Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,110 Bytes
973e574
 
 
288209e
 
 
 
 
973e574
 
 
 
 
f2da001
 
 
973e574
ca16b35
 
 
45fa18b
 
 
 
05fe8ba
213e4e9
 
 
05fe8ba
95fc44a
 
 
f2da001
ca16b35
f2da001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca16b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45fa18b
 
 
 
c950799
 
45fa18b
 
c950799
45fa18b
 
c950799
45fa18b
c950799
 
213e4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95fc44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2da001
5dfade0
 
 
 
 
 
288209e
5dfade0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288209e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dfade0
 
288209e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dfade0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1K<n<10K
task_categories:
- image-text-to-text
tags:
- multimodality
- reasoning
configs:
- config_name: cube
  data_files:
  - split: train
    path: cube/train-*
- config_name: cube_easy
  data_files:
  - split: train
    path: cube_easy/train-*
- config_name: cube_perception
  data_files:
  - split: train
    path: cube_perception/train-*
- config_name: portal_binary
  data_files:
  - split: train
    path: portal_binary/train-*
- config_name: portal_blanks
  data_files:
  - split: train
    path: portal_blanks/train-*
dataset_info:
- config_name: cube
  features:
  - name: image
    dtype: image
  - name: face_arrays
    sequence:
      sequence:
        sequence: int64
  - name: question
    dtype: string
  - name: reference_solution
    dtype: string
  splits:
  - name: train
    num_bytes: 274367533.0
    num_examples: 1000
  download_size: 270371502
  dataset_size: 274367533.0
- config_name: cube_easy
  features:
  - name: question
    dtype: string
  - name: face_arrays
    sequence:
      sequence:
        sequence: int64
  - name: reference_solution
    dtype: string
  splits:
  - name: train
    num_bytes: 3940912
    num_examples: 1000
  download_size: 394861
  dataset_size: 3940912
- config_name: cube_perception
  features:
  - name: image
    dtype: image
  - name: question
    dtype: string
  - name: answer
    sequence:
      sequence: int64
  splits:
  - name: train
    num_bytes: 7924582.0
    num_examples: 200
  download_size: 7775024
  dataset_size: 7924582.0
- config_name: portal_binary
  features:
  - name: map_name
    dtype: string
  - name: images
    sequence: string
  - name: system_prompt
    dtype: string
  - name: user_prompt
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 2051248
    num_examples: 512
  download_size: 160438
  dataset_size: 2051248
- config_name: portal_blanks
  features:
  - name: map_name
    dtype: string
  - name: images
    sequence: string
  - name: system_prompt
    dtype: string
  - name: user_prompt
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 2468355
    num_examples: 512
  download_size: 305275
  dataset_size: 2468355
---

# MARBLE: A Hard Benchmark for Multimodal Spatial Reasoning and Planning

[**🌐 Homepage**](https://marble-benchmark.github.io) | [**📖 Paper**](https://arxiv.org/abs/2506.22992) | [**🤗 Dataset**](https://huggingface.co/datasets/mrble/MARBLE) | [**🔗 Code**](https://github.com/eth-medical-ai-lab/multimodal-reasoning-bench)

## Introduction
MARBLE is a challenging multimodal reasoning benchmark designed to scrutinize multimodal language models (MLLMs) in their ability to carefully reason step-by-step through complex multimodal problems and environments. MARBLE is composed of two highly challenging tasks, M-Portal and M-Cube, that require the crafting and understanding of multistep plans leveraging spatial, visual, and physical constraints. We find that current MLLMs perform poorly on MARBLE&mdash;all the 12 advanced models obtain near-random performance on M-Portal and 0% accuracy on M-Cube. Only in simplified subtasks some models outperform the random baseline, indicating that complex reasoning is still a challenge for existing MLLMs. Moreover, we show that perception remains a bottleneck, where MLLMs occasionally fail to extract information from the visual inputs. By shedding a light on the limitations of MLLMs, we hope that MARBLE will spur the development of the next generation of models with the ability to reason and plan across many, multimodal reasoning steps.

![Alt text](overview.png)

## Dataset Details
The benchmark consists of two datasets M-Portal and M-CUBE, each also contains 2 subtasks respectively (`portal_binary` and `portal_blanks` for M-PORTAL and `cube` and `cube_easy` for M-CUBE). Besides, M-CUBE also contains a simple perception tasks `cube_perception`.

- M-PORTAL: multi-step spatial-planning puzzles modelled on levels from Portal 2.

    - `map_name`: Portal 2 map name.
    - `images`: images for each map ([images.zip](https://huggingface.co/datasets/mrble/MARBLE/blob/main/images.zip)).
    - `system_prompt` and `user_prompt`: instruction of the problem.
    - `answer`: solution.

- M-CUBE: 3D Cube assemblies from six jigsaw pieces, inspired by Happy Cube puzzles.

    - `image`: image of 6 jigsaw pieces.
    - `face_arrays`: 6 jigsaw pieces converted to binary arrays (0=gap, 1=bump).
    - `question`: instruction of the Happy Cube Puzzle.
    - `reference_solution`: one of the valid solutions.

## Evaluation
Please refer to [**🔗 Code**](https://github.com/eth-medical-ai-lab/multimodal-reasoning-bench)

## Overall Results
Performance on M-PORTAL:
| Model | Plan-correctness (F1 %) | Fill-the-blanks (Acc %) |
| --- | --- | --- |
| GPT-o3 | 6.6 | 17.6 |
| Gemini-2.5-pro | 4.7 | 16.1 |
| DeepSeek-R1-0528\* | 0.0 | 8.4 |
| Claude-3.7-Sonnet | 6.3 | 6.8 |
| DeepSeek-R1\* | 6.1 | 5.5 |
| Seed1.5-VL | 7.6 | 3.5 |
| GPT-o4-mini | 0.0 | 3.1 |
| GPT-4o | 6.5 | 0.4 |
| Llama-4-Scout | 6.5 | 0.2 |
| Qwen2.5-VL-72B | 6.6 | 0.2 |
| InternVL3-78B | 6.4 | 0.0 |
| Qwen3-235B-A22B\* | 0.0 | 0.0 |
| *Random* | *6.1* | *3e-3* |

Performance on M-CUBE:
| Model | CUBE (Acc %) | CUBE-easy (Acc %) |
| --- | --- | --- |
| GPT-o3 | 0.0 | 72.0 |
| GPT-o4-mini | 0.0 | 16.0 |
| DeepSeek-R1\* | 0.0 | 14.0 |
| Gemini-2.5-pro | 0.0 | 11.0 |
| DeepSeek-R1-0528\* | 0.0 | 8.0 |
| Claude-3.7-Sonnet | 0.0 | 7.4 |
| InternVL3-78B | 0.0 | 2.8 |
| Seed1.5-VL | 0.0 | 2.0 |
| GPT-4o | 0.0 | 2.0 |
| Qwen2.5-VL-72B | 0.0 | 2.0 |
| Llama-4-Scout | 0.0 | 1.6 |
| Qwen3-235B-A22B\* | 0.0 | 0.3 |
| *Random* | *1e-5* | *3.1* |

## Contact
- Yulun Jiang: [email protected]

## BibTex

```bibtex
@article{jiang2025marble,
  title={MARBLE: A Hard Benchmark for Multimodal Spatial Reasoning and Planning},
  author={Jiang, Yulun and Chai, Yekun and Brbi'c, Maria and Moor, Michael},
  journal={arXiv preprint arXiv:2506.22992},
  year={2025},
  url={https://arxiv.org/abs/2506.22992}
}
```