|
--- |
|
configs: |
|
- config_name: city_entity |
|
data_files: |
|
- split: train |
|
path: "city_entity/train*.parquet" |
|
- split: val |
|
path: "city_entity/val*.parquet" |
|
- split: test |
|
path: "city_entity/test*.parquet" |
|
- config_name: city_prompt |
|
data_files: |
|
- split: train |
|
path: "city_prompt/train*.parquet" |
|
- split: val |
|
path: "city_prompt/val*.parquet" |
|
- split: test |
|
path: "city_prompt/test*.parquet" |
|
|
|
|
|
license: mit |
|
task_categories: |
|
- text-generation |
|
- question-answering |
|
language: |
|
- en |
|
--- |
|
# Dataset Card for RAVEL |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
A large-scale entity-attribute dataset covering factual, linguistic, and commonsense knowledge. |
|
|
|
### To load the dataset: |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("hij/ravel") |
|
``` |
|
|
|
|
|
## Dataset Details |
|
|
|
### Dataset Description |
|
|
|
<!-- Provide a longer summary of what this dataset is. --> |
|
|
|
The RAVEL dataset contains five types of entities, each with at least 500 instances, at least 4 attributes, and at least 50 prompt templates, as shown in the table below. |
|
|
|
|Entity Type|Attributes|\#Entities|\#Prompt Templates| |
|
|---|---|---|---| |
|
|City|Country, Language, Latitude, Longitude,Timezone, Continent|3552|150| |
|
|Nobel Laureate|Award Year, Birth Year, Country of Birth, Field, Gender|928|100| |
|
|Verb|Definition, Past Tense, Pronunciation, Singular | 986 | 60 | |
|
| Physical Object|Biological Category, Color, Size, Texture | 563 | 60 | |
|
|Occupation| Duty, Gender Bias, Industry, Work Location | 799 | 50 | |
|
|
|
Compared with existing entity-attribute/relation datasets, such as [CounterFact](https://rome.baulab.info/data/), RAVEL offers two unique features: |
|
* **Multiple attributes** per entity to evaluate how well interpretability methods **isolate individual concepts** |
|
* **x10 more entities** per entity type to evaluate how well interpretability methods **generalize** |
|
|
|
|
|
### Dataset Sources |
|
|
|
<!-- Provide the basic links for the dataset. --> |
|
|
|
- **Repository:** [https://github.com/explanare/ravel](https://github.com/explanare/ravel) |
|
- **Paper:** [RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations](https://arxiv.org/pdf/2402.17700) |
|
|
|
## Uses |
|
|
|
The dataset is primarily designed for interpretability research. |
|
|
|
## Dataset Structure |
|
|
|
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> |
|
|
|
Each entity type is associated with two subsets: entities and prompt templates. |
|
Both the entities and the prompts are split into train, val, and test. |
|
|
|
### Entity |
|
|
|
For the entity subset, each example is structured as a dictionary containing the entitiy and attributes. An additional `ID` field is used to disambiguate entities. |
|
|
|
For example, the entity type `city` is structured as follows: |
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'], |
|
num_rows: 2041 |
|
}) |
|
validation: Dataset({ |
|
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'], |
|
num_rows: 970 |
|
}) |
|
test: Dataset({ |
|
features: ['ID', 'City', 'Continent', 'Country', 'Language', 'Latitude', 'Longitude', 'Timezone', 'URL'], |
|
num_rows: 1126 |
|
}) |
|
}) |
|
``` |
|
|
|
Each example, i.e., an entity, is structured as follows: |
|
|
|
```python |
|
{ |
|
"ID": "2498-0", |
|
"City": "Seattle", |
|
"Continent": "North America", |
|
"Country": "United States", |
|
"Language": "English", |
|
"Latitude": "48", |
|
"Longitude": "-122", |
|
"Timezone": "America/Los_Angeles", |
|
"URL": "https://en.wikipedia.org/wiki/Seattle" |
|
} |
|
``` |
|
|
|
### Prompt |
|
|
|
The prompt subset contains the prompt templates, which attribute the template is querying, whether this template comes from RAVEL or Wikipedia, and which entities can be used for this template. |
|
|
|
An empty string in the `Attribute` field means this prompt is not querying for a specific attribute. |
|
|
|
An empty string in the `Entity` field means this prompt can be used with all the entities of the given type. |
|
|
|
For example, the prompt templates for `city` are structured as follows: |
|
|
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['Template', 'Attribute', 'Source', 'Entity'], |
|
num_rows: 442 |
|
}) |
|
val: Dataset({ |
|
features: ['Template', 'Attribute', 'Source', 'Entity'], |
|
num_rows: 397 |
|
}) |
|
test: Dataset({ |
|
features: ['Template', 'Attribute', 'Source', 'Entity'], |
|
num_rows: 372 |
|
}) |
|
}) |
|
``` |
|
|
|
Each example, i.e., a prompt template, is structured as follows: |
|
|
|
```python |
|
{ |
|
'Template': '%s is a city in the country of', |
|
'Attribute': 'Country', |
|
'Source': 'RAVEL', |
|
'Entity': '' |
|
} |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
```{bibtex} |
|
@inproceedings{huang-etal-2024-ravel, |
|
title = "{RAVEL}: Evaluating Interpretability Methods on Disentangling Language Model Representations", |
|
author = "Huang, Jing and Wu, Zhengxuan and Potts, Christopher and Geva, Mor and Geiger, Atticus", |
|
editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", |
|
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = aug, |
|
year = "2024", |
|
address = "Bangkok, Thailand", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2024.acl-long.470", |
|
pages = "8669--8687", |
|
} |
|
|
|
``` |
|
|