code_tokens
stringlengths 60
3.94k
| label
int64 0
1
| doc
stringlengths 16
98
| docstring_tokens
stringlengths 0
1.41k
| idx
stringlengths 13
17
| code
stringlengths 87
6.4k
|
---|---|---|---|---|---|
def rmglob ( pattern : str ) -> None : for f in glob . glob ( pattern ) : os . remove ( f )
| 1 |
python delete all files with a given extension
|
Deletes all files whose filename matches the glob pattern ( via : func : glob . glob ) .
|
cosqa-train-19100
|
def rmglob(pattern: str) -> None:
"""
Deletes all files whose filename matches the glob ``pattern`` (via
:func:`glob.glob`).
"""
for f in glob.glob(pattern):
os.remove(f)
|
def get_property_as_float ( self , name : str ) -> float : return float ( self . __instrument . get_property ( name ) )
| 0 |
how to define a float in python
|
Return the value of a float property .
|
cosqa-train-19101
|
def get_property_as_float(self, name: str) -> float:
"""Return the value of a float property.
:return: The property value (float).
Raises exception if property with name doesn't exist.
.. versionadded:: 1.0
Scriptable: Yes
"""
return float(self.__instrument.get_property(name))
|
def zfill ( x , width ) : if not isinstance ( x , basestring ) : x = repr ( x ) return x . zfill ( width )
| 0 |
zero padding in strings in python
|
zfill ( x width ) - > string
|
cosqa-train-19102
|
def zfill(x, width):
"""zfill(x, width) -> string
Pad a numeric string x with zeros on the left, to fill a field
of the specified width. The string x is never truncated.
"""
if not isinstance(x, basestring):
x = repr(x)
return x.zfill(width)
|
def get_column_names ( engine : Engine , tablename : str ) -> List [ str ] : return [ info . name for info in gen_columns_info ( engine , tablename ) ]
| 0 |
how to list dynamo db table names using python
|
Get all the database column names for the specified table .
|
cosqa-train-19103
|
def get_column_names(engine: Engine, tablename: str) -> List[str]:
"""
Get all the database column names for the specified table.
"""
return [info.name for info in gen_columns_info(engine, tablename)]
|
def _exit ( self , status_code ) : # If there are active threads still running infinite loops, sys.exit # won't kill them but os._exit will. os._exit skips calling cleanup # handlers, flushing stdio buffers, etc. exit_func = os . _exit if threading . active_count ( ) > 1 else sys . exit exit_func ( status_code )
| 0 |
how to kill threads python
|
Properly kill Python process including zombie threads .
|
cosqa-train-19104
|
def _exit(self, status_code):
"""Properly kill Python process including zombie threads."""
# If there are active threads still running infinite loops, sys.exit
# won't kill them but os._exit will. os._exit skips calling cleanup
# handlers, flushing stdio buffers, etc.
exit_func = os._exit if threading.active_count() > 1 else sys.exit
exit_func(status_code)
|
def _duplicates ( list_ ) : item_indices = { } for i , item in enumerate ( list_ ) : try : item_indices [ item ] . append ( i ) except KeyError : # First time seen item_indices [ item ] = [ i ] return item_indices
| 0 |
python list to dictionary with indexs
|
Return dict mapping item - > indices .
|
cosqa-train-19105
|
def _duplicates(list_):
"""Return dict mapping item -> indices."""
item_indices = {}
for i, item in enumerate(list_):
try:
item_indices[item].append(i)
except KeyError: # First time seen
item_indices[item] = [i]
return item_indices
|
def get_column_names ( engine : Engine , tablename : str ) -> List [ str ] : return [ info . name for info in gen_columns_info ( engine , tablename ) ]
| 0 |
get column names from the database in python pyodbc
|
Get all the database column names for the specified table .
|
cosqa-train-19106
|
def get_column_names(engine: Engine, tablename: str) -> List[str]:
"""
Get all the database column names for the specified table.
"""
return [info.name for info in gen_columns_info(engine, tablename)]
|
def remove_once ( gset , elem ) : remove = getattr ( gset , 'remove' , None ) if remove is not None : remove ( elem ) else : del gset [ elem ] return elem
| 1 |
how to delete something from a set python
|
Remove the element from a set lists or dict . >>> L = [ Lucy ] ; S = set ( [ Sky ] ) ; D = { Diamonds : True } ; >>> remove_once ( L Lucy ) ; remove_once ( S Sky ) ; remove_once ( D Diamonds ) ; >>> print L S D [] set ( [] ) {}
|
cosqa-train-19107
|
def remove_once(gset, elem):
"""Remove the element from a set, lists or dict.
>>> L = ["Lucy"]; S = set(["Sky"]); D = { "Diamonds": True };
>>> remove_once(L, "Lucy"); remove_once(S, "Sky"); remove_once(D, "Diamonds");
>>> print L, S, D
[] set([]) {}
Returns the element if it was removed. Raises one of the exceptions in
:obj:`RemoveError` otherwise.
"""
remove = getattr(gset, 'remove', None)
if remove is not None: remove(elem)
else: del gset[elem]
return elem
|
def is_unicode ( string ) : str_type = str ( type ( string ) ) if str_type . find ( 'str' ) > 0 or str_type . find ( 'unicode' ) > 0 : return True return False
| 1 |
python check type if string
|
Validates that the object itself is some kinda string
|
cosqa-train-19108
|
def is_unicode(string):
"""Validates that the object itself is some kinda string"""
str_type = str(type(string))
if str_type.find('str') > 0 or str_type.find('unicode') > 0:
return True
return False
|
def remove_blank_lines ( string ) : return "\n" . join ( line for line in string . split ( "\n" ) if len ( line . strip ( ) ) )
| 1 |
delete blank str python
|
Removes all blank lines in @string
|
cosqa-train-19109
|
def remove_blank_lines(string):
""" Removes all blank lines in @string
-> #str without blank lines
"""
return "\n".join(line
for line in string.split("\n")
if len(line.strip()))
|
def rl_get_point ( ) -> int : # pragma: no cover if rl_type == RlType . GNU : return ctypes . c_int . in_dll ( readline_lib , "rl_point" ) . value elif rl_type == RlType . PYREADLINE : return readline . rl . mode . l_buffer . point else : return 0
| 1 |
get read position python
|
Returns the offset of the current cursor position in rl_line_buffer
|
cosqa-train-19110
|
def rl_get_point() -> int: # pragma: no cover
"""
Returns the offset of the current cursor position in rl_line_buffer
"""
if rl_type == RlType.GNU:
return ctypes.c_int.in_dll(readline_lib, "rl_point").value
elif rl_type == RlType.PYREADLINE:
return readline.rl.mode.l_buffer.point
else:
return 0
|
def get_pylint_options ( config_dir = '.' ) : # type: (str) -> List[str] if PYLINT_CONFIG_NAME in os . listdir ( config_dir ) : pylint_config_path = PYLINT_CONFIG_NAME else : pylint_config_path = DEFAULT_PYLINT_CONFIG_PATH return [ '--rcfile={}' . format ( pylint_config_path ) ]
| 1 |
change python path pylint
|
Checks for local config overrides for pylint and add them in the correct pylint options format .
|
cosqa-train-19111
|
def get_pylint_options(config_dir='.'):
# type: (str) -> List[str]
"""Checks for local config overrides for `pylint`
and add them in the correct `pylint` `options` format.
:param config_dir:
:return: List [str]
"""
if PYLINT_CONFIG_NAME in os.listdir(config_dir):
pylint_config_path = PYLINT_CONFIG_NAME
else:
pylint_config_path = DEFAULT_PYLINT_CONFIG_PATH
return ['--rcfile={}'.format(pylint_config_path)]
|
def _skip ( self , cnt ) : while cnt > 0 : if cnt > 8192 : buf = self . read ( 8192 ) else : buf = self . read ( cnt ) if not buf : break cnt -= len ( buf )
| 0 |
python skip[ byte read file
|
Read and discard data
|
cosqa-train-19112
|
def _skip(self, cnt):
"""Read and discard data"""
while cnt > 0:
if cnt > 8192:
buf = self.read(8192)
else:
buf = self.read(cnt)
if not buf:
break
cnt -= len(buf)
|
def get_domain ( url ) : parse_result = urlparse ( url ) domain = "{schema}://{netloc}" . format ( schema = parse_result . scheme , netloc = parse_result . netloc ) return domain
| 1 |
python url extraction from domains
|
Get domain part of an url .
|
cosqa-train-19113
|
def get_domain(url):
"""
Get domain part of an url.
