| code
				 stringlengths 81 54k | code_codestyle
				 int64 0 721 | style_context
				 stringlengths 91 41.9k | style_context_codestyle
				 int64 0 699 | label
				 int64 0 1 | 
|---|---|---|---|---|
| 
	
'''simple docstring'''
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
UpperCamelCase__      :		Optional[int]       							=  "base_with_context"
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     List[str]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""]						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(
       torch.FloatTensor(weights["""Embed_0"""]["""embedding"""]						)    ,      requires_grad=SCREAMING_SNAKE_CASE_						)
   for lyr_num, lyr in enumerate(model.encoders						):
      _SCREAMING_SNAKE_CASE      =				weights[F"layers_{lyr_num}"]
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(
          torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""]						)						)
      _SCREAMING_SNAKE_CASE      =				ly_weight["""attention"""]
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""]						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""]						)						)
   return model
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     List[Any]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(
       torch.FloatTensor(weights["""Embed_0"""]["""embedding"""]						)    ,      requires_grad=SCREAMING_SNAKE_CASE_						)
   for lyr_num, lyr in enumerate(model.encoders						):
      _SCREAMING_SNAKE_CASE      =				weights[F"layers_{lyr_num}"]
      _SCREAMING_SNAKE_CASE      =				ly_weight["""attention"""]
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(
          torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""]						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""]						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""]						)						)
   return model
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     Optional[int]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(
       torch.FloatTensor(weights["""Embed_0"""]["""embedding"""]						)    ,      requires_grad=SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(
       torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T						)						)
   for lyr_num, lyr in enumerate(model.decoders						):
      _SCREAMING_SNAKE_CASE      =				weights[F"layers_{lyr_num}"]
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(
          torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""]						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(
          torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				ly_weight["""self_attention"""]
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				ly_weight["""MultiHeadDotProductAttention_0"""]
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(
          torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""]						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""]						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(
          torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T						)						)
      _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""]						)						)
   _SCREAMING_SNAKE_CASE      =				nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T						)						)
   return model
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     Union[str, Any]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				checkpoints.load_tax_checkpoint(args.checkpoint_path						)
   _SCREAMING_SNAKE_CASE      =				jnp.tree_util.tree_map(onp.array    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				[
       """from __gin__ import dynamic_registration""",
       """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""",
       """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""",
       """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""",
   ]
   _SCREAMING_SNAKE_CASE      =				os.path.join(args.checkpoint_path    ,      """.."""    ,      """config.gin"""						)
   _SCREAMING_SNAKE_CASE      =				inference.parse_training_gin_file(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				inference.InferenceModel(args.checkpoint_path    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				DDPMScheduler(beta_schedule="""squaredcos_cap_v2"""    ,      variance_type="""fixed_large"""						)
   _SCREAMING_SNAKE_CASE      =				SpectrogramNotesEncoder(
       max_length=synth_model.sequence_length["""inputs"""]    ,      vocab_size=synth_model.model.module.config.vocab_size    ,      d_model=synth_model.model.module.config.emb_dim    ,      dropout_rate=synth_model.model.module.config.dropout_rate    ,      num_layers=synth_model.model.module.config.num_encoder_layers    ,      num_heads=synth_model.model.module.config.num_heads    ,      d_kv=synth_model.model.module.config.head_dim    ,      d_ff=synth_model.model.module.config.mlp_dim    ,      feed_forward_proj="""gated-gelu"""    ,      )
   _SCREAMING_SNAKE_CASE      =				SpectrogramContEncoder(
       input_dims=synth_model.audio_codec.n_dims    ,      targets_context_length=synth_model.sequence_length["""targets_context"""]    ,      d_model=synth_model.model.module.config.emb_dim    ,      dropout_rate=synth_model.model.module.config.dropout_rate    ,      num_layers=synth_model.model.module.config.num_encoder_layers    ,      num_heads=synth_model.model.module.config.num_heads    ,      d_kv=synth_model.model.module.config.head_dim    ,      d_ff=synth_model.model.module.config.mlp_dim    ,      feed_forward_proj="""gated-gelu"""    ,      )
   _SCREAMING_SNAKE_CASE      =				TaFilmDecoder(
       input_dims=synth_model.audio_codec.n_dims    ,      targets_length=synth_model.sequence_length["""targets_context"""]    ,      max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time    ,      d_model=synth_model.model.module.config.emb_dim    ,      num_layers=synth_model.model.module.config.num_decoder_layers    ,      num_heads=synth_model.model.module.config.num_heads    ,      d_kv=synth_model.model.module.config.head_dim    ,      d_ff=synth_model.model.module.config.mlp_dim    ,      dropout_rate=synth_model.model.module.config.dropout_rate    ,      )
   _SCREAMING_SNAKE_CASE      =				load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""]    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""]    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				load_decoder(ta_checkpoint["""target"""]["""decoder"""]    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder"""						)
   _SCREAMING_SNAKE_CASE      =				SpectrogramDiffusionPipeline(
       notes_encoder=SCREAMING_SNAKE_CASE_    ,      continuous_encoder=SCREAMING_SNAKE_CASE_    ,      decoder=SCREAMING_SNAKE_CASE_    ,      scheduler=SCREAMING_SNAKE_CASE_    ,      melgan=SCREAMING_SNAKE_CASE_    ,      )
   if args.save:
      pipe.save_pretrained(args.output_path						)
if __name__ == "__main__":
     UpperCamelCase__      :		List[Any]       							=  argparse.ArgumentParser()
     parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.")
     parser.add_argument(
         "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
     )
     parser.add_argument(
         "--checkpoint_path",
         default=f"""{MODEL}/checkpoint_500000""",
         type=str,
         required=False,
         help="Path to the original jax model checkpoint.",
     )
     UpperCamelCase__      :		List[Any]       							=  parser.parse_args()
     main(args)
 | 0 | 
	
'''simple docstring'''
import sys
UpperCamelCase__      :		int       							=  (
    "73167176531330624919225119674426574742355349194934"
    "96983520312774506326239578318016984801869478851843"
    "85861560789112949495459501737958331952853208805511"
    "12540698747158523863050715693290963295227443043557"
    "66896648950445244523161731856403098711121722383113"
    "62229893423380308135336276614282806444486645238749"
    "30358907296290491560440772390713810515859307960866"
    "70172427121883998797908792274921901699720888093776"
    "65727333001053367881220235421809751254540594752243"
    "52584907711670556013604839586446706324415722155397"
    "53697817977846174064955149290862569321978468622482"
    "83972241375657056057490261407972968652414535100474"
    "82166370484403199890008895243450658541227588666881"
    "16427171479924442928230863465674813919123162824586"
    "17866458359124566529476545682848912883142607690042"
    "24219022671055626321111109370544217506941658960408"
    "07198403850962455444362981230987879927244284909188"
    "84580156166097919133875499200524063689912560717606"
    "05886116467109405077541002256983155200055935729725"
    "71636269561882670428252483600823257530420752963450"
)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_ = N						)     ->     int:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				-sys.maxsize - 1
   for i in range(len(SCREAMING_SNAKE_CASE_						) - 12						):
      _SCREAMING_SNAKE_CASE      =				1
      for j in range(13						):
         product *= int(n[i + j]						)
      if product > largest_product:
         _SCREAMING_SNAKE_CASE      =				product
   return largest_product
if __name__ == "__main__":
     print(f"""{solution() = }""")
 | 0 | 1 | 
| 
	
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
     import tensorflow as tf
     from transformers import (
         TFRoFormerForCausalLM,
         TFRoFormerForMaskedLM,
         TFRoFormerForMultipleChoice,
         TFRoFormerForQuestionAnswering,
         TFRoFormerForSequenceClassification,
         TFRoFormerForTokenClassification,
         TFRoFormerModel,
     )
     from transformers.models.roformer.modeling_tf_roformer import (
         TFRoFormerSelfAttention,
         TFRoFormerSinusoidalPositionalEmbedding,
     )
class    _a				:
       """simple docstring"""
       def __init__(							self       ,							A__       ,							A__=13       ,							A__=7       ,							A__=True       ,							A__=True       ,							A__=True       ,							A__=True       ,							A__=99       ,							A__=32       ,							A__=2       ,							A__=4       ,							A__=37       ,							A__="gelu"       ,							A__=0.1       ,							A__=0.1       ,							A__=5_12       ,							A__=16       ,							A__=2       ,							A__=0.02       ,							A__=3       ,							A__=4       ,							A__=None       ,							)    ->			int:
          _SCREAMING_SNAKE_CASE      =				parent
          _SCREAMING_SNAKE_CASE      =				13
          _SCREAMING_SNAKE_CASE      =				7
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				99
          _SCREAMING_SNAKE_CASE      =				32
          _SCREAMING_SNAKE_CASE      =				2
          _SCREAMING_SNAKE_CASE      =				4
          _SCREAMING_SNAKE_CASE      =				37
          _SCREAMING_SNAKE_CASE      =				"""gelu"""
          _SCREAMING_SNAKE_CASE      =				0.1
          _SCREAMING_SNAKE_CASE      =				0.1
          _SCREAMING_SNAKE_CASE      =				5_12
          _SCREAMING_SNAKE_CASE      =				16
          _SCREAMING_SNAKE_CASE      =				2
          _SCREAMING_SNAKE_CASE      =				0.02
          _SCREAMING_SNAKE_CASE      =				3
          _SCREAMING_SNAKE_CASE      =				4
          _SCREAMING_SNAKE_CASE      =				None
       def        UpperCamelCase				(							self      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size, self.seq_length]       ,							self.vocab_size      )
          _SCREAMING_SNAKE_CASE      =				None
          if self.use_input_mask:
             _SCREAMING_SNAKE_CASE      =				random_attention_mask([self.batch_size, self.seq_length]      )
          _SCREAMING_SNAKE_CASE      =				None
          if self.use_token_type_ids:
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size, self.seq_length]       ,							self.type_vocab_size      )
          _SCREAMING_SNAKE_CASE      =				None
          _SCREAMING_SNAKE_CASE      =				None
          _SCREAMING_SNAKE_CASE      =				None
          if self.use_labels:
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size]       ,							self.type_sequence_label_size      )
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size, self.seq_length]       ,							self.num_labels      )
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size]       ,							self.num_choices      )
          _SCREAMING_SNAKE_CASE      =				RoFormerConfig(
              vocab_size=self.vocab_size       ,							hidden_size=self.hidden_size       ,							num_hidden_layers=self.num_hidden_layers       ,							num_attention_heads=self.num_attention_heads       ,							intermediate_size=self.intermediate_size       ,							hidden_act=self.hidden_act       ,							hidden_dropout_prob=self.hidden_dropout_prob       ,							attention_probs_dropout_prob=self.attention_probs_dropout_prob       ,							max_position_embeddings=self.max_position_embeddings       ,							type_vocab_size=self.type_vocab_size       ,							initializer_range=self.initializer_range       ,							return_dict=A__       ,							)
          return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerModel(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
          _SCREAMING_SNAKE_CASE      =				[input_ids, input_mask]
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.last_hidden_state.shape       ,							(self.batch_size, self.seq_length, self.hidden_size)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForCausalLM(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )["""logits"""]
          self.parent.assertListEqual(
              list(prediction_scores.numpy().shape      )       ,							[self.batch_size, self.seq_length, self.vocab_size]      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForMaskedLM(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.seq_length, self.vocab_size)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.num_labels
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForSequenceClassification(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.num_labels)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				self.num_choices
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForMultipleChoice(config=A__      )
          _SCREAMING_SNAKE_CASE      =				tf.tile(tf.expand_dims(A__       ,							1      )       ,							(1, self.num_choices, 1)      )
          _SCREAMING_SNAKE_CASE      =				tf.tile(tf.expand_dims(A__       ,							1      )       ,							(1, self.num_choices, 1)      )
          _SCREAMING_SNAKE_CASE      =				tf.tile(tf.expand_dims(A__       ,							1      )       ,							(1, self.num_choices, 1)      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": multiple_choice_inputs_ids,
              """attention_mask""": multiple_choice_input_mask,
              """token_type_ids""": multiple_choice_token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.num_choices)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.num_labels
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForTokenClassification(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.seq_length, self.num_labels)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForQuestionAnswering(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.start_logits.shape       ,							(self.batch_size, self.seq_length)      )
          self.parent.assertEqual(result.end_logits.shape       ,							(self.batch_size, self.seq_length)      )
       def        UpperCamelCase				(							self      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.prepare_config_and_inputs()
          (
              (
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							
          )      =				config_and_inputs
          _SCREAMING_SNAKE_CASE      =				{"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
          return config, inputs_dict
@require_tf
class    _a				(_lowerCamelCase  ,					_lowerCamelCase  ,					unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  (
           (
               TFRoFormerModel,
               TFRoFormerForCausalLM,
               TFRoFormerForMaskedLM,
               TFRoFormerForQuestionAnswering,
               TFRoFormerForSequenceClassification,
               TFRoFormerForTokenClassification,
               TFRoFormerForMultipleChoice,
           )
           if is_tf_available()
           else ()
       )
       SCREAMING_SNAKE_CASE      =  (
           {
               'feature-extraction': TFRoFormerModel,
               'fill-mask': TFRoFormerForMaskedLM,
               'question-answering': TFRoFormerForQuestionAnswering,
               'text-classification': TFRoFormerForSequenceClassification,
               'text-generation': TFRoFormerForCausalLM,
               'token-classification': TFRoFormerForTokenClassification,
               'zero-shot': TFRoFormerForSequenceClassification,
           }
           if is_tf_available()
           else {}
       )
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  False
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			str:
          if pipeline_test_casse_name == "TextGenerationPipelineTests":
             return True
          return False
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerModelTester(self      )
          _SCREAMING_SNAKE_CASE      =				ConfigTester(self       ,							config_class=A__       ,							hidden_size=37      )
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          self.config_tester.run_common_tests()
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_model(*A__      )
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_masked_lm(*A__      )
       def        UpperCamelCase				(							self      )    ->			int:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_lm_head(*A__      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_multiple_choice(*A__      )
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_question_answering(*A__      )
       def        UpperCamelCase				(							self      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_sequence_classification(*A__      )
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_token_classification(*A__      )
       @slow
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base"""      )
          self.assertIsNotNone(A__      )
@require_tf
class    _a				(unittest.TestCase):
       """simple docstring"""
       @slow
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base"""      )
          _SCREAMING_SNAKE_CASE      =				tf.constant([[0, 1, 2, 3, 4, 5]]      )
          _SCREAMING_SNAKE_CASE      =				model(A__      )[0]
          # TODO Replace vocab size
          _SCREAMING_SNAKE_CASE      =				5_00_00
          _SCREAMING_SNAKE_CASE      =				[1, 6, vocab_size]
          self.assertEqual(output.shape       ,							A__      )
          print(output[:, :3, :3]      )
          # TODO Replace values below with what was printed above.
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [
                      [-0.1205_3341, -1.026_4901, 0.2922_1946],
                      [-1.513_3783, 0.19_7433, 0.1519_0607],
                      [-5.013_5403, -3.90_0256, -0.8403_8764],
                  ]
              ]      )
          tf.debugging.assert_near(output[:, :3, :3]       ,							A__       ,							atol=1E-4      )
@require_tf
class    _a				(unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  1E-4
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				tf.constant([[4, 10]]      )
          _SCREAMING_SNAKE_CASE      =				TFRoFormerSinusoidalPositionalEmbedding(num_positions=6       ,							embedding_dim=6      )
          _SCREAMING_SNAKE_CASE      =				emba(input_ids.shape      )
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]      )
          tf.debugging.assert_near(A__       ,							A__       ,							atol=self.tolerance      )
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
                  [0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
                  [0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
              ]      )
          _SCREAMING_SNAKE_CASE      =				TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12       ,							embedding_dim=5_12      )
          emba([2, 16, 5_12]      )
          _SCREAMING_SNAKE_CASE      =				emba.weight[:3, :5]
          tf.debugging.assert_near(A__       ,							A__       ,							atol=self.tolerance      )
@require_tf
class    _a				(unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  1E-4
       def        UpperCamelCase				(							self      )    ->			int:
          # 2,12,16,64
          _SCREAMING_SNAKE_CASE      =				tf.reshape(tf.range(2 * 12 * 16 * 64       ,							dtype=tf.floataa      )       ,							shape=(2, 12, 16, 64)      ) / 1_00
          _SCREAMING_SNAKE_CASE      =				-tf.reshape(tf.range(2 * 12 * 16 * 64       ,							dtype=tf.floataa      )       ,							shape=(2, 12, 16, 64)      ) / 1_00
          _SCREAMING_SNAKE_CASE      =				TFRoFormerSinusoidalPositionalEmbedding(num_positions=32       ,							embedding_dim=64      )
          _SCREAMING_SNAKE_CASE      =				embed_positions([2, 16, 7_68]      )[None, None, :, :]
          _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				TFRoFormerSelfAttention.apply_rotary_position_embeddings(
              A__       ,							A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
                  [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
                  [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
                  [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
                  [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
                  [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
              ]      )
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
                  [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
                  [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
                  [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
                  [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
                  [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
              ]      )
          tf.debugging.assert_near(query_layer[0, 0, :6, :8]       ,							A__       ,							atol=self.tolerance      )
          tf.debugging.assert_near(key_layer[0, 0, :6, :8]       ,							A__       ,							atol=self.tolerance      )
 | 0 | 
	
