ericgarcia's picture
Update README.md with GitHub commit hash 245a96b976f46aefbd71fc1716c16fd69d503b73
040ddc6
metadata
language:
  - af
  - am
  - ar
  - bn
  - bg
  - ca
  - hr
  - cs
  - da
  - nl
  - en
  - et
  - tl
  - fi
  - fr
  - de
  - el
  - gu
  - he
  - hi
  - hu
  - id
  - it
  - ja
  - kn
  - ko
  - lv
  - lt
  - ms
  - ml
  - mr
  - 'no'
  - fa
  - pl
  - pt
  - ro
  - ru
license: other
license_name: other
license_details: >-
  This dataset is proprietary to Keeper Security and intended for internal use
  only.
tags: []
annotations_creators:
  - machine-generated
pretty_name: Html Input Text Only Dataset
size_categories:
  - 100K<n<1M
task_categories:
  - text-classification
task_ids: []
configs:
  - config_name: default
    data_files:
      - split: train
        path: html-input-text-only-1755812747.parquet
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: string
    - name: lang
      dtype: string
  config_name: default
  splits:
    - name: train
      num_bytes: 21009409
      num_examples: 449994
  download_size: 21009409
  dataset_size: 21009409

📖 Html Input Text Only Dataset

This dataset contains HTML input text with all punctuation removed, making it ideal for training models on web form elements and URLs.

📊 Dataset Overview

A preprocessed version of keeper-security/html_input_dataset with punctuation removed from HTML sections to reduce tokenization errors during model training. Contains web form elements and URLs for security analysis tasks.

This dataset is designed to facilitate the training of models that require clean HTML input without the noise introduced by punctuation.

🔗 Dependencies

The dataset uses data from the following datasets:


💡 Usage Examples

Load with Hugging Face Datasets

from datasets import load_dataset
ds = load_dataset("keeper-security/html-input-text-only", data_files={"train": "html-input-text-only-1755812747.parquet"})
print(ds["train"][0])

Convert to Pandas

import pandas as pd
df_train = ds["train"].to_pandas()
df_train.head()

📁 Repository Structure

html-input-text-only/
├── html-input-text-only-1755812747.parquet # Main processed dataset
├── README.md                               # Dataset documentation
└── CHANGELOG.md                            # Version history and changes

📊 Data Overview

  • Shape: (449,994 rows × 3 columns)
  • File Size: ~20 MB

📌 Statistics

  • 🎯 Unique text: 302,616
  • 🎯 Unique label: 45
  • 🎯 Unique lang: 38

Columns

Column Name Type Description
text string The main text content URL and HTML combined
label string Classification label
lang string Language of the text

Ontology

lang Description
Gujarati Gujarati language
Japanese Japanese language
Lithuanian Lithuanian language
Indonesian Indonesian language
Bengali Bengali language
Afrikaans Afrikaans language
Estonian Estonian language
Dutch Dutch language
Italian Italian language
Hebrew Hebrew language
Croatian Croatian language
Finnish Finnish language
Filipino Filipino language
English English language
Bulgarian Bulgarian language
Korean Korean language
Czech Czech language
Danish Danish language
Hindi Hindi language
Latvian Latvian language
German German language
unknown Unknown or unclassified language
Amharic Amharic language
Hungarian Hungarian language
Arabic Arabic language
Greek Greek language
Catalan Catalan language
Kannada Kannada language
French French language
Marathi Marathi language
Malay Malay language
Malayalam Malayalam language
Persian Persian language
Norwegian Bokmål Norwegian language
Polish Polish language
Romanian Romanian language
Portuguese Portuguese language
Russian Russian language
label Description
ACCOUNT_CREATION_PASSWORD Account creation password
ADDRESS_CITY City name in an address
ADDRESS_COUNTRY Country name in an address
ADDRESS_LINE1 First line of a street address
ADDRESS_LINE2 Second line of a street address (e.g., apartment, suite)
ADDRESS_STATE State, province, or region in an address
ADDRESS_ZIP Postal or ZIP code in an address
ALTERNATIVE_FAMILY_NAME Alternative or secondary family/last name
ALTERNATIVE_FULL_NAME Alternative or secondary full name
ALTERNATIVE_GIVEN_NAME Alternative or secondary given/first name
AMBIGUOUS Ambiguous or unclear input that cannot be classified
BIRTH_DATE_DAY Day component of a birth date
BIRTH_DATE_MONTH Month component of a birth date
BIRTH_DATE_YEAR Year component of a birth date
COMPANY_NAME Name of a company or organization
CONFIRMATION_PASSWORD Password confirmation field
CREDIT_CARD_EXP_DATE_MONTH_AND_YEAR Credit card expiration date (month and year)
CREDIT_CARD_EXP_DATE_YEAR Credit card expiration year
CREDIT_CARD_EXP_MONTH Credit card expiration month
CREDIT_CARD_NUMBER Credit card number
CREDIT_CARD_STANDALONE_VERIFICATION_CODE Credit card verification code (standalone field)
CREDIT_CARD_TYPE Type or brand of credit card (e.g., Visa, MasterCard)
CREDIT_CARD_VERIFICATION_CODE Credit card verification code (CVV, CVC, etc.)
EMAIL_ADDRESS Email address
IBAN_VALUE International Bank Account Number (IBAN)
MALICIOUS_LABEL Label for potentially malicious or harmful input
MERCHANT_EMAIL_SIGNUP Email address used for merchant signup
MERCHANT_PROMO_CODE Promotional or discount code for merchants
NAME_FIRST First or given name
NAME_FULL Full name
NAME_LAST Last or family name
NAME_MIDDLE Middle name
NAME_MIDDLE_INITIAL Middle initial
NAME_PREFIX Name prefix (e.g., Mr., Dr., Ms.)
NAME_SUFFIX Name suffix (e.g., Jr., Sr., III)
NATIONAL_IDENTITY_NUMBER National identity or government-issued number
NEW_PASSWORD New password field
PASSWORD Password field
PHONE_NUMBER Phone number
PIN_CODE Personal identification number (PIN)
PROBABLY_NEW_PASSWORD Field likely to be a new password
SEARCH Search query or search field
TWO_FACTOR_CODE Two-factor authentication code
UNKNOWN Unknown or unclassified input
USERNAME Username or user ID


🔧 Reproduction

  1. Clone the repository:
git clone https://github.com/keeper-security/ai-factory.git
cd ai-factory
git checkout 245a96b976f46aefbd71fc1716c16fd69d503b73
  1. Navigate to the dataset directory and run the pipeline:
cd datasets/html-input-text-only
python run_pipeline.py