For example: https://www.python.org/doc/ -> https://www.python.org
"""
parse_result = urlparse(url)
domain = "{schema}://{netloc}".format(
schema=parse_result.scheme, netloc=parse_result.netloc)
return domain
|
def _cnx_is_empty ( in_file ) : with open ( in_file ) as in_handle : for i , line in enumerate ( in_handle ) : if i > 0 : return False return True
| 0 |
empty file condition in python
|
Check if cnr or cns files are empty ( only have a header )
|
cosqa-train-19114
|
def _cnx_is_empty(in_file):
"""Check if cnr or cns files are empty (only have a header)
"""
with open(in_file) as in_handle:
for i, line in enumerate(in_handle):
if i > 0:
return False
return True
|
def argmax ( iterable , key = None , both = False ) : if key is not None : it = imap ( key , iterable ) else : it = iter ( iterable ) score , argmax = reduce ( max , izip ( it , count ( ) ) ) if both : return argmax , score return argmax
| 0 |
max on a list of ints in python
|
>>> argmax ( [ 4 2 - 5 ] ) 0 >>> argmax ( [ 4 2 - 5 ] key = abs ) 2 >>> argmax ( [ 4 2 - 5 ] key = abs both = True ) ( 2 5 )
|
cosqa-train-19115
|
def argmax(iterable, key=None, both=False):
"""
>>> argmax([4,2,-5])
0
>>> argmax([4,2,-5], key=abs)
2
>>> argmax([4,2,-5], key=abs, both=True)
(2, 5)
"""
if key is not None:
it = imap(key, iterable)
else:
it = iter(iterable)
score, argmax = reduce(max, izip(it, count()))
if both:
return argmax, score
return argmax
|
def bfx ( value , msb , lsb ) : mask = bitmask ( ( msb , lsb ) ) return ( value & mask ) >> lsb
| 0 |
how to do a bitwise and function in python
|
!
|
cosqa-train-19116
|
def bfx(value, msb, lsb):
"""! @brief Extract a value from a bitfield."""
mask = bitmask((msb, lsb))
return (value & mask) >> lsb
|
def argmax ( self , rows : List [ Row ] , column : ComparableColumn ) -> List [ Row ] : if not rows : return [ ] value_row_pairs = [ ( row . values [ column . name ] , row ) for row in rows ] if not value_row_pairs : return [ ] # Returns a list containing the row with the max cell value. return [ sorted ( value_row_pairs , key = lambda x : x [ 0 ] , reverse = True ) [ 0 ] [ 1 ] ]
| 0 |
python max column value
|
Takes a list of rows and a column name and returns a list containing a single row ( dict from columns to cells ) that has the maximum numerical value in the given column . We return a list instead of a single dict to be consistent with the return type of select and all_rows .
|
cosqa-train-19117
|
def argmax(self, rows: List[Row], column: ComparableColumn) -> List[Row]:
"""
Takes a list of rows and a column name and returns a list containing a single row (dict from
columns to cells) that has the maximum numerical value in the given column. We return a list
instead of a single dict to be consistent with the return type of ``select`` and
``all_rows``.
"""
if not rows:
return []
value_row_pairs = [(row.values[column.name], row) for row in rows]
if not value_row_pairs:
return []
# Returns a list containing the row with the max cell value.
return [sorted(value_row_pairs, key=lambda x: x[0], reverse=True)[0][1]]
|
def is_relative_url ( url ) : if url . startswith ( "#" ) : return None if url . find ( "://" ) > 0 or url . startswith ( "//" ) : # either 'http(s)://...' or '//cdn...' and therefore absolute return False return True
| 0 |
python determine if path is relative or absolute
|
simple method to determine if a url is relative or absolute
|
cosqa-train-19118
|
def is_relative_url(url):
""" simple method to determine if a url is relative or absolute """
if url.startswith("#"):
return None
if url.find("://") > 0 or url.startswith("//"):
# either 'http(s)://...' or '//cdn...' and therefore absolute
return False
return True
|
def array2string ( arr : numpy . ndarray ) -> str : shape = str ( arr . shape ) [ 1 : - 1 ] if shape . endswith ( "," ) : shape = shape [ : - 1 ] return numpy . array2string ( arr , threshold = 11 ) + "%s[%s]" % ( arr . dtype , shape )
| 1 |
python3 np arry to str
|
Format numpy array as a string .
|
cosqa-train-19119
|
def array2string(arr: numpy.ndarray) -> str:
"""Format numpy array as a string."""
shape = str(arr.shape)[1:-1]
if shape.endswith(","):
shape = shape[:-1]
return numpy.array2string(arr, threshold=11) + "%s[%s]" % (arr.dtype, shape)
|
def _get_or_default ( mylist , i , default = None ) : if i >= len ( mylist ) : return default else : return mylist [ i ]
| 0 |
get first or default in python
|
return list item number or default if don t exist
|
cosqa-train-19120
|
def _get_or_default(mylist, i, default=None):
"""return list item number, or default if don't exist"""
if i >= len(mylist):
return default
else :
return mylist[i]
|
def hex_to_int ( value ) : if version_info . major >= 3 : return int . from_bytes ( value , "big" ) return int ( value . encode ( "hex" ) , 16 )
| 1 |
python3 hex to int
|
Convert hex string like \ x0A \ xE3 to 2787 .
|
cosqa-train-19121
|
def hex_to_int(value):
"""
Convert hex string like "\x0A\xE3" to 2787.
"""
if version_info.major >= 3:
return int.from_bytes(value, "big")
return int(value.encode("hex"), 16)
|
def remove_links ( text ) : tco_link_regex = re . compile ( "https?://t.co/[A-z0-9].*" ) generic_link_regex = re . compile ( "(https?://)?(\w*[.]\w+)+([/?=&]+\w+)*" ) remove_tco = re . sub ( tco_link_regex , " " , text ) remove_generic = re . sub ( generic_link_regex , " " , remove_tco ) return remove_generic
| 0 |
remove links in python clean text
|
Helper function to remove the links from the input text
|
cosqa-train-19122
|
def remove_links(text):
"""
Helper function to remove the links from the input text
Args:
text (str): A string
Returns:
str: the same text, but with any substring that matches the regex
for a link removed and replaced with a space
Example:
>>> from tweet_parser.getter_methods.tweet_text import remove_links
>>> text = "lorem ipsum dolor https://twitter.com/RobotPrincessFi"
>>> remove_links(text)
'lorem ipsum dolor '
"""
tco_link_regex = re.compile("https?://t.co/[A-z0-9].*")
generic_link_regex = re.compile("(https?://)?(\w*[.]\w+)+([/?=&]+\w+)*")
remove_tco = re.sub(tco_link_regex, " ", text)
remove_generic = re.sub(generic_link_regex, " ", remove_tco)
return remove_generic
|
def _ ( f , x ) : return { k : v for k , v in x . items ( ) if f ( k , v ) }
| 1 |
usinf filter on dictionary python
|
filter for dict note f should have signature : f :: key - > value - > bool
|
cosqa-train-19123
|
def _(f, x):
"""
filter for dict, note `f` should have signature: `f::key->value->bool`
"""
return {k: v for k, v in x.items() if f(k, v)}
|
def validate ( request : Union [ Dict , List ] , schema : dict ) -> Union [ Dict , List ] : jsonschema_validate ( request , schema ) return request
| 1 |
validations for dict inside array jsonschema python
|
Wraps jsonschema . validate returning the same object passed in .
|
cosqa-train-19124
|
def validate(request: Union[Dict, List], schema: dict) -> Union[Dict, List]:
"""
Wraps jsonschema.validate, returning the same object passed in.
Args:
request: The deserialized-from-json request.
schema: The jsonschema schema to validate against.