'''simple docstring'''
UpperCamelCase__      :		Dict       							=  {
    "a": "AAAAA",
    "b": "AAAAB",
    "c": "AAABA",
    "d": "AAABB",
    "e": "AABAA",
    "f": "AABAB",
    "g": "AABBA",
    "h": "AABBB",
    "i": "ABAAA",
    "j": "BBBAA",
    "k": "ABAAB",
    "l": "ABABA",
    "m": "ABABB",
    "n": "ABBAA",
    "o": "ABBAB",
    "p": "ABBBA",
    "q": "ABBBB",
    "r": "BAAAA",
    "s": "BAAAB",
    "t": "BAABA",
    "u": "BAABB",
    "v": "BBBAB",
    "w": "BABAA",
    "x": "BABAB",
    "y": "BABBA",
    "z": "BABBB",
    " ": " ",
}
UpperCamelCase__      :		str       							=  {value: key for key, value in encode_dict.items()}
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     str:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				""""""
   for letter in word.lower():
      if letter.isalpha() or letter == " ":
         encoded += encode_dict[letter]
      else:
         raise Exception("""encode() accepts only letters of the alphabet and spaces"""						)
   return encoded
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     str:
   """simple docstring"""
   if set(SCREAMING_SNAKE_CASE_						) - {"A", "B", " "} != set():
      raise Exception("""decode() accepts only 'A', 'B' and spaces"""						)
   _SCREAMING_SNAKE_CASE      =				""""""
   for word in coded.split():
      while len(SCREAMING_SNAKE_CASE_						) != 0:
         decoded += decode_dict[word[:5]]
         _SCREAMING_SNAKE_CASE      =				word[5:]
      decoded += " "
   return decoded.strip()
if __name__ == "__main__":
     from doctest import testmod
     testmod()
 | 0 | 1 | 
| 
	
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class    _a				(_lowerCamelCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  ['image_processor', 'tokenizer']
       SCREAMING_SNAKE_CASE      =  'CLIPImageProcessor'
       SCREAMING_SNAKE_CASE      =  ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
       def __init__(							self       ,							A__=None       ,							A__=None       ,							**A__      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				None
          if "feature_extractor" in kwargs:
             warnings.warn(
                 """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
                 """ instead."""       ,							A__       ,							)
             _SCREAMING_SNAKE_CASE      =				kwargs.pop("""feature_extractor"""      )
          _SCREAMING_SNAKE_CASE      =				image_processor if image_processor is not None else feature_extractor
          if image_processor is None:
             raise ValueError("""You need to specify an `image_processor`."""      )
          if tokenizer is None:
             raise ValueError("""You need to specify a `tokenizer`."""      )
          super().__init__(A__       ,							A__      )
       def __call__(							self       ,							A__=None       ,							A__=None       ,							A__=None       ,							**A__      )    ->			List[str]:
          if text is None and images is None:
             raise ValueError("""You have to specify either text or images. Both cannot be none."""      )
          if text is not None:
             _SCREAMING_SNAKE_CASE      =				self.tokenizer(A__       ,							return_tensors=A__       ,							**A__      )
          if images is not None:
             _SCREAMING_SNAKE_CASE      =				self.image_processor(A__       ,							return_tensors=A__       ,							**A__      )
          if text is not None and images is not None:
             _SCREAMING_SNAKE_CASE      =				image_features.pixel_values
             return encoding
          elif text is not None:
             return encoding
          else:
             return BatchEncoding(data=dict(**A__      )       ,							tensor_type=A__      )
       def        UpperCamelCase				(							self       ,							*A__       ,							**A__      )    ->			Optional[int]:
          return self.tokenizer.batch_decode(*A__       ,							**A__      )
       def        UpperCamelCase				(							self       ,							*A__       ,							**A__      )    ->			Optional[Any]:
          return self.tokenizer.decode(*A__       ,							**A__      )
       @property
       def        UpperCamelCase				(							self      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				self.tokenizer.model_input_names
          _SCREAMING_SNAKE_CASE      =				self.image_processor.model_input_names
          return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names      )      )
 | 0 | 
	
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     Any:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				[
       """encoder.version""",
       """decoder.version""",
       """model.encoder.version""",
       """model.decoder.version""",
       """decoder.output_projection.weight""",
       """_float_tensor""",
       """encoder.embed_positions._float_tensor""",
       """decoder.embed_positions._float_tensor""",
   ]
   for k in ignore_keys:
      state_dict.pop(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     str:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				emb.weight.shape
   _SCREAMING_SNAKE_CASE      =				nn.Linear(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      bias=SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				emb.weight.data
   return lin_layer
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     List[Any]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				torch.load(SCREAMING_SNAKE_CASE_    ,      map_location="""cpu"""						)
   _SCREAMING_SNAKE_CASE      =				mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
   _SCREAMING_SNAKE_CASE      =				mam_aaa["""model"""]
   remove_ignore_keys_(SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				state_dict["""encoder.embed_tokens.weight"""].shape[0]
   _SCREAMING_SNAKE_CASE      =				MaMaaaConfig(
       vocab_size=SCREAMING_SNAKE_CASE_    ,      max_position_embeddings=10_24    ,      encoder_layers=args.encoder_layers    ,      decoder_layers=args.decoder_layers    ,      encoder_attention_heads=args.encoder_attention_heads    ,      decoder_attention_heads=args.decoder_attention_heads    ,      encoder_ffn_dim=args.encoder_ffn_embed_dim    ,      decoder_ffn_dim=args.decoder_ffn_embed_dim    ,      d_model=args.encoder_embed_dim    ,      encoder_layerdrop=args.encoder_layerdrop    ,      decoder_layerdrop=args.decoder_layerdrop    ,      dropout=args.dropout    ,      attention_dropout=args.attention_dropout    ,      activation_dropout=args.activation_dropout    ,      activation_function="""relu"""    ,      )
   _SCREAMING_SNAKE_CASE      =				state_dict["""decoder.embed_tokens.weight"""]
   _SCREAMING_SNAKE_CASE      =				MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_						)
   model.model.load_state_dict(SCREAMING_SNAKE_CASE_    ,      strict=SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				make_linear_from_emb(model.model.shared						)
   return model
if __name__ == "__main__":
     UpperCamelCase__      :		Dict       							=  argparse.ArgumentParser()
     # Required parameters
     parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
     parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
     UpperCamelCase__      :		List[str]       							=  parser.parse_args()
     UpperCamelCase__      :		Any       							=  convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
     model.save_pretrained(args.pytorch_dump_folder_path)
 | 0 | 1 | 
| 
	
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class    _a				:
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  True
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  1
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  None
       def        UpperCamelCase				(							self      )    ->			"DownloadConfig":
          return self.__class__(**{k: copy.deepcopy(A__      ) for k, v in self.__dict__.items()}      )
 | 0 | 
	
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase__      :		str       							=  {
    "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"],
    "tokenization_canine": ["CanineTokenizer"],
}
try:
     if not is_torch_available():
          raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
     pass
else:
     UpperCamelCase__      :		List[Any]       							=  [
         "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST",
         "CanineForMultipleChoice",
         "CanineForQuestionAnswering",
         "CanineForSequenceClassification",
         "CanineForTokenClassification",
         "CanineLayer",
         "CanineModel",
         "CaninePreTrainedModel",
         "load_tf_weights_in_canine",
     ]
if TYPE_CHECKING:
     from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
     from .tokenization_canine import CanineTokenizer
     try:
          if not is_torch_available():
               raise OptionalDependencyNotAvailable()
     except OptionalDependencyNotAvailable:
          pass
     else:
          from .modeling_canine import (
              CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
              CanineForMultipleChoice,
              CanineForQuestionAnswering,
              CanineForSequenceClassification,
              CanineForTokenClassification,
              CanineLayer,
              CanineModel,
              CaninePreTrainedModel,
              load_tf_weights_in_canine,
          )
else:
     import sys
     UpperCamelCase__      :		str       							=  _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
 | 0 | 1 | 
| 
	
'''simple docstring'''
import os
# Precomputes a list of the 100 first triangular numbers
UpperCamelCase__      :		List[str]       							=  [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def    lowerCAmelCase_	(				)     ->     str:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_						)						)
   _SCREAMING_SNAKE_CASE      =				os.path.join(SCREAMING_SNAKE_CASE_    ,      """words.txt"""						)
   _SCREAMING_SNAKE_CASE      =				""""""
   with open(SCREAMING_SNAKE_CASE_						) as f:
      _SCREAMING_SNAKE_CASE      =				f.readline()
   _SCREAMING_SNAKE_CASE      =				[word.strip("""\""""						) for word in words.strip("""\r\n"""						).split(""","""						)]
   _SCREAMING_SNAKE_CASE      =				[
       word
       for word in [sum(ord(SCREAMING_SNAKE_CASE_						) - 64 for x in word						) for word in words]
       if word in TRIANGULAR_NUMBERS
   ]
   return len(SCREAMING_SNAKE_CASE_						)
if __name__ == "__main__":
     print(solution())
 | 0 | 
	
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class    _a				(_lowerCamelCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  ['image_processor', 'tokenizer']
       SCREAMING_SNAKE_CASE      =  'ChineseCLIPImageProcessor'
       SCREAMING_SNAKE_CASE      =  ('BertTokenizer', 'BertTokenizerFast')
       def __init__(							self       ,							A__=None       ,							A__=None       ,							**A__      )    ->			int:
          _SCREAMING_SNAKE_CASE      =				None
          if "feature_extractor" in kwargs:
             warnings.warn(
                 """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
                 """ instead."""       ,							A__       ,							)
             _SCREAMING_SNAKE_CASE      =				kwargs.pop("""feature_extractor"""      )
          _SCREAMING_SNAKE_CASE      =				image_processor if image_processor is not None else feature_extractor
          if image_processor is None:
             raise ValueError("""You need to specify an `image_processor`."""      )
          if tokenizer is None:
             raise ValueError("""You need to specify a `tokenizer`."""      )
          super().__init__(A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				self.image_processor
       def __call__(							self       ,							A__=None       ,							A__=None       ,							A__=None       ,							**A__      )    ->			Optional[int]:
          if text is None and images is None:
             raise ValueError("""You have to specify either text or images. Both cannot be none."""      )
          if text is not None:
             _SCREAMING_SNAKE_CASE      =				self.tokenizer(A__       ,							return_tensors=A__       ,							**A__      )
          if images is not None:
             _SCREAMING_SNAKE_CASE      =				self.image_processor(A__       ,							return_tensors=A__       ,							**A__      )
          if text is not None and images is not None:
             _SCREAMING_SNAKE_CASE      =				image_features.pixel_values
             return encoding
          elif text is not None:
             return encoding
          else:
             return BatchEncoding(data=dict(**A__      )       ,							tensor_type=A__      )
       def        UpperCamelCase				(							self       ,							*A__       ,							**A__      )    ->			Dict:
          return self.tokenizer.batch_decode(*A__       ,							**A__      )
       def        UpperCamelCase				(							self       ,							*A__       ,							**A__      )    ->			Optional[Any]:
          return self.tokenizer.decode(*A__       ,							**A__      )
       @property
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				self.tokenizer.model_input_names
          _SCREAMING_SNAKE_CASE      =				self.image_processor.model_input_names
          return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names      )      )
       @property
       def        UpperCamelCase				(							self      )    ->			Optional[int]:
          warnings.warn(
              """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead."""       ,							A__       ,							)
          return self.image_processor_class
 | 0 | 1 | 
| 
	
'''simple docstring'''
import itertools
import math
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     bool:
   """simple docstring"""
   if 1 < number < 4:
      # 2 and 3 are primes
      return True
   elif number < 2 or number % 2 == 0 or number % 3 == 0:
      # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
      return False
   # All primes number are in format of 6k +/- 1
   for i in range(5    ,      int(math.sqrt(SCREAMING_SNAKE_CASE_						) + 1						)    ,      6						):
      if number % i == 0 or number % (i + 2) == 0:
         return False
   return True
def    lowerCAmelCase_	(				)     ->     Tuple:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				2
   while True:
      if is_prime(SCREAMING_SNAKE_CASE_						):
         yield num
      num += 1
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_ = 1_00_01						)     ->     int:
   """simple docstring"""
   return next(itertools.islice(prime_generator()    ,      nth - 1    ,      SCREAMING_SNAKE_CASE_						)						)
if __name__ == "__main__":
     print(f"""{solution() = }""")
 | 0 | 
	
