Dataset Viewer
Auto-converted to Parquet
building_name
stringclasses
1 value
searched_sg
dict
task
stringlengths
17
196
task_category
stringclasses
4 values
problem
stringlengths
2.16k
11.1k
answer
stringlengths
28
969
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "dimitys_office↔desk3", "dimitys_office↔cabinet3", "mobile_robotics_lab↔agent", "desk3↔K31X", "desk3↔buzzer", "cabinet3↔apple2" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk3", "room": "dimitys_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet3", "room": "dimitys_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "electronic, portable, color: silver, size: compact, condition: new", "id": "K31X", "parent": "desk3", "room": "dimitys_office" }, { "affordances": [ "pickup", "release" ], "attributes": "electronic, alert, color: black, size: standard, condition: new", "id": "buzzer", "parent": "desk3", "room": "dimitys_office" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: red, freshness: fresh, size: medium", "id": "apple2", "parent": "cabinet3", "room": "dimitys_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me object K31X.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me object K31X. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'dimitys_office', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk3'}, {'room': 'dimitys_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet3'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'electronic, portable, color: silver, size: compact, condition: new', 'id': 'K31X', 'parent': 'desk3', 'room': 'dimitys_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'electronic, alert, color: black, size: standard, condition: new', 'id': 'buzzer', 'parent': 'desk3', 'room': 'dimitys_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: red, freshness: fresh, size: medium', 'id': 'apple2', 'parent': 'cabinet3', 'room': 'dimitys_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'dimitys_office↔desk3', 'dimitys_office↔cabinet3', 'mobile_robotics_lab↔agent', 'desk3↔K31X', 'desk3↔buzzer', 'cabinet3↔apple2']}
[goto(dimitys_office), access(desk3), pickup(K31X), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "kitchen↔fridge", "kitchen↔cabinet", "kitchen↔kitchen_bench", "kitchen↔dishwasher", "kitchen↔drawer", "kitchen↔microwave", "kitchen↔rubbish_bin", "kitchen↔recycling_bin", "mobile_robotics_lab↔agent", "fridge↔tomato", "fridge↔cheese", "fridge↔banana2", "fridge↔J64M", "fridge↔chicken_kebab", "fridge↔noodles", "fridge↔salmon_bagel", "fridge↔greek_salad", "fridge↔carrot", "kitchen_bench↔butter", "kitchen_bench↔bread", "kitchen_bench↔orange1", "kitchen_bench↔kale_leaves2", "dishwasher↔bowl", "dishwasher↔plate2", "dishwasher↔spoon", "dishwasher↔chips", "rubbish_bin↔banana_peel", "rubbish_bin↔plastic_bottle", "recycling_bin↔milk_carton", "recycling_bin↔orange_peel", "recycling_bin↔apple_core" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "open", "close", "access" ], "attributes": "closed", "id": "fridge", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "cabinet", "room": "kitchen" }, { "affordances": [ "access" ], "attributes": "clean", "id": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "access", "turn_on", "turn_off", "open", "close" ], "attributes": "closed", "id": "dishwasher", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "drawer", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "microwave", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "recycling_bin", "room": "kitchen" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: red, freshness: fresh, size: medium", "id": "tomato", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium", "id": "cheese", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana2", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "J64M", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, meat, color: brown, freshness: fresh, size: medium", "id": "chicken_kebab", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, grain, color: yellow, freshness: fresh, size: medium", "id": "noodles", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium", "id": "salmon_bagel", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, salad, color: green, freshness: fresh, size: medium", "id": "greek_salad", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium", "id": "carrot", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, spread, color: yellow, freshness: fresh, size: small", "id": "butter", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, bread, color: brown, freshness: fresh, size: medium", "id": "bread", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: orange, freshness: fresh, size: medium", "id": "orange1", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: green, freshness: fresh, size: small", "id": "kale_leaves2", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "bowl", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate2", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "spoon", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "chips", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: yellow, size: small, condition: used", "id": "banana_peel", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, plastic, color: clear, size: standard, condition: used", "id": "plastic_bottle", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "beverage, carton, color: white, size: standard, condition: new", "id": "milk_carton", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: orange, size: small, condition: used", "id": "orange_peel", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: brown, size: small, condition: used", "id": "apple_core", "parent": "recycling_bin", "room": "kitchen" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me a carrot.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me a carrot. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
[goto(kitchen), open(fridge), access(fridge), pickup(carrot), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "postdoc_bay1↔desk31", "postdoc_bay1↔desk32", "postdoc_bay2↔desk33", "postdoc_bay2↔desk34", "postdoc_bay3↔desk35", "postdoc_bay3↔desk36", "mobile_robotics_lab↔agent", "desk35↔dorittos1", "desk35↔marker", "desk31↔fire_extinguisher1", "desk32↔frame1", "desk32↔frame2", "desk32↔complimentary_tshirt7", "desk32↔complimentary_tshirt8", "desk33↔frame3" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk35", "room": "postdoc_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk36", "room": "postdoc_bay3" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk31", "room": "postdoc_bay1" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk33", "room": "postdoc_bay2" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk34", "room": "postdoc_bay2" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "dorittos1", "parent": "desk35", "room": "postdoc_bay3" }, { "affordances": [ "pickup", "release" ], "attributes": "writing tool, marker, color: black, size: standard, condition: new", "id": "marker", "parent": "desk35", "room": "postdoc_bay3" }, { "affordances": [ "pickup", "release" ], "attributes": "safety equipment, fire, color: red, size: standard, condition: new", "id": "fire_extinguisher1", "parent": "desk31", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: gold, size: large, condition: new", "id": "frame1", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: silver, size: large, condition: used", "id": "frame2", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "clothing, promotional, color: blue, size: M, condition: new", "id": "complimentary_tshirt7", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "clothing, promotional, color: red, size: L, condition: used", "id": "complimentary_tshirt8", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: brown, size: large, condition: new", "id": "frame3", "parent": "desk33", "room": "postdoc_bay2" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me anything purple in the postdoc bays.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me anything purple in the postdoc bays. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk35'}, {'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk36'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk31'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk32'}, {'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk33'}, {'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk34'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'dorittos1', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'writing tool, marker, color: black, size: standard, condition: new', 'id': 'marker', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher1', 'parent': 'desk31', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: gold, size: large, condition: new', 'id': 'frame1', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: silver, size: large, condition: used', 'id': 'frame2', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: blue, size: M, condition: new', 'id': 'complimentary_tshirt7', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: red, size: L, condition: used', 'id': 'complimentary_tshirt8', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: brown, size: large, condition: new', 'id': 'frame3', 'parent': 'desk33', 'room': 'postdoc_bay2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'postdoc_bay1↔desk31', 'postdoc_bay1↔desk32', 'postdoc_bay2↔desk33', 'postdoc_bay2↔desk34', 'postdoc_bay3↔desk35', 'postdoc_bay3↔desk36', 'mobile_robotics_lab↔agent', 'desk35↔dorittos1', 'desk35↔marker', 'desk31↔fire_extinguisher1', 'desk32↔frame1', 'desk32↔frame2', 'desk32↔complimentary_tshirt7', 'desk32↔complimentary_tshirt8', 'desk33↔frame3']}
