id
stringlengths 4
117
| sentence
stringlengths 1
134k
|
---|---|
timm/mobilenetv3_large_100.ra_in1k
|
RMSProp (TF 1.0 behaviour) optimizer, EMA weight averaging
|
timm/mobilenetv3_large_100.ra_in1k
|
Step
|
timm/mobilenetv3_large_100.ra_in1k
|
(exponential decay w/ staircase)
|
timm/mobilenetv3_large_100.ra_in1k
|
LR schedule with warmup
|
timm/mobilenetv3_large_100.ra_in1k
|
Model Details
|
timm/mobilenetv3_large_100.ra_in1k
|
Model
|
timm/mobilenetv3_large_100.ra_in1k
|
Type: Image classification / feature backbone
|
timm/mobilenetv3_large_100.ra_in1k
|
Model Stats:
|
timm/mobilenetv3_large_100.ra_in1k
|
Params (M): 5.5
|
timm/mobilenetv3_large_100.ra_in1k
|
GMACs: 0.2
|
timm/mobilenetv3_large_100.ra_in1k
|
Activations
|
timm/mobilenetv3_large_100.ra_in1k
|
(M): 4.4
|
timm/mobilenetv3_large_100.ra_in1k
|
Image size: 224 x 224
|
timm/mobilenetv3_large_100.ra_in1k
|
Papers:
|
timm/mobilenetv3_large_100.ra_in1k
|
Searching for MobileNetV3: https://arxiv.org/abs/1905.02244
|
timm/mobilenetv3_large_100.ra_in1k
|
ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
|
timm/mobilenetv3_large_100.ra_in1k
|
Dataset: ImageNet-1k
|
timm/mobilenetv3_large_100.ra_in1k
|
Original: https://github.com/huggingface/pytorch-image-models
|
timm/mobilenetv3_large_100.ra_in1k
|
Model Usage
|
timm/mobilenetv3_large_100.ra_in1k
|
Image
|
timm/mobilenetv3_large_100.ra_in1k
|
Classification
|
timm/mobilenetv3_large_100.ra_in1k
|
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilenetv3_large_100.ra_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))
|
timm/mobilenetv3_large_100.ra_in1k
|
# unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1)
|
timm/mobilenetv3_large_100.ra_in1k
|
* 100, k=5)
|
timm/mobilenetv3_large_100.ra_in1k
|
Feature Map Extraction
|
timm/mobilenetv3_large_100.ra_in1k
|
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilenetv3_large_100.ra_in1k', pretrained=True, features_only=True, ) model = model.eval()
|
timm/mobilenetv3_large_100.ra_in1k
|
# get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))
|
timm/mobilenetv3_large_100.ra_in1k
|
# unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.
|
timm/mobilenetv3_large_100.ra_in1k
|
Size([1, 16, 112, 112]) # torch.
|
timm/mobilenetv3_large_100.ra_in1k
|
Size([1, 24, 56, 56]) # torch.
|
timm/mobilenetv3_large_100.ra_in1k
|
Size([1, 40, 28, 28]) # torch.
|
timm/mobilenetv3_large_100.ra_in1k
|
Size([1, 112, 14, 14]) # torch.
|
timm/mobilenetv3_large_100.ra_in1k
|
Size([1, 960, 7, 7]) print(o.shape)
|
timm/mobilenetv3_large_100.ra_in1k
|
Image Embeddings
|
timm/mobilenetv3_large_100.ra_in1k
|
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilenetv3_large_100.ra_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval()
|
timm/mobilenetv3_large_100.ra_in1k
|
# get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))
|
timm/mobilenetv3_large_100.ra_in1k
|
# output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0))
|
timm/mobilenetv3_large_100.ra_in1k
|
# output is unpooled, a (1, 960, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
|
timm/mobilenetv3_large_100.ra_in1k
|
Model Comparison
|
timm/mobilenetv3_large_100.ra_in1k
|
Explore the dataset and runtime metrics of this model in timm model results.
|
timm/mobilenetv3_large_100.ra_in1k
|
Citation
|
timm/mobilenetv3_large_100.ra_in1k
|
@inproceedings{howard2019searching, title={Searching for mobilenetv3}, author={Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and others}, booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, pages={1314--1324}, year={2019} }
|
timm/mobilenetv3_large_100.ra_in1k
|
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }
|
timm/mobilenetv3_large_100.ra_in1k
|
@inproceedings{wightman2021resnet, title={ResNet strikes back: An improved training procedure in timm}, author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} }
|
distilbert-base-uncased-finetuned-sst-2-english
|
DistilBERT base uncased finetuned SST-2
|
distilbert-base-uncased-finetuned-sst-2-english
|
Table of Contents
|
distilbert-base-uncased-finetuned-sst-2-english
|
Model Details
|
distilbert-base-uncased-finetuned-sst-2-english
|
How to Get Started With the Model
|
distilbert-base-uncased-finetuned-sst-2-english
|
Uses
|
distilbert-base-uncased-finetuned-sst-2-english
|
Risks, Limitations and Biases
|
distilbert-base-uncased-finetuned-sst-2-english
|
Training
|
distilbert-base-uncased-finetuned-sst-2-english
|
Model Details
|
distilbert-base-uncased-finetuned-sst-2-english
|
Model
|
distilbert-base-uncased-finetuned-sst-2-english
|
Description: This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2.
