Dataset Viewer
building_name
stringclasses 1
value | searched_sg
dict | task
stringlengths 17
196
| task_category
stringclasses 4
values | problem
stringlengths 2.16k
11.1k
| answer
stringlengths 28
969
|
---|---|---|---|---|---|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"dimitys_office↔desk3",
"dimitys_office↔cabinet3",
"mobile_robotics_lab↔agent",
"desk3↔K31X",
"desk3↔buzzer",
"cabinet3↔apple2"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk3",
"room": "dimitys_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet3",
"room": "dimitys_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "electronic, portable, color: silver, size: compact, condition: new",
"id": "K31X",
"parent": "desk3",
"room": "dimitys_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "electronic, alert, color: black, size: standard, condition: new",
"id": "buzzer",
"parent": "desk3",
"room": "dimitys_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: red, freshness: fresh, size: medium",
"id": "apple2",
"parent": "cabinet3",
"room": "dimitys_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me object K31X.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me object K31X. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'dimitys_office', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk3'}, {'room': 'dimitys_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet3'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'electronic, portable, color: silver, size: compact, condition: new', 'id': 'K31X', 'parent': 'desk3', 'room': 'dimitys_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'electronic, alert, color: black, size: standard, condition: new', 'id': 'buzzer', 'parent': 'desk3', 'room': 'dimitys_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: red, freshness: fresh, size: medium', 'id': 'apple2', 'parent': 'cabinet3', 'room': 'dimitys_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'dimitys_office↔desk3', 'dimitys_office↔cabinet3', 'mobile_robotics_lab↔agent', 'desk3↔K31X', 'desk3↔buzzer', 'cabinet3↔apple2']}
|
[goto(dimitys_office), access(desk3), pickup(K31X), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"kitchen↔fridge",
"kitchen↔cabinet",
"kitchen↔kitchen_bench",
"kitchen↔dishwasher",
"kitchen↔drawer",
"kitchen↔microwave",
"kitchen↔rubbish_bin",
"kitchen↔recycling_bin",
"mobile_robotics_lab↔agent",
"fridge↔tomato",
"fridge↔cheese",
"fridge↔banana2",
"fridge↔J64M",
"fridge↔chicken_kebab",
"fridge↔noodles",
"fridge↔salmon_bagel",
"fridge↔greek_salad",
"fridge↔carrot",
"kitchen_bench↔butter",
"kitchen_bench↔bread",
"kitchen_bench↔orange1",
"kitchen_bench↔kale_leaves2",
"dishwasher↔bowl",
"dishwasher↔plate2",
"dishwasher↔spoon",
"dishwasher↔chips",
"rubbish_bin↔banana_peel",
"rubbish_bin↔plastic_bottle",
"recycling_bin↔milk_carton",
"recycling_bin↔orange_peel",
"recycling_bin↔apple_core"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"open",
"close",
"access"
],
"attributes": "closed",
"id": "fridge",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "cabinet",
"room": "kitchen"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"access",
"turn_on",
"turn_off",
"open",
"close"
],
"attributes": "closed",
"id": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "drawer",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "microwave",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "recycling_bin",
"room": "kitchen"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: red, freshness: fresh, size: medium",
"id": "tomato",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium",
"id": "cheese",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana2",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "J64M",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, meat, color: brown, freshness: fresh, size: medium",
"id": "chicken_kebab",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, grain, color: yellow, freshness: fresh, size: medium",
"id": "noodles",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium",
"id": "salmon_bagel",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, salad, color: green, freshness: fresh, size: medium",
"id": "greek_salad",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium",
"id": "carrot",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, spread, color: yellow, freshness: fresh, size: small",
"id": "butter",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, bread, color: brown, freshness: fresh, size: medium",
"id": "bread",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: orange, freshness: fresh, size: medium",
"id": "orange1",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: green, freshness: fresh, size: small",
"id": "kale_leaves2",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "bowl",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate2",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "spoon",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "chips",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: yellow, size: small, condition: used",
"id": "banana_peel",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, plastic, color: clear, size: standard, condition: used",
"id": "plastic_bottle",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "beverage, carton, color: white, size: standard, condition: new",
"id": "milk_carton",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: orange, size: small, condition: used",
"id": "orange_peel",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: brown, size: small, condition: used",
"id": "apple_core",
"parent": "recycling_bin",
"room": "kitchen"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me a carrot.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me a carrot. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
|
[goto(kitchen), open(fridge), access(fridge), pickup(carrot), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"postdoc_bay1↔desk31",
"postdoc_bay1↔desk32",
"postdoc_bay2↔desk33",
"postdoc_bay2↔desk34",
"postdoc_bay3↔desk35",
"postdoc_bay3↔desk36",
"mobile_robotics_lab↔agent",
"desk35↔dorittos1",
"desk35↔marker",
"desk31↔fire_extinguisher1",
"desk32↔frame1",
"desk32↔frame2",
"desk32↔complimentary_tshirt7",
"desk32↔complimentary_tshirt8",
"desk33↔frame3"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk35",
"room": "postdoc_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk36",
"room": "postdoc_bay3"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk31",
"room": "postdoc_bay1"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk33",
"room": "postdoc_bay2"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk34",
"room": "postdoc_bay2"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "dorittos1",
"parent": "desk35",
"room": "postdoc_bay3"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "writing tool, marker, color: black, size: standard, condition: new",
"id": "marker",
"parent": "desk35",
"room": "postdoc_bay3"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "safety equipment, fire, color: red, size: standard, condition: new",
"id": "fire_extinguisher1",
"parent": "desk31",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: gold, size: large, condition: new",
"id": "frame1",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: silver, size: large, condition: used",
"id": "frame2",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "clothing, promotional, color: blue, size: M, condition: new",
"id": "complimentary_tshirt7",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "clothing, promotional, color: red, size: L, condition: used",
"id": "complimentary_tshirt8",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: brown, size: large, condition: new",
"id": "frame3",
"parent": "desk33",