Raises:
jsonschema.ValidationError
"""
jsonschema_validate(request, schema)
return request
|
def load_yaml ( file ) : if hasattr ( yaml , "full_load" ) : return yaml . full_load ( file ) else : return yaml . load ( file )
| 1 |
python is yaml load fails
|
If pyyaml > 5 . 1 use full_load to avoid warning
|
cosqa-train-19125
|
def load_yaml(file):
"""If pyyaml > 5.1 use full_load to avoid warning"""
if hasattr(yaml, "full_load"):
return yaml.full_load(file)
else:
return yaml.load(file)
|
def astensor ( array : TensorLike ) -> BKTensor : tensor = tf . convert_to_tensor ( value = array , dtype = CTYPE ) return tensor
| 0 |
python list to tensorflow tensor
|
Covert numpy array to tensorflow tensor
|
cosqa-train-19126
|
def astensor(array: TensorLike) -> BKTensor:
"""Covert numpy array to tensorflow tensor"""
tensor = tf.convert_to_tensor(value=array, dtype=CTYPE)
return tensor
|
def hsv2rgb_spectrum ( hsv ) : h , s , v = hsv return hsv2rgb_raw ( ( ( h * 192 ) >> 8 , s , v ) )
| 0 |
python hsv rgb transform
|
Generates RGB values from HSV values in line with a typical light spectrum .
|
cosqa-train-19127
|
def hsv2rgb_spectrum(hsv):
"""Generates RGB values from HSV values in line with a typical light
spectrum."""
h, s, v = hsv
return hsv2rgb_raw(((h * 192) >> 8, s, v))
|
def format_exp_floats ( decimals ) : threshold = 10 ** 5 return ( lambda n : "{:.{prec}e}" . format ( n , prec = decimals ) if n > threshold else "{:4.{prec}f}" . format ( n , prec = decimals ) )
| 0 |
format decimals as percentages in a column, 2 decimals python
|
sometimes the exp . column can be too large
|
cosqa-train-19128
|
def format_exp_floats(decimals):
"""
sometimes the exp. column can be too large
"""
threshold = 10 ** 5
return (
lambda n: "{:.{prec}e}".format(n, prec=decimals) if n > threshold else "{:4.{prec}f}".format(n, prec=decimals)
)
|
def login ( self , user : str , passwd : str ) -> None : self . context . login ( user , passwd )
| 0 |
how to log in in instagram using python
|
Log in to instagram with given username and password and internally store session object .
|
cosqa-train-19129
|
def login(self, user: str, passwd: str) -> None:
"""Log in to instagram with given username and password and internally store session object.
:raises InvalidArgumentException: If the provided username does not exist.
:raises BadCredentialsException: If the provided password is wrong.
:raises ConnectionException: If connection to Instagram failed.
:raises TwoFactorAuthRequiredException: First step of 2FA login done, now call :meth:`Instaloader.two_factor_login`."""
self.context.login(user, passwd)
|
def is_not_null ( df : DataFrame , col_name : str ) -> bool : if ( isinstance ( df , pd . DataFrame ) and col_name in df . columns and df [ col_name ] . notnull ( ) . any ( ) ) : return True else : return False
| 0 |
python df check if column has specif nan value
|
Return True if the given DataFrame has a column of the given name ( string ) and there exists at least one non - NaN value in that column ; return False otherwise .
|
cosqa-train-19130
|
def is_not_null(df: DataFrame, col_name: str) -> bool:
"""
Return ``True`` if the given DataFrame has a column of the given
name (string), and there exists at least one non-NaN value in that
column; return ``False`` otherwise.
"""
if (
isinstance(df, pd.DataFrame)
and col_name in df.columns
and df[col_name].notnull().any()
):
return True
else:
return False
|
def quaternion_imag ( quaternion ) : return np . array ( quaternion [ 1 : 4 ] , dtype = np . float64 , copy = True )
| 0 |
get entire first dimension of 3dimension array python
|
Return imaginary part of quaternion .
|
cosqa-train-19131
|
def quaternion_imag(quaternion):
"""Return imaginary part of quaternion.
>>> quaternion_imag([3, 0, 1, 2])
array([0., 1., 2.])
"""
return np.array(quaternion[1:4], dtype=np.float64, copy=True)
|
def _skip_section ( self ) : self . _last = self . _f . readline ( ) while len ( self . _last ) > 0 and len ( self . _last [ 0 ] . strip ( ) ) == 0 : self . _last = self . _f . readline ( )
| 0 |
python how to skip a line
|
Skip a section
|
cosqa-train-19132
|
def _skip_section(self):
"""Skip a section"""
self._last = self._f.readline()
while len(self._last) > 0 and len(self._last[0].strip()) == 0:
self._last = self._f.readline()
|
def is_natural ( x ) : try : is_integer = int ( x ) == x except ( TypeError , ValueError ) : return False return is_integer and x >= 0
| 0 |
not a number equal python
|
A non - negative integer .
|
cosqa-train-19133
|
def is_natural(x):
"""A non-negative integer."""
try:
is_integer = int(x) == x
except (TypeError, ValueError):
return False
return is_integer and x >= 0
|
def stretch ( iterable , n = 2 ) : times = range ( n ) for item in iterable : for i in times : yield item
| 1 |
python repeat a value n times in a list
|
r Repeat each item in iterable n times .
|
cosqa-train-19134
|
def stretch(iterable, n=2):
r"""Repeat each item in `iterable` `n` times.
Example:
>>> list(stretch(range(3), 2))
[0, 0, 1, 1, 2, 2]
"""
times = range(n)
for item in iterable:
for i in times: yield item
|
def remove_leading_zeros ( num : str ) -> str : if not num : return num if num . startswith ( 'M' ) : ret = 'M' + num [ 1 : ] . lstrip ( '0' ) elif num . startswith ( '-' ) : ret = '-' + num [ 1 : ] . lstrip ( '0' ) else : ret = num . lstrip ( '0' ) return '0' if ret in ( '' , 'M' , '-' ) else ret
| 1 |
how to keep leading zero's in an integer in python
|
Strips zeros while handling - M and empty strings
|
cosqa-train-19135
|
def remove_leading_zeros(num: str) -> str:
"""
Strips zeros while handling -, M, and empty strings
"""
if not num:
return num
if num.startswith('M'):
ret = 'M' + num[1:].lstrip('0')
elif num.startswith('-'):
ret = '-' + num[1:].lstrip('0')
else:
ret = num.lstrip('0')
return '0' if ret in ('', 'M', '-') else ret
|
def _create_empty_array ( self , frames , always_2d , dtype ) : import numpy as np if always_2d or self . channels > 1 : shape = frames , self . channels else : shape = frames , return np . empty ( shape , dtype , order = 'C' )
| 0 |
make empty 2d array python
|
Create an empty array with appropriate shape .
|
cosqa-train-19136
|
def _create_empty_array(self, frames, always_2d, dtype):
"""Create an empty array with appropriate shape."""
import numpy as np
if always_2d or self.channels > 1:
shape = frames, self.channels
else:
shape = frames,
return np.empty(shape, dtype, order='C')
|
def dict_to_enum_fn ( d : Dict [ str , Any ] , enum_class : Type [ Enum ] ) -> Enum : return enum_class [ d [ 'name' ] ]
| 1 |
python enum not json serializable
|
Converts an dict to a Enum .
|
cosqa-train-19137
|
def dict_to_enum_fn(d: Dict[str, Any], enum_class: Type[Enum]) -> Enum:
"""
Converts an ``dict`` to a ``Enum``.