'''simple docstring'''
from sklearn.metrics import matthews_corrcoef
import datasets
UpperCamelCase__      :		List[str]       							=  "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction.  The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
UpperCamelCase__      :		List[Any]       							=  "\nArgs:\n    predictions (list of int): Predicted labels, as returned by a model.\n    references (list of int): Ground truth labels.\n    sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n    matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n    Example 1, a basic example with only predictions and references as inputs:\n        >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n        >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n        ...                                     predictions=[1, 2, 2, 0, 3, 3])\n        >>> print(round(results['matthews_correlation'], 2))\n        0.54\n\n    Example 2, the same example as above, but also including sample weights:\n        >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n        >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n        ...                                     predictions=[1, 2, 2, 0, 3, 3],\n        ...                                     sample_weight=[0.5, 3, 1, 1, 1, 2])\n        >>> print(round(results['matthews_correlation'], 2))\n        0.1\n\n    Example 3, the same example as above, but with sample weights that cause a negative correlation:\n        >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n        >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n        ...                                     predictions=[1, 2, 2, 0, 3, 3],\n        ...                                     sample_weight=[0.5, 1, 0, 0, 0, 1])\n        >>> print(round(results['matthews_correlation'], 2))\n        -0.25\n"
UpperCamelCase__      :		Any       							=  "\\n@article{scikit-learn,\n  title={Scikit-learn: Machine Learning in {P}ython},\n  author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n  journal={Journal of Machine Learning Research},\n  volume={12},\n  pages={2825--2830},\n  year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION  ,					_KWARGS_DESCRIPTION)
class    _a				(datasets.Metric):
       """simple docstring"""
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          return datasets.MetricInfo(
              description=_DESCRIPTION       ,							citation=_CITATION       ,							inputs_description=_KWARGS_DESCRIPTION       ,							features=datasets.Features(
                  {
                      """predictions""": datasets.Value("""int32"""      ),
                      """references""": datasets.Value("""int32"""      ),
                  }      )       ,							reference_urls=[
                  """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"""
              ]       ,							)
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__=None      )    ->			List[str]:
          return {
              "matthews_correlation": float(matthews_corrcoef(A__       ,							A__       ,							sample_weight=A__      )      ),
          }
 | 0 | 1 | 
| 
	
'''simple docstring'''
import re
from filelock import FileLock
try:
     import nltk
     UpperCamelCase__      :		Optional[int]       							=  True
except (ImportError, ModuleNotFoundError):
     UpperCamelCase__      :		Any       							=  False
if NLTK_AVAILABLE:
     with FileLock(".lock") as lock:
          nltk.download("punkt", quiet=True)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     str:
   """simple docstring"""
   re.sub("""<n>"""    ,      """"""    ,      SCREAMING_SNAKE_CASE_						)  # remove pegasus newline char
   assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
   return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE_						)						)
 | 0 | 
	
'''simple docstring'''
from __future__ import annotations
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     Tuple:
   """simple docstring"""
   print(F"Vertex\tShortest Distance from vertex {src}"						)
   for i, d in enumerate(SCREAMING_SNAKE_CASE_						):
      print(F"{i}\t\t{d}"						)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     List[Any]:
   """simple docstring"""
   for j in range(SCREAMING_SNAKE_CASE_						):
      _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				(graph[j][k] for k in ["""src""", """dst""", """weight"""])
      if distance[u] != float("""inf"""						) and distance[u] + w < distance[v]:
         return True
   return False
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     list[float]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				[float("""inf"""						)] * vertex_count
   _SCREAMING_SNAKE_CASE      =				0.0
   for _ in range(vertex_count - 1						):
      for j in range(SCREAMING_SNAKE_CASE_						):
         _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				(graph[j][k] for k in ["""src""", """dst""", """weight"""])
         if distance[u] != float("""inf"""						) and distance[u] + w < distance[v]:
            _SCREAMING_SNAKE_CASE      =				distance[u] + w
   _SCREAMING_SNAKE_CASE      =				check_negative_cycle(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)
   if negative_cycle_exists:
      raise Exception("""Negative cycle found"""						)
   return distance
if __name__ == "__main__":
     import doctest
     doctest.testmod()
     UpperCamelCase__      :		int       							=  int(input("Enter number of vertices: ").strip())
     UpperCamelCase__      :		int       							=  int(input("Enter number of edges: ").strip())
     UpperCamelCase__      :		list[dict[str, int]]       							=  [{} for _ in range(E)]
     for i in range(E):
          print("Edge ", i + 1)
          UpperCamelCase__							,      UpperCamelCase__							,      UpperCamelCase__      :		Dict       							=  (
              int(x)
              for x in input("Enter source, destination, weight: ").strip().split(" ")
          )
          UpperCamelCase__      :		Optional[Any]       							=  {"src": src, "dst": dest, "weight": weight}
     UpperCamelCase__      :		Optional[Any]       							=  int(input("\nEnter shortest path source:").strip())
     UpperCamelCase__      :		Any       							=  bellman_ford(graph, V, E, source)
     print_distance(shortest_distance, 0)
 | 0 | 1 | 
| 
	
'''simple docstring'''
import numpy as np
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     np.ndarray:
   """simple docstring"""
   return 1 / (1 + np.exp(-vector						))
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     np.ndarray:
   """simple docstring"""
   return vector * sigmoid(SCREAMING_SNAKE_CASE_						)
if __name__ == "__main__":
     import doctest
     doctest.testmod()
 | 0 | 
	
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
     import tensorflow as tf
     from transformers import (
         TFRoFormerForCausalLM,
         TFRoFormerForMaskedLM,
         TFRoFormerForMultipleChoice,
         TFRoFormerForQuestionAnswering,
         TFRoFormerForSequenceClassification,
         TFRoFormerForTokenClassification,
         TFRoFormerModel,
     )
     from transformers.models.roformer.modeling_tf_roformer import (
         TFRoFormerSelfAttention,
         TFRoFormerSinusoidalPositionalEmbedding,
     )
class    _a				:
       """simple docstring"""
       def __init__(							self       ,							A__       ,							A__=13       ,							A__=7       ,							A__=True       ,							A__=True       ,							A__=True       ,							A__=True       ,							A__=99       ,							A__=32       ,							A__=2       ,							A__=4       ,							A__=37       ,							A__="gelu"       ,							A__=0.1       ,							A__=0.1       ,							A__=5_12       ,							A__=16       ,							A__=2       ,							A__=0.02       ,							A__=3       ,							A__=4       ,							A__=None       ,							)    ->			int:
          _SCREAMING_SNAKE_CASE      =				parent
          _SCREAMING_SNAKE_CASE      =				13
          _SCREAMING_SNAKE_CASE      =				7
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				99
          _SCREAMING_SNAKE_CASE      =				32
          _SCREAMING_SNAKE_CASE      =				2
          _SCREAMING_SNAKE_CASE      =				4
          _SCREAMING_SNAKE_CASE      =				37
          _SCREAMING_SNAKE_CASE      =				"""gelu"""
          _SCREAMING_SNAKE_CASE      =				0.1
          _SCREAMING_SNAKE_CASE      =				0.1
          _SCREAMING_SNAKE_CASE      =				5_12
          _SCREAMING_SNAKE_CASE      =				16
          _SCREAMING_SNAKE_CASE      =				2
          _SCREAMING_SNAKE_CASE      =				0.02
          _SCREAMING_SNAKE_CASE      =				3
          _SCREAMING_SNAKE_CASE      =				4
          _SCREAMING_SNAKE_CASE      =				None
       def        UpperCamelCase				(							self      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size, self.seq_length]       ,							self.vocab_size      )
          _SCREAMING_SNAKE_CASE      =				None
          if self.use_input_mask:
             _SCREAMING_SNAKE_CASE      =				random_attention_mask([self.batch_size, self.seq_length]      )
          _SCREAMING_SNAKE_CASE      =				None
          if self.use_token_type_ids:
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size, self.seq_length]       ,							self.type_vocab_size      )
          _SCREAMING_SNAKE_CASE      =				None
          _SCREAMING_SNAKE_CASE      =				None
          _SCREAMING_SNAKE_CASE      =				None
          if self.use_labels:
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size]       ,							self.type_sequence_label_size      )
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size, self.seq_length]       ,							self.num_labels      )
             _SCREAMING_SNAKE_CASE      =				ids_tensor([self.batch_size]       ,							self.num_choices      )
          _SCREAMING_SNAKE_CASE      =				RoFormerConfig(
              vocab_size=self.vocab_size       ,							hidden_size=self.hidden_size       ,							num_hidden_layers=self.num_hidden_layers       ,							num_attention_heads=self.num_attention_heads       ,							intermediate_size=self.intermediate_size       ,							hidden_act=self.hidden_act       ,							hidden_dropout_prob=self.hidden_dropout_prob       ,							attention_probs_dropout_prob=self.attention_probs_dropout_prob       ,							max_position_embeddings=self.max_position_embeddings       ,							type_vocab_size=self.type_vocab_size       ,							initializer_range=self.initializer_range       ,							return_dict=A__       ,							)
          return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerModel(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
          _SCREAMING_SNAKE_CASE      =				[input_ids, input_mask]
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.last_hidden_state.shape       ,							(self.batch_size, self.seq_length, self.hidden_size)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForCausalLM(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )["""logits"""]
          self.parent.assertListEqual(
              list(prediction_scores.numpy().shape      )       ,							[self.batch_size, self.seq_length, self.vocab_size]      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForMaskedLM(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.seq_length, self.vocab_size)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.num_labels
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForSequenceClassification(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.num_labels)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				self.num_choices
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForMultipleChoice(config=A__      )
          _SCREAMING_SNAKE_CASE      =				tf.tile(tf.expand_dims(A__       ,							1      )       ,							(1, self.num_choices, 1)      )
          _SCREAMING_SNAKE_CASE      =				tf.tile(tf.expand_dims(A__       ,							1      )       ,							(1, self.num_choices, 1)      )
          _SCREAMING_SNAKE_CASE      =				tf.tile(tf.expand_dims(A__       ,							1      )       ,							(1, self.num_choices, 1)      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": multiple_choice_inputs_ids,
              """attention_mask""": multiple_choice_input_mask,
              """token_type_ids""": multiple_choice_token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.num_choices)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.num_labels
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForTokenClassification(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.logits.shape       ,							(self.batch_size, self.seq_length, self.num_labels)      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForQuestionAnswering(config=A__      )
          _SCREAMING_SNAKE_CASE      =				{
              """input_ids""": input_ids,
              """attention_mask""": input_mask,
              """token_type_ids""": token_type_ids,
          }
          _SCREAMING_SNAKE_CASE      =				model(A__      )
          self.parent.assertEqual(result.start_logits.shape       ,							(self.batch_size, self.seq_length)      )
          self.parent.assertEqual(result.end_logits.shape       ,							(self.batch_size, self.seq_length)      )
       def        UpperCamelCase				(							self      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.prepare_config_and_inputs()
          (
              (
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							(
              _SCREAMING_SNAKE_CASE
          ) ,							
          )      =				config_and_inputs
          _SCREAMING_SNAKE_CASE      =				{"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
          return config, inputs_dict
@require_tf
class    _a				(_lowerCamelCase  ,					_lowerCamelCase  ,					unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  (
           (
               TFRoFormerModel,
               TFRoFormerForCausalLM,
               TFRoFormerForMaskedLM,
               TFRoFormerForQuestionAnswering,
               TFRoFormerForSequenceClassification,
               TFRoFormerForTokenClassification,
               TFRoFormerForMultipleChoice,
           )
           if is_tf_available()
           else ()
       )
       SCREAMING_SNAKE_CASE      =  (
           {
               'feature-extraction': TFRoFormerModel,
               'fill-mask': TFRoFormerForMaskedLM,
               'question-answering': TFRoFormerForQuestionAnswering,
               'text-classification': TFRoFormerForSequenceClassification,
               'text-generation': TFRoFormerForCausalLM,
               'token-classification': TFRoFormerForTokenClassification,
               'zero-shot': TFRoFormerForSequenceClassification,
           }
           if is_tf_available()
           else {}
       )
       SCREAMING_SNAKE_CASE      =  False
       SCREAMING_SNAKE_CASE      =  False
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__       ,							A__       ,							A__      )    ->			str:
          if pipeline_test_casse_name == "TextGenerationPipelineTests":
             return True
          return False
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerModelTester(self      )
          _SCREAMING_SNAKE_CASE      =				ConfigTester(self       ,							config_class=A__       ,							hidden_size=37      )
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          self.config_tester.run_common_tests()
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_model(*A__      )
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_masked_lm(*A__      )
       def        UpperCamelCase				(							self      )    ->			int:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_lm_head(*A__      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_multiple_choice(*A__      )
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_question_answering(*A__      )
       def        UpperCamelCase				(							self      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_sequence_classification(*A__      )
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				self.model_tester.prepare_config_and_inputs()
          self.model_tester.create_and_check_for_token_classification(*A__      )
       @slow
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base"""      )
          self.assertIsNotNone(A__      )
@require_tf
class    _a				(unittest.TestCase):
       """simple docstring"""
       @slow
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          _SCREAMING_SNAKE_CASE      =				TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base"""      )
          _SCREAMING_SNAKE_CASE      =				tf.constant([[0, 1, 2, 3, 4, 5]]      )
          _SCREAMING_SNAKE_CASE      =				model(A__      )[0]
          # TODO Replace vocab size
          _SCREAMING_SNAKE_CASE      =				5_00_00
          _SCREAMING_SNAKE_CASE      =				[1, 6, vocab_size]
          self.assertEqual(output.shape       ,							A__      )
          print(output[:, :3, :3]      )
          # TODO Replace values below with what was printed above.
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [
                      [-0.1205_3341, -1.026_4901, 0.2922_1946],
                      [-1.513_3783, 0.19_7433, 0.1519_0607],
                      [-5.013_5403, -3.90_0256, -0.8403_8764],
                  ]
              ]      )
          tf.debugging.assert_near(output[:, :3, :3]       ,							A__       ,							atol=1E-4      )
@require_tf
class    _a				(unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  1E-4
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				tf.constant([[4, 10]]      )
          _SCREAMING_SNAKE_CASE      =				TFRoFormerSinusoidalPositionalEmbedding(num_positions=6       ,							embedding_dim=6      )
          _SCREAMING_SNAKE_CASE      =				emba(input_ids.shape      )
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]      )
          tf.debugging.assert_near(A__       ,							A__       ,							atol=self.tolerance      )
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
                  [0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
                  [0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
              ]      )
          _SCREAMING_SNAKE_CASE      =				TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12       ,							embedding_dim=5_12      )
          emba([2, 16, 5_12]      )
          _SCREAMING_SNAKE_CASE      =				emba.weight[:3, :5]
          tf.debugging.assert_near(A__       ,							A__       ,							atol=self.tolerance      )
@require_tf
class    _a				(unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  1E-4
       def        UpperCamelCase				(							self      )    ->			int:
          # 2,12,16,64
          _SCREAMING_SNAKE_CASE      =				tf.reshape(tf.range(2 * 12 * 16 * 64       ,							dtype=tf.floataa      )       ,							shape=(2, 12, 16, 64)      ) / 1_00
          _SCREAMING_SNAKE_CASE      =				-tf.reshape(tf.range(2 * 12 * 16 * 64       ,							dtype=tf.floataa      )       ,							shape=(2, 12, 16, 64)      ) / 1_00
          _SCREAMING_SNAKE_CASE      =				TFRoFormerSinusoidalPositionalEmbedding(num_positions=32       ,							embedding_dim=64      )
          _SCREAMING_SNAKE_CASE      =				embed_positions([2, 16, 7_68]      )[None, None, :, :]
          _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				TFRoFormerSelfAttention.apply_rotary_position_embeddings(
              A__       ,							A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
                  [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
                  [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
                  [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
                  [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
                  [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
              ]      )
          _SCREAMING_SNAKE_CASE      =				tf.constant(
              [
                  [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
                  [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
                  [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
                  [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
                  [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
                  [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
              ]      )
          tf.debugging.assert_near(query_layer[0, 0, :6, :8]       ,							A__       ,							atol=self.tolerance      )
          tf.debugging.assert_near(key_layer[0, 0, :6, :8]       ,							A__       ,							atol=self.tolerance      )
 | 0 | 1 | 
| 
	