"room": "postdoc_bay2"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me anything purple in the postdoc bays.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me anything purple in the postdoc bays. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk35'}, {'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk36'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk31'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk32'}, {'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk33'}, {'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk34'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'dorittos1', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'writing tool, marker, color: black, size: standard, condition: new', 'id': 'marker', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher1', 'parent': 'desk31', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: gold, size: large, condition: new', 'id': 'frame1', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: silver, size: large, condition: used', 'id': 'frame2', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: blue, size: M, condition: new', 'id': 'complimentary_tshirt7', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: red, size: L, condition: used', 'id': 'complimentary_tshirt8', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: brown, size: large, condition: new', 'id': 'frame3', 'parent': 'desk33', 'room': 'postdoc_bay2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'postdoc_bay1↔desk31', 'postdoc_bay1↔desk32', 'postdoc_bay2↔desk33', 'postdoc_bay2↔desk34', 'postdoc_bay3↔desk35', 'postdoc_bay3↔desk36', 'mobile_robotics_lab↔agent', 'desk35↔dorittos1', 'desk35↔marker', 'desk31↔fire_extinguisher1', 'desk32↔frame1', 'desk32↔frame2', 'desk32↔complimentary_tshirt7', 'desk32↔complimentary_tshirt8', 'desk33↔frame3']}
|
[goto(postdoc_bay1), access(desk31), access(desk32), goto(postdoc_bay2), access(desk33), access(desk34), goto(postdoc_bay3), access(desk35), access(desk36), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"kitchen↔fridge",
"kitchen↔cabinet",
"kitchen↔kitchen_bench",
"kitchen↔dishwasher",
"kitchen↔drawer",
"kitchen↔microwave",
"kitchen↔rubbish_bin",
"kitchen↔recycling_bin",
"cafeteria↔lunch_table",
"mobile_robotics_lab↔agent",
"lunch_table↔banana1",
"lunch_table↔fork",
"lunch_table↔knife",
"lunch_table↔plate",
"fridge↔tomato",
"fridge↔cheese",
"fridge↔banana2",
"fridge↔J64M",
"fridge↔chicken_kebab",
"fridge↔noodles",
"fridge↔salmon_bagel",
"fridge↔greek_salad",
"fridge↔carrot",
"kitchen_bench↔butter",
"kitchen_bench↔bread",
"kitchen_bench↔orange1",
"kitchen_bench↔kale_leaves2",
"dishwasher↔bowl",
"dishwasher↔plate2",
"dishwasher↔spoon",
"dishwasher↔chips",
"rubbish_bin↔banana_peel",
"rubbish_bin↔plastic_bottle",
"recycling_bin↔milk_carton",
"recycling_bin↔orange_peel",
"recycling_bin↔apple_core"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"open",
"close",
"access"
],
"attributes": "closed",
"id": "fridge",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "cabinet",
"room": "kitchen"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"access",
"turn_on",
"turn_off",
"open",
"close"
],
"attributes": "closed",
"id": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "drawer",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "microwave",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "recycling_bin",
"room": "kitchen"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana1",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "fork",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "knife",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: red, freshness: fresh, size: medium",
"id": "tomato",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium",
"id": "cheese",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana2",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "J64M",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, meat, color: brown, freshness: fresh, size: medium",
"id": "chicken_kebab",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, grain, color: yellow, freshness: fresh, size: medium",
"id": "noodles",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium",
"id": "salmon_bagel",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, salad, color: green, freshness: fresh, size: medium",
"id": "greek_salad",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium",
"id": "carrot",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, spread, color: yellow, freshness: fresh, size: small",
"id": "butter",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, bread, color: brown, freshness: fresh, size: medium",
"id": "bread",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: orange, freshness: fresh, size: medium",
"id": "orange1",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: green, freshness: fresh, size: small",
"id": "kale_leaves2",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "bowl",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate2",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "spoon",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "chips",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: yellow, size: small, condition: used",
"id": "banana_peel",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, plastic, color: clear, size: standard, condition: used",
"id": "plastic_bottle",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "beverage, carton, color: white, size: standard, condition: new",
"id": "milk_carton",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: orange, size: small, condition: used",
"id": "orange_peel",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: brown, size: small, condition: used",
"id": "apple_core",
"parent": "recycling_bin",
"room": "kitchen"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me a ripe banana.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me a ripe banana. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'cafeteria', 'attributes': 'clean', 'affordances': ['access'], 'id': 'lunch_table'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana1', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'fork', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'knife', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'cafeteria↔lunch_table', 'mobile_robotics_lab↔agent', 'lunch_table↔banana1', 'lunch_table↔fork', 'lunch_table↔knife', 'lunch_table↔plate', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
|
[goto(cafeteria), access(lunch_table), pickup(banana1), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"robot_lounge2↔toolbox",
"mobile_robotics_lab↔agent",
"toolbox↔screwdiver1"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "toolbox",
"room": "robot_lounge2"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, hand-held, color: black, size: standard, condition: new",
"id": "screwdiver1",
"parent": "toolbox",
"room": "robot_lounge2"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me something that has a screwdriver in it.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me something that has a screwdriver in it. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'robot_lounge2', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'toolbox'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, hand-held, color: black, size: standard, condition: new', 'id': 'screwdiver1', 'parent': 'toolbox', 'room': 'robot_lounge2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'robot_lounge2↔toolbox', 'mobile_robotics_lab↔agent', 'toolbox↔screwdiver1']}
|
[goto(robot_lounge2), open(toolbox), access(toolbox), pickup(screwdiver1), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"michaels_office↔desk6",
"michaels_office↔cabinet6",
"mobile_robotics_lab↔agent",
"desk6↔scissors",
"cabinet6↔terminator_poster",
"cabinet6↔stapler3"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk6",
"room": "michaels_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet6",
"room": "michaels_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, cutting, color: silver, size: standard, condition: used",
"id": "scissors",
"parent": "desk6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, poster, color: multi, size: large, condition: new",
"id": "terminator_poster",
"parent": "cabinet6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "stationery, office supply, color: black, size: standard, condition: used",
"id": "stapler3",
"parent": "cabinet6",
"room": "michaels_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
One of the offices has a poster of the Terminator. Which one is it?