"""
return enum_class[d['name']]
|
def increment_frame ( self ) : self . current_frame += 1 if self . current_frame >= self . end_frame : # Wrap back to the beginning of the animation. self . current_frame = 0
| 1 |
increase animation speed python
|
Increment a frame of the animation .
|
cosqa-train-19138
|
def increment_frame(self):
"""Increment a frame of the animation."""
self.current_frame += 1
if self.current_frame >= self.end_frame:
# Wrap back to the beginning of the animation.
self.current_frame = 0
|
def is_integer ( value : Any ) -> bool : return ( isinstance ( value , int ) and not isinstance ( value , bool ) ) or ( isinstance ( value , float ) and isfinite ( value ) and int ( value ) == value )
| 0 |
check if value is integeer python
|
Return true if a value is an integer number .
|
cosqa-train-19139
|
def is_integer(value: Any) -> bool:
"""Return true if a value is an integer number."""
return (isinstance(value, int) and not isinstance(value, bool)) or (
isinstance(value, float) and isfinite(value) and int(value) == value
)
|
def samefile ( a : str , b : str ) -> bool : try : return os . path . samefile ( a , b ) except OSError : return os . path . normpath ( a ) == os . path . normpath ( b )
| 0 |
python check if two path are the same
|
Check if two pathes represent the same file .
|
cosqa-train-19140
|
def samefile(a: str, b: str) -> bool:
"""Check if two pathes represent the same file."""
try:
return os.path.samefile(a, b)
except OSError:
return os.path.normpath(a) == os.path.normpath(b)
|
def __replace_all ( repls : dict , input : str ) -> str : return re . sub ( '|' . join ( re . escape ( key ) for key in repls . keys ( ) ) , lambda k : repls [ k . group ( 0 ) ] , input )
| 0 |
how to replace some characters in a string in python
|
Replaces from a string ** input ** all the occurrences of some symbols according to mapping ** repls ** .
|
cosqa-train-19141
|
def __replace_all(repls: dict, input: str) -> str:
""" Replaces from a string **input** all the occurrences of some
symbols according to mapping **repls**.
:param dict repls: where #key is the old character and
#value is the one to substitute with;
:param str input: original string where to apply the
replacements;
:return: *(str)* the string with the desired characters replaced
"""
return re.sub('|'.join(re.escape(key) for key in repls.keys()),
lambda k: repls[k.group(0)], input)
|
def dotproduct ( X , Y ) : return sum ( [ x * y for x , y in zip ( X , Y ) ] )
| 0 |
element wise product python
|
Return the sum of the element - wise product of vectors x and y . >>> dotproduct ( [ 1 2 3 ] [ 1000 100 10 ] ) 1230
|
cosqa-train-19142
|
def dotproduct(X, Y):
"""Return the sum of the element-wise product of vectors x and y.
>>> dotproduct([1, 2, 3], [1000, 100, 10])
1230
"""
return sum([x * y for x, y in zip(X, Y)])
|
async def fetchall ( self ) -> Iterable [ sqlite3 . Row ] : return await self . _execute ( self . _cursor . fetchall )
| 0 |
python mysql yield all rows
|
Fetch all remaining rows .
|
cosqa-train-19143
|
async def fetchall(self) -> Iterable[sqlite3.Row]:
"""Fetch all remaining rows."""
return await self._execute(self._cursor.fetchall)
|
def rate_limited ( max_per_hour : int , * args : Any ) -> Callable [ ... , Any ] : return util . rate_limited ( max_per_hour , * args )
| 0 |
python how to define limit of function
|
Rate limit a function .
|
cosqa-train-19144
|
def rate_limited(max_per_hour: int, *args: Any) -> Callable[..., Any]:
"""Rate limit a function."""
return util.rate_limited(max_per_hour, *args)
|
def hex_to_int ( value ) : if version_info . major >= 3 : return int . from_bytes ( value , "big" ) return int ( value . encode ( "hex" ) , 16 )
| 1 |
python string of hex to int
|
Convert hex string like \ x0A \ xE3 to 2787 .
|
cosqa-train-19145
|
def hex_to_int(value):
"""
Convert hex string like "\x0A\xE3" to 2787.
"""
if version_info.major >= 3:
return int.from_bytes(value, "big")
return int(value.encode("hex"), 16)
|
def is_integer ( value : Any ) -> bool : return ( isinstance ( value , int ) and not isinstance ( value , bool ) ) or ( isinstance ( value , float ) and isfinite ( value ) and int ( value ) == value )
| 0 |
python is integer or float
|
Return true if a value is an integer number .
|
cosqa-train-19146
|
def is_integer(value: Any) -> bool:
"""Return true if a value is an integer number."""
return (isinstance(value, int) and not isinstance(value, bool)) or (
isinstance(value, float) and isfinite(value) and int(value) == value
)
|
def de_duplicate ( items ) : result = [ ] for item in items : if item not in result : result . append ( item ) return result
| 0 |
python how delete item in a list if partial duplicate
|
Remove any duplicate item preserving order
|
cosqa-train-19147
|
def de_duplicate(items):
"""Remove any duplicate item, preserving order
>>> de_duplicate([1, 2, 1, 2])
[1, 2]
"""
result = []
for item in items:
if item not in result:
result.append(item)
return result
|
def uppercase_chars ( string : any ) -> str : return '' . join ( [ c if c . isupper ( ) else '' for c in str ( string ) ] )
| 0 |
how to uppercase first letter in each sentence python string upper method
|
Return all ( and only ) the uppercase chars in the given string .
|
cosqa-train-19148
|
def uppercase_chars(string: any) -> str:
"""Return all (and only) the uppercase chars in the given string."""
return ''.join([c if c.isupper() else '' for c in str(string)])
|
def cli_run ( ) : parser = argparse . ArgumentParser ( description = 'Stupidly simple code answers from StackOverflow' ) parser . add_argument ( 'query' , help = "What's the problem ?" , type = str , nargs = '+' ) parser . add_argument ( '-t' , '--tags' , help = 'semicolon separated tags -> python;lambda' ) args = parser . parse_args ( ) main ( args )
| 1 |
python how to call main that has argparse
|
docstring for argparse
|
cosqa-train-19149
|
def cli_run():
"""docstring for argparse"""
parser = argparse.ArgumentParser(description='Stupidly simple code answers from StackOverflow')
parser.add_argument('query', help="What's the problem ?", type=str, nargs='+')
parser.add_argument('-t','--tags', help='semicolon separated tags -> python;lambda')
args = parser.parse_args()
main(args)
|
def _duplicates ( list_ ) : item_indices = { } for i , item in enumerate ( list_ ) : try : item_indices [ item ] . append ( i ) except KeyError : # First time seen item_indices [ item ] = [ i ] return item_indices
| 0 |
create a list of unique indexes python
|
Return dict mapping item - > indices .
|
cosqa-train-19150
|
def _duplicates(list_):
"""Return dict mapping item -> indices."""
item_indices = {}
for i, item in enumerate(list_):
try:
item_indices[item].append(i)
except KeyError: # First time seen
item_indices[item] = [i]
return item_indices
|
def is_line_in_file ( filename : str , line : str ) -> bool : assert "\n" not in line with open ( filename , "r" ) as file : for fileline in file : if fileline == line : return True return False
| 1 |
how to check if a line is in a txt file python
|
Detects whether a line is present within a file .
|
cosqa-train-19151
|
def is_line_in_file(filename: str, line: str) -> bool:
"""
Detects whether a line is present within a file.
Args:
filename: file to check
line: line to search for (as an exact match)
"""
assert "\n" not in line
with open(filename, "r") as file:
for fileline in file:
if fileline == line:
return True
return False
|
def closest_values ( L ) : assert len ( L ) >= 2 L . sort ( ) valmin , argmin = min ( ( L [ i ] - L [ i - 1 ] , i ) for i in range ( 1 , len ( L ) ) ) return L [ argmin - 1 ] , L [ argmin ]
| 1 |
python get two closest numbers in list
|
Closest values
|
cosqa-train-19152
|
def closest_values(L):
"""Closest values
:param L: list of values
:returns: two values from L with minimal distance
:modifies: the order of L
:complexity: O(n log n), for n=len(L)
"""
assert len(L) >= 2
L.sort()
valmin, argmin = min((L[i] - L[i - 1], i) for i in range(1, len(L)))
return L[argmin - 1], L[argmin]
|
def singularize ( word ) : for inflection in UNCOUNTABLES : if re . search ( r'(?i)\b(%s)\Z' % inflection , word ) : return word for rule , replacement in SINGULARS : if re . search ( rule , word ) : return re . sub ( rule , replacement , word ) return word
| 0 |
function that returns plural string python
|
Return the singular form of a word the reverse of : func : pluralize .
|
cosqa-train-19153
|
def singularize(word):
"""
Return the singular form of a word, the reverse of :func:`pluralize`.
