Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for "emotions"

Dataset Summary

Emotions is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. Note that the paper does contain a larger data set with eight emotions being considered.

Dataset Structure

Data Instances

An example bit of data looks like this:

{
  "text": "im feeling quite sad and sorry for myself but ill snap out of it soon",
  "label": 0
}

Data Fields

The data fields are:

  • text: a string feature.
  • label: a classification label, with possible values including sadness (0), joy (1), love (2), anger (3), fear (4), surprise (5).

Data Splits

The dataset has two configurations.

  • split: with a total of 20,000 examples split into train, validation and test.
  • unsplit: with a total of 416,809 examples in a single train split.
name train validation test
split 16000 2000 2000
unsplit 416809 n/a n/a

Additional Information

Licensing Information

The dataset should be used for educational and research purposes only. It is licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

Citation Information

If you use this dataset, please cite:

@inproceedings{saravia-etal-2018-carer,
    title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
    author = "Saravia, Elvis  and
      Liu, Hsien-Chi Toby  and
      Huang, Yen-Hao  and
      Wu, Junlin  and
      Chen, Yi-Shin",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D18-1404",
    doi = "10.18653/v1/D18-1404",
    pages = "3687--3697",
    abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
}
Downloads last month
96