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: One of the offices has a poster of the Terminator. Which one is it? and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'michaels_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk6'}, {'room': 'michaels_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet6'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, cutting, color: silver, size: standard, condition: used', 'id': 'scissors', 'parent': 'desk6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, poster, color: multi, size: large, condition: new', 'id': 'terminator_poster', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: black, size: standard, condition: used', 'id': 'stapler3', 'parent': 'cabinet6', 'room': 'michaels_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'michaels_office↔desk6', 'michaels_office↔cabinet6', 'mobile_robotics_lab↔agent', 'desk6↔scissors', 'cabinet6↔terminator_poster', 'cabinet6↔stapler3']}
|
[goto(michaels_office), open(cabinet6), access(cabinet6), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"printing_zone2↔printer2",
"mobile_robotics_lab↔agent",
"printer2↔document"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "printer2",
"room": "printing_zone2"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "document, paper, color: white, size: A4, condition: new",
"id": "document",
"parent": "printer2",
"room": "printing_zone2"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
I printed a document but I don't know which printer has it. Find the document.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: I printed a document but I don't know which printer has it. Find the document. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'printing_zone2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'printer2'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: new', 'id': 'document', 'parent': 'printer2', 'room': 'printing_zone2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'printing_zone2↔printer2', 'mobile_robotics_lab↔agent', 'printer2↔document']}
|
[goto(printing_zone2), access(printer2), pickup(document), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"meeting_room3↔table1",
"meeting_room3↔table6",
"mobile_robotics_lab↔agent",
"table1↔headphones"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "table1",
"room": "meeting_room3"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "table6",
"room": "meeting_room3"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "electronic, audio, color: black, size: standard, condition: new",
"id": "headphones",
"parent": "table1",
"room": "meeting_room3"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
I left my headphones in one of the meeting rooms. Locate them.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: I left my headphones in one of the meeting rooms. Locate them. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'meeting_room3', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table1'}, {'room': 'meeting_room3', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table6'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'electronic, audio, color: black, size: standard, condition: new', 'id': 'headphones', 'parent': 'table1', 'room': 'meeting_room3'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'meeting_room3↔table1', 'meeting_room3↔table6', 'mobile_robotics_lab↔agent', 'table1↔headphones']}
|
[goto(meeting_room3), access(table1), pickup(headphones), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"phd_bay3↔desk19",
"phd_bay3↔desk20",
"phd_bay3↔desk21",
"phd_bay3↔desk22",
"phd_bay3↔desk23",
"phd_bay3↔desk24",
"mobile_robotics_lab↔agent",
"desk21↔drone1"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk19",
"room": "phd_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk20",
"room": "phd_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk21",
"room": "phd_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk22",
"room": "phd_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk23",
"room": "phd_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk24",
"room": "phd_bay3"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "drone, electronic, color: black, size: standard, condition: used",
"id": "drone1",
"parent": "desk21",
"room": "phd_bay3"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find the PhD bay that has a drone in it.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find the PhD bay that has a drone in it. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk19'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk20'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk21'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk22'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk23'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk24'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'drone, electronic, color: black, size: standard, condition: used', 'id': 'drone1', 'parent': 'desk21', 'room': 'phd_bay3'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'phd_bay3↔desk19', 'phd_bay3↔desk20', 'phd_bay3↔desk21', 'phd_bay3↔desk22', 'phd_bay3↔desk23', 'phd_bay3↔desk24', 'mobile_robotics_lab↔agent', 'desk21↔drone1']}
|
[goto(phd_bay3), access(desk21), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"agriculture_lab↔produce_container",
"mobile_robotics_lab↔agent",
"produce_container↔kale_leaves1"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "produce_container",
"room": "agriculture_lab"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: green, freshness: fresh, size: small",
"id": "kale_leaves1",
"parent": "produce_container",
"room": "agriculture_lab"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find the kale that is not in the kitchen.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find the kale that is not in the kitchen. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'agriculture_lab', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'produce_container'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves1', 'parent': 'produce_container', 'room': 'agriculture_lab'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'agriculture_lab↔produce_container', 'mobile_robotics_lab↔agent', 'produce_container↔kale_leaves1']}
|
[goto(agriculture_lab), open(produce_container), access(produce_container), pickup(kale_leaves1), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"tobis_office↔desk38",
"filipes_office↔desk37",
"mobile_robotics_lab↔agent",
"desk38↔pepsi",
"desk37↔stapler2"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk38",
"room": "tobis_office"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk37",
"room": "filipes_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "beverage, canned, color: blue, size: 355ml, freshness: expired",
"id": "pepsi",
"parent": "desk38",
"room": "tobis_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "stationery, office supply, color: blue, size: standard, condition: used",
"id": "stapler2",
"parent": "desk37",
"room": "filipes_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me an office that does not have a cabinet.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me an office that does not have a cabinet. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'tobis_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk38'}, {'room': 'filipes_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk37'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'beverage, canned, color: blue, size: 355ml, freshness: expired', 'id': 'pepsi', 'parent': 'desk38', 'room': 'tobis_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: blue, size: standard, condition: used', 'id': 'stapler2', 'parent': 'desk37', 'room': 'filipes_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'tobis_office↔desk38', 'filipes_office↔desk37', 'mobile_robotics_lab↔agent', 'desk38↔pepsi', 'desk37↔stapler2']}
|
[goto(tobis_office), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"nikos_office↔desk1",
"nikos_office↔chair1",
"nikos_office↔cabinet1",
"mobile_robotics_lab↔agent",
"desk1↔coffee_mug"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk1",
"room": "nikos_office"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "chair1",
"room": "nikos_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet1",
"room": "nikos_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "kitchenware, drinkware, color: white, size: standard, condition: new",
"id": "coffee_mug",
"parent": "desk1",
"room": "nikos_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me an office that contains a cabinet, a desk, and a chair.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me an office that contains a cabinet, a desk, and a chair. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'nikos_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk1'}, {'room': 'nikos_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'chair1'}, {'room': 'nikos_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet1'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'kitchenware, drinkware, color: white, size: standard, condition: new', 'id': 'coffee_mug', 'parent': 'desk1', 'room': 'nikos_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'nikos_office↔desk1', 'nikos_office↔chair1', 'nikos_office↔cabinet1', 'mobile_robotics_lab↔agent', 'desk1↔coffee_mug']}
|
[goto(nikos_office), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"manipulation_lab↔table3",
"mobile_robotics_lab↔agent",
"table3↔book1",
"table3↔gripper"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "table3",
"room": "manipulation_lab"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "book, reading, color: green, size: standard, condition: used",
"id": "book1",
"parent": "table3",
"room": "manipulation_lab"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, robotic, color: gray, size: standard, condition: new",
"id": "gripper",
"parent": "table3",
"room": "manipulation_lab"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find a book that was left next to a robotic gripper.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find a book that was left next to a robotic gripper. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'manipulation_lab', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table3'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'book, reading, color: green, size: standard, condition: used', 'id': 'book1', 'parent': 'table3', 'room': 'manipulation_lab'}, {'affordances': ['pickup', 'release'], 'attributes': 'tool, robotic, color: gray, size: standard, condition: new', 'id': 'gripper', 'parent': 'table3', 'room': 'manipulation_lab'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'manipulation_lab↔table3', 'mobile_robotics_lab↔agent', 'table3↔book1', 'table3↔gripper']}
|
[goto(manipulation_lab), access(table3), pickup(book1), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"filipes_office↔desk37",
"mobile_robotics_lab↔agent",
"desk37↔stapler2"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk37",
"room": "filipes_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "stationery, office supply, color: blue, size: standard, condition: used",
"id": "stapler2",
"parent": "desk37",
"room": "filipes_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Luis gave one of his neighbours a stapler. Find the stapler.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Luis gave one of his neighbours a stapler. Find the stapler. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'filipes_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk37'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: blue, size: standard, condition: used', 'id': 'stapler2', 'parent': 'desk37', 'room': 'filipes_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'filipes_office↔desk37', 'mobile_robotics_lab↔agent', 'desk37↔stapler2']}
|
[goto(peters_office), open(cabinet2), access(cabinet2), pickup(stapler), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"meeting_room2↔chair2",
"mobile_robotics_lab↔agent"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "chair2",
"room": "meeting_room2"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": null,
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
There is a meeting room with a chair but no table. Locate it.
