): """Replaces occurrences of a match string in a given list of strings and returns a list of new strings. The match string can be a regex expression. Args: items (list): the list of strings to modify. match (str): the search expression. replacement (str): the string to replace with. """ return [replace(item, match, replacement) for item in items]
def save ( self , fname ) : with open ( fname , 'wb' ) as f : json . dump ( self , f )
0
save json to file in python
Saves the dictionary in json format : param fname : file to save to
cosqa-train-16651
def save(self, fname): """ Saves the dictionary in json format :param fname: file to save to """ with open(fname, 'wb') as f: json.dump(self, f)
def plot_decision_boundary ( model , X , y , step = 0.1 , figsize = ( 10 , 8 ) , alpha = 0.4 , size = 20 ) : x_min , x_max = X [ : , 0 ] . min ( ) - 1 , X [ : , 0 ] . max ( ) + 1 y_min , y_max = X [ : , 1 ] . min ( ) - 1 , X [ : , 1 ] . max ( ) + 1 xx , yy = np . meshgrid ( np . arange ( x_min , x_max , step ) , np . arange ( y_min , y_max , step ) ) f , ax = plt . subplots ( figsize = figsize ) Z = model . predict ( np . c_ [ xx . ravel ( ) , yy . ravel ( ) ] ) Z = Z . reshape ( xx . shape ) ax . contourf ( xx , yy , Z , alpha = alpha ) ax . scatter ( X [ : , 0 ] , X [ : , 1 ] , c = y , s = size , edgecolor = 'k' ) plt . show ( )
0
plot the decision boundary of a svm model in python
Plots the classification decision boundary of model on X with labels y . Using numpy and matplotlib .
cosqa-train-16652
def plot_decision_boundary(model, X, y, step=0.1, figsize=(10, 8), alpha=0.4, size=20): """Plots the classification decision boundary of `model` on `X` with labels `y`. Using numpy and matplotlib. """ x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step)) f, ax = plt.subplots(figsize=figsize) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, alpha=alpha) ax.scatter(X[:, 0], X[:, 1], c=y, s=size, edgecolor='k') plt.show()
def plot_and_save ( self , * * kwargs ) : self . fig = pyplot . figure ( ) self . plot ( ) self . axes = pyplot . gca ( ) self . save_plot ( self . fig , self . axes , * * kwargs ) pyplot . close ( self . fig )
1
save plot in python without superimposing
Used when the plot method defined does not create a figure nor calls save_plot Then the plot method has to use self . fig
cosqa-train-16653
def plot_and_save(self, **kwargs): """Used when the plot method defined does not create a figure nor calls save_plot Then the plot method has to use self.fig""" self.fig = pyplot.figure() self.plot() self.axes = pyplot.gca() self.save_plot(self.fig, self.axes, **kwargs) pyplot.close(self.fig)
def __unixify ( self , s ) : return os . path . normpath ( s ) . replace ( os . sep , "/" )
0
posixpath to string python
stupid windows . converts the backslash to forwardslash for consistency
cosqa-train-16654
def __unixify(self, s): """ stupid windows. converts the backslash to forwardslash for consistency """ return os.path.normpath(s).replace(os.sep, "/")
def to_dotfile ( G : nx . DiGraph , filename : str ) : A = to_agraph ( G ) A . write ( filename )
0
save python graph to a flder
Output a networkx graph to a DOT file .
cosqa-train-16655
def to_dotfile(G: nx.DiGraph, filename: str): """ Output a networkx graph to a DOT file. """ A = to_agraph(G) A.write(filename)
def _deserialize ( cls , key , value , fields ) : converter = cls . _get_converter_for_field ( key , None , fields ) return converter . deserialize ( value )
0
powershell json serialize deserialize python wcf datacontractjsonserializer
Marshal incoming data into Python objects .
