id
stringlengths
9
9
title
stringlengths
4
231
abstract
stringlengths
17
2.86k
categories
listlengths
1
10
embedding
listlengths
384
384
0704.0001
Calculation of prompt diphoton production cross sections at Tevatron and LHC energies
A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events.
[ "hep-ph" ]
[ -0.156532302498817, -0.009849769994616, 0.00018175512377600003, 0.042825125157833, 0.041687250137329004, -0.041802916675806004, -0.048837717622518005, 0.058298673480749005, 0.045866809785366, -0.029216323047876, 0.014007752761244002, -0.03299069404602, -0.037642024457454, -0.007823763415217, 0.01960969902575, 0.019830517470836, -0.021747171878814003, -0.06129541620612101, -0.082282662391662, -0.021338846534490002, -0.048137921839952004, 0.028107617050409, -0.034191880375146005, 0.020694715902209, 0.075170531868934, -0.089081339538097, -0.028267951682209, -0.006740303244441001, 0.045626819133758004, 0.013720552437007, 0.024570018053054, -0.014596370048820001, -0.022001806646585003, 0.035376049578189, 0.07275602966547001, 0.048512298613786003, 0.030321231111884003, -0.09438397735357201, 0.033207383006811, -0.030268989503383, 0.042913995683193006, 0.005985657218843, 0.0029201612342140003, -0.017928896471858, 0.063810564577579, 0.022821528837084003, 0.027265729382634003, -0.05577294155955301, -0.049449469894170005, 0.003937886096537, 0.07088603824377, 0.050149973481893005, -0.012203608639538, 0.068006575107574, -0.052437804639339, 0.022821824997663002, -0.0019421075703570001, -0.09284985810518201, 0.031897909939289, 0.06648337841033901, -0.123174078762531, 0.000980713055469, -0.07068333029747001, -0.018118727952241002, 0.029658025130629, -0.012069569900631, -0.025972500443458002, 0.019617669284343, 0.035000309348106, 0.039449281990528, 0.016846207901835, 0.027087528258562, -0.06603733450174301, -0.030748927965760002, -0.011678651906549, 0.038383748382329004, 0.056188698858022, 0.007214448414742, -0.023693051189184, -0.07997349649667701, 0.052807513624429, -0.007976495660841, 0.011605333536863001, -0.049559228122234004, 0.0011020438978440001, 0.016094617545604, -0.044252395629882, 0.11726169288158401, 0.009718122892081, -0.025546643882989002, -0.024603182449936003, -0.11445033550262401, -0.042580589652061004, -0.013851129449903, 0.012616166844964001, 0.15303449332714, 0.076094806194305, -0.08053819835186, 0.056748174130916006, 0.036482725292444, 0.029339384287595003, -0.014293796382844, 0.017465112730860002, 0.007733801379799001, 0.047638557851314, -0.012707666493952, 0.037907425314188004, 0.08006579428911201, -0.005076488945633, -0.076613560318946, 0.10790816694498001, 0.026733364909887, 0.022462628781795002, -0.060222025960683004, -0.063842795789241, 0.051705528050661004, -0.016857365146279002, 0.032899808138608, -0.020475488156080003, -0.07392512261867501, 0.036833535879850006, 0.006420610938221, 0.035203848034143004, 0.05568540468811901, 0.025853661820292, -0.028293590992689, -0.028219968080520002, 6.864339669245057e-33, 0.072955295443534, -0.017597705125808, 0.028873808681964003, -0.027799068018794, -0.06919313222169801, 0.052972462028265006, 0.008120190352201, -0.058500230312347, -0.008946294896304, 0.017288682982325002, -0.06456907093524901, -0.066706113517284, -0.0021619410254060003, -0.088226586580276, -0.032212987542152, -0.010462978854775, -0.026453543454408004, 0.051758773624897, -0.012082261033356, 0.050816930830478, -0.000145943820825, 0.0052274935878810005, -0.059575550258159006, 0.003217882942408, 0.050661835819482005, 0.09944779425859401, -0.019563326612114, 0.034289386123418, -0.12099505215883201, 0.027662716805934, -0.010259998030960001, 0.100950635969638, -0.014053613878786002, 0.07109996676445, 0.027974706143140002, -0.042627681046724, -0.051325578242540006, -0.049811821430921006, 0.046105775982141, -0.012201203964650001, 0.024117747321724003, 0.050011321902275, -0.08013231307268101, -0.07412213832139901, 0.023456934839487003, -0.017757600173354, 