[goto(postdoc_bay1), access(desk31), access(desk32), goto(postdoc_bay2), access(desk33), access(desk34), goto(postdoc_bay3), access(desk35), access(desk36), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "kitchen↔fridge", "kitchen↔cabinet", "kitchen↔kitchen_bench", "kitchen↔dishwasher", "kitchen↔drawer", "kitchen↔microwave", "kitchen↔rubbish_bin", "kitchen↔recycling_bin", "cafeteria↔lunch_table", "mobile_robotics_lab↔agent", "lunch_table↔banana1", "lunch_table↔fork", "lunch_table↔knife", "lunch_table↔plate", "fridge↔tomato", "fridge↔cheese", "fridge↔banana2", "fridge↔J64M", "fridge↔chicken_kebab", "fridge↔noodles", "fridge↔salmon_bagel", "fridge↔greek_salad", "fridge↔carrot", "kitchen_bench↔butter", "kitchen_bench↔bread", "kitchen_bench↔orange1", "kitchen_bench↔kale_leaves2", "dishwasher↔bowl", "dishwasher↔plate2", "dishwasher↔spoon", "dishwasher↔chips", "rubbish_bin↔banana_peel", "rubbish_bin↔plastic_bottle", "recycling_bin↔milk_carton", "recycling_bin↔orange_peel", "recycling_bin↔apple_core" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "lunch_table", "room": "cafeteria" }, { "affordances": [ "open", "close", "access" ], "attributes": "closed", "id": "fridge", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "cabinet", "room": "kitchen" }, { "affordances": [ "access" ], "attributes": "clean", "id": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "access", "turn_on", "turn_off", "open", "close" ], "attributes": "closed", "id": "dishwasher", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "drawer", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "microwave", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "recycling_bin", "room": "kitchen" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana1", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "fork", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "knife", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: red, freshness: fresh, size: medium", "id": "tomato", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium", "id": "cheese", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana2", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "J64M", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, meat, color: brown, freshness: fresh, size: medium", "id": "chicken_kebab", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, grain, color: yellow, freshness: fresh, size: medium", "id": "noodles", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium", "id": "salmon_bagel", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, salad, color: green, freshness: fresh, size: medium", "id": "greek_salad", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium", "id": "carrot", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, spread, color: yellow, freshness: fresh, size: small", "id": "butter", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, bread, color: brown, freshness: fresh, size: medium", "id": "bread", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: orange, freshness: fresh, size: medium", "id": "orange1", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: green, freshness: fresh, size: small", "id": "kale_leaves2", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "bowl", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate2", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "spoon", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "chips", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: yellow, size: small, condition: used", "id": "banana_peel", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, plastic, color: clear, size: standard, condition: used", "id": "plastic_bottle", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "beverage, carton, color: white, size: standard, condition: new", "id": "milk_carton", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: orange, size: small, condition: used", "id": "orange_peel", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: brown, size: small, condition: used", "id": "apple_core", "parent": "recycling_bin", "room": "kitchen" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me a ripe banana.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me a ripe banana. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'cafeteria', 'attributes': 'clean', 'affordances': ['access'], 'id': 'lunch_table'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana1', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'fork', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'knife', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'cafeteria↔lunch_table', 'mobile_robotics_lab↔agent', 'lunch_table↔banana1', 'lunch_table↔fork', 'lunch_table↔knife', 'lunch_table↔plate', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
[goto(cafeteria), access(lunch_table), pickup(banana1), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "robot_lounge2↔toolbox", "mobile_robotics_lab↔agent", "toolbox↔screwdiver1" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "toolbox", "room": "robot_lounge2" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "tool, hand-held, color: black, size: standard, condition: new", "id": "screwdiver1", "parent": "toolbox", "room": "robot_lounge2" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me something that has a screwdriver in it.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me something that has a screwdriver in it. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'robot_lounge2', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'toolbox'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, hand-held, color: black, size: standard, condition: new', 'id': 'screwdiver1', 'parent': 'toolbox', 'room': 'robot_lounge2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'robot_lounge2↔toolbox', 'mobile_robotics_lab↔agent', 'toolbox↔screwdiver1']}
[goto(robot_lounge2), open(toolbox), access(toolbox), pickup(screwdiver1), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "michaels_office↔desk6", "michaels_office↔cabinet6", "mobile_robotics_lab↔agent", "desk6↔scissors", "cabinet6↔terminator_poster", "cabinet6↔stapler3" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk6", "room": "michaels_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet6", "room": "michaels_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "tool, cutting, color: silver, size: standard, condition: used", "id": "scissors", "parent": "desk6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, poster, color: multi, size: large, condition: new", "id": "terminator_poster", "parent": "cabinet6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "stationery, office supply, color: black, size: standard, condition: used", "id": "stapler3", "parent": "cabinet6", "room": "michaels_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
One of the offices has a poster of the Terminator. Which one is it?
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: One of the offices has a poster of the Terminator. Which one is it? and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'michaels_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk6'}, {'room': 'michaels_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet6'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, cutting, color: silver, size: standard, condition: used', 'id': 'scissors', 'parent': 'desk6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, poster, color: multi, size: large, condition: new', 'id': 'terminator_poster', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: black, size: standard, condition: used', 'id': 'stapler3', 'parent': 'cabinet6', 'room': 'michaels_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'michaels_office↔desk6', 'michaels_office↔cabinet6', 'mobile_robotics_lab↔agent', 'desk6↔scissors', 'cabinet6↔terminator_poster', 'cabinet6↔stapler3']}
[goto(michaels_office), open(cabinet6), access(cabinet6), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "printing_zone2↔printer2", "mobile_robotics_lab↔agent", "printer2↔document" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "printer2", "room": "printing_zone2" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "document, paper, color: white, size: A4, condition: new", "id": "document", "parent": "printer2", "room": "printing_zone2" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
I printed a document but I don't know which printer has it. Find the document.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: I printed a document but I don't know which printer has it. Find the document. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'printing_zone2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'printer2'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: new', 'id': 'document', 'parent': 'printer2', 'room': 'printing_zone2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'printing_zone2↔printer2', 'mobile_robotics_lab↔agent', 'printer2↔document']}
[goto(printing_zone2), access(printer2), pickup(document), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "meeting_room3↔table1", "meeting_room3↔table6", "mobile_robotics_lab↔agent", "table1↔headphones" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "table1", "room": "meeting_room3" }, { "affordances": [ "access" ], "attributes": "clean", "id": "table6", "room": "meeting_room3" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "electronic, audio, color: black, size: standard, condition: new", "id": "headphones", "parent": "table1", "room": "meeting_room3" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
