Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for [Dataset Name]

Dataset Summary

Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition, Statement Extraction, and Sentiment Analysis developed by PT Gria Inovasi Teknologi (GRIT).

Supported Tasks and Leaderboards

[More Information Needed]

Languages

Indonesian

Dataset Structure

A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.

{'id': '0',
 'tokens': ['Gubernur', 'Bank', 'Indonesia', 'menggelar', 'konferensi', 'pers'],
 'ner_tags': [9, 28, 28, 38, 38, 38],
}

Data Instances

[More Information Needed]

Data Fields

  • id: id of the sample
  • tokens: the tokens of the example text
  • ner_tags: the NER tags of each token

Named Entity Recognition

The ner_tags correspond to this list:

"B-CRD", "B-DAT", "B-EVT", "B-FAC", "B-GPE", "B-LAN", "B-LAW", "B-LOC", "B-MON", "B-NOR", 
"B-ORD", "B-ORG", "B-PER", "B-PRC", "B-PRD", "B-QTY", "B-REG", "B-TIM", "B-WOA",
"I-CRD", "I-DAT", "I-EVT", "I-FAC", "I-GPE", "I-LAN", "I-LAW", "I-LOC", "I-MON", "I-NOR",
"I-ORD", "I-ORG", "I-PER", "I-PRC", "I-PRD", "I-QTY", "I-REG", "I-TIM", "I-WOA", "O",

The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word. The dataset contains 19 following entities

    'CRD': Cardinal
    'DAT': Date
    'EVT': Event
    'FAC': Facility
    'GPE': Geopolitical Entity
    'LAW': Law Entity (such as Undang-Undang)
    'LOC': Location
    'MON': Money
    'NOR': Political Organization
    'ORD': Ordinal
    'ORG': Organization
    'PER': Person
    'PRC': Percent
    'PRD': Product
    'QTY': Quantity
    'REG': Religion
    'TIM': Time
    'WOA': Work of Art
    'LAN': Language

Sentiment Analysis

The ner_tags correspond to this list:

"B-NEG", "B-NET", "B-POS",
"I-NEG", "I-NET", "I-POS",
"O",

Statement Extraction

The ner_tags correspond to this list:

"B-BREL", "B-FREL", "B-STAT", "B-WHO",
"I-BREL", "I-FREL", "I-STAT", "I-WHO", 
"O"

The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word.

Data Splits

The dataset is splitted in to train, validation and test sets.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

The annotators are listed in the Nergrit Corpus repository

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

Thanks to @cahya-wirawan for adding this dataset.

Downloads last month
196

Models trained or fine-tuned on grit-id/id_nergrit_corpus