0.06927947700023601, -0.017921408638358, -0.010323753580451001, -0.031676724553108, -0.000574823410715, 0.036938600242137, 0.028102440759539, -0.0037961120251560005, 0.015350881963968001, -0.030065834522247002, 0.11148207634687402, -0.022452561184763003, 0.065623395144939, 0.096127122640609, -0.026714902371168, 0.038061410188674004, -0.005861833225935, 0.018870832398533002, -0.08393919467926, 0.019262064248323, -0.027362182736396002, 0.011503553949296001, 0.0005195644334880001, 0.060892052948474, -0.0027924755122510003, 0.035873536020517, -0.023000279441475, -0.11463723331689801, 0.158667519688606, -0.004839609842747001, -0.0040668114088470006, 0.067212790250778, 0.001811951515264, 0.033270418643951, 0.015380323864519001, -0.014329391531646002, -0.037972170859575, 0.025522822514176, -0.025851314887404, 0.007152282167226001, -0.036770075559616006, -0.014133033342659002, -0.07122079282999001, 0.0035979999229310005, -0.051803383976221, 0.014823660254478002, 0.09191904962062801, -0.01243525929749, -0.080553203821182, -6.356226358630371e-33, -0.05689465627074201, 0.03240206465125, 0.015599751845002001, 0.02138602361083, -0.067783243954181, -0.059261947870254, -0.039775602519512, -0.038780070841312006, 0.035451728850603, 0.057852022349834005, 0.005140646360814001, 0.019083244726061002, -0.12653785943984902, -0.046361308544874004, -0.027974924072623003, 0.072103887796401, 0.026208976283669003, 0.015764804556965002, 0.045196294784545, 0.01790914312005, 0.037982109934091006, 0.024761077016592, 0.026108324527740003, -0.001556989154778, 0.0075272903777650006, -0.019031122326850003, 0.095736742019653, -0.095680795609951, 0.041689902544021, -0.047510620206594, -0.08368454873561801, -0.050684124231338, 0.020706443116068, 0.09580511599779101, 0.030411375686526004, -0.034584116190671005, 0.08980008214712101, 0.012433179654181, 0.028520451858639002, -0.029566694051027003, 0.095071591436862, 0.07458861172199201, -0.030662914738059002, 0.012365654110908002, 0.008480031043291, 0.042592324316501, -0.049610521644353006, 0.032340958714485, -0.023062845692038002, -0.016537154093384, -0.042806882411241004, 0.012675746344029001, 0.027677163481712, 0.08051262050867, -0.052474781870841, -0.036481019109487006, 0.000937900913413, 0.009075255133211, -0.024652950465679002, -0.01670829206705, -0.079487793147563, -0.124236300587654, -0.0032478692010040004, -0.033679913729429, 0.028441300615668002, 0.041658625006675006, -0.054724171757698004, 0.065446235239505, 0.003843693761155, -0.038159430027008, 0.021642560139298002, -0.077618345618247, 0.06267461180686901, -0.023220181465148003, -0.028990805149078, 0.008873328566551, 0.111760810017585, -0.10209619253873801, 0.125199019908905, 0.0038298289291560004, -0.050481583923101, 0.043337292969226004, -0.019759809598326003, -0.009564686566591001, 0.028689783066511, 0.07517641037702501, -0.022212136536836003, 0.071026392281055, -0.010035608895123001, -0.090455003082752, -0.08829888701438901, 0.043308552354574, 0.11464310437440801, 0.040368191897869006, 0.080662004649639, -4.7869868069483346e-8, 0.036410737782716, -0.06256364285945801, -0.029642406851053002, -0.00108196272049, 0.052823912352323005, 0.007394278421998001, -0.034581806510686, 0.022757524624466, -0.027756728231906003, 0.050463803112506006, 0.08120144903659801, -0.008372694253921, -0.043935380876064, -0.10332418233156201, -0.015182331204414002, 0.04156507179141, 0.009032092988491001, -0.051525641232728, -0.032202590256929, 0.004382566548883001, 0.06390769034624101, 0.039332173764705006, 0.064967073500156, -0.01445120293647, -0.10163050889968801, 0.004415520932525, -0.001216449541971, 0.022853091359138003, -0.009176744148135001, -0.045613572001457006, 0.03086868673563, -0.047946579754352, -0.06457501649856501, 0.037395536899566005, 0.001511169481091, -0.031505171209573, -0.059329502284526006, -0.013072497211396, 0.153718397021293, 0.077322393655776, -0.044531378895044, 0.045155327767133005, -0.043269541114568, 0.079567961394786, -0.047942921519279, 0.016080658882856, -0.036457870155572, -0.07184930890798501, -0.043666925281286004, 0.037094894796609004, -0.032134748995304004, -0.026824442669749003, 0.006843043491244, -0.05924624577164601, -0.059982683509588006, -0.006299801170825001, -0.027087572962045003, -0.034921031445264004, 0.0038388543762260005, -0.01173401530832, 0.11425928026437701, -0.013897941447794, -0.049476198852062, 0.049007005989551 ]