I left my headphones in one of the meeting rooms. Locate them.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: I left my headphones in one of the meeting rooms. Locate them. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'meeting_room3', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table1'}, {'room': 'meeting_room3', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table6'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'electronic, audio, color: black, size: standard, condition: new', 'id': 'headphones', 'parent': 'table1', 'room': 'meeting_room3'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'meeting_room3↔table1', 'meeting_room3↔table6', 'mobile_robotics_lab↔agent', 'table1↔headphones']}
[goto(meeting_room3), access(table1), pickup(headphones), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "phd_bay3↔desk19", "phd_bay3↔desk20", "phd_bay3↔desk21", "phd_bay3↔desk22", "phd_bay3↔desk23", "phd_bay3↔desk24", "mobile_robotics_lab↔agent", "desk21↔drone1" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk19", "room": "phd_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk20", "room": "phd_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk21", "room": "phd_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk22", "room": "phd_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk23", "room": "phd_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk24", "room": "phd_bay3" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "drone, electronic, color: black, size: standard, condition: used", "id": "drone1", "parent": "desk21", "room": "phd_bay3" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find the PhD bay that has a drone in it.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find the PhD bay that has a drone in it. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk19'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk20'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk21'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk22'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk23'}, {'room': 'phd_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk24'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'drone, electronic, color: black, size: standard, condition: used', 'id': 'drone1', 'parent': 'desk21', 'room': 'phd_bay3'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'phd_bay3↔desk19', 'phd_bay3↔desk20', 'phd_bay3↔desk21', 'phd_bay3↔desk22', 'phd_bay3↔desk23', 'phd_bay3↔desk24', 'mobile_robotics_lab↔agent', 'desk21↔drone1']}
[goto(phd_bay3), access(desk21), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "agriculture_lab↔produce_container", "mobile_robotics_lab↔agent", "produce_container↔kale_leaves1" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "produce_container", "room": "agriculture_lab" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: green, freshness: fresh, size: small", "id": "kale_leaves1", "parent": "produce_container", "room": "agriculture_lab" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find the kale that is not in the kitchen.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find the kale that is not in the kitchen. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'agriculture_lab', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'produce_container'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves1', 'parent': 'produce_container', 'room': 'agriculture_lab'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'agriculture_lab↔produce_container', 'mobile_robotics_lab↔agent', 'produce_container↔kale_leaves1']}
[goto(agriculture_lab), open(produce_container), access(produce_container), pickup(kale_leaves1), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "tobis_office↔desk38", "filipes_office↔desk37", "mobile_robotics_lab↔agent", "desk38↔pepsi", "desk37↔stapler2" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk38", "room": "tobis_office" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk37", "room": "filipes_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "beverage, canned, color: blue, size: 355ml, freshness: expired", "id": "pepsi", "parent": "desk38", "room": "tobis_office" }, { "affordances": [ "pickup", "release" ], "attributes": "stationery, office supply, color: blue, size: standard, condition: used", "id": "stapler2", "parent": "desk37", "room": "filipes_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me an office that does not have a cabinet.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me an office that does not have a cabinet. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'tobis_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk38'}, {'room': 'filipes_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk37'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'beverage, canned, color: blue, size: 355ml, freshness: expired', 'id': 'pepsi', 'parent': 'desk38', 'room': 'tobis_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: blue, size: standard, condition: used', 'id': 'stapler2', 'parent': 'desk37', 'room': 'filipes_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'tobis_office↔desk38', 'filipes_office↔desk37', 'mobile_robotics_lab↔agent', 'desk38↔pepsi', 'desk37↔stapler2']}
[goto(tobis_office), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "nikos_office↔desk1", "nikos_office↔chair1", "nikos_office↔cabinet1", "mobile_robotics_lab↔agent", "desk1↔coffee_mug" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk1", "room": "nikos_office" }, { "affordances": [ "access" ], "attributes": "clean", "id": "chair1", "room": "nikos_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet1", "room": "nikos_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "kitchenware, drinkware, color: white, size: standard, condition: new", "id": "coffee_mug", "parent": "desk1", "room": "nikos_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me an office that contains a cabinet, a desk, and a chair.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me an office that contains a cabinet, a desk, and a chair. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'nikos_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk1'}, {'room': 'nikos_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'chair1'}, {'room': 'nikos_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet1'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'kitchenware, drinkware, color: white, size: standard, condition: new', 'id': 'coffee_mug', 'parent': 'desk1', 'room': 'nikos_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'nikos_office↔desk1', 'nikos_office↔chair1', 'nikos_office↔cabinet1', 'mobile_robotics_lab↔agent', 'desk1↔coffee_mug']}
[goto(nikos_office), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "manipulation_lab↔table3", "mobile_robotics_lab↔agent", "table3↔book1", "table3↔gripper" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "table3", "room": "manipulation_lab" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "book, reading, color: green, size: standard, condition: used", "id": "book1", "parent": "table3", "room": "manipulation_lab" }, { "affordances": [ "pickup", "release" ], "attributes": "tool, robotic, color: gray, size: standard, condition: new", "id": "gripper", "parent": "table3", "room": "manipulation_lab" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find a book that was left next to a robotic gripper.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find a book that was left next to a robotic gripper. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'manipulation_lab', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table3'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'book, reading, color: green, size: standard, condition: used', 'id': 'book1', 'parent': 'table3', 'room': 'manipulation_lab'}, {'affordances': ['pickup', 'release'], 'attributes': 'tool, robotic, color: gray, size: standard, condition: new', 'id': 'gripper', 'parent': 'table3', 'room': 'manipulation_lab'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'manipulation_lab↔table3', 'mobile_robotics_lab↔agent', 'table3↔book1', 'table3↔gripper']}
[goto(manipulation_lab), access(table3), pickup(book1), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "filipes_office↔desk37", "mobile_robotics_lab↔agent", "desk37↔stapler2" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk37", "room": "filipes_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "stationery, office supply, color: blue, size: standard, condition: used", "id": "stapler2", "parent": "desk37", "room": "filipes_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Luis gave one of his neighbours a stapler. Find the stapler.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Luis gave one of his neighbours a stapler. Find the stapler. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'filipes_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk37'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: blue, size: standard, condition: used', 'id': 'stapler2', 'parent': 'desk37', 'room': 'filipes_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'filipes_office↔desk37', 'mobile_robotics_lab↔agent', 'desk37↔stapler2']}
[goto(peters_office), open(cabinet2), access(cabinet2), pickup(stapler), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "meeting_room2↔chair2", "mobile_robotics_lab↔agent" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "chair2", "room": "meeting_room2" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": null, "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
There is a meeting room with a chair but no table. Locate it.