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__      :		Optional[Any]       							=  logging.get_logger(__name__)
UpperCamelCase__      :		List[str]       							=  {
    "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json",
    "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json",
}
class    _a				(_lowerCamelCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  'luke'
       def __init__(							self       ,							A__=5_02_67       ,							A__=50_00_00       ,							A__=7_68       ,							A__=2_56       ,							A__=12       ,							A__=12       ,							A__=30_72       ,							A__="gelu"       ,							A__=0.1       ,							A__=0.1       ,							A__=5_12       ,							A__=2       ,							A__=0.02       ,							A__=1E-12       ,							A__=True       ,							A__=None       ,							A__=1       ,							A__=0       ,							A__=2       ,							**A__       ,							)    ->			int:
          super().__init__(pad_token_id=A__       ,							bos_token_id=A__       ,							eos_token_id=A__       ,							**A__      )
          _SCREAMING_SNAKE_CASE      =				vocab_size
          _SCREAMING_SNAKE_CASE      =				entity_vocab_size
          _SCREAMING_SNAKE_CASE      =				hidden_size
          _SCREAMING_SNAKE_CASE      =				entity_emb_size
          _SCREAMING_SNAKE_CASE      =				num_hidden_layers
          _SCREAMING_SNAKE_CASE      =				num_attention_heads
          _SCREAMING_SNAKE_CASE      =				hidden_act
          _SCREAMING_SNAKE_CASE      =				intermediate_size
          _SCREAMING_SNAKE_CASE      =				hidden_dropout_prob
          _SCREAMING_SNAKE_CASE      =				attention_probs_dropout_prob
          _SCREAMING_SNAKE_CASE      =				max_position_embeddings
          _SCREAMING_SNAKE_CASE      =				type_vocab_size
          _SCREAMING_SNAKE_CASE      =				initializer_range
          _SCREAMING_SNAKE_CASE      =				layer_norm_eps
          _SCREAMING_SNAKE_CASE      =				use_entity_aware_attention
          _SCREAMING_SNAKE_CASE      =				classifier_dropout
 | 0 | 
	
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
UpperCamelCase__      :		int       							=  {"tokenization_herbert": ["HerbertTokenizer"]}
try:
     if not is_tokenizers_available():
          raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
     pass
else:
     UpperCamelCase__      :		Tuple       							=  ["HerbertTokenizerFast"]
if TYPE_CHECKING:
     from .tokenization_herbert import HerbertTokenizer
     try:
          if not is_tokenizers_available():
               raise OptionalDependencyNotAvailable()
     except OptionalDependencyNotAvailable:
          pass
     else:
          from .tokenization_herbert_fast import HerbertTokenizerFast
else:
     import sys
     UpperCamelCase__      :		Tuple       							=  _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
 | 0 | 1 | 
| 
	
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__      :		Optional[Any]       							=  {"configuration_mmbt": ["MMBTConfig"]}
try:
     if not is_torch_available():
          raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
     pass
else:
     UpperCamelCase__      :		Dict       							=  ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]
if TYPE_CHECKING:
     from .configuration_mmbt import MMBTConfig
     try:
          if not is_torch_available():
               raise OptionalDependencyNotAvailable()
     except OptionalDependencyNotAvailable:
          pass
     else:
          from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
     import sys
     UpperCamelCase__      :		Dict       							=  _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
 | 0 | 
	
'''simple docstring'''
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
    CLIPTokenizer,
    CLIPTokenizerFast,
    VideoMAEImageProcessor,
    XCLIPConfig,
    XCLIPModel,
    XCLIPProcessor,
    XCLIPTextConfig,
    XCLIPVisionConfig,
)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     Dict:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				XCLIPTextConfig()
   # derive patch size from model name
   _SCREAMING_SNAKE_CASE      =				model_name.find("""patch"""						)
   _SCREAMING_SNAKE_CASE      =				int(model_name[start_idx + len("""patch"""						) : start_idx + len("""patch"""						) + 2]						)
   _SCREAMING_SNAKE_CASE      =				XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_    ,      num_frames=SCREAMING_SNAKE_CASE_						)
   if "large" in model_name:
      _SCREAMING_SNAKE_CASE      =				7_68
      _SCREAMING_SNAKE_CASE      =				30_72
      _SCREAMING_SNAKE_CASE      =				12
      _SCREAMING_SNAKE_CASE      =				10_24
      _SCREAMING_SNAKE_CASE      =				40_96
      _SCREAMING_SNAKE_CASE      =				16
      _SCREAMING_SNAKE_CASE      =				24
      _SCREAMING_SNAKE_CASE      =				7_68
      _SCREAMING_SNAKE_CASE      =				30_72
   if model_name == "xclip-large-patch14-16-frames":
      _SCREAMING_SNAKE_CASE      =				3_36
   _SCREAMING_SNAKE_CASE      =				XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)
   if "large" in model_name:
      _SCREAMING_SNAKE_CASE      =				7_68
   return config
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     Dict:
   """simple docstring"""
   # text encoder
   if name == "token_embedding.weight":
      _SCREAMING_SNAKE_CASE      =				name.replace("""token_embedding.weight"""    ,      """text_model.embeddings.token_embedding.weight"""						)
   if name == "positional_embedding":
      _SCREAMING_SNAKE_CASE      =				name.replace("""positional_embedding"""    ,      """text_model.embeddings.position_embedding.weight"""						)
   if "ln_1" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""ln_1"""    ,      """layer_norm1"""						)
   if "ln_2" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""ln_2"""    ,      """layer_norm2"""						)
   if "c_fc" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""c_fc"""    ,      """fc1"""						)
   if "c_proj" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""c_proj"""    ,      """fc2"""						)
   if name.startswith("""transformer.resblocks"""						):
      _SCREAMING_SNAKE_CASE      =				name.replace("""transformer.resblocks"""    ,      """text_model.encoder.layers"""						)
   if "attn.out_proj" in name and "message" not in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""attn.out_proj"""    ,      """self_attn.out_proj"""						)
   if "ln_final" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""ln_final"""    ,      """text_model.final_layer_norm"""						)
   # visual encoder
   if name == "visual.class_embedding":
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.class_embedding"""    ,      """vision_model.embeddings.class_embedding"""						)
   if name == "visual.positional_embedding":
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.positional_embedding"""    ,      """vision_model.embeddings.position_embedding.weight"""						)
   if name.startswith("""visual.transformer.resblocks"""						):
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.transformer.resblocks"""    ,      """vision_model.encoder.layers"""						)
   if "visual.conv1" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.conv1"""    ,      """vision_model.embeddings.patch_embedding"""						)
   if "visual.ln_pre" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.ln_pre"""    ,      """vision_model.pre_layernorm"""						)
   if "visual.ln_post" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.ln_post"""    ,      """vision_model.post_layernorm"""						)
   if "visual.proj" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""visual.proj"""    ,      """visual_projection.weight"""						)
   if "text_projection" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""text_projection"""    ,      """text_projection.weight"""						)
   # things on top
   if "prompts_visual_proj" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""prompts_visual_proj"""    ,      """prompts_visual_projection"""						)
   if "prompts_visual_ln" in name:
      _SCREAMING_SNAKE_CASE      =				name.replace("""prompts_visual_ln"""    ,      """prompts_visual_layernorm"""						)
   # mit
   if name == "mit.positional_embedding":
      _SCREAMING_SNAKE_CASE      =				name.replace("""positional"""    ,      """position"""						)
   if name.startswith("""mit.resblocks"""						):
      _SCREAMING_SNAKE_CASE      =				name.replace("""mit.resblocks"""    ,      """mit.encoder.layers"""						)
   # prompts generator
   if name.startswith("""prompts_generator.norm"""						):
      _SCREAMING_SNAKE_CASE      =				name.replace("""prompts_generator.norm"""    ,      """prompts_generator.layernorm"""						)
   return name
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)     ->     Optional[int]:
   """simple docstring"""
   for key in orig_state_dict.copy().keys():
      _SCREAMING_SNAKE_CASE      =				orig_state_dict.pop(SCREAMING_SNAKE_CASE_						)
      if "attn.in_proj" in key:
         _SCREAMING_SNAKE_CASE      =				key.split("""."""						)
         if key.startswith("""visual"""						):
            _SCREAMING_SNAKE_CASE      =				key_split[3]
            _SCREAMING_SNAKE_CASE      =				config.vision_config.hidden_size
            if "message_attn" in key:
               if "weight" in key:
                  _SCREAMING_SNAKE_CASE      =				val[
                      :dim, :
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[
                      dim : dim * 2, :
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[
                      -dim:, :
                  ]
               else:
                  _SCREAMING_SNAKE_CASE      =				val[
                      :dim
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[
                      dim : dim * 2
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[
                      -dim:
                  ]
            else:
               if "weight" in key:
                  _SCREAMING_SNAKE_CASE      =				val[
                      :dim, :
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[
                      dim : dim * 2, :
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[
                      -dim:, :
                  ]
               else:
                  _SCREAMING_SNAKE_CASE      =				val[:dim]
                  _SCREAMING_SNAKE_CASE      =				val[
                      dim : dim * 2
                  ]
                  _SCREAMING_SNAKE_CASE      =				val[-dim:]
         elif key.startswith("""mit"""						):
            _SCREAMING_SNAKE_CASE      =				key_split[2]
            _SCREAMING_SNAKE_CASE      =				config.vision_config.mit_hidden_size
            if "weight" in key:
               _SCREAMING_SNAKE_CASE      =				val[:dim, :]
               _SCREAMING_SNAKE_CASE      =				val[dim : dim * 2, :]
               _SCREAMING_SNAKE_CASE      =				val[-dim:, :]
            else:
               _SCREAMING_SNAKE_CASE      =				val[:dim]
               _SCREAMING_SNAKE_CASE      =				val[dim : dim * 2]
               _SCREAMING_SNAKE_CASE      =				val[-dim:]
         else:
            _SCREAMING_SNAKE_CASE      =				key_split[2]
            _SCREAMING_SNAKE_CASE      =				config.text_config.hidden_size
            if "weight" in key:
               _SCREAMING_SNAKE_CASE      =				val[:dim, :]
               _SCREAMING_SNAKE_CASE      =				val[
                   dim : dim * 2, :
               ]
               _SCREAMING_SNAKE_CASE      =				val[-dim:, :]
            else:
               _SCREAMING_SNAKE_CASE      =				val[:dim]
               _SCREAMING_SNAKE_CASE      =				val[
                   dim : dim * 2
               ]
               _SCREAMING_SNAKE_CASE      =				val[-dim:]
      else:
         _SCREAMING_SNAKE_CASE      =				rename_key(SCREAMING_SNAKE_CASE_						)
         if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
            _SCREAMING_SNAKE_CASE      =				val.T
         _SCREAMING_SNAKE_CASE      =				val
   return orig_state_dict
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     Optional[Any]:
   """simple docstring"""
   if num_frames == 8:
      _SCREAMING_SNAKE_CASE      =				"""eating_spaghetti_8_frames.npy"""
   elif num_frames == 16:
      _SCREAMING_SNAKE_CASE      =				"""eating_spaghetti.npy"""
   elif num_frames == 32:
      _SCREAMING_SNAKE_CASE      =				"""eating_spaghetti_32_frames.npy"""
   _SCREAMING_SNAKE_CASE      =				hf_hub_download(
       repo_id="""hf-internal-testing/spaghetti-video"""    ,      filename=SCREAMING_SNAKE_CASE_    ,      repo_type="""dataset"""    ,      )
   _SCREAMING_SNAKE_CASE      =				np.load(SCREAMING_SNAKE_CASE_						)
   return list(SCREAMING_SNAKE_CASE_						)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_=None    ,      SCREAMING_SNAKE_CASE_=False						)     ->     Optional[int]:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				{
       # fully supervised kinetics-400 checkpoints
       """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""",
       """xclip-base-patch32-16-frames""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"""
       ),
       """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""",
       """xclip-base-patch16-16-frames""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"""
       ),
       """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb""",
       """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f""",
       # fully supervised kinetics-600 checkpoints
       """xclip-base-patch16-kinetics-600""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"""
       ),
       """xclip-base-patch16-kinetics-600-16-frames""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"""
       ),
       """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be""",
       # few shot
       """xclip-base-patch16-hmdb-2-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"""
       ),
       """xclip-base-patch16-hmdb-4-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"""
       ),
       """xclip-base-patch16-hmdb-8-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"""
       ),
       """xclip-base-patch16-hmdb-16-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"""
       ),
       """xclip-base-patch16-ucf-2-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"""
       ),
       """xclip-base-patch16-ucf-4-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"""
       ),
       """xclip-base-patch16-ucf-8-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"""
       ),
       """xclip-base-patch16-ucf-16-shot""": (
           """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"""
       ),
       # zero shot
       """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""",
   }
   _SCREAMING_SNAKE_CASE      =				model_to_url[model_name]
   _SCREAMING_SNAKE_CASE      =				8
   if "16-frames" in model_name:
      _SCREAMING_SNAKE_CASE      =				16
   elif "shot" in model_name:
      _SCREAMING_SNAKE_CASE      =				32
   _SCREAMING_SNAKE_CASE      =				get_xclip_config(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				XCLIPModel(SCREAMING_SNAKE_CASE_						)
   model.eval()
   if "drive" in checkpoint_url:
      _SCREAMING_SNAKE_CASE      =				"""pytorch_model.bin"""
      gdown.cached_download(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      quiet=SCREAMING_SNAKE_CASE_						)
      _SCREAMING_SNAKE_CASE      =				torch.load(SCREAMING_SNAKE_CASE_    ,      map_location="""cpu"""						)["""model"""]
   else:
      _SCREAMING_SNAKE_CASE      =				torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_						)["""model"""]
   _SCREAMING_SNAKE_CASE      =				convert_state_dict(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				XCLIPModel(SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				model.load_state_dict(SCREAMING_SNAKE_CASE_    ,      strict=SCREAMING_SNAKE_CASE_						)
   assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
   model.eval()
   _SCREAMING_SNAKE_CASE      =				3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24
   _SCREAMING_SNAKE_CASE      =				VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32"""						)
   _SCREAMING_SNAKE_CASE      =				CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32"""						)
   _SCREAMING_SNAKE_CASE      =				XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_    ,      tokenizer=SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				prepare_video(SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				processor(
       text=["""playing sports""", """eating spaghetti""", """go shopping"""]    ,      videos=SCREAMING_SNAKE_CASE_    ,      return_tensors="""pt"""    ,      padding=SCREAMING_SNAKE_CASE_						)
   print("""Shape of pixel values:"""    ,      inputs.pixel_values.shape						)
   with torch.no_grad():
      _SCREAMING_SNAKE_CASE      =				model(**SCREAMING_SNAKE_CASE_						)
   # Verify outputs
   _SCREAMING_SNAKE_CASE      =				outputs.logits_per_video
   _SCREAMING_SNAKE_CASE      =				logits_per_video.softmax(dim=1						)
   print("""Probs:"""    ,      SCREAMING_SNAKE_CASE_						)
   # kinetics-400
   if model_name == "xclip-base-patch32":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[0.0019, 0.9951, 0.0030]]						)
   elif model_name == "xclip-base-patch32-16-frames":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]]						)
   elif model_name == "xclip-base-patch16":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[0.0083, 0.9681, 0.0236]]						)
   elif model_name == "xclip-base-patch16-16-frames":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]]						)
   elif model_name == "xclip-large-patch14":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[0.0062, 0.9864, 0.0075]]						)
   elif model_name == "xclip-large-patch14-16-frames":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]]						)
   # kinetics-600
   elif model_name == "xclip-base-patch16-kinetics-600":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[0.0555, 0.8914, 0.0531]]						)
   elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]]						)
   elif model_name == "xclip-large-patch14-kinetics-600":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[0.0036, 0.9920, 0.0045]]						)
   # few shot
   elif model_name == "xclip-base-patch16-hmdb-2-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]]						)
   elif model_name == "xclip-base-patch16-hmdb-4-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]]						)
   elif model_name == "xclip-base-patch16-hmdb-8-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]]						)
   elif model_name == "xclip-base-patch16-hmdb-16-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]]						)
   elif model_name == "xclip-base-patch16-ucf-2-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]]						)
   elif model_name == "xclip-base-patch16-ucf-4-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]]						)
   elif model_name == "xclip-base-patch16-ucf-8-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[0.0027, 0.9904, 0.0070]]						)
   elif model_name == "xclip-base-patch16-ucf-16-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]]						)
   # zero shot
   elif model_name == "xclip-base-patch16-zero-shot":
      _SCREAMING_SNAKE_CASE      =				torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]]						)
   else:
      raise ValueError(F"Model name {model_name} not supported"						)
   assert torch.allclose(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      atol=1e-3						)
   print("""Looks ok!"""						)
   if pytorch_dump_folder_path is not None:
      print(F"Saving model {model_name} to {pytorch_dump_folder_path}"						)
      model.save_pretrained(SCREAMING_SNAKE_CASE_						)
   if push_to_hub:
      print("""Pushing model, processor and slow tokenizer files to the hub..."""						)
      model.push_to_hub(SCREAMING_SNAKE_CASE_    ,      organization="""nielsr"""						)
      processor.push_to_hub(SCREAMING_SNAKE_CASE_    ,      organization="""nielsr"""						)
      slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_    ,      organization="""nielsr"""						)
if __name__ == "__main__":
     UpperCamelCase__      :		Union[str, Any]       							=  argparse.ArgumentParser()
     # Required parameters
     parser.add_argument(
         "--model_name",
         default="xclip-base-patch32",
         type=str,
         help="Name of the model.",
     )
     parser.add_argument(
         "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
     )
     parser.add_argument(
         "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
     )
     UpperCamelCase__      :		str       							=  parser.parse_args()
     convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
 | 0 | 1 | 
| 
	