0704.0002
Sparsity-certifying Graph Decompositions
We describe a new algorithm, the $(k,\ell)$-pebble game with colors, and use it obtain a characterization of the family of $(k,\ell)$-sparse graphs and algorithmic solutions to a family of problems concerning tree decompositions of graphs. Special instances of sparse graphs appear in rigidity theory and have received increased attention in recent years. In particular, our colored pebbles generalize and strengthen the previous results of Lee and Streinu and give a new proof of the Tutte-Nash-Williams characterization of arboricity. We also present a new decomposition that certifies sparsity based on the $(k,\ell)$-pebble game with colors. Our work also exposes connections between pebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and Westermann and Hendrickson.
[ "math.CO", "cs.CG" ]
[ 0.011608333326876, 0.037656318396329005, 0.008663988672196001, -0.06791180372238101, 0.004836788866668, -0.03156679496169, 0.030588788911700002, -0.10043661296367601, -0.034346096217632, 0.03999949991703, -0.06152690574526701, -0.018924012780189, 0.067679204046726, 0.05716785416007, -0.004576847888529001, 0.06070588529109901, 0.044322706758975004, 0.007878673262894001, -0.010107878595590002, -0.029769549146294004, -0.080557651817798, -0.09729911386966701, -0.100500501692295, -0.009412094950675002, 0.059501063078641, -0.030030306428670002, -0.018611494451761003, 0.020694751292467003, 0.033751126378774005, -0.012849683873355002, 0.001642773277126, -0.020777294412255003, 0.025985274463891, -0.011375249363481001, 0.003959860187023, 0.09650922566652201, -0.038043528795242004, -0.023842919617891003, -0.045774199068546004, 0.047900069504976, 0.014004724100232001, 0.06863377243280401, -0.043701361864805006, 0.040314733982086, -0.014256287366151001, 0.061591144651174004, -0.083681166172027, 0.006871121935546001, -0.033100169152021006, -0.06991480290889701, -0.035231418907642004, -0.067354030907154, -0.06500194966793, -0.032699853181838004, -0.010499935597181001, -0.06840658187866201, -0.00032098381780000003, -0.041792422533035, 0.0253278426826, 0.0018878225237130002, 0.066721692681312, -0.081609390676021, -0.013421720825135002, 0.032207325100898, -0.001243397127836, 0.028074268251657004, 0.093304231762886, -0.040780253708362, -0.025616047903895003, 0.06783337146043701, 0.054795127362012, 0.021268941462039, -0.020166711881756002, 0.069193705916404, 0.015377853997051001, 0.037011515349149, 0.025926124304533, -0.032739885151386004, -0.090519979596138, 0.002194017171859, -0.032898321747779, -0.010258113034069, -0.09299337863922101, -0.043535165488719, 0.036487869918346, -0.052759326994419, -0.06740517169237101, 0.008734812960028001, 0.018605349585413003, 0.000877778336871, -0.065250717103481, 0.037763819098472005, -0.023521469905972002, 0.058961313217878, -0.062477666884660006, 0.007369810249656001, 0.038184192031621, -0.013255543075501001, -0.0021113210823380003, 0.101947970688343, -0.032814957201480005, -0.010387730784714002, 0.07193420827388701, -0.0006392929353750001, 0.03454902768135, 0.068295888602733, -0.036294624209403, 0.036651112139225006, -0.024022847414016002, -0.00012523558689200002, 0.056738622486591006, 0.024460408836603, 0.041980072855949006, 0.138103008270263, -0.088600426912307, -0.057746741920709006, -0.0007413029670710001, -0.031816441565752, 0.07318643480539301, 0.064320638775825, 0.130207955837249, -0.031496699899435, -0.015503612346947, -0.02826646156609, 0.07762087136507001, 0.008044959977269001, -0.004619698505848, 