|
task_Office_simple_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: There is a meeting room with a chair but no table. Locate it. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'meeting_room2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'chair2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'meeting_room2↔chair2', 'mobile_robotics_lab↔agent']}
|
[goto(meeting_room2), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"kitchen↔fridge",
"kitchen↔cabinet",
"kitchen↔kitchen_bench",
"kitchen↔dishwasher",
"kitchen↔drawer",
"kitchen↔microwave",
"kitchen↔rubbish_bin",
"kitchen↔recycling_bin",
"mobile_robotics_lab↔agent",
"fridge↔tomato",
"fridge↔cheese",
"fridge↔banana2",
"fridge↔J64M",
"fridge↔chicken_kebab",
"fridge↔noodles",
"fridge↔salmon_bagel",
"fridge↔greek_salad",
"fridge↔carrot",
"kitchen_bench↔butter",
"kitchen_bench↔bread",
"kitchen_bench↔orange1",
"kitchen_bench↔kale_leaves2",
"dishwasher↔bowl",
"dishwasher↔plate2",
"dishwasher↔spoon",
"dishwasher↔chips",
"rubbish_bin↔banana_peel",
"rubbish_bin↔plastic_bottle",
"recycling_bin↔milk_carton",
"recycling_bin↔orange_peel",
"recycling_bin↔apple_core"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"open",
"close",
"access"
],
"attributes": "closed",
"id": "fridge",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "cabinet",
"room": "kitchen"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"access",
"turn_on",
"turn_off",
"open",
"close"
],
"attributes": "closed",
"id": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "drawer",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "microwave",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "recycling_bin",
"room": "kitchen"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: red, freshness: fresh, size: medium",
"id": "tomato",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium",
"id": "cheese",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana2",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "J64M",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, meat, color: brown, freshness: fresh, size: medium",
"id": "chicken_kebab",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, grain, color: yellow, freshness: fresh, size: medium",
"id": "noodles",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium",
"id": "salmon_bagel",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, salad, color: green, freshness: fresh, size: medium",
"id": "greek_salad",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium",
"id": "carrot",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, spread, color: yellow, freshness: fresh, size: small",
"id": "butter",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, bread, color: brown, freshness: fresh, size: medium",
"id": "bread",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: orange, freshness: fresh, size: medium",
"id": "orange1",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: green, freshness: fresh, size: small",
"id": "kale_leaves2",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "bowl",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate2",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "spoon",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "chips",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: yellow, size: small, condition: used",
"id": "banana_peel",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, plastic, color: clear, size: standard, condition: used",
"id": "plastic_bottle",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "beverage, carton, color: white, size: standard, condition: new",
"id": "milk_carton",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: orange, size: small, condition: used",
"id": "orange_peel",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: brown, size: small, condition: used",
"id": "apple_core",
"parent": "recycling_bin",
"room": "kitchen"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find object J64M. J64M should be kept at below 0 degrees Celsius.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find object J64M. J64M should be kept at below 0 degrees Celsius. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
|
[goto(kitchen), open(fridge), access(fridge), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"kitchen↔fridge",
"kitchen↔cabinet",
"kitchen↔kitchen_bench",
"kitchen↔dishwasher",
"kitchen↔drawer",
"kitchen↔microwave",
"kitchen↔rubbish_bin",
"kitchen↔recycling_bin",
"mobile_robotics_lab↔agent",
"fridge↔tomato",
"fridge↔cheese",
"fridge↔banana2",
"fridge↔J64M",
"fridge↔chicken_kebab",
"fridge↔noodles",
"fridge↔salmon_bagel",
"fridge↔greek_salad",
"fridge↔carrot",
"kitchen_bench↔butter",
"kitchen_bench↔bread",
"kitchen_bench↔orange1",
"kitchen_bench↔kale_leaves2",
"dishwasher↔bowl",
"dishwasher↔plate2",
"dishwasher↔spoon",
"dishwasher↔chips",
"rubbish_bin↔banana_peel",
"rubbish_bin↔plastic_bottle",
"recycling_bin↔milk_carton",
"recycling_bin↔orange_peel",
"recycling_bin↔apple_core"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"open",
"close",
"access"
],
"attributes": "closed",
"id": "fridge",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "cabinet",
"room": "kitchen"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"access",
"turn_on",
"turn_off",
"open",
"close"
],
"attributes": "closed",
"id": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "drawer",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "microwave",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "recycling_bin",
"room": "kitchen"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: red, freshness: fresh, size: medium",
"id": "tomato",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium",
"id": "cheese",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana2",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "J64M",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, meat, color: brown, freshness: fresh, size: medium",
"id": "chicken_kebab",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, grain, color: yellow, freshness: fresh, size: medium",
"id": "noodles",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium",
"id": "salmon_bagel",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, salad, color: green, freshness: fresh, size: medium",
"id": "greek_salad",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium",
"id": "carrot",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, spread, color: yellow, freshness: fresh, size: small",
"id": "butter",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, bread, color: brown, freshness: fresh, size: medium",
"id": "bread",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: orange, freshness: fresh, size: medium",
"id": "orange1",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: green, freshness: fresh, size: small",
"id": "kale_leaves2",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "bowl",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate2",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "spoon",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "chips",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: yellow, size: small, condition: used",
"id": "banana_peel",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, plastic, color: clear, size: standard, condition: used",
"id": "plastic_bottle",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "beverage, carton, color: white, size: standard, condition: new",
"id": "milk_carton",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: orange, size: small, condition: used",
"id": "orange_peel",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: brown, size: small, condition: used",
"id": "apple_core",
"parent": "recycling_bin",