Examples::
>>> singularize("posts")
"post"
>>> singularize("octopi")
"octopus"
>>> singularize("sheep")
"sheep"
>>> singularize("word")
"word"
>>> singularize("CamelOctopi")
"CamelOctopus"
"""
for inflection in UNCOUNTABLES:
if re.search(r'(?i)\b(%s)\Z' % inflection, word):
return word
for rule, replacement in SINGULARS:
if re.search(rule, word):
return re.sub(rule, replacement, word)
return word
|
def to_bytes ( data : Any ) -> bytearray : # noqa if isinstance ( data , int ) : return bytearray ( [ data ] ) return bytearray ( data , encoding = 'latin-1' )
| 1 |
cast string to bytearray python
|
Convert anything to a bytearray . See - http : // stackoverflow . com / questions / 7585435 / best - way - to - convert - string - to - bytes - in - python - 3 - http : // stackoverflow . com / questions / 10459067 / how - to - convert - my - bytearrayb - x9e - x18k - x9a - to - something - like - this - x9e - x1
|
cosqa-train-19154
|
def to_bytes(data: Any) -> bytearray:
"""
Convert anything to a ``bytearray``.
See
- http://stackoverflow.com/questions/7585435/best-way-to-convert-string-to-bytes-in-python-3
- http://stackoverflow.com/questions/10459067/how-to-convert-my-bytearrayb-x9e-x18k-x9a-to-something-like-this-x9e-x1
""" # noqa
if isinstance(data, int):
return bytearray([data])
return bytearray(data, encoding='latin-1')
|
def factors ( n ) : return set ( reduce ( list . __add__ , ( [ i , n // i ] for i in range ( 1 , int ( n ** 0.5 ) + 1 ) if n % i == 0 ) ) )
| 1 |
python list the factors of an integer
|
Computes all the integer factors of the number n
|
cosqa-train-19155
|
def factors(n):
"""
Computes all the integer factors of the number `n`
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_alg import * # NOQA
>>> import utool as ut
>>> result = sorted(ut.factors(10))
>>> print(result)
[1, 2, 5, 10]
References:
http://stackoverflow.com/questions/6800193/finding-all-the-factors
"""
return set(reduce(list.__add__,
([i, n // i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0)))
|
def get_environment_info ( ) -> dict : data = _environ . systems . get_system_data ( ) data [ 'cauldron' ] = _environ . package_settings . copy ( ) return data
| 1 |
how to get the env variables in python in crontab
|
Information about Cauldron and its Python interpreter .
|
cosqa-train-19156
|
def get_environment_info() -> dict:
"""
Information about Cauldron and its Python interpreter.
:return:
A dictionary containing information about the Cauldron and its
Python environment. This information is useful when providing feedback
and bug reports.
"""
data = _environ.systems.get_system_data()
data['cauldron'] = _environ.package_settings.copy()
return data
|
def _rindex ( mylist : Sequence [ T ] , x : T ) -> int : return len ( mylist ) - mylist [ : : - 1 ] . index ( x ) - 1
| 0 |
return last matching index python
|
Index of the last occurrence of x in the sequence .
|
cosqa-train-19157
|
def _rindex(mylist: Sequence[T], x: T) -> int:
"""Index of the last occurrence of x in the sequence."""
return len(mylist) - mylist[::-1].index(x) - 1
|
def dotproduct ( X , Y ) : return sum ( [ x * y for x , y in zip ( X , Y ) ] )
| 1 |
dot product of 2d matrix in python
|
Return the sum of the element - wise product of vectors x and y . >>> dotproduct ( [ 1 2 3 ] [ 1000 100 10 ] ) 1230
|
cosqa-train-19158
|
def dotproduct(X, Y):
"""Return the sum of the element-wise product of vectors x and y.
>>> dotproduct([1, 2, 3], [1000, 100, 10])
1230
"""
return sum([x * y for x, y in zip(X, Y)])
|
def remove_empty_text ( utterances : List [ Utterance ] ) -> List [ Utterance ] : return [ utter for utter in utterances if utter . text . strip ( ) != "" ]
| 0 |
python strip all items in a list
|
Remove empty utterances from a list of utterances Args : utterances : The list of utterance we are processing
|
cosqa-train-19159
|
def remove_empty_text(utterances: List[Utterance]) -> List[Utterance]:
"""Remove empty utterances from a list of utterances
Args:
utterances: The list of utterance we are processing
"""
return [utter for utter in utterances if utter.text.strip() != ""]
|
def detect_model_num ( string ) : match = re . match ( MODEL_NUM_REGEX , string ) if match : return int ( match . group ( ) ) return None
| 0 |
extract model number from a split python
|
Takes a string related to a model name and extract its model number .
|
cosqa-train-19160
|
def detect_model_num(string):
"""Takes a string related to a model name and extract its model number.
For example:
'000000-bootstrap.index' => 0
"""
match = re.match(MODEL_NUM_REGEX, string)
if match:
return int(match.group())
return None
|
def is_sqlatype_integer ( coltype : Union [ TypeEngine , VisitableType ] ) -> bool : coltype = _coltype_to_typeengine ( coltype ) return isinstance ( coltype , sqltypes . Integer )
| 0 |
change column type from pbject to int python
|
Is the SQLAlchemy column type an integer type?
|
cosqa-train-19161
|
def is_sqlatype_integer(coltype: Union[TypeEngine, VisitableType]) -> bool:
"""
Is the SQLAlchemy column type an integer type?
"""
coltype = _coltype_to_typeengine(coltype)
return isinstance(coltype, sqltypes.Integer)
|
def uniqued ( iterable ) : seen = set ( ) return [ item for item in iterable if item not in seen and not seen . add ( item ) ]
| 1 |
python get unique values from object
|
Return unique list of iterable items preserving order .
|
cosqa-train-19162
|
def uniqued(iterable):
"""Return unique list of ``iterable`` items preserving order.
>>> uniqued('spameggs')
['s', 'p', 'a', 'm', 'e', 'g']
"""
seen = set()
return [item for item in iterable if item not in seen and not seen.add(item)]
|
def auto_up ( self , count = 1 , go_to_start_of_line_if_history_changes = False ) : if self . complete_state : self . complete_previous ( count = count ) elif self . document . cursor_position_row > 0 : self . cursor_up ( count = count ) elif not self . selection_state : self . history_backward ( count = count ) # Go to the start of the line? if go_to_start_of_line_if_history_changes : self . cursor_position += self . document . get_start_of_line_position ( )
| 1 |
how to loopback to a previous line in python
|
If we re not on the first line ( of a multiline input ) go a line up otherwise go back in history . ( If nothing is selected . )
|
cosqa-train-19163
|
def auto_up(self, count=1, go_to_start_of_line_if_history_changes=False):
"""
If we're not on the first line (of a multiline input) go a line up,
otherwise go back in history. (If nothing is selected.)
"""
if self.complete_state:
self.complete_previous(count=count)
elif self.document.cursor_position_row > 0:
self.cursor_up(count=count)
elif not self.selection_state:
self.history_backward(count=count)
# Go to the start of the line?
if go_to_start_of_line_if_history_changes:
self.cursor_position += self.document.get_start_of_line_position()
|
def pruning ( self , X , y , cost_mat ) : self . tree_ . tree_pruned = copy . deepcopy ( self . tree_ . tree ) if self . tree_ . n_nodes > 0 : self . _pruning ( X , y , cost_mat ) nodes_pruned = self . _nodes ( self . tree_ . tree_pruned ) self . tree_ . n_nodes_pruned = len ( nodes_pruned )
| 1 |
how to post prune decision tree python
|
Function that prune the decision tree .
|
cosqa-train-19164
|
def pruning(self, X, y, cost_mat):
""" Function that prune the decision tree.
Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.
y_true : array indicator matrix
Ground truth (correct) labels.
cost_mat : array-like of shape = [n_samples, 4]
Cost matrix of the classification problem
Where the columns represents the costs of: false positives, false negatives,
true positives and true negatives, for each example.
