text
stringlengths
1
93.6k
depth_gt_ms = sample_cuda["depth"]
mask_ms = sample_cuda["mask"]
sigma_ms = sample_cuda["sigma"]
num_stage = len([int(nd) for nd in args.ndepths.split(",") if nd])
depth_gt = depth_gt_ms["stage{}".format(num_stage)]
mask = mask_ms["stage{}".format(num_stage)]
try:
outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"])
depth_est = outputs["depth"]
loss, depth_loss, kl, approx_kl, depth_wta = model_loss(outputs, depth_gt_ms,
sigma_ms, mask_ms, dlossw=[float(e) for e in args.dlossw.split(",") if e])
if np.isnan(loss.item()):
raise NanError
if is_distributed and args.using_apex:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
except NanError:
print(f'nan error occur!!')
gc.collect()
torch.cuda.empty_cache()
scalar_outputs = {"loss": loss,
"depth_loss": depth_loss,
"kl_loss": kl,
"approx_kl": approx_kl,
"abs_depth_error": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5),
"thres2mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 2),
"thres4mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 4),
"thres8mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 8),}
image_outputs = {"depth_est": depth_est * mask,
"depth_est_nomask": depth_est,
"depth_gt": sample["depth"]["stage1"],
"ref_img": sample["imgs"][:, 0],
"mask": sample["mask"]["stage1"],
"errormap": (depth_est - depth_gt).abs() * mask,
}
if is_distributed:
scalar_outputs = reduce_scalar_outputs(scalar_outputs)
return tensor2float(scalar_outputs["loss"]), tensor2float(scalar_outputs), tensor2numpy(image_outputs)
@make_nograd_func
def test_sample_depth(model, model_loss, sample, args):
if is_distributed:
model_eval = model.module
else:
model_eval = model
model_eval.eval()
sample_cuda = tocuda(sample)
depth_gt_ms = sample_cuda["depth"]
mask_ms = sample_cuda["mask"]
sigma_ms = sample_cuda["sigma"]
num_stage = len([int(nd) for nd in args.ndepths.split(",") if nd])
depth_gt = depth_gt_ms["stage{}".format(num_stage)]
mask = mask_ms["stage{}".format(num_stage)]
outputs = model_eval(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"])
depth_est = outputs["depth"]
loss, depth_loss, kl, approx_kl, depth_wta = model_loss(outputs, depth_gt_ms,
sigma_ms, mask_ms, dlossw=[float(e) for e in args.dlossw.split(",") if e])
scalar_outputs = {"loss": loss,
"depth_loss": depth_loss,
"kl_loss": kl,
"approx_kl": approx_kl,
"abs_depth_error": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5),
"thres2mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 2),
"thres4mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 4),
"thres8mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 8),
"thres14mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 14),
"thres20mm_error": Thres_metrics(depth_est, depth_gt, mask > 0.5, 20),
"thres2mm_abserror": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, [0, 2.0]),
"thres4mm_abserror": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, [2.0, 4.0]),
"thres8mm_abserror": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, [4.0, 8.0]),
"thres14mm_abserror": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, [8.0, 14.0]),
"thres20mm_abserror": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, [14.0, 20.0]),
"thres>20mm_abserror": AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, [20.0, 1e5]),
}
image_outputs = {"depth_est": depth_est * mask,
"depth_est_nomask": depth_est,
"depth_gt": sample["depth"]["stage1"],
"ref_img": sample["imgs"][:, 0],