"room": "kitchen"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me something non vegetarian.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me something non vegetarian. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
|
[goto(kitchen), open(fridge), access(fridge), pickup(chicken_kebab), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"robot_lounge2↔toolbox",
"michaels_office↔desk6",
"michaels_office↔cabinet6",
"cafeteria↔lunch_table",
"mobile_robotics_lab↔agent",
"desk6↔scissors",
"cabinet6↔terminator_poster",
"cabinet6↔stapler3",
"lunch_table↔banana1",
"lunch_table↔fork",
"lunch_table↔knife",
"lunch_table↔plate",
"toolbox↔screwdiver1"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk6",
"room": "michaels_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet6",
"room": "michaels_office"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "toolbox",
"room": "robot_lounge2"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, cutting, color: silver, size: standard, condition: used",
"id": "scissors",
"parent": "desk6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, poster, color: multi, size: large, condition: new",
"id": "terminator_poster",
"parent": "cabinet6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "stationery, office supply, color: black, size: standard, condition: used",
"id": "stapler3",
"parent": "cabinet6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana1",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "fork",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "knife",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate",
"parent": "lunch_table",
"room": "cafeteria"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, hand-held, color: black, size: standard, condition: new",
"id": "screwdiver1",
"parent": "toolbox",
"room": "robot_lounge2"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Locate something sharp.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Locate something sharp. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'michaels_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk6'}, {'room': 'michaels_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet6'}, {'room': 'cafeteria', 'attributes': 'clean', 'affordances': ['access'], 'id': 'lunch_table'}, {'room': 'robot_lounge2', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'toolbox'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, cutting, color: silver, size: standard, condition: used', 'id': 'scissors', 'parent': 'desk6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, poster, color: multi, size: large, condition: new', 'id': 'terminator_poster', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: black, size: standard, condition: used', 'id': 'stapler3', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana1', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'fork', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'knife', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'tool, hand-held, color: black, size: standard, condition: new', 'id': 'screwdiver1', 'parent': 'toolbox', 'room': 'robot_lounge2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'robot_lounge2↔toolbox', 'michaels_office↔desk6', 'michaels_office↔cabinet6', 'cafeteria↔lunch_table', 'mobile_robotics_lab↔agent', 'desk6↔scissors', 'cabinet6↔terminator_poster', 'cabinet6↔stapler3', 'lunch_table↔banana1', 'lunch_table↔fork', 'lunch_table↔knife', 'lunch_table↔plate', 'toolbox↔screwdiver1']}
|
[goto(cafeteria), access(lunch_table), pickup(knife), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"meeting_room4↔table2",
"mobile_robotics_lab↔agent",
"table2↔janga",
"table2↔risk",
"table2↔monopoly"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "table2",
"room": "meeting_room4"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "game, entertainment, color: multi, size: standard, condition: new",
"id": "janga",
"parent": "table2",
"room": "meeting_room4"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "game, entertainment, color: multi, size: standard, condition: used",
"id": "risk",
"parent": "table2",
"room": "meeting_room4"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "game, entertainment, color: multi, size: standard, condition: new",
"id": "monopoly",
"parent": "table2",
"room": "meeting_room4"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find the room where people are playing board games.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find the room where people are playing board games. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'meeting_room4', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table2'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'game, entertainment, color: multi, size: standard, condition: new', 'id': 'janga', 'parent': 'table2', 'room': 'meeting_room4'}, {'affordances': ['pickup', 'release'], 'attributes': 'game, entertainment, color: multi, size: standard, condition: used', 'id': 'risk', 'parent': 'table2', 'room': 'meeting_room4'}, {'affordances': ['pickup', 'release'], 'attributes': 'game, entertainment, color: multi, size: standard, condition: new', 'id': 'monopoly', 'parent': 'table2', 'room': 'meeting_room4'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'meeting_room4↔table2', 'mobile_robotics_lab↔agent', 'table2↔janga', 'table2↔risk', 'table2↔monopoly']}
|
[goto(meeting_room4), access(table2), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"michaels_office↔desk6",
"michaels_office↔cabinet6",
"mobile_robotics_lab↔agent",
"desk6↔scissors",
"cabinet6↔terminator_poster",
"cabinet6↔stapler3"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk6",
"room": "michaels_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet6",
"room": "michaels_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, cutting, color: silver, size: standard, condition: used",
"id": "scissors",
"parent": "desk6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, poster, color: multi, size: large, condition: new",
"id": "terminator_poster",
"parent": "cabinet6",
"room": "michaels_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "stationery, office supply, color: black, size: standard, condition: used",
"id": "stapler3",
"parent": "cabinet6",
"room": "michaels_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find an office of someone who is clearly a fan of Arnold Schwarzenegger.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find an office of someone who is clearly a fan of Arnold Schwarzenegger. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'michaels_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk6'}, {'room': 'michaels_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet6'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, cutting, color: silver, size: standard, condition: used', 'id': 'scissors', 'parent': 'desk6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, poster, color: multi, size: large, condition: new', 'id': 'terminator_poster', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: black, size: standard, condition: used', 'id': 'stapler3', 'parent': 'cabinet6', 'room': 'michaels_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'michaels_office↔desk6', 'michaels_office↔cabinet6', 'mobile_robotics_lab↔agent', 'desk6↔scissors', 'cabinet6↔terminator_poster', 'cabinet6↔stapler3']}
|
[goto(michaels_office), access(cabinet6), open(cabinet6), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"postdoc_bay1↔desk31",
"postdoc_bay1↔desk32",
"postdoc_bay2↔desk33",
"postdoc_bay2↔desk34",
"postdoc_bay3↔desk35",
"postdoc_bay3↔desk36",
"mobile_robotics_lab↔agent",
"desk33↔frame3",
"desk35↔dorittos1",
"desk35↔marker",
"desk31↔fire_extinguisher1",
"desk32↔frame1",
"desk32↔frame2",