"""
self.tree_.tree_pruned = copy.deepcopy(self.tree_.tree)
if self.tree_.n_nodes > 0:
self._pruning(X, y, cost_mat)
nodes_pruned = self._nodes(self.tree_.tree_pruned)
self.tree_.n_nodes_pruned = len(nodes_pruned)
|
def get_from_gnucash26_date ( date_str : str ) -> date : date_format = "%Y%m%d" result = datetime . strptime ( date_str , date_format ) . date ( ) return result
| 0 |
python 3 covert string to date
|
Creates a datetime from GnuCash 2 . 6 date string
|
cosqa-train-19165
|
def get_from_gnucash26_date(date_str: str) -> date:
""" Creates a datetime from GnuCash 2.6 date string """
date_format = "%Y%m%d"
result = datetime.strptime(date_str, date_format).date()
return result
|
def branches ( ) : # type: () -> List[str] out = shell . run ( 'git branch' , capture = True , never_pretend = True ) . stdout . strip ( ) return [ x . strip ( '* \t\n' ) for x in out . splitlines ( ) ]
| 0 |
how to get branches from git by python
|
Return a list of branches in the current repo .
|
cosqa-train-19166
|
def branches():
# type: () -> List[str]
""" Return a list of branches in the current repo.
Returns:
list[str]: A list of branches in the current repo.
"""
out = shell.run(
'git branch',
capture=True,
never_pretend=True
).stdout.strip()
return [x.strip('* \t\n') for x in out.splitlines()]
|
def content_type ( self ) -> ContentType : return self . _ctype if self . _ctype else self . parent . content_type ( )
| 1 |
python get type of self
|
Return receiver s content type .
|
cosqa-train-19167
|
def content_type(self) -> ContentType:
"""Return receiver's content type."""
return self._ctype if self._ctype else self.parent.content_type()
|
def butlast ( iterable ) : iterable = iter ( iterable ) try : first = next ( iterable ) except StopIteration : return for second in iterable : yield first first = second
| 0 |
python list of lists last element
|
Yield all items from iterable except the last one .
|
cosqa-train-19168
|
def butlast(iterable):
"""Yield all items from ``iterable`` except the last one.
>>> list(butlast(['spam', 'eggs', 'ham']))
['spam', 'eggs']
>>> list(butlast(['spam']))
[]
>>> list(butlast([]))
[]
"""
iterable = iter(iterable)
try:
first = next(iterable)
except StopIteration:
return
for second in iterable:
yield first
first = second
|
def get_keys_of_max_n ( dict_obj , n ) : return sorted ( [ item [ 0 ] for item in sorted ( dict_obj . items ( ) , key = lambda item : item [ 1 ] , reverse = True ) [ : n ] ] )
| 0 |
highest values of a dictionary values in python
|
Returns the keys that maps to the top n max values in the given dict .
|
cosqa-train-19169
|
def get_keys_of_max_n(dict_obj, n):
"""Returns the keys that maps to the top n max values in the given dict.
Example:
--------
>>> dict_obj = {'a':2, 'b':1, 'c':5}
>>> get_keys_of_max_n(dict_obj, 2)
['a', 'c']
"""
return sorted([
item[0]
for item in sorted(
dict_obj.items(), key=lambda item: item[1], reverse=True
)[:n]
])
|
def _parse_tuple_string ( argument ) : if isinstance ( argument , str ) : return tuple ( int ( p . strip ( ) ) for p in argument . split ( ',' ) ) return argument
| 1 |
python string split to list of tuples
|
Return a tuple from parsing a b c d - > ( a b c d )
|
cosqa-train-19170
|
def _parse_tuple_string(argument):
""" Return a tuple from parsing 'a,b,c,d' -> (a,b,c,d) """
if isinstance(argument, str):
return tuple(int(p.strip()) for p in argument.split(','))
return argument
|
def clean_column_names ( df : DataFrame ) -> DataFrame : f = df . copy ( ) f . columns = [ col . strip ( ) for col in f . columns ] return f
| 0 |
how to drop all column names in python
|
Strip the whitespace from all column names in the given DataFrame and return the result .
|
cosqa-train-19171
|
def clean_column_names(df: DataFrame) -> DataFrame:
"""
Strip the whitespace from all column names in the given DataFrame
and return the result.
"""
f = df.copy()
f.columns = [col.strip() for col in f.columns]
return f
|
def _rindex ( mylist : Sequence [ T ] , x : T ) -> int : return len ( mylist ) - mylist [ : : - 1 ] . index ( x ) - 1
| 0 |
index of the last occurrence in python
|
Index of the last occurrence of x in the sequence .
|
cosqa-train-19172
|
def _rindex(mylist: Sequence[T], x: T) -> int:
"""Index of the last occurrence of x in the sequence."""
return len(mylist) - mylist[::-1].index(x) - 1
|
def is_relative_url ( url ) : if url . startswith ( "#" ) : return None if url . find ( "://" ) > 0 or url . startswith ( "//" ) : # either 'http(s)://...' or '//cdn...' and therefore absolute return False return True
| 0 |
python determine a url relative or absolute
|
simple method to determine if a url is relative or absolute
|
cosqa-train-19173
|
def is_relative_url(url):
""" simple method to determine if a url is relative or absolute """
if url.startswith("#"):
return None
if url.find("://") > 0 or url.startswith("//"):
# either 'http(s)://...' or '//cdn...' and therefore absolute
return False
return True
|
def fetchallfirstvalues ( self , sql : str , * args ) -> List [ Any ] : rows = self . fetchall ( sql , * args ) return [ row [ 0 ] for row in rows ]
| 0 |
extract first row from a table in python sql
|
Executes SQL ; returns list of first values of each row .
|
cosqa-train-19174
|
def fetchallfirstvalues(self, sql: str, *args) -> List[Any]:
"""Executes SQL; returns list of first values of each row."""
rows = self.fetchall(sql, *args)
return [row[0] for row in rows]
|
def url_concat ( url , args ) : if not args : return url if url [ - 1 ] not in ( '?' , '&' ) : url += '&' if ( '?' in url ) else '?' return url + urllib . urlencode ( args )
| 1 |
python url join query string
|
Concatenate url and argument dictionary regardless of whether url has existing query parameters .
|
cosqa-train-19175
|
def url_concat(url, args):
"""Concatenate url and argument dictionary regardless of whether
url has existing query parameters.
>>> url_concat("http://example.com/foo?a=b", dict(c="d"))
'http://example.com/foo?a=b&c=d'
"""
if not args: return url
if url[-1] not in ('?', '&'):
url += '&' if ('?' in url) else '?'
return url + urllib.urlencode(args)
|
def proper_round ( n ) : return int ( n ) + ( n / abs ( n ) ) * int ( abs ( n - int ( n ) ) >= 0.5 ) if n != 0 else 0
| 0 |
round to nearest even number python
|
rounds float to closest int : rtype : int : param n : float
|
cosqa-train-19176
|
def proper_round(n):
"""
rounds float to closest int
:rtype: int
:param n: float
"""
return int(n) + (n / abs(n)) * int(abs(n - int(n)) >= 0.5) if n != 0 else 0
|
def uppercase_chars ( string : any ) -> str : return '' . join ( [ c if c . isupper ( ) else '' for c in str ( string ) ] )
| 0 |
python code for changing string to uppercase
|
Return all ( and only ) the uppercase chars in the given string .
|
cosqa-train-19177
|
def uppercase_chars(string: any) -> str:
"""Return all (and only) the uppercase chars in the given string."""
return ''.join([c if c.isupper() else '' for c in str(string)])
|
def _prm_get_longest_stringsize ( string_list ) : maxlength = 1 for stringar in string_list : if isinstance ( stringar , np . ndarray ) : if stringar . ndim > 0 : for string in stringar . ravel ( ) : maxlength = max ( len ( string ) , maxlength ) else : maxlength = max ( len ( stringar . tolist ( ) ) , maxlength ) else : maxlength = max ( len ( stringar ) , maxlength ) # Make the string Col longer than needed in order to allow later on slightly larger strings return int ( maxlength * 1.5 )
| 1 |
max string length for given sting list python
|
Returns the longest string size for a string entry across data .
|
cosqa-train-19178
|
def _prm_get_longest_stringsize(string_list):
""" Returns the longest string size for a string entry across data."""
maxlength = 1
for stringar in string_list:
if isinstance(stringar, np.ndarray):
if stringar.ndim > 0:
for string in stringar.ravel():
maxlength = max(len(string), maxlength)
else:
maxlength = max(len(stringar.tolist()), maxlength)
else:
maxlength = max(len(stringar), maxlength)
# Make the string Col longer than needed in order to allow later on slightly larger strings
return int(maxlength * 1.5)
|
def flatten_list ( x : List [ Any ] ) -> List [ Any ] : # noqa return [ item for sublist in x for item in sublist ]
| 1 |
python flat list of list to list
|
Converts a list of lists into a flat list . Args : x : list of lists
|
cosqa-train-19179
|
def flatten_list(x: List[Any]) -> List[Any]:
"""
Converts a list of lists into a flat list.