task_Office_simple_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: There is a meeting room with a chair but no table. Locate it. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'meeting_room2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'chair2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'meeting_room2↔chair2', 'mobile_robotics_lab↔agent']}
[goto(meeting_room2), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "kitchen↔fridge", "kitchen↔cabinet", "kitchen↔kitchen_bench", "kitchen↔dishwasher", "kitchen↔drawer", "kitchen↔microwave", "kitchen↔rubbish_bin", "kitchen↔recycling_bin", "mobile_robotics_lab↔agent", "fridge↔tomato", "fridge↔cheese", "fridge↔banana2", "fridge↔J64M", "fridge↔chicken_kebab", "fridge↔noodles", "fridge↔salmon_bagel", "fridge↔greek_salad", "fridge↔carrot", "kitchen_bench↔butter", "kitchen_bench↔bread", "kitchen_bench↔orange1", "kitchen_bench↔kale_leaves2", "dishwasher↔bowl", "dishwasher↔plate2", "dishwasher↔spoon", "dishwasher↔chips", "rubbish_bin↔banana_peel", "rubbish_bin↔plastic_bottle", "recycling_bin↔milk_carton", "recycling_bin↔orange_peel", "recycling_bin↔apple_core" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "open", "close", "access" ], "attributes": "closed", "id": "fridge", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "cabinet", "room": "kitchen" }, { "affordances": [ "access" ], "attributes": "clean", "id": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "access", "turn_on", "turn_off", "open", "close" ], "attributes": "closed", "id": "dishwasher", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "drawer", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "microwave", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "recycling_bin", "room": "kitchen" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: red, freshness: fresh, size: medium", "id": "tomato", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium", "id": "cheese", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana2", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "J64M", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, meat, color: brown, freshness: fresh, size: medium", "id": "chicken_kebab", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, grain, color: yellow, freshness: fresh, size: medium", "id": "noodles", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium", "id": "salmon_bagel", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, salad, color: green, freshness: fresh, size: medium", "id": "greek_salad", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium", "id": "carrot", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, spread, color: yellow, freshness: fresh, size: small", "id": "butter", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, bread, color: brown, freshness: fresh, size: medium", "id": "bread", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: orange, freshness: fresh, size: medium", "id": "orange1", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: green, freshness: fresh, size: small", "id": "kale_leaves2", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "bowl", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate2", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "spoon", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "chips", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: yellow, size: small, condition: used", "id": "banana_peel", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, plastic, color: clear, size: standard, condition: used", "id": "plastic_bottle", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "beverage, carton, color: white, size: standard, condition: new", "id": "milk_carton", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: orange, size: small, condition: used", "id": "orange_peel", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: brown, size: small, condition: used", "id": "apple_core", "parent": "recycling_bin", "room": "kitchen" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find object J64M. J64M should be kept at below 0 degrees Celsius.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find object J64M. J64M should be kept at below 0 degrees Celsius. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
[goto(kitchen), open(fridge), access(fridge), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "kitchen↔fridge", "kitchen↔cabinet", "kitchen↔kitchen_bench", "kitchen↔dishwasher", "kitchen↔drawer", "kitchen↔microwave", "kitchen↔rubbish_bin", "kitchen↔recycling_bin", "mobile_robotics_lab↔agent", "fridge↔tomato", "fridge↔cheese", "fridge↔banana2", "fridge↔J64M", "fridge↔chicken_kebab", "fridge↔noodles", "fridge↔salmon_bagel", "fridge↔greek_salad", "fridge↔carrot", "kitchen_bench↔butter", "kitchen_bench↔bread", "kitchen_bench↔orange1", "kitchen_bench↔kale_leaves2", "dishwasher↔bowl", "dishwasher↔plate2", "dishwasher↔spoon", "dishwasher↔chips", "rubbish_bin↔banana_peel", "rubbish_bin↔plastic_bottle", "recycling_bin↔milk_carton", "recycling_bin↔orange_peel", "recycling_bin↔apple_core" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "open", "close", "access" ], "attributes": "closed", "id": "fridge", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "cabinet", "room": "kitchen" }, { "affordances": [ "access" ], "attributes": "clean", "id": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "access", "turn_on", "turn_off", "open", "close" ], "attributes": "closed", "id": "dishwasher", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "drawer", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "microwave", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "recycling_bin", "room": "kitchen" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: red, freshness: fresh, size: medium", "id": "tomato", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium", "id": "cheese", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana2", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "J64M", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, meat, color: brown, freshness: fresh, size: medium", "id": "chicken_kebab", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, grain, color: yellow, freshness: fresh, size: medium", "id": "noodles", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium", "id": "salmon_bagel", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, salad, color: green, freshness: fresh, size: medium", "id": "greek_salad", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium", "id": "carrot", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, spread, color: yellow, freshness: fresh, size: small", "id": "butter", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, bread, color: brown, freshness: fresh, size: medium", "id": "bread", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: orange, freshness: fresh, size: medium", "id": "orange1", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: green, freshness: fresh, size: small", "id": "kale_leaves2", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "bowl", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate2", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "spoon", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "chips", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: yellow, size: small, condition: used", "id": "banana_peel", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, plastic, color: clear, size: standard, condition: used", "id": "plastic_bottle", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "beverage, carton, color: white, size: standard, condition: new", "id": "milk_carton", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: orange, size: small, condition: used", "id": "orange_peel", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: brown, size: small, condition: used", "id": "apple_core", "parent": "recycling_bin", "room": "kitchen" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me something non vegetarian.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me something non vegetarian. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