"desk32↔complimentary_tshirt7",
"desk32↔complimentary_tshirt8"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk33",
"room": "postdoc_bay2"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk34",
"room": "postdoc_bay2"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk35",
"room": "postdoc_bay3"
},
{
"affordances": [
"sit_at",
"work_at",
"access"
],
"attributes": "clean",
"id": "desk36",
"room": "postdoc_bay3"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk31",
"room": "postdoc_bay1"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk32",
"room": "postdoc_bay1"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: brown, size: large, condition: new",
"id": "frame3",
"parent": "desk33",
"room": "postdoc_bay2"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "dorittos1",
"parent": "desk35",
"room": "postdoc_bay3"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "writing tool, marker, color: black, size: standard, condition: new",
"id": "marker",
"parent": "desk35",
"room": "postdoc_bay3"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "safety equipment, fire, color: red, size: standard, condition: new",
"id": "fire_extinguisher1",
"parent": "desk31",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: gold, size: large, condition: new",
"id": "frame1",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: silver, size: large, condition: used",
"id": "frame2",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "clothing, promotional, color: blue, size: M, condition: new",
"id": "complimentary_tshirt7",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "clothing, promotional, color: red, size: L, condition: used",
"id": "complimentary_tshirt8",
"parent": "desk32",
"room": "postdoc_bay1"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
There is a postdoc that has a pet Husky. Find the desk that's most likely theirs.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: There is a postdoc that has a pet Husky. Find the desk that's most likely theirs. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk33'}, {'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk34'}, {'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk35'}, {'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk36'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk31'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk32'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: brown, size: large, condition: new', 'id': 'frame3', 'parent': 'desk33', 'room': 'postdoc_bay2'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'dorittos1', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'writing tool, marker, color: black, size: standard, condition: new', 'id': 'marker', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher1', 'parent': 'desk31', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: gold, size: large, condition: new', 'id': 'frame1', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: silver, size: large, condition: used', 'id': 'frame2', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: blue, size: M, condition: new', 'id': 'complimentary_tshirt7', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: red, size: L, condition: used', 'id': 'complimentary_tshirt8', 'parent': 'desk32', 'room': 'postdoc_bay1'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'postdoc_bay1↔desk31', 'postdoc_bay1↔desk32', 'postdoc_bay2↔desk33', 'postdoc_bay2↔desk34', 'postdoc_bay3↔desk35', 'postdoc_bay3↔desk36', 'mobile_robotics_lab↔agent', 'desk33↔frame3', 'desk35↔dorittos1', 'desk35↔marker', 'desk31↔fire_extinguisher1', 'desk32↔frame1', 'desk32↔frame2', 'desk32↔complimentary_tshirt7', 'desk32↔complimentary_tshirt8']}
|
[goto(postdoc_bay3), access(desk35), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"phd_bay2↔desk13",
"phd_bay2↔desk14",
"phd_bay2↔desk15",
"phd_bay2↔desk16",
"phd_bay2↔desk17",
"phd_bay2↔desk18",
"mobile_robotics_lab↔agent",
"desk15↔complimentary_tshirt3",
"desk18↔complimentary_tshirt4",
"desk18↔complimentary_tshirt6"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk13",
"room": "phd_bay2"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk14",
"room": "phd_bay2"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk15",
"room": "phd_bay2"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk16",
"room": "phd_bay2"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk17",
"room": "phd_bay2"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk18",
"room": "phd_bay2"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "document, paper, color: white, size: A4, condition: new",
"id": "complimentary_tshirt3",
"parent": "desk15",
"room": "phd_bay2"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "document, paper, color: white, size: A4, condition: used",
"id": "complimentary_tshirt4",
"parent": "desk18",
"room": "phd_bay2"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "document, paper, color: white, size: A4, condition: new",
"id": "complimentary_tshirt6",
"parent": "desk18",
"room": "phd_bay2"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
One of the PhD students was given more than one complimentary T-shirts. Find his desk.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: One of the PhD students was given more than one complimentary T-shirts. Find his desk. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk13'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk14'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk15'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk16'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk17'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk18'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: new', 'id': 'complimentary_tshirt3', 'parent': 'desk15', 'room': 'phd_bay2'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: used', 'id': 'complimentary_tshirt4', 'parent': 'desk18', 'room': 'phd_bay2'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: new', 'id': 'complimentary_tshirt6', 'parent': 'desk18', 'room': 'phd_bay2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'phd_bay2↔desk13', 'phd_bay2↔desk14', 'phd_bay2↔desk15', 'phd_bay2↔desk16', 'phd_bay2↔desk17', 'phd_bay2↔desk18', 'mobile_robotics_lab↔agent', 'desk15↔complimentary_tshirt3', 'desk18↔complimentary_tshirt4', 'desk18↔complimentary_tshirt6']}
|
[goto(phd_bay2), access(desk18), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"mobile_robotics_lab↔agent"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": null,
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": null,
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me the office where a paper attachment device is inside an asset that is open.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me the office where a paper attachment device is inside an asset that is open. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'mobile_robotics_lab↔agent']}
|
[goto(jasons_office), access(cabinet5), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"wills_office↔desk4",
"wills_office↔cabinet4",
"mobile_robotics_lab↔agent",
"cabinet4↔drone2",
"cabinet4↔apple1",
"cabinet4↔undergrad_thesis1"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk4",
"room": "wills_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet4",
"room": "wills_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "drone, electronic, color: white, size: standard, condition: new",
"id": "drone2",
"parent": "cabinet4",
"room": "wills_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "apple1",
"parent": "cabinet4",
"room": "wills_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "document, academic, color: white, size: A4, condition: new",
"id": "undergrad_thesis1",
"parent": "cabinet4",