Args:
x: list of lists
Returns:
flat list
As per
http://stackoverflow.com/questions/952914/making-a-flat-list-out-of-list-of-lists-in-python
""" # noqa
return [item for sublist in x for item in sublist]
|
def count ( args ) : counts = defaultdict ( int ) for arg in args : for item in arg : counts [ item ] = counts [ item ] + 1 return counts
| 1 |
count the occurence in a list python
|
count occurences in a list of lists >>> count ( [[ a b ] [ a ]] ) defaultdict ( int { a : 2 b : 1 } )
|
cosqa-train-19180
|
def count(args):
""" count occurences in a list of lists
>>> count([['a','b'],['a']])
defaultdict(int, {'a' : 2, 'b' : 1})
"""
counts = defaultdict(int)
for arg in args:
for item in arg:
counts[item] = counts[item] + 1
return counts
|
def do_quit ( self , _ : argparse . Namespace ) -> bool : self . _should_quit = True return self . _STOP_AND_EXIT
| 0 |
python abort script but not exit the gui
|
Exit this application
|
cosqa-train-19181
|
def do_quit(self, _: argparse.Namespace) -> bool:
"""Exit this application"""
self._should_quit = True
return self._STOP_AND_EXIT
|
def replace_in_list ( stringlist : Iterable [ str ] , replacedict : Dict [ str , str ] ) -> List [ str ] : newlist = [ ] for fromstring in stringlist : newlist . append ( multiple_replace ( fromstring , replacedict ) ) return newlist
| 0 |
python replace function with for loop
|
Returns a list produced by applying : func : multiple_replace to every string in stringlist .
|
cosqa-train-19182
|
def replace_in_list(stringlist: Iterable[str],
replacedict: Dict[str, str]) -> List[str]:
"""
Returns a list produced by applying :func:`multiple_replace` to every
string in ``stringlist``.
Args:
stringlist: list of source strings
replacedict: dictionary mapping "original" to "replacement" strings
Returns:
list of final strings
"""
newlist = []
for fromstring in stringlist:
newlist.append(multiple_replace(fromstring, replacedict))
return newlist
|
def is_not_null ( df : DataFrame , col_name : str ) -> bool : if ( isinstance ( df , pd . DataFrame ) and col_name in df . columns and df [ col_name ] . notnull ( ) . any ( ) ) : return True else : return False
| 1 |
python determine if data frame has a null
|
Return True if the given DataFrame has a column of the given name ( string ) and there exists at least one non - NaN value in that column ; return False otherwise .
|
cosqa-train-19183
|
def is_not_null(df: DataFrame, col_name: str) -> bool:
"""
Return ``True`` if the given DataFrame has a column of the given
name (string), and there exists at least one non-NaN value in that
column; return ``False`` otherwise.
"""
if (
isinstance(df, pd.DataFrame)
and col_name in df.columns
and df[col_name].notnull().any()
):
return True
else:
return False
|
def _hash_the_file ( hasher , filename ) : BUF_SIZE = 65536 with open ( filename , 'rb' ) as f : buf = f . read ( BUF_SIZE ) while len ( buf ) > 0 : hasher . update ( buf ) buf = f . read ( BUF_SIZE ) return hasher
| 0 |
hashlib for file python
|
Helper function for creating hash functions .
|
cosqa-train-19184
|
def _hash_the_file(hasher, filename):
"""Helper function for creating hash functions.
See implementation of :func:`dtoolcore.filehasher.shasum`
for more usage details.
"""
BUF_SIZE = 65536
with open(filename, 'rb') as f:
buf = f.read(BUF_SIZE)
while len(buf) > 0:
hasher.update(buf)
buf = f.read(BUF_SIZE)
return hasher
|
def _my_hash ( arg_list ) : # type: (List[Any]) -> int res = 0 for arg in arg_list : res = res * 31 + hash ( arg ) return res
| 0 |
python hash function an integer
|
Simple helper hash function
|
cosqa-train-19185
|
def _my_hash(arg_list):
# type: (List[Any]) -> int
"""Simple helper hash function"""
res = 0
for arg in arg_list:
res = res * 31 + hash(arg)
return res
|
def fix_missing ( df , col , name , na_dict ) : if is_numeric_dtype ( col ) : if pd . isnull ( col ) . sum ( ) or ( name in na_dict ) : df [ name + '_na' ] = pd . isnull ( col ) filler = na_dict [ name ] if name in na_dict else col . median ( ) df [ name ] = col . fillna ( filler ) na_dict [ name ] = filler return na_dict
| 1 |
python fill the nan values in the dataset using median values of column
|
Fill missing data in a column of df with the median and add a { name } _na column which specifies if the data was missing . Parameters : ----------- df : The data frame that will be changed . col : The column of data to fix by filling in missing data . name : The name of the new filled column in df . na_dict : A dictionary of values to create na s of and the value to insert . If name is not a key of na_dict the median will fill any missing data . Also if name is not a key of na_dict and there is no missing data in col then no { name } _na column is not created . Examples : --------- >>> df = pd . DataFrame ( { col1 : [ 1 np . NaN 3 ] col2 : [ 5 2 2 ] } ) >>> df col1 col2 0 1 5 1 nan 2 2 3 2 >>> fix_missing ( df df [ col1 ] col1 {} ) >>> df col1 col2 col1_na 0 1 5 False 1 2 2 True 2 3 2 False >>> df = pd . DataFrame ( { col1 : [ 1 np . NaN 3 ] col2 : [ 5 2 2 ] } ) >>> df col1 col2 0 1 5 1 nan 2 2 3 2 >>> fix_missing ( df df [ col2 ] col2 {} ) >>> df col1 col2 0 1 5 1 nan 2 2 3 2 >>> df = pd . DataFrame ( { col1 : [ 1 np . NaN 3 ] col2 : [ 5 2 2 ] } ) >>> df col1 col2 0 1 5 1 nan 2 2 3 2 >>> fix_missing ( df df [ col1 ] col1 { col1 : 500 } ) >>> df col1 col2 col1_na 0 1 5 False 1 500 2 True 2 3 2 False
|
cosqa-train-19186
|
def fix_missing(df, col, name, na_dict):
""" Fill missing data in a column of df with the median, and add a {name}_na column
which specifies if the data was missing.
Parameters:
-----------
df: The data frame that will be changed.
col: The column of data to fix by filling in missing data.
name: The name of the new filled column in df.
na_dict: A dictionary of values to create na's of and the value to insert. If
name is not a key of na_dict the median will fill any missing data. Also
if name is not a key of na_dict and there is no missing data in col, then
no {name}_na column is not created.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col1'], 'col1', {})
>>> df
col1 col2 col1_na
0 1 5 False
1 2 2 True
2 3 2 False
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col2'], 'col2', {})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col1'], 'col1', {'col1' : 500})
>>> df
col1 col2 col1_na
0 1 5 False
1 500 2 True
2 3 2 False
"""
if is_numeric_dtype(col):
if pd.isnull(col).sum() or (name in na_dict):
df[name+'_na'] = pd.isnull(col)
filler = na_dict[name] if name in na_dict else col.median()
df[name] = col.fillna(filler)
na_dict[name] = filler
return na_dict
|
def indexes_equal ( a : Index , b : Index ) -> bool : return str ( a ) == str ( b )
| 1 |
if two strings are equal python
|
Are two indexes equal? Checks by comparing str () versions of them . ( AM UNSURE IF THIS IS ENOUGH . )
|
cosqa-train-19187
|
def indexes_equal(a: Index, b: Index) -> bool:
"""
Are two indexes equal? Checks by comparing ``str()`` versions of them.
(AM UNSURE IF THIS IS ENOUGH.)