[goto(kitchen), open(fridge), access(fridge), pickup(chicken_kebab), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "robot_lounge2↔toolbox", "michaels_office↔desk6", "michaels_office↔cabinet6", "cafeteria↔lunch_table", "mobile_robotics_lab↔agent", "desk6↔scissors", "cabinet6↔terminator_poster", "cabinet6↔stapler3", "lunch_table↔banana1", "lunch_table↔fork", "lunch_table↔knife", "lunch_table↔plate", "toolbox↔screwdiver1" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk6", "room": "michaels_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet6", "room": "michaels_office" }, { "affordances": [ "access" ], "attributes": "clean", "id": "lunch_table", "room": "cafeteria" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "toolbox", "room": "robot_lounge2" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "tool, cutting, color: silver, size: standard, condition: used", "id": "scissors", "parent": "desk6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, poster, color: multi, size: large, condition: new", "id": "terminator_poster", "parent": "cabinet6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "stationery, office supply, color: black, size: standard, condition: used", "id": "stapler3", "parent": "cabinet6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana1", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "fork", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "knife", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate", "parent": "lunch_table", "room": "cafeteria" }, { "affordances": [ "pickup", "release" ], "attributes": "tool, hand-held, color: black, size: standard, condition: new", "id": "screwdiver1", "parent": "toolbox", "room": "robot_lounge2" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Locate something sharp.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Locate something sharp. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'michaels_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk6'}, {'room': 'michaels_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet6'}, {'room': 'cafeteria', 'attributes': 'clean', 'affordances': ['access'], 'id': 'lunch_table'}, {'room': 'robot_lounge2', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'toolbox'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, cutting, color: silver, size: standard, condition: used', 'id': 'scissors', 'parent': 'desk6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, poster, color: multi, size: large, condition: new', 'id': 'terminator_poster', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: black, size: standard, condition: used', 'id': 'stapler3', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana1', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'fork', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'knife', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate', 'parent': 'lunch_table', 'room': 'cafeteria'}, {'affordances': ['pickup', 'release'], 'attributes': 'tool, hand-held, color: black, size: standard, condition: new', 'id': 'screwdiver1', 'parent': 'toolbox', 'room': 'robot_lounge2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'robot_lounge2↔toolbox', 'michaels_office↔desk6', 'michaels_office↔cabinet6', 'cafeteria↔lunch_table', 'mobile_robotics_lab↔agent', 'desk6↔scissors', 'cabinet6↔terminator_poster', 'cabinet6↔stapler3', 'lunch_table↔banana1', 'lunch_table↔fork', 'lunch_table↔knife', 'lunch_table↔plate', 'toolbox↔screwdiver1']}
[goto(cafeteria), access(lunch_table), pickup(knife), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "meeting_room4↔table2", "mobile_robotics_lab↔agent", "table2↔janga", "table2↔risk", "table2↔monopoly" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "table2", "room": "meeting_room4" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "game, entertainment, color: multi, size: standard, condition: new", "id": "janga", "parent": "table2", "room": "meeting_room4" }, { "affordances": [ "pickup", "release" ], "attributes": "game, entertainment, color: multi, size: standard, condition: used", "id": "risk", "parent": "table2", "room": "meeting_room4" }, { "affordances": [ "pickup", "release" ], "attributes": "game, entertainment, color: multi, size: standard, condition: new", "id": "monopoly", "parent": "table2", "room": "meeting_room4" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find the room where people are playing board games.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find the room where people are playing board games. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'meeting_room4', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table2'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'game, entertainment, color: multi, size: standard, condition: new', 'id': 'janga', 'parent': 'table2', 'room': 'meeting_room4'}, {'affordances': ['pickup', 'release'], 'attributes': 'game, entertainment, color: multi, size: standard, condition: used', 'id': 'risk', 'parent': 'table2', 'room': 'meeting_room4'}, {'affordances': ['pickup', 'release'], 'attributes': 'game, entertainment, color: multi, size: standard, condition: new', 'id': 'monopoly', 'parent': 'table2', 'room': 'meeting_room4'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'meeting_room4↔table2', 'mobile_robotics_lab↔agent', 'table2↔janga', 'table2↔risk', 'table2↔monopoly']}
[goto(meeting_room4), access(table2), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "michaels_office↔desk6", "michaels_office↔cabinet6", "mobile_robotics_lab↔agent", "desk6↔scissors", "cabinet6↔terminator_poster", "cabinet6↔stapler3" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk6", "room": "michaels_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet6", "room": "michaels_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "tool, cutting, color: silver, size: standard, condition: used", "id": "scissors", "parent": "desk6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, poster, color: multi, size: large, condition: new", "id": "terminator_poster", "parent": "cabinet6", "room": "michaels_office" }, { "affordances": [ "pickup", "release" ], "attributes": "stationery, office supply, color: black, size: standard, condition: used", "id": "stapler3", "parent": "cabinet6", "room": "michaels_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find an office of someone who is clearly a fan of Arnold Schwarzenegger.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find an office of someone who is clearly a fan of Arnold Schwarzenegger. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'michaels_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk6'}, {'room': 'michaels_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet6'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'tool, cutting, color: silver, size: standard, condition: used', 'id': 'scissors', 'parent': 'desk6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, poster, color: multi, size: large, condition: new', 'id': 'terminator_poster', 'parent': 'cabinet6', 'room': 'michaels_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: black, size: standard, condition: used', 'id': 'stapler3', 'parent': 'cabinet6', 'room': 'michaels_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'michaels_office↔desk6', 'michaels_office↔cabinet6', 'mobile_robotics_lab↔agent', 'desk6↔scissors', 'cabinet6↔terminator_poster', 'cabinet6↔stapler3']}
[goto(michaels_office), access(cabinet6), open(cabinet6), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "postdoc_bay1↔desk31", "postdoc_bay1↔desk32", "postdoc_bay2↔desk33", "postdoc_bay2↔desk34", "postdoc_bay3↔desk35", "postdoc_bay3↔desk36", "mobile_robotics_lab↔agent", "desk33↔frame3", "desk35↔dorittos1", "desk35↔marker", "desk31↔fire_extinguisher1", "desk32↔frame1", "desk32↔frame2", "desk32↔complimentary_tshirt7", "desk32↔complimentary_tshirt8" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk33", "room": "postdoc_bay2" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk34", "room": "postdoc_bay2" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk35", "room": "postdoc_bay3" }, { "affordances": [ "sit_at", "work_at", "access" ], "attributes": "clean", "id": "desk36", "room": "postdoc_bay3" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk31", "room": "postdoc_bay1" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk32", "room": "postdoc_bay1" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: brown, size: large, condition: new", "id": "frame3", "parent": "desk33", "room": "postdoc_bay2" }, { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "dorittos1", "parent": "desk35", "room": "postdoc_bay3" }, { "affordances": [ "pickup", "release" ], "attributes": "writing tool, marker, color: black, size: standard, condition: new", "id": "marker", "parent": "desk35", "room": "postdoc_bay3" }, { "affordances": [ "pickup", "release" ], "attributes": "safety equipment, fire, color: red, size: standard, condition: new", "id": "fire_extinguisher1", "parent": "desk31", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: gold, size: large, condition: new", "id": "frame1", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: silver, size: large, condition: used", "id": "frame2", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "clothing, promotional, color: blue, size: M, condition: new", "id": "complimentary_tshirt7", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "clothing, promotional, color: red, size: L, condition: used", "id": "complimentary_tshirt8", "parent": "desk32", "room": "postdoc_bay1" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