cosqa-train-16656
def _deserialize(cls, key, value, fields): """ Marshal incoming data into Python objects.""" converter = cls._get_converter_for_field(key, None, fields) return converter.deserialize(value)
def generate_write_yaml_to_file ( file_name ) : def write_yaml ( config ) : with open ( file_name , 'w+' ) as fh : fh . write ( yaml . dump ( config ) ) return write_yaml
1
save yaml to file python
generate a method to write the configuration in yaml to the method desired
cosqa-train-16657
def generate_write_yaml_to_file(file_name): """ generate a method to write the configuration in yaml to the method desired """ def write_yaml(config): with open(file_name, 'w+') as fh: fh.write(yaml.dump(config)) return write_yaml
def print_bintree ( tree , indent = ' ' ) : for n in sorted ( tree . keys ( ) ) : print "%s%s" % ( indent * depth ( n , tree ) , n )
0
print binary tree as it is in tree format python
print a binary tree
cosqa-train-16658
def print_bintree(tree, indent=' '): """print a binary tree""" for n in sorted(tree.keys()): print "%s%s" % (indent * depth(n,tree), n)
def zoom ( ax , xy = 'x' , factor = 1 ) : limits = ax . get_xlim ( ) if xy == 'x' else ax . get_ylim ( ) new_limits = ( 0.5 * ( limits [ 0 ] + limits [ 1 ] ) + 1. / factor * np . array ( ( - 0.5 , 0.5 ) ) * ( limits [ 1 ] - limits [ 0 ] ) ) if xy == 'x' : ax . set_xlim ( new_limits ) else : ax . set_ylim ( new_limits )
0
scaling your x axis to zoom in on a specific area python
Zoom into axis .
cosqa-train-16659
def zoom(ax, xy='x', factor=1): """Zoom into axis. Parameters ---------- """ limits = ax.get_xlim() if xy == 'x' else ax.get_ylim() new_limits = (0.5*(limits[0] + limits[1]) + 1./factor * np.array((-0.5, 0.5)) * (limits[1] - limits[0])) if xy == 'x': ax.set_xlim(new_limits) else: ax.set_ylim(new_limits)
def raw_print ( * args , * * kw ) : print ( * args , sep = kw . get ( 'sep' , ' ' ) , end = kw . get ( 'end' , '\n' ) , file = sys . __stdout__ ) sys . __stdout__ . flush ( )
0
print not displaying anything in python\
Raw print to sys . __stdout__ otherwise identical interface to print () .
cosqa-train-16660
def raw_print(*args, **kw): """Raw print to sys.__stdout__, otherwise identical interface to print().""" print(*args, sep=kw.get('sep', ' '), end=kw.get('end', '\n'), file=sys.__stdout__) sys.__stdout__.flush()
def page_guiref ( arg_s = None ) : from IPython . core import page page . page ( gui_reference , auto_html = True )
0
scintillanet autocomplete and calltip for ironpython
Show a basic reference about the GUI Console .
cosqa-train-16661
def page_guiref(arg_s=None): """Show a basic reference about the GUI Console.""" from IPython.core import page page.page(gui_reference, auto_html=True)
def pprint_for_ordereddict ( ) : od_saved = OrderedDict . __repr__ try : OrderedDict . __repr__ = dict . __repr__ yield finally : OrderedDict . __repr__ = od_saved
1
print ordered dict python
Context manager that causes pprint () to print OrderedDict objects as nicely as standard Python dictionary objects .
cosqa-train-16662
def pprint_for_ordereddict(): """ Context manager that causes pprint() to print OrderedDict objects as nicely as standard Python dictionary objects. """ od_saved = OrderedDict.__repr__ try: OrderedDict.__repr__ = dict.__repr__ yield finally: OrderedDict.__repr__ = od_saved
def ex ( self , cmd ) : with self . builtin_trap : exec cmd in self . user_global_ns , self . user_ns
0
scope of embedded python function
Execute a normal python statement in user namespace .
cosqa-train-16663
def ex(self, cmd): """Execute a normal python statement in user namespace.""" with self.builtin_trap: exec cmd in self.user_global_ns, self.user_ns
def geturl ( self ) : if self . retries is not None and len ( self . retries . history ) : return self . retries . history [ - 1 ] . redirect_location else : return self . _request_url
0
print original url before redirect python requests
Returns the URL that was the source of this response . If the request that generated this response redirected this method will return the final redirect location .
cosqa-train-16664
def geturl(self): """ Returns the URL that was the source of this response. If the request that generated this response redirected, this method will return the final redirect location. """ if self.retries is not None and len(self.retries.history): return self.retries.history[-1].redirect_location else: return self._request_url
def _elapsed ( self ) : self . last_time = time . time ( ) return self . last_time - self . start
0
seconds ago minus current python
Returns elapsed time at update .