"room": "wills_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
There is an office which has a cabinet containing exactly 3 items in it. Locate the office.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: There is an office which has a cabinet containing exactly 3 items in it. Locate the office. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'wills_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk4'}, {'room': 'wills_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet4'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'drone, electronic, color: white, size: standard, condition: new', 'id': 'drone2', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'apple1', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, academic, color: white, size: A4, condition: new', 'id': 'undergrad_thesis1', 'parent': 'cabinet4', 'room': 'wills_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'wills_office↔desk4', 'wills_office↔cabinet4', 'mobile_robotics_lab↔agent', 'cabinet4↔drone2', 'cabinet4↔apple1', 'cabinet4↔undergrad_thesis1']}
|
[goto(wills_office), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"peters_office↔cabinet2",
"peters_office↔desk2",
"wills_office↔desk4",
"wills_office↔cabinet4",
"mobile_robotics_lab↔agent",
"cabinet4↔drone2",
"cabinet4↔apple1",
"cabinet4↔undergrad_thesis1",
"cabinet2↔apple3",
"cabinet2↔stapler",
"desk2↔phone"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk4",
"room": "wills_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet4",
"room": "wills_office"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "cabinet2",
"room": "peters_office"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk2",
"room": "peters_office"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "drone, electronic, color: white, size: standard, condition: new",
"id": "drone2",
"parent": "cabinet4",
"room": "wills_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "apple1",
"parent": "cabinet4",
"room": "wills_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "document, academic, color: white, size: A4, condition: new",
"id": "undergrad_thesis1",
"parent": "cabinet4",
"room": "wills_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: red, freshness: fresh, size: medium",
"id": "apple3",
"parent": "cabinet2",
"room": "peters_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "stationery, office supply, color: silver, size: standard, condition: used",
"id": "stapler",
"parent": "cabinet2",
"room": "peters_office"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "electronic, portable, color: black, size: medium, condition: new",
"id": "phone",
"parent": "desk2",
"room": "peters_office"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
There is an office which has a cabinet containing a rotten apple. The cabinet name contains an even number. Locate the office.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: There is an office which has a cabinet containing a rotten apple. The cabinet name contains an even number. Locate the office. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'wills_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk4'}, {'room': 'wills_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet4'}, {'room': 'peters_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet2'}, {'room': 'peters_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk2'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'drone, electronic, color: white, size: standard, condition: new', 'id': 'drone2', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'apple1', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, academic, color: white, size: A4, condition: new', 'id': 'undergrad_thesis1', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: red, freshness: fresh, size: medium', 'id': 'apple3', 'parent': 'cabinet2', 'room': 'peters_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: silver, size: standard, condition: used', 'id': 'stapler', 'parent': 'cabinet2', 'room': 'peters_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'electronic, portable, color: black, size: medium, condition: new', 'id': 'phone', 'parent': 'desk2', 'room': 'peters_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'peters_office↔cabinet2', 'peters_office↔desk2', 'wills_office↔desk4', 'wills_office↔cabinet4', 'mobile_robotics_lab↔agent', 'cabinet4↔drone2', 'cabinet4↔apple1', 'cabinet4↔undergrad_thesis1', 'cabinet2↔apple3', 'cabinet2↔stapler', 'desk2↔phone']}
|
[goto(peters_office), open(cabinet2), access(cabinet2), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"kitchen↔fridge",
"kitchen↔cabinet",
"kitchen↔kitchen_bench",
"kitchen↔dishwasher",
"kitchen↔drawer",
"kitchen↔microwave",
"kitchen↔rubbish_bin",
"kitchen↔recycling_bin",
"mobile_robotics_lab↔agent",
"fridge↔tomato",
"fridge↔cheese",
"fridge↔banana2",
"fridge↔J64M",
"fridge↔chicken_kebab",
"fridge↔noodles",
"fridge↔salmon_bagel",
"fridge↔greek_salad",
"fridge↔carrot",
"kitchen_bench↔butter",
"kitchen_bench↔bread",
"kitchen_bench↔orange1",
"kitchen_bench↔kale_leaves2",
"dishwasher↔bowl",
"dishwasher↔plate2",
"dishwasher↔spoon",
"dishwasher↔chips",
"rubbish_bin↔banana_peel",
"rubbish_bin↔plastic_bottle",
"recycling_bin↔milk_carton",
"recycling_bin↔orange_peel",
"recycling_bin↔apple_core"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"open",
"close",
"access"
],
"attributes": "closed",
"id": "fridge",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "cabinet",
"room": "kitchen"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"access",
"turn_on",
"turn_off",
"open",
"close"
],
"attributes": "closed",
"id": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "drawer",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close",
"turn_off",
"turn_on"
],
"attributes": "closed",
"id": "microwave",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"access",
"open",
"close"
],
"attributes": "closed",
"id": "recycling_bin",
"room": "kitchen"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: red, freshness: fresh, size: medium",
"id": "tomato",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium",
"id": "cheese",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium",
"id": "banana2",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: green, freshness: fresh, size: medium",
"id": "J64M",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, meat, color: brown, freshness: fresh, size: medium",
"id": "chicken_kebab",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, grain, color: yellow, freshness: fresh, size: medium",
"id": "noodles",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium",
"id": "salmon_bagel",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, salad, color: green, freshness: fresh, size: medium",
"id": "greek_salad",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium",
"id": "carrot",
"parent": "fridge",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, spread, color: yellow, freshness: fresh, size: small",
"id": "butter",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, bread, color: brown, freshness: fresh, size: medium",
"id": "bread",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, fruit, color: orange, freshness: fresh, size: medium",
"id": "orange1",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "edible, vegetable, color: green, freshness: fresh, size: small",
"id": "kale_leaves2",
"parent": "kitchen_bench",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "bowl",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: white, size: standard, condition: new",
"id": "plate2",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "utensil, eating, color: silver, size: standard, condition: new",