1.3273231297199131e-33, 0.09960631281137401, 0.055727671831846, 0.059966564178466006, 0.01854134351015, 0.089748620986938, -0.037280015647411, -0.000519062101375, -0.017557479441165, 0.0015713083557780002, -0.009591380134224, -0.076182194054126, 0.029584892094135003, 0.0011515077203510002, 0.041745956987142, 0.061004169285297005, -0.036067582666873, 0.062916867434978, -0.017658341675996, 0.027571627870202002, -0.06828936189413, 0.042464885860681006, 0.009745636954903, 0.001999044325202, -0.049723234027624005, -0.011773027479648, 0.013037834316492001, 0.028115602210164, -0.09147959202528, 0.016959998756647002, 0.003106927499175, -0.060815196484327004, -0.024045662954449, 0.001059086294844, 0.149270921945571, 0.013935537077486002, 0.023018393665552, -0.031516794115304, -0.050534531474113006, 0.010629237629473001, 0.000828231044579, -0.003334564622491, 0.007345280144363001, -0.004829141777008, 0.003057054709643, -0.045213773846626004, -0.017584262415766, 0.047329619526863, 0.007826025597751, -0.038435611873865, 0.016180414706468003, 0.020826805382966003, -0.042161650955677005, 0.019937418401241, 0.032496623694896004, 0.018314475193619003, -0.049269832670688005, 0.032886855304241, -0.025166859850287, -0.035596936941146004, 0.018158612772822002, 0.05614558607339801, 0.022652318701148002, 0.058592237532138006, -0.005305256228893, -0.011411214247345002, 0.04810958728194201, -0.06609077751636501, -0.038841366767883, 0.032748505473136, -0.073416508734226, -0.052394371479749006, 0.053315877914428, 0.023147374391555002, -0.051403775811195006, 0.024202696979045, -0.03222357109189, 0.102942593395709, -0.132362440228462, -0.066926717758178, -0.042744725942611, -0.089742071926593, -0.068447850644588, -0.026700900867581003, -0.09890439361333801, -0.117886215448379, -0.069214865565299, 0.064444042742252, 0.035664547234773004, 0.023556958884, -0.07525258511304801, -0.07503584027290301, 0.019390890374779, -0.042732361704111, -0.039921823889017, 0.049732342362403, -2.3760287516980052e-33, -0.073176838457584, -0.021199101582169002, 0.011760928668081, 0.11275950074195801, 0.016481315717101, -0.074639305472373, -0.0269829146564, -0.020954329520463003, -0.012977400794625001, -0.019704075530171002, -0.091305650770664, 0.074707560241222, 0.060083828866481004, 0.009677586145699, -0.018328821286559, 0.029826901853084002, -0.022519489750266002, 0.022839032113552003, -0.053997412323951006, -0.009158528409898, -0.056496258825063005, 0.099011354148387, -0.028046125546097003, -0.044480983167886005, 0.09959522634744601, 0.018581615760922, -0.038689646869897, -0.031117159873247, -0.005950906779617001, 0.080479554831981, 0.027520198374986003, -0.11328573524951902, -0.039015673100948, -0.04200242832303, 0.019213691353797, 0.034216135740280006, 0.034141134470701, 0.050411969423294005, -0.008461747318506001, 0.054050918668508, -0.0063054799102240005, -0.033888667821884, -0.10501825064420701, 0.06609319895505901, -0.021210789680480003, 0.060862779617309, -0.007362246047705001, 0.005599892698228, -0.0334286801517, -0.005343473982065, 0.012134294025599, 0.047442339360713, 0.065449722111225, 0.002163499593734, 0.023152373731136003, -0.054165340960025, -0.012230386026203001, 0.057233959436416, -0.029402827844023004, -0.020510705187916003, -0.042412031441926006, 0.019461628049612, -0.134509027004241, 0.100332051515579, 0.049007978290319006, 0.0038621281273660004, -0.019946157932281, -0.051163550466299, -0.056757703423500006, 0.024742553010582, -0.016055349260568, 0.062375232577323005, -0.05877478420734401, 0.0010565627599130002, 0.057489618659019005, 0.079673424363136, -0.0030482034198930003, 0.09654212743043901, -0.053251434117555, 0.062045283615589, -0.019603153690695003, 0.032473199069499005, 0.043880566954612, -0.017208699136972, -0.020183017477393, 0.050519756972789, 0.011482043191790001, 0.012392080388963, 0.00880230218172, 0.0007570857414970001, 0.07668288052082001, 0.020483091473579, 