|
distilbert-base-uncased-finetuned-sst-2-english
|
This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7).
|
distilbert-base-uncased-finetuned-sst-2-english
|
Developed by: Hugging Face
|
distilbert-base-uncased-finetuned-sst-2-english
|
Model
|
distilbert-base-uncased-finetuned-sst-2-english
|
Type:
|
distilbert-base-uncased-finetuned-sst-2-english
|
Text Classification
|
distilbert-base-uncased-finetuned-sst-2-english
|
Language(s):
|
distilbert-base-uncased-finetuned-sst-2-english
|
English
|
distilbert-base-uncased-finetuned-sst-2-english
|
License: Apache-2.0
|
distilbert-base-uncased-finetuned-sst-2-english
|
Parent Model:
|
distilbert-base-uncased-finetuned-sst-2-english
|
For more details about DistilBERT, we encourage users to check out this model card.
|
distilbert-base-uncased-finetuned-sst-2-english
|
Resources for more information:
|
distilbert-base-uncased-finetuned-sst-2-english
|
Model Documentation
|
distilbert-base-uncased-finetuned-sst-2-english
|
DistilBERT paper
|
distilbert-base-uncased-finetuned-sst-2-english
|
How to Get Started With the Model
|
distilbert-base-uncased-finetuned-sst-2-english
|
Example of single-label classification:
|
distilbert-base-uncased-finetuned-sst-2-english
|
|
distilbert-base-uncased-finetuned-sst-2-english
|
import
|
distilbert-base-uncased-finetuned-sst-2-english
|
torch from transformers import DistilBertTokenizer, DistilBertForSequenceClassification tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") with torch.no_grad(): logits
|
distilbert-base-uncased-finetuned-sst-2-english
|
= model(**inputs).logits predicted_class_id = logits.argmax().item() model.config.id2label[predicted_class_id]
|
distilbert-base-uncased-finetuned-sst-2-english
|
Uses
|
distilbert-base-uncased-finetuned-sst-2-english
|
Direct
|
distilbert-base-uncased-finetuned-sst-2-english
|
Use
|
distilbert-base-uncased-finetuned-sst-2-english
|
This model can be used for topic classification.
|
distilbert-base-uncased-finetuned-sst-2-english
|
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task.
|
distilbert-base-uncased-finetuned-sst-2-english
|
See the model hub to look for fine-tuned versions on a task that interests you.
|
distilbert-base-uncased-finetuned-sst-2-english
|
Misuse and Out-of-scope Use
|
distilbert-base-uncased-finetuned-sst-2-english
|
The model should not be used to intentionally create hostile or alienating environments for people.
|
distilbert-base-uncased-finetuned-sst-2-english
|
In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
distilbert-base-uncased-finetuned-sst-2-english
|
Risks, Limitations and Biases
|
distilbert-base-uncased-finetuned-sst-2-english
|
Based on a few experimentations, we observed that this model could produce biased predictions that target underrepresented populations.
|
distilbert-base-uncased-finetuned-sst-2-english
|
For instance, for sentences like This film was filmed in COUNTRY, this binary classification model will give radically different probabilities for the positive label depending on the country (0.89 if the country is France, but 0.08 if the country is Afghanistan) when nothing in the input indicates such a strong semantic shift.
|
distilbert-base-uncased-finetuned-sst-2-english
|
In this colab, Aurélien Géron made an interesting map plotting these probabilities for each country.
|
distilbert-base-uncased-finetuned-sst-2-english
|
We strongly advise users to thoroughly probe these aspects on their use-cases in order to evaluate the risks of this model.
|
distilbert-base-uncased-finetuned-sst-2-english
|
We recommend looking at the following bias evaluation datasets as a place to start: WinoBias, WinoGender, Stereoset.
|
distilbert-base-uncased-finetuned-sst-2-english
|
Training
|
distilbert-base-uncased-finetuned-sst-2-english
|
Training
|
distilbert-base-uncased-finetuned-sst-2-english
|
Data
|
distilbert-base-uncased-finetuned-sst-2-english
|
The authors use the following Stanford Sentiment Treebank(sst2) corpora for the model.
|
distilbert-base-uncased-finetuned-sst-2-english
|
Training Procedure
|
distilbert-base-uncased-finetuned-sst-2-english
|
Fine-tuning hyper-parameters
|
distilbert-base-uncased-finetuned-sst-2-english
|
learning_rate = 1e-5
|
distilbert-base-uncased-finetuned-sst-2-english
|
batch_size
|
distilbert-base-uncased-finetuned-sst-2-english
|
= 32
|
distilbert-base-uncased-finetuned-sst-2-english
|
warmup
|
distilbert-base-uncased-finetuned-sst-2-english
|
=
|
distilbert-base-uncased-finetuned-sst-2-english
|
600
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.