"id": "spoon",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "snack, food, color: yellow, freshness: fresh, size: small",
"id": "chips",
"parent": "dishwasher",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: yellow, size: small, condition: used",
"id": "banana_peel",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, plastic, color: clear, size: standard, condition: used",
"id": "plastic_bottle",
"parent": "rubbish_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "beverage, carton, color: white, size: standard, condition: new",
"id": "milk_carton",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: orange, size: small, condition: used",
"id": "orange_peel",
"parent": "recycling_bin",
"room": "kitchen"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "waste, organic, color: brown, size: small, condition: used",
"id": "apple_core",
"parent": "recycling_bin",
"room": "kitchen"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Look for a carrot. The carrot is likely to be in a meeting room but I'm not sure.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Look for a carrot. The carrot is likely to be in a meeting room but I'm not sure. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
|
[goto(kitchen), access(fridge), open(fridge), pickup(carrot), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"mobile_robotics_lab↔agent"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": null,
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": null,
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find me a meeting room with a RealSense camera.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find me a meeting room with a RealSense camera. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'mobile_robotics_lab↔agent']}
|
[goto(meeting_room1), access(table5), goto(meeting_room2), access(chair2), goto(meeting_room3), access(table1), access(table6), goto(meeting_room4), access(table2), done()]
|
office
|
{
"links": [
"Sayplan_office↔floor_A",
"floor_A↔mobile_robotics_lab",
"postdoc_bay1↔desk31",
"postdoc_bay1↔desk32",
"admin↔shelf",
"manipulation_lab↔table3",
"mobile_robotics_lab↔agent",
"table3↔book1",
"table3↔gripper",
"shelf↔fire_extinguisher2",
"desk31↔fire_extinguisher1",
"desk32↔frame1",
"desk32↔frame2",
"desk32↔complimentary_tshirt7",
"desk32↔complimentary_tshirt8"
],
"nodes": {
"agent": [
{
"id": "agent",
"location": "mobile_robotics_lab"
}
],
"asset": [
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "table3",
"room": "manipulation_lab"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "shelf",
"room": "admin"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk31",
"room": "postdoc_bay1"
},
{
"affordances": [
"access"
],
"attributes": "clean",
"id": "desk32",
"room": "postdoc_bay1"
}
],
"building": [
{
"id": "Sayplan_office"
}
],
"floor": [
{
"id": "floor_A"
}
],
"object": [
{
"affordances": [
"pickup",
"release"
],
"attributes": "book, reading, color: green, size: standard, condition: used",
"id": "book1",
"parent": "table3",
"room": "manipulation_lab"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "tool, robotic, color: gray, size: standard, condition: new",
"id": "gripper",
"parent": "table3",
"room": "manipulation_lab"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "safety equipment, fire, color: red, size: standard, condition: new",
"id": "fire_extinguisher2",
"parent": "shelf",
"room": "admin"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "safety equipment, fire, color: red, size: standard, condition: new",
"id": "fire_extinguisher1",
"parent": "desk31",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: gold, size: large, condition: new",
"id": "frame1",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "decorative, framed, color: silver, size: large, condition: used",
"id": "frame2",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "clothing, promotional, color: blue, size: M, condition: new",
"id": "complimentary_tshirt7",
"parent": "desk32",
"room": "postdoc_bay1"
},
{
"affordances": [
"pickup",
"release"
],
"attributes": "clothing, promotional, color: red, size: L, condition: used",
"id": "complimentary_tshirt8",
"parent": "desk32",
"room": "postdoc_bay1"
}
],
"room": [
{
"id": "peters_office"
},
{
"id": "tobis_office"
},
{
"id": "meeting_room1"
},
{
"id": "postdoc_bay1"
},
{
"id": "phd_bay1"
},
{
"id": "phd_bay2"
},
{
"id": "admin"
},
{
"id": "printing_zone2"
},
{
"id": "meeting_room2"
},
{
"id": "robot_lounge2"
},
{
"id": "robot_lounge1"
},
{
"id": "nikos_office"
},
{
"id": "michaels_office"
},
{
"id": "mobile_robotics_lab"
},
{
"id": "jasons_office"
},
{
"id": "arrons_office"
},
{
"id": "manipulation_lab"
},
{
"id": "filipes_office"
},
{
"id": "luis_office"
},
{
"id": "wills_office"
},
{
"id": "phd_bay3"
},
{
"id": "postdoc_bay2"
},
{
"id": "lobby"
},
{
"id": "supplies_station"
},
{
"id": "printing_zone1"
},
{
"id": "kitchen"
},
{
"id": "phd_bay4"
},
{
"id": "postdoc_bay3"
},
{
"id": "meeting_room4"
},
{
"id": "ajays_office"
},
{
"id": "chris_office"
},
{
"id": "lauriannes_office"
},
{
"id": "dimitys_office"
},
{
"id": "agriculture_lab"
},
{
"id": "meeting_room3"
},
{
"id": "cafeteria"
},
{
"id": "presentation_lounge"
}
]
}
}
|
Find the closest fire extinguisher to the manipulation lab.
|
task_Office_complex_search
|
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan.
Lecal actions:
goto(room_id): Move the agent to any room
access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects.
pickup(object_id): Pick up an accessible object from the accessed node.
release(object_id): Release grasped object at an asset node.
open/close(asset_id): Open/close asset at agent's node, affecting object accessibility.
done(): Call when the task is completed.
and other actions from asset and object affordance
Respond in the following format: <think>
...
</think>
<plan>
[goto(dining_room), ...,access(dining_table), pickup(banana1)]
</plan>
The task is: Find the closest fire extinguisher to the manipulation lab. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'manipulation_lab', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table3'}, {'room': 'admin', 'attributes': 'clean', 'affordances': ['access'], 'id': 'shelf'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk31'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk32'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'book, reading, color: green, size: standard, condition: used', 'id': 'book1', 'parent': 'table3', 'room': 'manipulation_lab'}, {'affordances': ['pickup', 'release'], 'attributes': 'tool, robotic, color: gray, size: standard, condition: new', 'id': 'gripper', 'parent': 'table3', 'room': 'manipulation_lab'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher2', 'parent': 'shelf', 'room': 'admin'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher1', 'parent': 'desk31', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: gold, size: large, condition: new', 'id': 'frame1', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: silver, size: large, condition: used', 'id': 'frame2', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: blue, size: M, condition: new', 'id': 'complimentary_tshirt7', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: red, size: L, condition: used', 'id': 'complimentary_tshirt8', 'parent': 'desk32', 'room': 'postdoc_bay1'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'postdoc_bay1↔desk31', 'postdoc_bay1↔desk32', 'admin↔shelf', 'manipulation_lab↔table3', 'mobile_robotics_lab↔agent', 'table3↔book1', 'table3↔gripper', 'shelf↔fire_extinguisher2', 'desk31↔fire_extinguisher1', 'desk32↔frame1', 'desk32↔frame2', 'desk32↔complimentary_tshirt7', 'desk32↔complimentary_tshirt8']}
|
[goto(postdoc_bay1), access(desk31), done()]
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 5