cosqa-train-16665
def _elapsed(self): """ Returns elapsed time at update. """ self.last_time = time.time() return self.last_time - self.start
def PythonPercentFormat ( format_str ) : if format_str . startswith ( 'printf ' ) : fmt = format_str [ len ( 'printf ' ) : ] return lambda value : fmt % value else : return None
0
print percent sign in format string python
Use Python % format strings as template format specifiers .
cosqa-train-16666
def PythonPercentFormat(format_str): """Use Python % format strings as template format specifiers.""" if format_str.startswith('printf '): fmt = format_str[len('printf '):] return lambda value: fmt % value else: return None
def rowlenselect ( table , n , complement = False ) : where = lambda row : len ( row ) == n return select ( table , where , complement = complement )
1
select a certain number of cells in python sql access database
Select rows of length n .
cosqa-train-16667
def rowlenselect(table, n, complement=False): """Select rows of length `n`.""" where = lambda row: len(row) == n return select(table, where, complement=complement)
def _get_pretty_string ( obj ) : sio = StringIO ( ) pprint . pprint ( obj , stream = sio ) return sio . getvalue ( )
1
print the contents of an object in python
Return a prettier version of obj
cosqa-train-16668
def _get_pretty_string(obj): """Return a prettier version of obj Parameters ---------- obj : object Object to pretty print Returns ------- s : str Pretty print object repr """ sio = StringIO() pprint.pprint(obj, stream=sio) return sio.getvalue()
def _pick_attrs ( attrs , keys ) : return dict ( ( k , v ) for k , v in attrs . items ( ) if k in keys )
0
select a set of keys in a dictionary python
Return attrs with keys in keys list
cosqa-train-16669
def _pick_attrs(attrs, keys): """ Return attrs with keys in keys list """ return dict((k, v) for k, v in attrs.items() if k in keys)
def _screen ( self , s , newline = False ) : if self . verbose : if newline : print ( s ) else : print ( s , end = ' ' )
0
printing without ( in python 3
Print something on screen when self . verbose == True
cosqa-train-16670
def _screen(self, s, newline=False): """Print something on screen when self.verbose == True""" if self.verbose: if newline: print(s) else: print(s, end=' ')
def gen_text ( env : TextIOBase , package : str , tmpl : str ) : if env : env_args = json_datetime . load ( env ) else : env_args = { } jinja_env = template . setup ( package ) echo ( jinja_env . get_template ( tmpl ) . render ( * * env_args ) )
0
sending an email with python using jinja template
Create output from Jinja template .
cosqa-train-16671
def gen_text(env: TextIOBase, package: str, tmpl: str): """Create output from Jinja template.""" if env: env_args = json_datetime.load(env) else: env_args = {} jinja_env = template.setup(package) echo(jinja_env.get_template(tmpl).render(**env_args))
def dot_v3 ( v , w ) : return sum ( [ x * y for x , y in zip ( v , w ) ] )
0
product of elements of a vector python
Return the dotproduct of two vectors .
cosqa-train-16672
def dot_v3(v, w): """Return the dotproduct of two vectors.""" return sum([x * y for x, y in zip(v, w)])
def _get_url ( url ) : try : data = HTTP_SESSION . get ( url , stream = True ) data . raise_for_status ( ) except requests . exceptions . RequestException as exc : raise FetcherException ( exc ) return data
0
session get requests not working python
Retrieve requested URL
cosqa-train-16673
def _get_url(url): """Retrieve requested URL""" try: data = HTTP_SESSION.get(url, stream=True) data.raise_for_status() except requests.exceptions.RequestException as exc: raise FetcherException(exc) return data
def image_set_aspect ( aspect = 1.0 , axes = "gca" ) : if axes is "gca" : axes = _pylab . gca ( ) e = axes . get_images ( ) [ 0 ] . get_extent ( ) axes . set_aspect ( abs ( ( e [ 1 ] - e [ 0 ] ) / ( e [ 3 ] - e [ 2 ] ) ) / aspect )
0
set aspect ratio of image python
sets the aspect ratio of the current zoom level of the imshow image
cosqa-train-16674
def image_set_aspect(aspect=1.0, axes="gca"): """ sets the aspect ratio of the current zoom level of the imshow image """ if axes is "gca": axes = _pylab.gca() e = axes.get_images()[0].get_extent() axes.set_aspect(abs((e[1]-e[0])/(e[3]-e[2]))/aspect)
def string_input ( prompt = '' ) : v = sys . version [ 0 ] if v == '3' : return input ( prompt ) else : return raw_input ( prompt )
1
prompt user input python3
Python 3 input () / Python 2 raw_input ()
cosqa-train-16675
def string_input(prompt=''): """Python 3 input()/Python 2 raw_input()""" v = sys.version[0] if v == '3': return input(prompt) else: return raw_input(prompt)
def b ( s ) : return s if isinstance ( s , bytes ) else s . encode ( locale . getpreferredencoding ( ) )
0
set default encode python
Encodes Unicode strings to byte strings if necessary .
