Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ParserError
Message:      Error tokenizing data. C error: Expected 1 fields in line 14, saw 2

Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 233, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2998, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1918, in _head
                  return _examples_to_batch(list(self.take(n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2093, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1576, in __iter__
                  for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 279, in __iter__
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 190, in _generate_tables
                  for batch_idx, df in enumerate(csv_file_reader):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__
                  return self.get_chunk()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk
                  return self.read(nrows=size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read
                  ) = self._engine.read(  # type: ignore[attr-defined]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read
                  chunks = self._reader.read_low_memory(nrows)
                File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory
                File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows
                File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error
              pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 14, saw 2

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

A larger version of YT-100K dataset -> YT-30M dataset with 30 million YouTube multilingual multicategory comments is also available which can be obtained by directly emailing the author of this dataset.

Introduction

This work introduces two large-scale multilingual comment datasets, YT-30M (and YT-100K) from YouTube. The code and both the datasets: YT-30M (full) and YT-100K (randomly selected 100K sample from YT-30M) are publicly released for further research. YT-30M (YT-100K) contains 32M (100K) comments posted by YouTube channel belonging to YouTube categories. Each comment is associated with a video ID, comment ID, commenter name, commenter channel ID, comment text, upvotes, original channel ID and category of the YouTube channel (e.g., News & Politics, Science & Technology, etc.).

Data Description

Each entry in the dataset is related to one comment for a specific YouTube video in the related category with the following columns: videoID, commentID, commenterName, commenterChannelID, comment, votes, originalChannelID, category. Each field is explained below:

videoID: represents the video ID in YouTube.
commentID: represents the comment ID.
commenterName: represents the name of the commenter.
commenterChannelID: represents the ID of the commenter.
comment: represents the comment text.
votes: represents the upvotes received by that comment.
originalChannelID: represents the original channel ID who posted the video.
category: represents the category of the YouTube video.

Data Anonymization

The data is anonymized by removing all Personally Identifiable Information (PII). 

Data sample

{
"videoID": "ab9fe84e2b2406efba4c23385ef9312a",
"commentID": "488b24557cf81ed56e75bab6cbf76fa9",
"commenterName": "b654822a96eae771cbac945e49e43cbd",
"commenterChannelID": "2f1364f249626b3ca514966e3ef3aead",
"comment": "ich fand den Handelwecker am besten",
"votes": 2,
"originalChannelID": "oc_2f1364f249626b3ca514966e3ef3aead",
"category": "entertainment"
}

Multilingual data

| Language | Text |

|--------------|---------------------------------------------------|

| English | You girls are so awesome!! |

| Russian | Точно так же Я стрелец |

| Hindi | आज भी भाई कʏ आवाज में वही पुरानी बात है.... |

| Chinese | 無論如何,你已經是台灣YT訂閱數之首 |

| Bengali | খুিন হািসনােক ভারেতর àধানমন্... |

| Spanish | jajajaj esto tiene que ser una brom |

| Portuguese | nossa senhora!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!... |

| Malayalam | നമസ്കാരം |

| Telegu | నమసాక్రం |

| Japanese | こんにちは |

License

[CC] (https://choosealicense.com/licenses/cc-by-4.0/#)

Bibtex

@misc{dutta2024yt30mmultilingualmulticategorydataset,
      title={YT-30M: A multi-lingual multi-category dataset of YouTube comments}, 
      author={Hridoy Sankar Dutta},
      year={2024},
      eprint={2412.03465},
      archivePrefix={arXiv},
      primaryClass={cs.SI},
      url={https://arxiv.org/abs/2412.03465}, 
}
Downloads last month
40