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
     UpperCamelCase__      :		int       							=  "pt"
elif is_tf_available():
     UpperCamelCase__      :		Dict       							=  "tf"
else:
     UpperCamelCase__      :		Optional[int]       							=  "jax"
class    _a				(_lowerCamelCase  ,					unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  PerceiverTokenizer
       SCREAMING_SNAKE_CASE      =  False
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          super().setUp()
          _SCREAMING_SNAKE_CASE      =				PerceiverTokenizer()
          tokenizer.save_pretrained(self.tmpdirname      )
       @cached_property
       def        UpperCamelCase				(							self      )    ->			str:
          return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver"""      )
       def        UpperCamelCase				(							self       ,							**A__      )    ->			PerceiverTokenizer:
          return self.tokenizer_class.from_pretrained(self.tmpdirname       ,							**A__      )
       def        UpperCamelCase				(							self       ,							A__       ,							A__=False       ,							A__=20       ,							A__=5      )    ->			Tuple[str, list]:
          # XXX The default common tokenizer tests assume that every ID is decodable on its own.
          # This assumption is invalid for Perceiver because single bytes might not be
          # valid utf-8 (byte 128 for instance).
          # Here we're overriding the smallest possible method to provide
          # a clean sequence without making the same assumption.
          _SCREAMING_SNAKE_CASE      =				[]
          for i in range(len(A__      )      ):
             try:
                _SCREAMING_SNAKE_CASE      =				tokenizer.decode([i]       ,							clean_up_tokenization_spaces=A__      )
             except UnicodeDecodeError:
                pass
             toks.append((i, tok)      )
          _SCREAMING_SNAKE_CASE      =				list(filter(lambda A__      : re.match(R"""^[ a-zA-Z]+$"""       ,							t[1]      )       ,							A__      )      )
          _SCREAMING_SNAKE_CASE      =				list(filter(lambda A__      : [t[0]] == tokenizer.encode(t[1]       ,							add_special_tokens=A__      )       ,							A__      )      )
          if max_length is not None and len(A__      ) > max_length:
             _SCREAMING_SNAKE_CASE      =				toks[:max_length]
          if min_length is not None and len(A__      ) < min_length and len(A__      ) > 0:
             while len(A__      ) < min_length:
                _SCREAMING_SNAKE_CASE      =				toks + toks
        # toks_str = [t[1] for t in toks]
          _SCREAMING_SNAKE_CASE      =				[t[0] for t in toks]
          # Ensure consistency
          _SCREAMING_SNAKE_CASE      =				tokenizer.decode(A__       ,							clean_up_tokenization_spaces=A__      )
          if " " not in output_txt and len(A__      ) > 1:
             _SCREAMING_SNAKE_CASE      =				(
                 tokenizer.decode([toks_ids[0]]       ,							clean_up_tokenization_spaces=A__      )
                 + """ """
                 + tokenizer.decode(toks_ids[1:]       ,							clean_up_tokenization_spaces=A__      )
             )
          if with_prefix_space:
             _SCREAMING_SNAKE_CASE      =				""" """ + output_txt
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__       ,							add_special_tokens=A__      )
          return output_txt, output_ids
       def        UpperCamelCase				(							self      )    ->			int:
          _SCREAMING_SNAKE_CASE      =				self.perceiver_tokenizer
          _SCREAMING_SNAKE_CASE      =				"""Unicode €."""
          _SCREAMING_SNAKE_CASE      =				tokenizer(A__      )
          _SCREAMING_SNAKE_CASE      =				[4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5]
          self.assertEqual(encoded["""input_ids"""]       ,							A__      )
          # decoding
          _SCREAMING_SNAKE_CASE      =				tokenizer.decode(A__      )
          self.assertEqual(A__       ,							"""[CLS]Unicode €.[SEP]"""      )
          _SCREAMING_SNAKE_CASE      =				tokenizer("""e è é ê ë"""      )
          _SCREAMING_SNAKE_CASE      =				[4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5]
          self.assertEqual(encoded["""input_ids"""]       ,							A__      )
          # decoding
          _SCREAMING_SNAKE_CASE      =				tokenizer.decode(A__      )
          self.assertEqual(A__       ,							"""[CLS]e è é ê ë[SEP]"""      )
          # encode/decode, but with `encode` instead of `__call__`
          self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë"""      )      )       ,							"""[CLS]e è é ê ë[SEP]"""      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				self.perceiver_tokenizer
          _SCREAMING_SNAKE_CASE      =				["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
          # fmt: off
          _SCREAMING_SNAKE_CASE      =				[4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0]
          # fmt: on
          _SCREAMING_SNAKE_CASE      =				tokenizer(A__       ,							padding=A__       ,							return_tensors=A__      )
          self.assertIsInstance(A__       ,							A__      )
          if FRAMEWORK != "jax":
             _SCREAMING_SNAKE_CASE      =				list(batch.input_ids.numpy()[0]      )
          else:
             _SCREAMING_SNAKE_CASE      =				list(batch.input_ids.tolist()[0]      )
          self.assertListEqual(A__       ,							A__      )
          self.assertEqual((2, 38)       ,							batch.input_ids.shape      )
          self.assertEqual((2, 38)       ,							batch.attention_mask.shape      )
       def        UpperCamelCase				(							self      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				self.perceiver_tokenizer
          _SCREAMING_SNAKE_CASE      =				["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
          _SCREAMING_SNAKE_CASE      =				tokenizer(A__       ,							padding=A__       ,							return_tensors=A__      )
          # check if input_ids are returned and no decoder_input_ids
          self.assertIn("""input_ids"""       ,							A__      )
          self.assertIn("""attention_mask"""       ,							A__      )
          self.assertNotIn("""decoder_input_ids"""       ,							A__      )
          self.assertNotIn("""decoder_attention_mask"""       ,							A__      )
       def        UpperCamelCase				(							self      )    ->			Optional[int]:
          _SCREAMING_SNAKE_CASE      =				self.perceiver_tokenizer
          _SCREAMING_SNAKE_CASE      =				[
              """Summary of the text.""",
              """Another summary.""",
          ]
          _SCREAMING_SNAKE_CASE      =				tokenizer(
              text_target=A__       ,							max_length=32       ,							padding="""max_length"""       ,							truncation=A__       ,							return_tensors=A__      )
          self.assertEqual(32       ,							targets["""input_ids"""].shape[1]      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          # safety check on max_len default value so we are sure the test works
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizers()
          for tokenizer in tokenizers:
             with self.subTest(F"{tokenizer.__class__.__name__}"      ):
                self.assertNotEqual(tokenizer.model_max_length       ,							42      )
        # Now let's start the test
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizers()
          for tokenizer in tokenizers:
             with self.subTest(F"{tokenizer.__class__.__name__}"      ):
                # Isolate this from the other tests because we save additional tokens/etc
                _SCREAMING_SNAKE_CASE      =				tempfile.mkdtemp()
                _SCREAMING_SNAKE_CASE      =				""" He is very happy, UNwant\u00E9d,running"""
                _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__       ,							add_special_tokens=A__      )
                tokenizer.save_pretrained(A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer.__class__.from_pretrained(A__      )
                _SCREAMING_SNAKE_CASE      =				after_tokenizer.encode(A__       ,							add_special_tokens=A__      )
                self.assertListEqual(A__       ,							A__      )
                shutil.rmtree(A__      )
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizers(model_max_length=42      )
          for tokenizer in tokenizers:
             with self.subTest(F"{tokenizer.__class__.__name__}"      ):
                # Isolate this from the other tests because we save additional tokens/etc
                _SCREAMING_SNAKE_CASE      =				tempfile.mkdtemp()
                _SCREAMING_SNAKE_CASE      =				""" He is very happy, UNwant\u00E9d,running"""
                tokenizer.add_tokens(["""bim""", """bambam"""]      )
                _SCREAMING_SNAKE_CASE      =				tokenizer.additional_special_tokens
                additional_special_tokens.append("""new_additional_special_token"""      )
                tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens}      )
                _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__       ,							add_special_tokens=A__      )
                tokenizer.save_pretrained(A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer.__class__.from_pretrained(A__      )
                _SCREAMING_SNAKE_CASE      =				after_tokenizer.encode(A__       ,							add_special_tokens=A__      )
                self.assertListEqual(A__       ,							A__      )
                self.assertIn("""new_additional_special_token"""       ,							after_tokenizer.additional_special_tokens      )
                self.assertEqual(after_tokenizer.model_max_length       ,							42      )
                _SCREAMING_SNAKE_CASE      =				tokenizer.__class__.from_pretrained(A__       ,							model_max_length=43      )
                self.assertEqual(tokenizer.model_max_length       ,							43      )
                shutil.rmtree(A__      )
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				[]
          if self.test_slow_tokenizer:
             tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())      )
          if self.test_rust_tokenizer:
             tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())      )
          for tokenizer_class, tokenizer_utils in tokenizer_list:
             with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(A__      )
                with open(os.path.join(A__       ,							"""special_tokens_map.json"""      )       ,							encoding="""utf-8"""      ) as json_file:
                   _SCREAMING_SNAKE_CASE      =				json.load(A__      )
                with open(os.path.join(A__       ,							"""tokenizer_config.json"""      )       ,							encoding="""utf-8"""      ) as json_file:
                   _SCREAMING_SNAKE_CASE      =				json.load(A__      )
                _SCREAMING_SNAKE_CASE      =				[F"<extra_id_{i}>" for i in range(1_25      )]
                _SCREAMING_SNAKE_CASE      =				added_tokens_extra_ids + [
                    """an_additional_special_token"""
                ]
                _SCREAMING_SNAKE_CASE      =				added_tokens_extra_ids + [
                    """an_additional_special_token"""
                ]
                with open(os.path.join(A__       ,							"""special_tokens_map.json"""      )       ,							"""w"""       ,							encoding="""utf-8"""      ) as outfile:
                   json.dump(A__       ,							A__      )
                with open(os.path.join(A__       ,							"""tokenizer_config.json"""      )       ,							"""w"""       ,							encoding="""utf-8"""      ) as outfile:
                   json.dump(A__       ,							A__      )
                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
                _SCREAMING_SNAKE_CASE      =				tokenizer_class.from_pretrained(
                    A__       ,							)
                self.assertIn(
                    """an_additional_special_token"""       ,							tokenizer_without_change_in_init.additional_special_tokens      )
                self.assertEqual(
                    ["""an_additional_special_token"""]       ,							tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""]      )      )       ,							)
                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                _SCREAMING_SNAKE_CASE      =				added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token"""       ,							lstrip=A__      )]
                _SCREAMING_SNAKE_CASE      =				tokenizer_class.from_pretrained(
                    A__       ,							additional_special_tokens=A__       ,							)
                self.assertIn("""a_new_additional_special_token"""       ,							tokenizer.additional_special_tokens      )
                self.assertEqual(
                    ["""a_new_additional_special_token"""]       ,							tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""]      )      )       ,							)
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          _SCREAMING_SNAKE_CASE      =				self.perceiver_tokenizer
          self.assertEqual(tokenizer.decode([1_78]      )       ,							"""�"""      )
       def        UpperCamelCase				(							self      )    ->			Tuple:
          pass
       def        UpperCamelCase				(							self      )    ->			Dict:
          pass
       def        UpperCamelCase				(							self      )    ->			Dict:
          pass
       def        UpperCamelCase				(							self      )    ->			Tuple:
          pass
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
          # strings and special added tokens as tokens
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizers(fast=A__       ,							do_lower_case=A__      )
          for tokenizer in tokenizers:
             with self.subTest(F"{tokenizer.__class__.__name__}"      ):
                _SCREAMING_SNAKE_CASE      =				["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
                _SCREAMING_SNAKE_CASE      =				tokenizer.convert_tokens_to_string(A__      )
                self.assertIsInstance(A__       ,							A__      )
 | 0 | 
	