There is a postdoc that has a pet Husky. Find the desk that's most likely theirs.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: There is a postdoc that has a pet Husky. Find the desk that's most likely theirs. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk33'}, {'room': 'postdoc_bay2', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk34'}, {'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk35'}, {'room': 'postdoc_bay3', 'attributes': 'clean', 'affordances': ['sit_at', 'work_at', 'access'], 'id': 'desk36'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk31'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk32'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: brown, size: large, condition: new', 'id': 'frame3', 'parent': 'desk33', 'room': 'postdoc_bay2'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'dorittos1', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'writing tool, marker, color: black, size: standard, condition: new', 'id': 'marker', 'parent': 'desk35', 'room': 'postdoc_bay3'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher1', 'parent': 'desk31', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: gold, size: large, condition: new', 'id': 'frame1', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: silver, size: large, condition: used', 'id': 'frame2', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: blue, size: M, condition: new', 'id': 'complimentary_tshirt7', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: red, size: L, condition: used', 'id': 'complimentary_tshirt8', 'parent': 'desk32', 'room': 'postdoc_bay1'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'postdoc_bay1↔desk31', 'postdoc_bay1↔desk32', 'postdoc_bay2↔desk33', 'postdoc_bay2↔desk34', 'postdoc_bay3↔desk35', 'postdoc_bay3↔desk36', 'mobile_robotics_lab↔agent', 'desk33↔frame3', 'desk35↔dorittos1', 'desk35↔marker', 'desk31↔fire_extinguisher1', 'desk32↔frame1', 'desk32↔frame2', 'desk32↔complimentary_tshirt7', 'desk32↔complimentary_tshirt8']}
[goto(postdoc_bay3), access(desk35), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "phd_bay2↔desk13", "phd_bay2↔desk14", "phd_bay2↔desk15", "phd_bay2↔desk16", "phd_bay2↔desk17", "phd_bay2↔desk18", "mobile_robotics_lab↔agent", "desk15↔complimentary_tshirt3", "desk18↔complimentary_tshirt4", "desk18↔complimentary_tshirt6" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk13", "room": "phd_bay2" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk14", "room": "phd_bay2" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk15", "room": "phd_bay2" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk16", "room": "phd_bay2" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk17", "room": "phd_bay2" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk18", "room": "phd_bay2" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "document, paper, color: white, size: A4, condition: new", "id": "complimentary_tshirt3", "parent": "desk15", "room": "phd_bay2" }, { "affordances": [ "pickup", "release" ], "attributes": "document, paper, color: white, size: A4, condition: used", "id": "complimentary_tshirt4", "parent": "desk18", "room": "phd_bay2" }, { "affordances": [ "pickup", "release" ], "attributes": "document, paper, color: white, size: A4, condition: new", "id": "complimentary_tshirt6", "parent": "desk18", "room": "phd_bay2" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
One of the PhD students was given more than one complimentary T-shirts. Find his desk.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: One of the PhD students was given more than one complimentary T-shirts. Find his desk. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk13'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk14'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk15'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk16'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk17'}, {'room': 'phd_bay2', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk18'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: new', 'id': 'complimentary_tshirt3', 'parent': 'desk15', 'room': 'phd_bay2'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: used', 'id': 'complimentary_tshirt4', 'parent': 'desk18', 'room': 'phd_bay2'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, paper, color: white, size: A4, condition: new', 'id': 'complimentary_tshirt6', 'parent': 'desk18', 'room': 'phd_bay2'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'phd_bay2↔desk13', 'phd_bay2↔desk14', 'phd_bay2↔desk15', 'phd_bay2↔desk16', 'phd_bay2↔desk17', 'phd_bay2↔desk18', 'mobile_robotics_lab↔agent', 'desk15↔complimentary_tshirt3', 'desk18↔complimentary_tshirt4', 'desk18↔complimentary_tshirt6']}
[goto(phd_bay2), access(desk18), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "mobile_robotics_lab↔agent" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": null, "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": null, "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me the office where a paper attachment device is inside an asset that is open.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me the office where a paper attachment device is inside an asset that is open. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'mobile_robotics_lab↔agent']}
[goto(jasons_office), access(cabinet5), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "wills_office↔desk4", "wills_office↔cabinet4", "mobile_robotics_lab↔agent", "cabinet4↔drone2", "cabinet4↔apple1", "cabinet4↔undergrad_thesis1" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk4", "room": "wills_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet4", "room": "wills_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "drone, electronic, color: white, size: standard, condition: new", "id": "drone2", "parent": "cabinet4", "room": "wills_office" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "apple1", "parent": "cabinet4", "room": "wills_office" }, { "affordances": [ "pickup", "release" ], "attributes": "document, academic, color: white, size: A4, condition: new", "id": "undergrad_thesis1", "parent": "cabinet4", "room": "wills_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
There is an office which has a cabinet containing exactly 3 items in it. Locate the office.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: There is an office which has a cabinet containing exactly 3 items in it. Locate the office. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'wills_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk4'}, {'room': 'wills_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet4'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'drone, electronic, color: white, size: standard, condition: new', 'id': 'drone2', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'apple1', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, academic, color: white, size: A4, condition: new', 'id': 'undergrad_thesis1', 'parent': 'cabinet4', 'room': 'wills_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'wills_office↔desk4', 'wills_office↔cabinet4', 'mobile_robotics_lab↔agent', 'cabinet4↔drone2', 'cabinet4↔apple1', 'cabinet4↔undergrad_thesis1']}
[goto(wills_office), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "peters_office↔cabinet2", "peters_office↔desk2", "wills_office↔desk4", "wills_office↔cabinet4", "mobile_robotics_lab↔agent", "cabinet4↔drone2", "cabinet4↔apple1", "cabinet4↔undergrad_thesis1", "cabinet2↔apple3", "cabinet2↔stapler", "desk2↔phone" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "desk4", "room": "wills_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet4", "room": "wills_office" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "cabinet2", "room": "peters_office" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk2", "room": "peters_office" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "drone, electronic, color: white, size: standard, condition: new", "id": "drone2", "parent": "cabinet4", "room": "wills_office" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "apple1", "parent": "cabinet4", "room": "wills_office" }, { "affordances": [ "pickup", "release" ], "attributes": "document, academic, color: white, size: A4, condition: new", "id": "undergrad_thesis1", "parent": "cabinet4", "room": "wills_office" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: red, freshness: fresh, size: medium", "id": "apple3", "parent": "cabinet2", "room": "peters_office" }, { "affordances": [ "pickup", "release" ], "attributes": "stationery, office supply, color: silver, size: standard, condition: used", "id": "stapler", "parent": "cabinet2", "room": "peters_office" }, { "affordances": [ "pickup", "release" ], "attributes": "electronic, portable, color: black, size: medium, condition: new", "id": "phone", "parent": "desk2", "room": "peters_office" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