cosqa-train-16676
def b(s): """ Encodes Unicode strings to byte strings, if necessary. """ return s if isinstance(s, bytes) else s.encode(locale.getpreferredencoding())
def MessageToDict ( message , including_default_value_fields = False , preserving_proto_field_name = False ) : printer = _Printer ( including_default_value_fields , preserving_proto_field_name ) # pylint: disable=protected-access return printer . _MessageToJsonObject ( message )
1
protobuf python dictionary of dictionary
Converts protobuf message to a JSON dictionary .
cosqa-train-16677
def MessageToDict(message, including_default_value_fields=False, preserving_proto_field_name=False): """Converts protobuf message to a JSON dictionary. Args: message: The protocol buffers message instance to serialize. including_default_value_fields: If True, singular primitive fields, repeated fields, and map fields will always be serialized. If False, only serialize non-empty fields. Singular message fields and oneof fields are not affected by this option. preserving_proto_field_name: If True, use the original proto field names as defined in the .proto file. If False, convert the field names to lowerCamelCase. Returns: A dict representation of the JSON formatted protocol buffer message. """ printer = _Printer(including_default_value_fields, preserving_proto_field_name) # pylint: disable=protected-access return printer._MessageToJsonObject(message)
def setPixel ( self , x , y , color ) : return _fitz . Pixmap_setPixel ( self , x , y , color )
0
set pixels in a color in python
Set the pixel at ( x y ) to the integers in sequence color .
cosqa-train-16678
def setPixel(self, x, y, color): """Set the pixel at (x,y) to the integers in sequence 'color'.""" return _fitz.Pixmap_setPixel(self, x, y, color)
def _GetFieldByName ( message_descriptor , field_name ) : try : return message_descriptor . fields_by_name [ field_name ] except KeyError : raise ValueError ( 'Protocol message %s has no "%s" field.' % ( message_descriptor . name , field_name ) )
1
protobuf python get filed by name
Returns a field descriptor by field name .
cosqa-train-16679
def _GetFieldByName(message_descriptor, field_name): """Returns a field descriptor by field name. Args: message_descriptor: A Descriptor describing all fields in message. field_name: The name of the field to retrieve. Returns: The field descriptor associated with the field name. """ try: return message_descriptor.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message %s has no "%s" field.' % (message_descriptor.name, field_name))
def _prepare_proxy ( self , conn ) : conn . set_tunnel ( self . _proxy_host , self . port , self . proxy_headers ) conn . connect ( )
0
set proxy tunnel for urllib python
Establish tunnel connection early because otherwise httplib would improperly set Host : header to proxy s IP : port .
cosqa-train-16680
def _prepare_proxy(self, conn): """ Establish tunnel connection early, because otherwise httplib would improperly set Host: header to proxy's IP:port. """ conn.set_tunnel(self._proxy_host, self.port, self.proxy_headers) conn.connect()
def toJson ( protoObject , indent = None ) : # Using the internal method because this way we can reformat the JSON js = json_format . MessageToDict ( protoObject , False ) return json . dumps ( js , indent = indent )
0
protobuf python pass grpc dict
Serialises a protobuf object as json
cosqa-train-16681
def toJson(protoObject, indent=None): """ Serialises a protobuf object as json """ # Using the internal method because this way we can reformat the JSON js = json_format.MessageToDict(protoObject, False) return json.dumps(js, indent=indent)
def clear_matplotlib_ticks ( self , axis = "both" ) : ax = self . get_axes ( ) plotting . clear_matplotlib_ticks ( ax = ax , axis = axis )
0
set tickhow to keep one of axes empty python
Clears the default matplotlib ticks .