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class    _a				(_lowerCamelCase):
       """simple docstring"""
       def __init__(							self       ,							A__       ,							A__      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				params
          _SCREAMING_SNAKE_CASE      =				np.array(A__      )
          _SCREAMING_SNAKE_CASE      =				np.array([len(A__      ) for t in data]      )
          self.check()
          self.remove_long_sequences()
          self.remove_empty_sequences()
          self.remove_unknown_sequences()
          self.check()
          self.print_statistics()
       def __getitem__(							self       ,							A__      )    ->			Dict:
          return (self.token_ids[index], self.lengths[index])
       def __len__(							self      )    ->			Tuple:
          return len(self.lengths      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          assert len(self.token_ids      ) == len(self.lengths      )
          assert all(self.lengths[i] == len(self.token_ids[i]      ) for i in range(len(self.lengths      )      )      )
       def        UpperCamelCase				(							self      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.params.max_model_input_size
          _SCREAMING_SNAKE_CASE      =				self.lengths > max_len
          logger.info(F"Splitting {sum(A__      )} too long sequences."      )
          def divide_chunks(A__       ,							A__      ):
             return [l[i : i + n] for i in range(0       ,							len(A__      )       ,							A__      )]
          _SCREAMING_SNAKE_CASE      =				[]
          _SCREAMING_SNAKE_CASE      =				[]
          if self.params.mlm:
             _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""]
          else:
             _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""]
          for seq_, len_ in zip(self.token_ids       ,							self.lengths      ):
             assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
             if len_ <= max_len:
                new_tok_ids.append(seq_      )
                new_lengths.append(len_      )
             else:
                _SCREAMING_SNAKE_CASE      =				[]
                for sub_s in divide_chunks(seq_       ,							max_len - 2      ):
                   if sub_s[0] != cls_id:
                      _SCREAMING_SNAKE_CASE      =				np.insert(A__       ,							0       ,							A__      )
                   if sub_s[-1] != sep_id:
                      _SCREAMING_SNAKE_CASE      =				np.insert(A__       ,							len(A__      )       ,							A__      )
                   assert len(A__      ) <= max_len
                   assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
                   sub_seqs.append(A__      )
                new_tok_ids.extend(A__      )
                new_lengths.extend([len(A__      ) for l in sub_seqs]      )
          _SCREAMING_SNAKE_CASE      =				np.array(A__      )
          _SCREAMING_SNAKE_CASE      =				np.array(A__      )
       def        UpperCamelCase				(							self      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				len(self      )
          _SCREAMING_SNAKE_CASE      =				self.lengths > 11
          _SCREAMING_SNAKE_CASE      =				self.token_ids[indices]
          _SCREAMING_SNAKE_CASE      =				self.lengths[indices]
          _SCREAMING_SNAKE_CASE      =				len(self      )
          logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences."      )
       def        UpperCamelCase				(							self      )    ->			int:
          if "unk_token" not in self.params.special_tok_ids:
             return
          else:
             _SCREAMING_SNAKE_CASE      =				self.params.special_tok_ids["""unk_token"""]
          _SCREAMING_SNAKE_CASE      =				len(self      )
          _SCREAMING_SNAKE_CASE      =				np.array([np.count_nonzero(a == unk_token_id      ) for a in self.token_ids]      )
          _SCREAMING_SNAKE_CASE      =				(unk_occs / self.lengths) < 0.5
          _SCREAMING_SNAKE_CASE      =				self.token_ids[indices]
          _SCREAMING_SNAKE_CASE      =				self.lengths[indices]
          _SCREAMING_SNAKE_CASE      =				len(self      )
          logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)."      )
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          if not self.params.is_master:
             return
          logger.info(F"{len(self      )} sequences"      )
          # data_len = sum(self.lengths)
          # nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
          # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
          # unk_idx = self.params.special_tok_ids['unk_token']
          # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
          # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
       def        UpperCamelCase				(							self       ,							A__      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				[t[0] for t in batch]
          _SCREAMING_SNAKE_CASE      =				[t[1] for t in batch]
          assert len(A__      ) == len(A__      )
          # Max for paddings
          _SCREAMING_SNAKE_CASE      =				max(A__      )
          # Pad token ids
          if self.params.mlm:
             _SCREAMING_SNAKE_CASE      =				self.params.special_tok_ids["""pad_token"""]
          else:
             _SCREAMING_SNAKE_CASE      =				self.params.special_tok_ids["""unk_token"""]
          _SCREAMING_SNAKE_CASE      =				[list(t.astype(A__      )      ) + [pad_idx] * (max_seq_len_ - len(A__      )) for t in token_ids]
          assert len(tk_      ) == len(A__      )
          assert all(len(A__      ) == max_seq_len_ for t in tk_      )
          _SCREAMING_SNAKE_CASE      =				torch.tensor(tk_      )  # (bs, max_seq_len_)
          _SCREAMING_SNAKE_CASE      =				torch.tensor(A__      )  # (bs)
          return tk_t, lg_t
 | 0 | 1 | 
| 
	
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__      :		List[Any]       							=  logging.get_logger(__name__)
UpperCamelCase__      :		Any       							=  "▁"
UpperCamelCase__      :		Any       							=  {"vocab_file": "spiece.model"}
UpperCamelCase__      :		int       							=  {
    "vocab_file": {
        "google/reformer-crime-and-punishment": (
            "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
        )
    }
}
UpperCamelCase__      :		Optional[int]       							=  {
    "google/reformer-crime-and-punishment": 524_288,
}
class    _a				(_lowerCamelCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  VOCAB_FILES_NAMES
       SCREAMING_SNAKE_CASE      =  PRETRAINED_VOCAB_FILES_MAP
       SCREAMING_SNAKE_CASE      =  PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
       SCREAMING_SNAKE_CASE      =  ['input_ids', 'attention_mask']
       def __init__(							self       ,							A__       ,							A__="</s>"       ,							A__="<unk>"       ,							A__=[]       ,							A__ = None       ,							**A__       ,							)    ->			None:
          _SCREAMING_SNAKE_CASE      =				{} if sp_model_kwargs is None else sp_model_kwargs
          super().__init__(
              eos_token=A__       ,							unk_token=A__       ,							additional_special_tokens=A__       ,							sp_model_kwargs=self.sp_model_kwargs       ,							**A__       ,							)
          _SCREAMING_SNAKE_CASE      =				vocab_file
          _SCREAMING_SNAKE_CASE      =				spm.SentencePieceProcessor(**self.sp_model_kwargs      )
          self.sp_model.Load(A__      )
       @property
       def        UpperCamelCase				(							self      )    ->			Any:
          return self.sp_model.get_piece_size()
       def        UpperCamelCase				(							self      )    ->			Dict[str, int]:
          _SCREAMING_SNAKE_CASE      =				{self.convert_ids_to_tokens(A__      ): i for i in range(self.vocab_size      )}
          vocab.update(self.added_tokens_encoder      )
          return vocab
       def __getstate__(							self      )    ->			int:
          _SCREAMING_SNAKE_CASE      =				self.__dict__.copy()
          _SCREAMING_SNAKE_CASE      =				None
          return state
       def __setstate__(							self       ,							A__      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				d
          # for backward compatibility
          if not hasattr(self       ,							"""sp_model_kwargs"""      ):
             _SCREAMING_SNAKE_CASE      =				{}
          _SCREAMING_SNAKE_CASE      =				spm.SentencePieceProcessor(**self.sp_model_kwargs      )
          self.sp_model.Load(self.vocab_file      )
       def        UpperCamelCase				(							self       ,							A__      )    ->			List[str]:
          return self.sp_model.encode(A__       ,							out_type=A__      )
       def        UpperCamelCase				(							self       ,							A__      )    ->			Union[str, Any]:
          return self.sp_model.piece_to_id(A__      )
       def        UpperCamelCase				(							self       ,							A__      )    ->			List[Any]:
          if index < self.sp_model.get_piece_size():
             _SCREAMING_SNAKE_CASE      =				self.sp_model.IdToPiece(A__      )
          return token
       def        UpperCamelCase				(							self       ,							A__      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				[]
          _SCREAMING_SNAKE_CASE      =				""""""
          for token in tokens:
             # make sure that special tokens are not decoded using sentencepiece model
             if token in self.all_special_tokens:
                out_string += self.sp_model.decode(A__      ) + token
                _SCREAMING_SNAKE_CASE      =				[]
             else:
                current_sub_tokens.append(A__      )
          out_string += self.sp_model.decode(A__      )
          return out_string.strip()
       def        UpperCamelCase				(							self       ,							A__       ,							A__ = None      )    ->			Tuple[str]:
          if not os.path.isdir(A__      ):
             logger.error(F"Vocabulary path ({save_directory}) should be a directory"      )
             return
          _SCREAMING_SNAKE_CASE      =				os.path.join(
              A__       ,							(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]      )
          if os.path.abspath(self.vocab_file      ) != os.path.abspath(A__      ) and os.path.isfile(self.vocab_file      ):
             copyfile(self.vocab_file       ,							A__      )
          elif not os.path.isfile(self.vocab_file      ):
             with open(A__       ,							"""wb"""      ) as fi:
                _SCREAMING_SNAKE_CASE      =				self.sp_model.serialized_model_proto()
                fi.write(A__      )
          return (out_vocab_file,)
 | 0 | 
	
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__      :		List[Any]       							=  logging.get_logger(__name__)
UpperCamelCase__      :		Any       							=  "▁"
UpperCamelCase__      :		Any       							=  {"vocab_file": "spiece.model"}
UpperCamelCase__      :		int       							=  {
    "vocab_file": {
        "google/reformer-crime-and-punishment": (
            "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
        )
    }
}
UpperCamelCase__      :		Optional[int]       							=  {
    "google/reformer-crime-and-punishment": 524_288,
}
class    _a				(_lowerCamelCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  VOCAB_FILES_NAMES
       SCREAMING_SNAKE_CASE      =  PRETRAINED_VOCAB_FILES_MAP
       SCREAMING_SNAKE_CASE      =  PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
       SCREAMING_SNAKE_CASE      =  ['input_ids', 'attention_mask']
       def __init__(							self       ,							A__       ,							A__="</s>"       ,							A__="<unk>"       ,							A__=[]       ,							A__ = None       ,							**A__       ,							)    ->			None:
          _SCREAMING_SNAKE_CASE      =				{} if sp_model_kwargs is None else sp_model_kwargs
          super().__init__(
              eos_token=A__       ,							unk_token=A__       ,							additional_special_tokens=A__       ,							sp_model_kwargs=self.sp_model_kwargs       ,							**A__       ,							)
          _SCREAMING_SNAKE_CASE      =				vocab_file
          _SCREAMING_SNAKE_CASE      =				spm.SentencePieceProcessor(**self.sp_model_kwargs      )
          self.sp_model.Load(A__      )
       @property
       def        UpperCamelCase				(							self      )    ->			Any:
          return self.sp_model.get_piece_size()
       def        UpperCamelCase				(							self      )    ->			Dict[str, int]:
          _SCREAMING_SNAKE_CASE      =				{self.convert_ids_to_tokens(A__      ): i for i in range(self.vocab_size      )}
          vocab.update(self.added_tokens_encoder      )
          return vocab
       def __getstate__(							self      )    ->			int:
          _SCREAMING_SNAKE_CASE      =				self.__dict__.copy()
          _SCREAMING_SNAKE_CASE      =				None
          return state
       def __setstate__(							self       ,							A__      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				d
          # for backward compatibility
          if not hasattr(self       ,							"""sp_model_kwargs"""      ):
             _SCREAMING_SNAKE_CASE      =				{}
          _SCREAMING_SNAKE_CASE      =				spm.SentencePieceProcessor(**self.sp_model_kwargs      )
          self.sp_model.Load(self.vocab_file      )
       def        UpperCamelCase				(							self       ,							A__      )    ->			List[str]:
          return self.sp_model.encode(A__       ,							out_type=A__      )
       def        UpperCamelCase				(							self       ,							A__      )    ->			Union[str, Any]:
          return self.sp_model.piece_to_id(A__      )
       def        UpperCamelCase				(							self       ,							A__      )    ->			List[Any]:
          if index < self.sp_model.get_piece_size():
             _SCREAMING_SNAKE_CASE      =				self.sp_model.IdToPiece(A__      )
          return token
       def        UpperCamelCase				(							self       ,							A__      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				[]
          _SCREAMING_SNAKE_CASE      =				""""""
          for token in tokens:
             # make sure that special tokens are not decoded using sentencepiece model
             if token in self.all_special_tokens:
                out_string += self.sp_model.decode(A__      ) + token
                _SCREAMING_SNAKE_CASE      =				[]
             else:
                current_sub_tokens.append(A__      )
          out_string += self.sp_model.decode(A__      )
          return out_string.strip()
       def        UpperCamelCase				(							self       ,							A__       ,							A__ = None      )    ->			Tuple[str]:
          if not os.path.isdir(A__      ):
             logger.error(F"Vocabulary path ({save_directory}) should be a directory"      )
             return
          _SCREAMING_SNAKE_CASE      =				os.path.join(
              A__       ,							(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]      )
          if os.path.abspath(self.vocab_file      ) != os.path.abspath(A__      ) and os.path.isfile(self.vocab_file      ):
             copyfile(self.vocab_file       ,							A__      )
          elif not os.path.isfile(self.vocab_file      ):
             with open(A__       ,							"""wb"""      ) as fi:
                _SCREAMING_SNAKE_CASE      =				self.sp_model.serialized_model_proto()
                fi.write(A__      )
          return (out_vocab_file,)
 | 0 | 1 | 
| 
	
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
UpperCamelCase__      :		List[Any]       							=  logging.get_logger(__name__)
class    _a				(_lowerCamelCase):
       """simple docstring"""
       def __init__(							self       ,							*A__       ,							**A__      )    ->			None:
          warnings.warn(
              """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
              """ use DPTImageProcessor instead."""       ,							A__       ,							)
          super().__init__(*A__       ,							**A__      )
 | 0 | 
	