There is an office which has a cabinet containing a rotten apple. The cabinet name contains an even number. Locate the office.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: There is an office which has a cabinet containing a rotten apple. The cabinet name contains an even number. Locate the office. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'wills_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk4'}, {'room': 'wills_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet4'}, {'room': 'peters_office', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'cabinet2'}, {'room': 'peters_office', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk2'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'drone, electronic, color: white, size: standard, condition: new', 'id': 'drone2', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'apple1', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'document, academic, color: white, size: A4, condition: new', 'id': 'undergrad_thesis1', 'parent': 'cabinet4', 'room': 'wills_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: red, freshness: fresh, size: medium', 'id': 'apple3', 'parent': 'cabinet2', 'room': 'peters_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'stationery, office supply, color: silver, size: standard, condition: used', 'id': 'stapler', 'parent': 'cabinet2', 'room': 'peters_office'}, {'affordances': ['pickup', 'release'], 'attributes': 'electronic, portable, color: black, size: medium, condition: new', 'id': 'phone', 'parent': 'desk2', 'room': 'peters_office'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'peters_office↔cabinet2', 'peters_office↔desk2', 'wills_office↔desk4', 'wills_office↔cabinet4', 'mobile_robotics_lab↔agent', 'cabinet4↔drone2', 'cabinet4↔apple1', 'cabinet4↔undergrad_thesis1', 'cabinet2↔apple3', 'cabinet2↔stapler', 'desk2↔phone']}
[goto(peters_office), open(cabinet2), access(cabinet2), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "kitchen↔fridge", "kitchen↔cabinet", "kitchen↔kitchen_bench", "kitchen↔dishwasher", "kitchen↔drawer", "kitchen↔microwave", "kitchen↔rubbish_bin", "kitchen↔recycling_bin", "mobile_robotics_lab↔agent", "fridge↔tomato", "fridge↔cheese", "fridge↔banana2", "fridge↔J64M", "fridge↔chicken_kebab", "fridge↔noodles", "fridge↔salmon_bagel", "fridge↔greek_salad", "fridge↔carrot", "kitchen_bench↔butter", "kitchen_bench↔bread", "kitchen_bench↔orange1", "kitchen_bench↔kale_leaves2", "dishwasher↔bowl", "dishwasher↔plate2", "dishwasher↔spoon", "dishwasher↔chips", "rubbish_bin↔banana_peel", "rubbish_bin↔plastic_bottle", "recycling_bin↔milk_carton", "recycling_bin↔orange_peel", "recycling_bin↔apple_core" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "open", "close", "access" ], "attributes": "closed", "id": "fridge", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "cabinet", "room": "kitchen" }, { "affordances": [ "access" ], "attributes": "clean", "id": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "access", "turn_on", "turn_off", "open", "close" ], "attributes": "closed", "id": "dishwasher", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "drawer", "room": "kitchen" }, { "affordances": [ "access", "open", "close", "turn_off", "turn_on" ], "attributes": "closed", "id": "microwave", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "access", "open", "close" ], "attributes": "closed", "id": "recycling_bin", "room": "kitchen" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: red, freshness: fresh, size: medium", "id": "tomato", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, dairy, color: yellow, freshness: fresh, size: medium", "id": "cheese", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: yellow, freshness: fresh, size: medium", "id": "banana2", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: green, freshness: fresh, size: medium", "id": "J64M", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, meat, color: brown, freshness: fresh, size: medium", "id": "chicken_kebab", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, grain, color: yellow, freshness: fresh, size: medium", "id": "noodles", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, sandwich, color: pink, freshness: fresh, size: medium", "id": "salmon_bagel", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, salad, color: green, freshness: fresh, size: medium", "id": "greek_salad", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: orange, freshness: fresh, size: medium", "id": "carrot", "parent": "fridge", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, spread, color: yellow, freshness: fresh, size: small", "id": "butter", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, bread, color: brown, freshness: fresh, size: medium", "id": "bread", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, fruit, color: orange, freshness: fresh, size: medium", "id": "orange1", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "edible, vegetable, color: green, freshness: fresh, size: small", "id": "kale_leaves2", "parent": "kitchen_bench", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "bowl", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: white, size: standard, condition: new", "id": "plate2", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "utensil, eating, color: silver, size: standard, condition: new", "id": "spoon", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "snack, food, color: yellow, freshness: fresh, size: small", "id": "chips", "parent": "dishwasher", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: yellow, size: small, condition: used", "id": "banana_peel", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, plastic, color: clear, size: standard, condition: used", "id": "plastic_bottle", "parent": "rubbish_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "beverage, carton, color: white, size: standard, condition: new", "id": "milk_carton", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: orange, size: small, condition: used", "id": "orange_peel", "parent": "recycling_bin", "room": "kitchen" }, { "affordances": [ "pickup", "release" ], "attributes": "waste, organic, color: brown, size: small, condition: used", "id": "apple_core", "parent": "recycling_bin", "room": "kitchen" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Look for a carrot. The carrot is likely to be in a meeting room but I'm not sure.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Look for a carrot. The carrot is likely to be in a meeting room but I'm not sure. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'kitchen', 'attributes': 'closed', 'affordances': ['open', 'close', 'access'], 'id': 'fridge'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'cabinet'}, {'room': 'kitchen', 'attributes': 'clean', 'affordances': ['access'], 'id': 'kitchen_bench'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'turn_on', 'turn_off', 'open', 'close'], 'id': 'dishwasher'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'drawer'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close', 'turn_off', 'turn_on'], 'id': 'microwave'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'rubbish_bin'}, {'room': 'kitchen', 'attributes': 'closed', 'affordances': ['access', 'open', 'close'], 'id': 'recycling_bin'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: red, freshness: fresh, size: medium', 'id': 'tomato', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, dairy, color: yellow, freshness: fresh, size: medium', 'id': 'cheese', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: yellow, freshness: fresh, size: medium', 'id': 'banana2', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: green, freshness: fresh, size: medium', 'id': 'J64M', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, meat, color: brown, freshness: fresh, size: medium', 'id': 'chicken_kebab', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, grain, color: yellow, freshness: fresh, size: medium', 'id': 'noodles', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, sandwich, color: pink, freshness: fresh, size: medium', 'id': 'salmon_bagel', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, salad, color: green, freshness: fresh, size: medium', 'id': 'greek_salad', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: orange, freshness: fresh, size: medium', 'id': 'carrot', 'parent': 'fridge', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, spread, color: yellow, freshness: fresh, size: small', 'id': 'butter', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, bread, color: brown, freshness: fresh, size: medium', 'id': 'bread', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, fruit, color: orange, freshness: fresh, size: medium', 'id': 'orange1', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'edible, vegetable, color: green, freshness: fresh, size: small', 'id': 'kale_leaves2', 'parent': 'kitchen_bench', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'bowl', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: white, size: standard, condition: new', 'id': 'plate2', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'utensil, eating, color: silver, size: standard, condition: new', 'id': 'spoon', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'snack, food, color: yellow, freshness: fresh, size: small', 'id': 'chips', 'parent': 'dishwasher', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: yellow, size: small, condition: used', 'id': 'banana_peel', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, plastic, color: clear, size: standard, condition: used', 'id': 'plastic_bottle', 'parent': 'rubbish_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'beverage, carton, color: white, size: standard, condition: new', 'id': 'milk_carton', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: orange, size: small, condition: used', 'id': 'orange_peel', 'parent': 'recycling_bin', 'room': 'kitchen'}, {'affordances': ['pickup', 'release'], 'attributes': 'waste, organic, color: brown, size: small, condition: used', 'id': 'apple_core', 'parent': 'recycling_bin', 'room': 'kitchen'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'kitchen↔fridge', 'kitchen↔cabinet', 'kitchen↔kitchen_bench', 'kitchen↔dishwasher', 'kitchen↔drawer', 'kitchen↔microwave', 'kitchen↔rubbish_bin', 'kitchen↔recycling_bin', 'mobile_robotics_lab↔agent', 'fridge↔tomato', 'fridge↔cheese', 'fridge↔banana2', 'fridge↔J64M', 'fridge↔chicken_kebab', 'fridge↔noodles', 'fridge↔salmon_bagel', 'fridge↔greek_salad', 'fridge↔carrot', 'kitchen_bench↔butter', 'kitchen_bench↔bread', 'kitchen_bench↔orange1', 'kitchen_bench↔kale_leaves2', 'dishwasher↔bowl', 'dishwasher↔plate2', 'dishwasher↔spoon', 'dishwasher↔chips', 'rubbish_bin↔banana_peel', 'rubbish_bin↔plastic_bottle', 'recycling_bin↔milk_carton', 'recycling_bin↔orange_peel', 'recycling_bin↔apple_core']}