"""
return str(a) == str(b)
|
def is_natural ( x ) : try : is_integer = int ( x ) == x except ( TypeError , ValueError ) : return False return is_integer and x >= 0
| 0 |
pythong if not an integer
|
A non - negative integer .
|
cosqa-train-19188
|
def is_natural(x):
"""A non-negative integer."""
try:
is_integer = int(x) == x
except (TypeError, ValueError):
return False
return is_integer and x >= 0
|
def listify ( a ) : if a is None : return [ ] elif not isinstance ( a , ( tuple , list , np . ndarray ) ) : return [ a ] return list ( a )
| 0 |
change an array into a list python
|
Convert a scalar a to a list and all iterables to list as well .
|
cosqa-train-19189
|
def listify(a):
"""
Convert a scalar ``a`` to a list and all iterables to list as well.
Examples
--------
>>> listify(0)
[0]
>>> listify([1,2,3])
[1, 2, 3]
>>> listify('a')
['a']
>>> listify(np.array([1,2,3]))
[1, 2, 3]
>>> listify('string')
['string']
"""
if a is None:
return []
elif not isinstance(a, (tuple, list, np.ndarray)):
return [a]
return list(a)
|
def uppercase_chars ( string : any ) -> str : return '' . join ( [ c if c . isupper ( ) else '' for c in str ( string ) ] )
| 1 |
how to make letters uppercase in python skipping spaces
|
Return all ( and only ) the uppercase chars in the given string .
|
cosqa-train-19190
|
def uppercase_chars(string: any) -> str:
"""Return all (and only) the uppercase chars in the given string."""
return ''.join([c if c.isupper() else '' for c in str(string)])
|
def same ( * values ) : if not values : return True first , rest = values [ 0 ] , values [ 1 : ] return all ( value == first for value in rest )
| 1 |
python check equal sequence
|
Check if all values in a sequence are equal .
|
cosqa-train-19191
|
def same(*values):
"""
Check if all values in a sequence are equal.
Returns True on empty sequences.
Examples
--------
>>> same(1, 1, 1, 1)
True
>>> same(1, 2, 1)
False
>>> same()
True
"""
if not values:
return True
first, rest = values[0], values[1:]
return all(value == first for value in rest)
|
def is_string_dtype ( arr_or_dtype ) : # TODO: gh-15585: consider making the checks stricter. def condition ( dtype ) : return dtype . kind in ( 'O' , 'S' , 'U' ) and not is_period_dtype ( dtype ) return _is_dtype ( arr_or_dtype , condition )
| 1 |
function for checking dtype in python
|
Check whether the provided array or dtype is of the string dtype .
|
cosqa-train-19192
|
def is_string_dtype(arr_or_dtype):
"""
Check whether the provided array or dtype is of the string dtype.
Parameters
----------
arr_or_dtype : array-like
The array or dtype to check.
Returns
-------
boolean
Whether or not the array or dtype is of the string dtype.
Examples
--------
>>> is_string_dtype(str)
True
>>> is_string_dtype(object)
True
>>> is_string_dtype(int)
False
>>>
>>> is_string_dtype(np.array(['a', 'b']))
True
>>> is_string_dtype(pd.Series([1, 2]))
False
"""
# TODO: gh-15585: consider making the checks stricter.
def condition(dtype):
return dtype.kind in ('O', 'S', 'U') and not is_period_dtype(dtype)
return _is_dtype(arr_or_dtype, condition)
|
def is_prime ( n ) : if n % 2 == 0 and n > 2 : return False return all ( n % i for i in range ( 3 , int ( math . sqrt ( n ) ) + 1 , 2 ) )
| 1 |
if isprime(n) is a prime return true else return false python
|
Check if n is a prime number
|
cosqa-train-19193
|
def is_prime(n):
"""
Check if n is a prime number
"""
if n % 2 == 0 and n > 2:
return False
return all(n % i for i in range(3, int(math.sqrt(n)) + 1, 2))
|
def trunc ( obj , max , left = 0 ) : s = str ( obj ) s = s . replace ( '\n' , '|' ) if len ( s ) > max : if left : return '...' + s [ len ( s ) - max + 3 : ] else : return s [ : ( max - 3 ) ] + '...' else : return s
| 0 |
python, truncating a string by length
|
Convert obj to string eliminate newlines and truncate the string to max characters . If there are more characters in the string add ... to the string . With left = True the string can be truncated at the beginning .
|
cosqa-train-19194
|
def trunc(obj, max, left=0):
"""
Convert `obj` to string, eliminate newlines and truncate the string to `max`
characters. If there are more characters in the string add ``...`` to the
string. With `left=True`, the string can be truncated at the beginning.
@note: Does not catch exceptions when converting `obj` to string with `str`.
>>> trunc('This is a long text.', 8)
This ...
>>> trunc('This is a long text.', 8, left)
...text.
"""
s = str(obj)
s = s.replace('\n', '|')
if len(s) > max:
if left:
return '...'+s[len(s)-max+3:]
else:
return s[:(max-3)]+'...'
else:
return s
|
def decodebytes ( input ) : py_version = sys . version_info [ 0 ] if py_version >= 3 : return _decodebytes_py3 ( input ) return _decodebytes_py2 ( input )
| 1 |
python3 how to get the decode
|
Decode base64 string to byte array .
|
cosqa-train-19195
|
def decodebytes(input):
"""Decode base64 string to byte array."""
py_version = sys.version_info[0]
if py_version >= 3:
return _decodebytes_py3(input)
return _decodebytes_py2(input)
|
def snake_to_camel ( s : str ) -> str : fragments = s . split ( '_' ) return fragments [ 0 ] + '' . join ( x . title ( ) for x in fragments [ 1 : ] )
| 0 |
capitalize each letter in python
|
Convert string from snake case to camel case .
|
cosqa-train-19196
|
def snake_to_camel(s: str) -> str:
"""Convert string from snake case to camel case."""
fragments = s.split('_')
return fragments[0] + ''.join(x.title() for x in fragments[1:])
|
def uconcatenate ( arrs , axis = 0 ) : v = np . concatenate ( arrs , axis = axis ) v = _validate_numpy_wrapper_units ( v , arrs ) return v
| 0 |
python concatenate np array
|
Concatenate a sequence of arrays .
|
cosqa-train-19197
|
def uconcatenate(arrs, axis=0):
"""Concatenate a sequence of arrays.
This wrapper around numpy.concatenate preserves units. All input arrays
must have the same units. See the documentation of numpy.concatenate for
full details.
Examples
--------
>>> from unyt import cm
>>> A = [1, 2, 3]*cm
>>> B = [2, 3, 4]*cm
>>> uconcatenate((A, B))
unyt_array([1, 2, 3, 2, 3, 4], 'cm')
"""
v = np.concatenate(arrs, axis=axis)
v = _validate_numpy_wrapper_units(v, arrs)
return v
|
def mmap ( func , iterable ) : if sys . version_info [ 0 ] > 2 : return [ i for i in map ( func , iterable ) ] else : return map ( func , iterable )
| 0 |
python 3 replace for loop with map
|
Wrapper to make map () behave the same on Py2 and Py3 .
|
cosqa-train-19198
|
def mmap(func, iterable):
"""Wrapper to make map() behave the same on Py2 and Py3."""
if sys.version_info[0] > 2:
return [i for i in map(func, iterable)]
else:
return map(func, iterable)
|
def getIndex ( predicateFn : Callable [ [ T ] , bool ] , items : List [ T ] ) -> int : try : return next ( i for i , v in enumerate ( items ) if predicateFn ( v ) ) except StopIteration : return - 1
| 1 |
python index in list predicate
|
Finds the index of an item in list which satisfies predicate : param predicateFn : predicate function to run on items of list : param items : list of tuples : return : first index for which predicate function returns True
|
cosqa-train-19199
|
def getIndex(predicateFn: Callable[[T], bool], items: List[T]) -> int:
"""
Finds the index of an item in list, which satisfies predicate
:param predicateFn: predicate function to run on items of list
:param items: list of tuples
:return: first index for which predicate function returns True
"""
try:
return next(i for i, v in enumerate(items) if predicateFn(v))
except StopIteration:
return -1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.