'''simple docstring'''
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
    VOCAB_FILES_NAMES,
    BasicTokenizer,
    WordpieceTokenizer,
    _is_control,
    _is_punctuation,
    _is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class    _a				(_lowerCamelCase  ,					unittest.TestCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  MobileBertTokenizer
       SCREAMING_SNAKE_CASE      =  MobileBertTokenizerFast
       SCREAMING_SNAKE_CASE      =  True
       SCREAMING_SNAKE_CASE      =  True
       SCREAMING_SNAKE_CASE      =  filter_non_english
       SCREAMING_SNAKE_CASE      =  'google/mobilebert-uncased'
       def        UpperCamelCase				(							self      )    ->			Any:
          super().setUp()
          _SCREAMING_SNAKE_CASE      =				[
              """[UNK]""",
              """[CLS]""",
              """[SEP]""",
              """[PAD]""",
              """[MASK]""",
              """want""",
              """##want""",
              """##ed""",
              """wa""",
              """un""",
              """runn""",
              """##ing""",
              """,""",
              """low""",
              """lowest""",
          ]
          _SCREAMING_SNAKE_CASE      =				os.path.join(self.tmpdirname       ,							VOCAB_FILES_NAMES["""vocab_file"""]      )
          with open(self.vocab_file       ,							"""w"""       ,							encoding="""utf-8"""      ) as vocab_writer:
             vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]      )      )
          _SCREAMING_SNAKE_CASE      =				[
              (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2])  # else the 'google/' prefix is stripped
              for tokenizer_def in self.tokenizers_list
          ]
       def        UpperCamelCase				(							self       ,							A__      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				"""UNwant\u00E9d,running"""
          _SCREAMING_SNAKE_CASE      =				"""unwanted, running"""
          return input_text, output_text
       def        UpperCamelCase				(							self      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				self.tokenizer_class(self.vocab_file      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.tokenize("""UNwant\u00E9d,running"""      )
          self.assertListEqual(A__       ,							["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""]      )
          self.assertListEqual(tokenizer.convert_tokens_to_ids(A__      )       ,							[9, 6, 7, 12, 10, 11]      )
       def        UpperCamelCase				(							self      )    ->			Optional[int]:
          if not self.test_rust_tokenizer:
             return
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizer()
          _SCREAMING_SNAKE_CASE      =				self.get_rust_tokenizer()
          _SCREAMING_SNAKE_CASE      =				"""UNwant\u00E9d,running"""
          _SCREAMING_SNAKE_CASE      =				tokenizer.tokenize(A__      )
          _SCREAMING_SNAKE_CASE      =				rust_tokenizer.tokenize(A__      )
          self.assertListEqual(A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__       ,							add_special_tokens=A__      )
          _SCREAMING_SNAKE_CASE      =				rust_tokenizer.encode(A__       ,							add_special_tokens=A__      )
          self.assertListEqual(A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				self.get_rust_tokenizer()
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__      )
          _SCREAMING_SNAKE_CASE      =				rust_tokenizer.encode(A__      )
          self.assertListEqual(A__       ,							A__      )
          # With lower casing
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizer(do_lower_case=A__      )
          _SCREAMING_SNAKE_CASE      =				self.get_rust_tokenizer(do_lower_case=A__      )
          _SCREAMING_SNAKE_CASE      =				"""UNwant\u00E9d,running"""
          _SCREAMING_SNAKE_CASE      =				tokenizer.tokenize(A__      )
          _SCREAMING_SNAKE_CASE      =				rust_tokenizer.tokenize(A__      )
          self.assertListEqual(A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__       ,							add_special_tokens=A__      )
          _SCREAMING_SNAKE_CASE      =				rust_tokenizer.encode(A__       ,							add_special_tokens=A__      )
          self.assertListEqual(A__       ,							A__      )
          _SCREAMING_SNAKE_CASE      =				self.get_rust_tokenizer()
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode(A__      )
          _SCREAMING_SNAKE_CASE      =				rust_tokenizer.encode(A__      )
          self.assertListEqual(A__       ,							A__      )
       def        UpperCamelCase				(							self      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer()
          self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz"""      )       ,							["""ah""", """\u535A""", """\u63A8""", """zz"""]      )
       def        UpperCamelCase				(							self      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHeLLo!how  \n Are yoU?  """      )       ,							["""hello""", """!""", """how""", """are""", """you""", """?"""]      )
          self.assertListEqual(tokenizer.tokenize("""H\u00E9llo"""      )       ,							["""hello"""]      )
       def        UpperCamelCase				(							self      )    ->			Optional[Any]:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__       ,							strip_accents=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHäLLo!how  \n Are yoU?  """      )       ,							["""hällo""", """!""", """how""", """are""", """you""", """?"""]      )
          self.assertListEqual(tokenizer.tokenize("""H\u00E9llo"""      )       ,							["""h\u00E9llo"""]      )
       def        UpperCamelCase				(							self      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__       ,							strip_accents=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHäLLo!how  \n Are yoU?  """      )       ,							["""hallo""", """!""", """how""", """are""", """you""", """?"""]      )
          self.assertListEqual(tokenizer.tokenize("""H\u00E9llo"""      )       ,							["""hello"""]      )
       def        UpperCamelCase				(							self      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHäLLo!how  \n Are yoU?  """      )       ,							["""hallo""", """!""", """how""", """are""", """you""", """?"""]      )
          self.assertListEqual(tokenizer.tokenize("""H\u00E9llo"""      )       ,							["""hello"""]      )
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHeLLo!how  \n Are yoU?  """      )       ,							["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__       ,							strip_accents=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHäLLo!how  \n Are yoU?  """      )       ,							["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]      )
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__       ,							strip_accents=A__      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHäLLo!how  \n Are yoU?  """      )       ,							["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]      )
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				BasicTokenizer(do_lower_case=A__       ,							never_split=["""[UNK]"""]      )
          self.assertListEqual(
              tokenizer.tokenize(""" \tHeLLo!how  \n Are yoU? [UNK]"""      )       ,							["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]      )
       def        UpperCamelCase				(							self      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
          _SCREAMING_SNAKE_CASE      =				{}
          for i, token in enumerate(A__      ):
             _SCREAMING_SNAKE_CASE      =				i
          _SCREAMING_SNAKE_CASE      =				WordpieceTokenizer(vocab=A__       ,							unk_token="""[UNK]"""      )
          self.assertListEqual(tokenizer.tokenize(""""""      )       ,							[]      )
          self.assertListEqual(tokenizer.tokenize("""unwanted running"""      )       ,							["""un""", """##want""", """##ed""", """runn""", """##ing"""]      )
          self.assertListEqual(tokenizer.tokenize("""unwantedX running"""      )       ,							["""[UNK]""", """runn""", """##ing"""]      )
       def        UpperCamelCase				(							self      )    ->			str:
          self.assertTrue(_is_whitespace(""" """      )      )
          self.assertTrue(_is_whitespace("""\t"""      )      )
          self.assertTrue(_is_whitespace("""\r"""      )      )
          self.assertTrue(_is_whitespace("""\n"""      )      )
          self.assertTrue(_is_whitespace("""\u00A0"""      )      )
          self.assertFalse(_is_whitespace("""A"""      )      )
          self.assertFalse(_is_whitespace("""-"""      )      )
       def        UpperCamelCase				(							self      )    ->			Union[str, Any]:
          self.assertTrue(_is_control("""\u0005"""      )      )
          self.assertFalse(_is_control("""A"""      )      )
          self.assertFalse(_is_control(""" """      )      )
          self.assertFalse(_is_control("""\t"""      )      )
          self.assertFalse(_is_control("""\r"""      )      )
       def        UpperCamelCase				(							self      )    ->			Dict:
          self.assertTrue(_is_punctuation("""-"""      )      )
          self.assertTrue(_is_punctuation("""$"""      )      )
          self.assertTrue(_is_punctuation("""`"""      )      )
          self.assertTrue(_is_punctuation("""."""      )      )
          self.assertFalse(_is_punctuation("""A"""      )      )
          self.assertFalse(_is_punctuation(""" """      )      )
       def        UpperCamelCase				(							self      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				self.get_tokenizer()
          _SCREAMING_SNAKE_CASE      =				self.get_rust_tokenizer()
          # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
          self.assertListEqual([tokenizer.tokenize(A__      ) for t in ["""Test""", """\xad""", """test"""]]       ,							[["""[UNK]"""], [], ["""[UNK]"""]]      )
          self.assertListEqual(
              [rust_tokenizer.tokenize(A__      ) for t in ["""Test""", """\xad""", """test"""]]       ,							[["""[UNK]"""], [], ["""[UNK]"""]]      )
       @slow
       def        UpperCamelCase				(							self      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				self.tokenizer_class.from_pretrained("""google/mobilebert-uncased"""      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode("""sequence builders"""       ,							add_special_tokens=A__      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.encode("""multi-sequence build"""       ,							add_special_tokens=A__      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.build_inputs_with_special_tokens(A__      )
          _SCREAMING_SNAKE_CASE      =				tokenizer.build_inputs_with_special_tokens(A__       ,							A__      )
          assert encoded_sentence == [1_01] + text + [1_02]
          assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02]
       def        UpperCamelCase				(							self      )    ->			List[str]:
          for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
             with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"      ):
                _SCREAMING_SNAKE_CASE      =				self.rust_tokenizer_class.from_pretrained(A__       ,							**A__      )
                _SCREAMING_SNAKE_CASE      =				F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
                _SCREAMING_SNAKE_CASE      =				tokenizer_r.encode_plus(
                    A__       ,							return_attention_mask=A__       ,							return_token_type_ids=A__       ,							return_offsets_mapping=A__       ,							add_special_tokens=A__       ,							)
                _SCREAMING_SNAKE_CASE      =				tokenizer_r.do_lower_case if hasattr(A__       ,							"""do_lower_case"""      ) else False
                _SCREAMING_SNAKE_CASE      =				(
                    [
                        ((0, 0), tokenizer_r.cls_token),
                        ((0, 1), """A"""),
                        ((1, 2), ""","""),
                        ((3, 5), """na"""),
                        ((5, 6), """##ï"""),
                        ((6, 8), """##ve"""),
                        ((9, 15), tokenizer_r.mask_token),
                        ((16, 21), """Allen"""),
                        ((21, 23), """##NL"""),
                        ((23, 24), """##P"""),
                        ((25, 33), """sentence"""),
                        ((33, 34), """."""),
                        ((0, 0), tokenizer_r.sep_token),
                    ]
                    if not do_lower_case
                    else [
                        ((0, 0), tokenizer_r.cls_token),
                        ((0, 1), """a"""),
                        ((1, 2), ""","""),
                        ((3, 8), """naive"""),
                        ((9, 15), tokenizer_r.mask_token),
                        ((16, 21), """allen"""),
                        ((21, 23), """##nl"""),
                        ((23, 24), """##p"""),
                        ((25, 33), """sentence"""),
                        ((33, 34), """."""),
                        ((0, 0), tokenizer_r.sep_token),
                    ]
                )
                self.assertEqual(
                    [e[1] for e in expected_results]       ,							tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]      )      )
                self.assertEqual([e[0] for e in expected_results]       ,							tokens["""offset_mapping"""]      )
       def        UpperCamelCase				(							self      )    ->			Any:
          _SCREAMING_SNAKE_CASE      =				["""的""", """人""", """有"""]
          _SCREAMING_SNAKE_CASE      =				"""""".join(A__      )
          for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
             with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"      ):
                _SCREAMING_SNAKE_CASE      =				True
                _SCREAMING_SNAKE_CASE      =				self.tokenizer_class.from_pretrained(A__       ,							**A__      )
                _SCREAMING_SNAKE_CASE      =				self.rust_tokenizer_class.from_pretrained(A__       ,							**A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_p.encode(A__       ,							add_special_tokens=A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_r.encode(A__       ,							add_special_tokens=A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_r.convert_ids_to_tokens(A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_p.convert_ids_to_tokens(A__      )
                # it is expected that each Chinese character is not preceded by "##"
                self.assertListEqual(A__       ,							A__      )
                self.assertListEqual(A__       ,							A__      )
                _SCREAMING_SNAKE_CASE      =				False
                _SCREAMING_SNAKE_CASE      =				self.rust_tokenizer_class.from_pretrained(A__       ,							**A__      )
                _SCREAMING_SNAKE_CASE      =				self.tokenizer_class.from_pretrained(A__       ,							**A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_r.encode(A__       ,							add_special_tokens=A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_p.encode(A__       ,							add_special_tokens=A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_r.convert_ids_to_tokens(A__      )
                _SCREAMING_SNAKE_CASE      =				tokenizer_p.convert_ids_to_tokens(A__      )
                # it is expected that only the first Chinese character is not preceded by "##".
                _SCREAMING_SNAKE_CASE      =				[
                    F"##{token}" if idx != 0 else token for idx, token in enumerate(A__      )
                ]
                self.assertListEqual(A__       ,							A__      )
                self.assertListEqual(A__       ,							A__      )
 | 0 | 1 | 
| 
	
'''simple docstring'''
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
UpperCamelCase__      :		Optional[Any]       							=  {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
    " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_ = "dhaka"    ,      SCREAMING_SNAKE_CASE_ = 5						)     ->     int:
   """simple docstring"""
   _SCREAMING_SNAKE_CASE      =				min(SCREAMING_SNAKE_CASE_    ,      50						)  # Prevent abuse!
   _SCREAMING_SNAKE_CASE      =				{
       """q""": query,
       """tbm""": """isch""",
       """hl""": """en""",
       """ijn""": """0""",
   }
   _SCREAMING_SNAKE_CASE      =				requests.get("""https://www.google.com/search"""    ,      params=SCREAMING_SNAKE_CASE_    ,      headers=SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				BeautifulSoup(html.text    ,      """html.parser"""						)
   _SCREAMING_SNAKE_CASE      =				"""""".join(
       re.findall(r"""AF_initDataCallback\(([^<]+)\);"""    ,      str(soup.select("""script"""						)						)						)						)
   _SCREAMING_SNAKE_CASE      =				json.dumps(SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				json.loads(SCREAMING_SNAKE_CASE_						)
   _SCREAMING_SNAKE_CASE      =				re.findall(
       r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\","""    ,      SCREAMING_SNAKE_CASE_    ,      )
   if not matched_google_image_data:
      return 0
   _SCREAMING_SNAKE_CASE      =				re.sub(
       r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]"""    ,      """"""    ,      str(SCREAMING_SNAKE_CASE_						)    ,      )
   _SCREAMING_SNAKE_CASE      =				re.findall(
       r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]"""    ,      SCREAMING_SNAKE_CASE_    ,      )
   for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE_						):
      if index >= max_images:
         return index
      _SCREAMING_SNAKE_CASE      =				bytes(SCREAMING_SNAKE_CASE_    ,      """ascii"""						).decode(
          """unicode-escape"""						)
      _SCREAMING_SNAKE_CASE      =				bytes(SCREAMING_SNAKE_CASE_    ,      """ascii"""						).decode(
          """unicode-escape"""						)
      _SCREAMING_SNAKE_CASE      =				urllib.request.build_opener()
      _SCREAMING_SNAKE_CASE      =				[
          (
              """User-Agent""",
              """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
              """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""",
          )
      ]
      urllib.request.install_opener(SCREAMING_SNAKE_CASE_						)
      _SCREAMING_SNAKE_CASE      =				F"query_{query.replace(' '    ,      '_'						)}"
      if not os.path.exists(SCREAMING_SNAKE_CASE_						):
         os.makedirs(SCREAMING_SNAKE_CASE_						)
      urllib.request.urlretrieve(  # noqa: S310
          SCREAMING_SNAKE_CASE_    ,      F"{path_name}/original_size_img_{index}.jpg"						)
   return index
if __name__ == "__main__":
     try:
          UpperCamelCase__      :		List[str]       							=  download_images_from_google_query(sys.argv[1])
          print(f"""{image_count} images were downloaded to disk.""")
     except IndexError:
          print("Please provide a search term.")
          raise
 | 0 | 
	