cosqa-train-16682
def clear_matplotlib_ticks(self, axis="both"): """Clears the default matplotlib ticks.""" ax = self.get_axes() plotting.clear_matplotlib_ticks(ax=ax, axis=axis)
def newest_file ( file_iterable ) : return max ( file_iterable , key = lambda fname : os . path . getmtime ( fname ) )
0
pulling most recent file from directory python
Returns the name of the newest file given an iterable of file names .
cosqa-train-16683
def newest_file(file_iterable): """ Returns the name of the newest file given an iterable of file names. """ return max(file_iterable, key=lambda fname: os.path.getmtime(fname))
def update ( self , * * kwargs ) : for key , value in kwargs . items ( ) : setattr ( self , key , value )
0
setattr in python using kwargs
Creates or updates a property for the instance for each parameter .
cosqa-train-16684
def update(self, **kwargs): """Creates or updates a property for the instance for each parameter.""" for key, value in kwargs.items(): setattr(self, key, value)
def _add_hash ( source ) : source = '\n' . join ( '# ' + line . rstrip ( ) for line in source . splitlines ( ) ) return source
0
putting a hashtag on each line in python
Add a leading hash # at the beginning of every line in the source .
cosqa-train-16685
def _add_hash(source): """Add a leading hash '#' at the beginning of every line in the source.""" source = '\n'.join('# ' + line.rstrip() for line in source.splitlines()) return source
def hline ( self , x , y , width , color ) : self . rect ( x , y , width , 1 , color , fill = True )
0
shaded rectangle in lines in python
Draw a horizontal line up to a given length .
cosqa-train-16686
def hline(self, x, y, width, color): """Draw a horizontal line up to a given length.""" self.rect(x, y, width, 1, color, fill=True)
def make_unique_ngrams ( s , n ) : return set ( s [ i : i + n ] for i in range ( len ( s ) - n + 1 ) )
1
putting a string into a set number of characters in python
Make a set of unique n - grams from a string .
cosqa-train-16687
def make_unique_ngrams(s, n): """Make a set of unique n-grams from a string.""" return set(s[i:i + n] for i in range(len(s) - n + 1))
def _repr ( obj ) : vals = ", " . join ( "{}={!r}" . format ( name , getattr ( obj , name ) ) for name in obj . _attribs ) if vals : t = "{}(name={}, {})" . format ( obj . __class__ . __name__ , obj . name , vals ) else : t = "{}(name={})" . format ( obj . __class__ . __name__ , obj . name ) return t
1
show attributes of python object
Show the received object as precise as possible .
cosqa-train-16688
def _repr(obj): """Show the received object as precise as possible.""" vals = ", ".join("{}={!r}".format( name, getattr(obj, name)) for name in obj._attribs) if vals: t = "{}(name={}, {})".format(obj.__class__.__name__, obj.name, vals) else: t = "{}(name={})".format(obj.__class__.__name__, obj.name) return t
def objectproxy_realaddress ( obj ) : voidp = QROOT . TPython . ObjectProxy_AsVoidPtr ( obj ) return C . addressof ( C . c_char . from_buffer ( voidp ) )
0
pybind11 get address of c++ object from python
Obtain a real address as an integer from an objectproxy .
cosqa-train-16689
def objectproxy_realaddress(obj): """ Obtain a real address as an integer from an objectproxy. """ voidp = QROOT.TPython.ObjectProxy_AsVoidPtr(obj) return C.addressof(C.c_char.from_buffer(voidp))
def finish_plot ( ) : plt . legend ( ) plt . grid ( color = '0.7' ) plt . xlabel ( 'x' ) plt . ylabel ( 'y' ) plt . show ( )
0
show legend for matplotlib in python
Helper for plotting .