[goto(kitchen), access(fridge), open(fridge), pickup(carrot), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "mobile_robotics_lab↔agent" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": null, "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": null, "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find me a meeting room with a RealSense camera.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find me a meeting room with a RealSense camera. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'mobile_robotics_lab↔agent']}
[goto(meeting_room1), access(table5), goto(meeting_room2), access(chair2), goto(meeting_room3), access(table1), access(table6), goto(meeting_room4), access(table2), done()]
office
{ "links": [ "Sayplan_office↔floor_A", "floor_A↔mobile_robotics_lab", "postdoc_bay1↔desk31", "postdoc_bay1↔desk32", "admin↔shelf", "manipulation_lab↔table3", "mobile_robotics_lab↔agent", "table3↔book1", "table3↔gripper", "shelf↔fire_extinguisher2", "desk31↔fire_extinguisher1", "desk32↔frame1", "desk32↔frame2", "desk32↔complimentary_tshirt7", "desk32↔complimentary_tshirt8" ], "nodes": { "agent": [ { "id": "agent", "location": "mobile_robotics_lab" } ], "asset": [ { "affordances": [ "access" ], "attributes": "clean", "id": "table3", "room": "manipulation_lab" }, { "affordances": [ "access" ], "attributes": "clean", "id": "shelf", "room": "admin" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk31", "room": "postdoc_bay1" }, { "affordances": [ "access" ], "attributes": "clean", "id": "desk32", "room": "postdoc_bay1" } ], "building": [ { "id": "Sayplan_office" } ], "floor": [ { "id": "floor_A" } ], "object": [ { "affordances": [ "pickup", "release" ], "attributes": "book, reading, color: green, size: standard, condition: used", "id": "book1", "parent": "table3", "room": "manipulation_lab" }, { "affordances": [ "pickup", "release" ], "attributes": "tool, robotic, color: gray, size: standard, condition: new", "id": "gripper", "parent": "table3", "room": "manipulation_lab" }, { "affordances": [ "pickup", "release" ], "attributes": "safety equipment, fire, color: red, size: standard, condition: new", "id": "fire_extinguisher2", "parent": "shelf", "room": "admin" }, { "affordances": [ "pickup", "release" ], "attributes": "safety equipment, fire, color: red, size: standard, condition: new", "id": "fire_extinguisher1", "parent": "desk31", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: gold, size: large, condition: new", "id": "frame1", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "decorative, framed, color: silver, size: large, condition: used", "id": "frame2", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "clothing, promotional, color: blue, size: M, condition: new", "id": "complimentary_tshirt7", "parent": "desk32", "room": "postdoc_bay1" }, { "affordances": [ "pickup", "release" ], "attributes": "clothing, promotional, color: red, size: L, condition: used", "id": "complimentary_tshirt8", "parent": "desk32", "room": "postdoc_bay1" } ], "room": [ { "id": "peters_office" }, { "id": "tobis_office" }, { "id": "meeting_room1" }, { "id": "postdoc_bay1" }, { "id": "phd_bay1" }, { "id": "phd_bay2" }, { "id": "admin" }, { "id": "printing_zone2" }, { "id": "meeting_room2" }, { "id": "robot_lounge2" }, { "id": "robot_lounge1" }, { "id": "nikos_office" }, { "id": "michaels_office" }, { "id": "mobile_robotics_lab" }, { "id": "jasons_office" }, { "id": "arrons_office" }, { "id": "manipulation_lab" }, { "id": "filipes_office" }, { "id": "luis_office" }, { "id": "wills_office" }, { "id": "phd_bay3" }, { "id": "postdoc_bay2" }, { "id": "lobby" }, { "id": "supplies_station" }, { "id": "printing_zone1" }, { "id": "kitchen" }, { "id": "phd_bay4" }, { "id": "postdoc_bay3" }, { "id": "meeting_room4" }, { "id": "ajays_office" }, { "id": "chris_office" }, { "id": "lauriannes_office" }, { "id": "dimitys_office" }, { "id": "agriculture_lab" }, { "id": "meeting_room3" }, { "id": "cafeteria" }, { "id": "presentation_lounge" } ] } }
Find the closest fire extinguisher to the manipulation lab.
task_Office_complex_search
You are an excellent graph planning agent. Given a graph representation of an environment. You can then use this graph to generate a step-by-step task plan that the agent can follow to solve a given task. You first think about the reasoning process as an internal monologue and then provide the user with the plan. Lecal actions: goto(room_id): Move the agent to any room access(asset_id): Provide access to the set of affordances associated with an asset node and its connected objects. pickup(object_id): Pick up an accessible object from the accessed node. release(object_id): Release grasped object at an asset node. open/close(asset_id): Open/close asset at agent's node, affecting object accessibility. done(): Call when the task is completed. and other actions from asset and object affordance Respond in the following format: <think> ... </think> <plan> [goto(dining_room), ...,access(dining_table), pickup(banana1)] </plan> The task is: Find the closest fire extinguisher to the manipulation lab. and the scene graph is: {'nodes': {'building': [{'id': 'Sayplan_office'}], 'floor': [{'id': 'floor_A'}], 'room': [{'id': 'peters_office'}, {'id': 'tobis_office'}, {'id': 'meeting_room1'}, {'id': 'postdoc_bay1'}, {'id': 'phd_bay1'}, {'id': 'phd_bay2'}, {'id': 'admin'}, {'id': 'printing_zone2'}, {'id': 'meeting_room2'}, {'id': 'robot_lounge2'}, {'id': 'robot_lounge1'}, {'id': 'nikos_office'}, {'id': 'michaels_office'}, {'id': 'mobile_robotics_lab'}, {'id': 'jasons_office'}, {'id': 'arrons_office'}, {'id': 'manipulation_lab'}, {'id': 'filipes_office'}, {'id': 'luis_office'}, {'id': 'wills_office'}, {'id': 'phd_bay3'}, {'id': 'postdoc_bay2'}, {'id': 'lobby'}, {'id': 'supplies_station'}, {'id': 'printing_zone1'}, {'id': 'kitchen'}, {'id': 'phd_bay4'}, {'id': 'postdoc_bay3'}, {'id': 'meeting_room4'}, {'id': 'ajays_office'}, {'id': 'chris_office'}, {'id': 'lauriannes_office'}, {'id': 'dimitys_office'}, {'id': 'agriculture_lab'}, {'id': 'meeting_room3'}, {'id': 'cafeteria'}, {'id': 'presentation_lounge'}], 'agent': [{'location': 'mobile_robotics_lab', 'id': 'agent'}], 'asset': [{'room': 'manipulation_lab', 'attributes': 'clean', 'affordances': ['access'], 'id': 'table3'}, {'room': 'admin', 'attributes': 'clean', 'affordances': ['access'], 'id': 'shelf'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk31'}, {'room': 'postdoc_bay1', 'attributes': 'clean', 'affordances': ['access'], 'id': 'desk32'}], 'object': [{'affordances': ['pickup', 'release'], 'attributes': 'book, reading, color: green, size: standard, condition: used', 'id': 'book1', 'parent': 'table3', 'room': 'manipulation_lab'}, {'affordances': ['pickup', 'release'], 'attributes': 'tool, robotic, color: gray, size: standard, condition: new', 'id': 'gripper', 'parent': 'table3', 'room': 'manipulation_lab'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher2', 'parent': 'shelf', 'room': 'admin'}, {'affordances': ['pickup', 'release'], 'attributes': 'safety equipment, fire, color: red, size: standard, condition: new', 'id': 'fire_extinguisher1', 'parent': 'desk31', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: gold, size: large, condition: new', 'id': 'frame1', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'decorative, framed, color: silver, size: large, condition: used', 'id': 'frame2', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: blue, size: M, condition: new', 'id': 'complimentary_tshirt7', 'parent': 'desk32', 'room': 'postdoc_bay1'}, {'affordances': ['pickup', 'release'], 'attributes': 'clothing, promotional, color: red, size: L, condition: used', 'id': 'complimentary_tshirt8', 'parent': 'desk32', 'room': 'postdoc_bay1'}]}, 'links': ['Sayplan_office↔floor_A', 'floor_A↔mobile_robotics_lab', 'postdoc_bay1↔desk31', 'postdoc_bay1↔desk32', 'admin↔shelf', 'manipulation_lab↔table3', 'mobile_robotics_lab↔agent', 'table3↔book1', 'table3↔gripper', 'shelf↔fire_extinguisher2', 'desk31↔fire_extinguisher1', 'desk32↔frame1', 'desk32↔frame2', 'desk32↔complimentary_tshirt7', 'desk32↔complimentary_tshirt8']}
[goto(postdoc_bay1), access(desk31), done()]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
5