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
UpperCamelCase__      :		Tuple       							=  logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
     import torch_xla.core.xla_model as xm
     import torch_xla.debug.metrics as met
class    _a				(_lowerCamelCase):
       """simple docstring"""
       def __init__(							self       ,							*A__       ,							A__=None       ,							A__=None       ,							A__=None       ,							**A__      )    ->			Optional[int]:
          super().__init__(*A__       ,							**A__      )
          _SCREAMING_SNAKE_CASE      =				eval_examples
          _SCREAMING_SNAKE_CASE      =				post_process_function
          _SCREAMING_SNAKE_CASE      =				quant_trainer_args
          _SCREAMING_SNAKE_CASE      =				1_28  # default number of calibration samples
       def        UpperCamelCase				(							self       ,							A__=None      )    ->			Union[str, Any]:
          if calib_dataset is None and self.calib_dataset is None:
             raise ValueError("""Trainer: calibration requires an calib_dataset."""      )
          _SCREAMING_SNAKE_CASE      =				calib_dataset if calib_dataset is not None else self.calib_dataset
          _SCREAMING_SNAKE_CASE      =				self._remove_unused_columns(A__       ,							description="""Calibration"""      )
          return DataLoader(
              A__       ,							batch_size=self.args.eval_batch_size       ,							collate_fn=self.data_collator       ,							drop_last=self.args.dataloader_drop_last       ,							num_workers=self.args.dataloader_num_workers       ,							pin_memory=self.args.dataloader_pin_memory       ,							shuffle=A__       ,							)
       def        UpperCamelCase				(							self       ,							A__=None      )    ->			str:
          _SCREAMING_SNAKE_CASE      =				self.train_dataset if calib_dataset is None else calib_dataset
          _SCREAMING_SNAKE_CASE      =				self.get_calib_dataloader(A__      )
          _SCREAMING_SNAKE_CASE      =				self.model
          quant_trainer.configure_model(A__       ,							self.quant_trainer_args       ,							calib=A__      )
          model.eval()
          quant_trainer.enable_calibration(A__      )
          logger.info("""***** Running calibration *****"""      )
          logger.info(F"  Num examples = {self.calib_num}"      )
          logger.info(F"  Batch size = {calib_dataloader.batch_size}"      )
          for step, inputs in enumerate(A__      ):
             # Prediction step
             _SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE ,							_SCREAMING_SNAKE_CASE      =				self.prediction_step(A__       ,							A__       ,							prediction_loss_only=A__      )
             if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
                break
          quant_trainer.finish_calibration(A__       ,							self.quant_trainer_args      )
          _SCREAMING_SNAKE_CASE      =				model
       def        UpperCamelCase				(							self       ,							A__=None       ,							A__=None       ,							A__=None       ,							A__ = "eval"      )    ->			List[Any]:
          _SCREAMING_SNAKE_CASE      =				self.eval_dataset if eval_dataset is None else eval_dataset
          _SCREAMING_SNAKE_CASE      =				self.get_eval_dataloader(A__      )
          _SCREAMING_SNAKE_CASE      =				self.eval_examples if eval_examples is None else eval_examples
          # Temporarily disable metric computation, we will do it in the loop here.
          _SCREAMING_SNAKE_CASE      =				self.compute_metrics
          _SCREAMING_SNAKE_CASE      =				None
          _SCREAMING_SNAKE_CASE      =				self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
          try:
             _SCREAMING_SNAKE_CASE      =				eval_loop(
                 A__       ,							description="""Evaluation"""       ,							prediction_loss_only=True if compute_metrics is None else None       ,							ignore_keys=A__       ,							)
          finally:
             _SCREAMING_SNAKE_CASE      =				compute_metrics
          if self.post_process_function is not None and self.compute_metrics is not None:
             _SCREAMING_SNAKE_CASE      =				self.post_process_function(A__       ,							A__       ,							output.predictions      )
             _SCREAMING_SNAKE_CASE      =				self.compute_metrics(A__      )
             # Prefix all keys with metric_key_prefix + '_'
             for key in list(metrics.keys()      ):
                if not key.startswith(F"{metric_key_prefix}_"      ):
                   _SCREAMING_SNAKE_CASE      =				metrics.pop(A__      )
             self.log(A__      )
          else:
             _SCREAMING_SNAKE_CASE      =				{}
          if self.args.tpu_metrics_debug or self.args.debug:
             # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
             xm.master_print(met.metrics_report()      )
          _SCREAMING_SNAKE_CASE      =				self.callback_handler.on_evaluate(self.args       ,							self.state       ,							self.control       ,							A__      )
          return metrics
       def        UpperCamelCase				(							self       ,							A__       ,							A__       ,							A__=None       ,							A__ = "test"      )    ->			List[str]:
          _SCREAMING_SNAKE_CASE      =				self.get_test_dataloader(A__      )
          # Temporarily disable metric computation, we will do it in the loop here.
          _SCREAMING_SNAKE_CASE      =				self.compute_metrics
          _SCREAMING_SNAKE_CASE      =				None
          _SCREAMING_SNAKE_CASE      =				self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
          try:
             _SCREAMING_SNAKE_CASE      =				eval_loop(
                 A__       ,							description="""Prediction"""       ,							prediction_loss_only=True if compute_metrics is None else None       ,							ignore_keys=A__       ,							)
          finally:
             _SCREAMING_SNAKE_CASE      =				compute_metrics
          if self.post_process_function is None or self.compute_metrics is None:
             return output
          _SCREAMING_SNAKE_CASE      =				self.post_process_function(A__       ,							A__       ,							output.predictions       ,							"""predict"""      )
          _SCREAMING_SNAKE_CASE      =				self.compute_metrics(A__      )
          # Prefix all keys with metric_key_prefix + '_'
          for key in list(metrics.keys()      ):
             if not key.startswith(F"{metric_key_prefix}_"      ):
                _SCREAMING_SNAKE_CASE      =				metrics.pop(A__      )
          return PredictionOutput(predictions=predictions.predictions       ,							label_ids=predictions.label_ids       ,							metrics=A__      )
       def        UpperCamelCase				(							self       ,							A__="./"      )    ->			Tuple:
          _SCREAMING_SNAKE_CASE      =				self.eval_dataset
          _SCREAMING_SNAKE_CASE      =				self.get_eval_dataloader(A__      )
          _SCREAMING_SNAKE_CASE      =				next(iter(A__      )      )
          # saving device - to make it consistent
          _SCREAMING_SNAKE_CASE      =				torch.device("""cuda""" if torch.cuda.is_available() else """cpu"""      )
          # convert to tuple
          _SCREAMING_SNAKE_CASE      =				tuple(v.to(A__      ) for k, v in batch.items()      )
          logger.info("""Converting model to be onnx compatible"""      )
          from pytorch_quantization.nn import TensorQuantizer
          _SCREAMING_SNAKE_CASE      =				True
          _SCREAMING_SNAKE_CASE      =				self.model.to(A__      )
          model.eval()
          model.float()
          _SCREAMING_SNAKE_CASE      =				model.module if hasattr(A__       ,							"""module"""      ) else model
          quant_trainer.configure_model(A__       ,							self.quant_trainer_args      )
          _SCREAMING_SNAKE_CASE      =				os.path.join(A__       ,							"""model.onnx"""      )
          logger.info(F"exporting model to {output_model_file}"      )
          _SCREAMING_SNAKE_CASE      =				{0: """batch_size""", 1: """seq_len"""}
          torch.onnx.export(
              A__       ,							A__       ,							A__       ,							export_params=A__       ,							opset_version=13       ,							do_constant_folding=A__       ,							input_names=["""input_ids""", """attention_mask""", """token_type_ids"""]       ,							output_names=["""output_start_logits""", """output_end_logits"""]       ,							dynamic_axes={
                  """input_ids""": axes,
                  """attention_mask""": axes,
                  """token_type_ids""": axes,
                  """output_start_logits""": axes,
                  """output_end_logits""": axes,
              }       ,							verbose=A__       ,							)
          logger.info("""onnx export finished"""      )
 | 0 | 1 | 
| 
	
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__      :		Tuple       							=  logging.get_logger(__name__)
UpperCamelCase__      :		List[str]       							=  {
    "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
    "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
    "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
    "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
    "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
    "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
    "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
    "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
    "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
    "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class    _a				(_lowerCamelCase):
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  'rwkv'
       SCREAMING_SNAKE_CASE      =  {'max_position_embeddings': 'context_length'}
       def __init__(							self       ,							A__=5_02_77       ,							A__=10_24       ,							A__=40_96       ,							A__=32       ,							A__=None       ,							A__=None       ,							A__=1E-5       ,							A__=0       ,							A__=0       ,							A__=6       ,							A__=False       ,							A__=True       ,							**A__       ,							)    ->			Any:
          _SCREAMING_SNAKE_CASE      =				vocab_size
          _SCREAMING_SNAKE_CASE      =				context_length
          _SCREAMING_SNAKE_CASE      =				hidden_size
          _SCREAMING_SNAKE_CASE      =				num_hidden_layers
          _SCREAMING_SNAKE_CASE      =				attention_hidden_size if attention_hidden_size is not None else hidden_size
          _SCREAMING_SNAKE_CASE      =				intermediate_size if intermediate_size is not None else 4 * hidden_size
          _SCREAMING_SNAKE_CASE      =				layer_norm_epsilon
          _SCREAMING_SNAKE_CASE      =				rescale_every
          _SCREAMING_SNAKE_CASE      =				use_cache
          _SCREAMING_SNAKE_CASE      =				bos_token_id
          _SCREAMING_SNAKE_CASE      =				eos_token_id
          super().__init__(
              tie_word_embeddings=A__       ,							bos_token_id=A__       ,							eos_token_id=A__       ,							**A__      )
 | 0 | 
	
'''simple docstring'''
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     str:
   """simple docstring"""
   return "".join([hex(SCREAMING_SNAKE_CASE_						)[2:].zfill(2						).upper() for byte in list(SCREAMING_SNAKE_CASE_						)]						)
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     bytes:
   """simple docstring"""
   # Check data validity, following RFC3548
   # https://www.ietf.org/rfc/rfc3548.txt
   if (len(SCREAMING_SNAKE_CASE_						) % 2) != 0:
      raise ValueError(
          """Base16 encoded data is invalid:
Data does not have an even number of hex digits."""						)
   # Check the character set - the standard base16 alphabet
   # is uppercase according to RFC3548 section 6
   if not set(SCREAMING_SNAKE_CASE_						) <= set("""0123456789ABCDEF"""						):
      raise ValueError(
          """Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters."""						)
   # For every two hexadecimal digits (= a byte), turn it into an integer.
   # Then, string the result together into bytes, and return it.
   return bytes(int(data[i] + data[i + 1]    ,      16						) for i in range(0    ,      len(SCREAMING_SNAKE_CASE_						)    ,      2						)						)
if __name__ == "__main__":
     import doctest
     doctest.testmod()
 | 0 | 1 | 
| 
	
'''simple docstring'''
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class    _a				:
       """simple docstring"""
       SCREAMING_SNAKE_CASE      =  42
       SCREAMING_SNAKE_CASE      =  None
       SCREAMING_SNAKE_CASE      =  None
def    lowerCAmelCase_	(				SCREAMING_SNAKE_CASE_						)     ->     bool:
   """simple docstring"""
   # Validation
   def is_valid_tree(SCREAMING_SNAKE_CASE_						) -> bool:
      if node is None:
         return True
      if not isinstance(SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						):
         return False
      try:
         float(node.data						)
      except (TypeError, ValueError):
         return False
      return is_valid_tree(node.left						) and is_valid_tree(node.right						)
   if not is_valid_tree(SCREAMING_SNAKE_CASE_						):
      raise ValueError(
          """Each node should be type of TreeNode and data should be float."""						)
   def is_binary_search_tree_recursive_check(
       SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_    ,      SCREAMING_SNAKE_CASE_						) -> bool:
      if node is None:
         return True
      return (
          left_bound < node.data < right_bound
          and is_binary_search_tree_recursive_check(node.left    ,      SCREAMING_SNAKE_CASE_    ,      node.data						)
          and is_binary_search_tree_recursive_check(
              node.right    ,      node.data    ,      SCREAMING_SNAKE_CASE_						)
      )
   return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE_    ,      -float("""inf"""						)    ,      float("""inf"""						)						)
if __name__ == "__main__":
     import doctest
     doctest.testmod()
 | 0 | 
	
'''simple docstring'''
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def    lowerCAmelCase_	(				)     ->     List[Any]:
   """simple docstring"""
   with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT						):
      with pytest.raises(SCREAMING_SNAKE_CASE_						):
         requests.request("""GET"""    ,      """https://huggingface.co"""						)
      with pytest.raises(requests.exceptions.ConnectTimeout						):
         requests.request("""GET"""    ,      """https://huggingface.co"""    ,      timeout=1.0						)
@pytest.mark.integration
def    lowerCAmelCase_	(				)     ->     int:
   """simple docstring"""
   with offline(OfflineSimulationMode.CONNECTION_FAILS						):
      with pytest.raises(requests.exceptions.ConnectionError						):
         requests.request("""GET"""    ,      """https://huggingface.co"""						)
def    lowerCAmelCase_	(				)     ->     Optional[Any]:
   """simple docstring"""
   with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1						):
      with pytest.raises(SCREAMING_SNAKE_CASE_						):
         http_head("""https://huggingface.co"""						)
 | 0 | 1 | 
Dataset Card for "python_codestyles-single-1k"
This dataset contains negative and positive examples with python code of compliance with a code style. A positive
example represents compliance with the code style (label is 1). Each example is composed of two components, the first
component consists of a code that either conforms to the code style or violates it and the second component
corresponding to an example code that already conforms to a code style. In total, the dataset contains 1.000 completely
different code styles. The code styles differ in exactly one codestyle rule, which is called a single codestyle
dataset variant. The dataset consists of a training and test group, with none of the code styles overlapping between
groups. In addition, both groups contain completely different underlying codes.
The examples contain source code from the following repositories:
| repository | tag or commit | 
|---|---|
| TheAlgorithms/Python | f614ed72170011d2d439f7901e1c8daa7deac8c4 | 
| huggingface/transformers | v4.31.0 | 
| huggingface/datasets | 2.13.1 | 
| huggingface/diffusers | v0.18.2 | 
| huggingface/accelerate | v0.21.0 | 
You can find the corresponding code styles of the examples in the file additional_data.json.
The code styles in the file are split by training and test group and the index corresponds to the class for the
columns code_codestyle and style_context_codestyle in the dataset.
There are 364.381 samples in total and 182.181 positive and 182.200 negative samples.
- Downloads last month
- 188