cosqa-train-16690
def finish_plot(): """Helper for plotting.""" plt.legend() plt.grid(color='0.7') plt.xlabel('x') plt.ylabel('y') plt.show()
def resources ( self ) : return [ self . pdf . getPage ( i ) for i in range ( self . pdf . getNumPages ( ) ) ]
0
pypdf2 reading all pdf pages python
Retrieve contents of each page of PDF
cosqa-train-16691
def resources(self): """Retrieve contents of each page of PDF""" return [self.pdf.getPage(i) for i in range(self.pdf.getNumPages())]
def smallest_signed_angle ( source , target ) : dth = target - source dth = ( dth + np . pi ) % ( 2.0 * np . pi ) - np . pi return dth
0
signed angle between vectors python
Find the smallest angle going from angle source to angle target .
cosqa-train-16692
def smallest_signed_angle(source, target): """Find the smallest angle going from angle `source` to angle `target`.""" dth = target - source dth = (dth + np.pi) % (2.0 * np.pi) - np.pi return dth
def closeEvent ( self , event ) : if self . closing ( True ) : event . accept ( ) else : event . ignore ( )
1
pyside python close event
closeEvent reimplementation
cosqa-train-16693
def closeEvent(self, event): """closeEvent reimplementation""" if self.closing(True): event.accept() else: event.ignore()
def distance_to_line ( a , b , p ) : return distance ( closest_point ( a , b , p ) , p )
0
simplest way to calculate l2 distance between two points in python
Closest distance between a line segment and a point
cosqa-train-16694
def distance_to_line(a, b, p): """Closest distance between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float """ return distance(closest_point(a, b, p), p)
def dump_json ( obj ) : return simplejson . dumps ( obj , ignore_nan = True , default = json_util . default )
0
python 'jsonify' is not defined
Dump Python object as JSON string .
cosqa-train-16695
def dump_json(obj): """Dump Python object as JSON string.""" return simplejson.dumps(obj, ignore_nan=True, default=json_util.default)
def sine_wave ( frequency ) : xs = tf . reshape ( tf . range ( _samples ( ) , dtype = tf . float32 ) , [ 1 , _samples ( ) , 1 ] ) ts = xs / FLAGS . sample_rate return tf . sin ( 2 * math . pi * frequency * ts )
0
sine wave with python
Emit a sine wave at the given frequency .
cosqa-train-16696
def sine_wave(frequency): """Emit a sine wave at the given frequency.""" xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1]) ts = xs / FLAGS.sample_rate return tf.sin(2 * math.pi * frequency * ts)
def string_input ( prompt = '' ) : v = sys . version [ 0 ] if v == '3' : return input ( prompt ) else : return raw_input ( prompt )
1
python 'prompt' is not defined
Python 3 input () / Python 2 raw_input ()
cosqa-train-16697
def string_input(prompt=''): """Python 3 input()/Python 2 raw_input()""" v = sys.version[0] if v == '3': return input(prompt) else: return raw_input(prompt)
def full_s ( self ) : x = np . zeros ( ( self . shape ) , dtype = np . float32 ) x [ : self . s . shape [ 0 ] , : self . s . shape [ 0 ] ] = self . s . as_2d s = Matrix ( x = x , row_names = self . row_names , col_names = self . col_names , isdiagonal = False , autoalign = False ) return s
1
singular matrixsingular matrix in python
Get the full singular value matrix of self
cosqa-train-16698
def full_s(self): """ Get the full singular value matrix of self Returns ------- Matrix : Matrix """ x = np.zeros((self.shape),dtype=np.float32) x[:self.s.shape[0],:self.s.shape[0]] = self.s.as_2d s = Matrix(x=x, row_names=self.row_names, col_names=self.col_names, isdiagonal=False, autoalign=False) return s
def bound_symbols ( self ) : try : lhs_syms = self . lhs . bound_symbols except AttributeError : lhs_syms = set ( ) try : rhs_syms = self . rhs . bound_symbols except AttributeError : rhs_syms = set ( ) return lhs_syms | rhs_syms
0
python 'symbol' object is not subscriptable
Set of bound SymPy symbols contained within the equation .
cosqa-train-16699
def bound_symbols(self): """Set of bound SymPy symbols contained within the equation.""" try: lhs_syms = self.lhs.bound_symbols except AttributeError: lhs_syms = set() try: rhs_syms = self.rhs.bound_symbols except AttributeError: rhs_syms = set() return lhs_syms | rhs_syms