0.08250431716442101, -0.011282275430858002, 0.027153888717293004, -4.122775720816207e-8, -0.080157473683357, 0.038790300488471006, -0.015249926596879002, -0.048040378838777, 0.08405841886997201, -0.047282364219427005, 0.13893072307109802, 0.005066019948571, -0.044103030115365004, 0.050911311060190007, 0.07494288682937601, -0.019545407965779003, -0.018615238368511002, 0.001068182755261, 0.028815113008022003, 0.017627254128456, 0.010832450352609001, -0.012690255418419002, -0.027872044593095002, 0.11895110458135601, -0.071431837975978, -0.018854662775993, -0.055851466953754, 0.059810522943735005, -0.044184323400259004, -0.02237838320434, -0.054704707115888006, 0.0038574787322430003, 0.053543910384178, 0.066973887383937, -0.018305849283933, 0.026177860796451003, 0.11855732649564701, -0.009330121800303001, -0.012265948578715002, 0.130376353859901, -0.014172008261084001, 0.07919017970561901, -0.11054726690053901, -0.025381693616509, -0.114788345992565, 0.016154002398252, -0.06027553603053001, -0.065792977809906, 0.022155487909913, 0.014143667183816001, -0.025192925706505002, -0.024186974391341, -0.0061738677322860005, -0.0027048420161, -0.09216839820146501, -0.004258560948073, -0.053750365972518005, -0.042108725756406, 0.044355489313602, 0.033454123884439003, -0.039369825273752004, 0.012037156149744, 0.122286260128021, -0.03602160513401, -0.017733303830027, -0.002014119876548, 0.0029643049929290004, 0.01802896335721 ]
0704.0003
The evolution of the Earth-Moon system based on the dark matter field fluid model
The evolution of Earth-Moon system is described by the dark matter field fluid model proposed in the Meeting of Division of Particle and Field 2004, American Physical Society. The current behavior of the Earth-Moon system agrees with this model very well and the general pattern of the evolution of the Moon-Earth system described by this model agrees with geological and fossil evidence. The closest distance of the Moon to Earth was about 259000 km at 4.5 billion years ago, which is far beyond the Roche's limit. The result suggests that the tidal friction may not be the primary cause for the evolution of the Earth-Moon system. The average dark matter field fluid constant derived from Earth-Moon system data is 4.39 x 10^(-22) s^(-1)m^(-1). This model predicts that the Mars's rotation is also slowing with the angular acceleration rate about -4.38 x 10^(-22) rad s^(-2).
[ "physics.gen-ph" ]
[ 0.039972614496946, -0.024627147242426, 0.059972889721393, -0.015364713966846001, 0.04483814537525101, -0.033622208982706, -0.108420141041278, 0.045315135270357, -0.006271466612815001, 0.015210637822747002, -0.005329419393092, -0.025275480002164, 0.011509659700095001, -0.099443100392818, -0.04835507273674, -0.070254825055599, -0.015922075137495002, -0.010917961597442, -0.055893111974, 0.001398235559463, -0.06474908441305101, 0.059154901653528005, -0.022589797154068003, 0.055427722632884, -0.063905157148838, 0.079106301069259, 0.006188177037984, 0.025658089667558, -0.023510601371526003, -0.07426077127456601, -0.039193391799926, 0.004097550176084, 0.002131008775904, -0.023190174251794003, -0.044994421303272004, 0.028904965147376, -0.024926811456680003, -0.015148933976888001, -0.007750038523226001, -0.032566729933023, -0.00047999765956700005, -0.055152583867311006, 0.066001787781715, -0.022102134302258002, 0.034045878797769005, 0.06095826998353, 0.06771788001060401, -0.031216071918606002, -0.011711474508047002, 0.005676066502928, -0.0032936735078690003, -0.0023074166383590003, -0.032367169857025, 0.071910016238689, -0.06398531794548, -0.09775769710540701, 0.016715787351131002, 0.006047117058187001, 0.023813121020793002, -0.026474487036466002, 0.0011784108355640001, 0.023202395066618003, -0.003329796250909, -0.009360904805362, 0.034280404448509, 0.031367693096399, -0.118267588317394, -0.014978315681219, -0.047038052231073005, 0.012222174555063001, -0.040978997945785, 0.068871587514877, -0.035050749778747003, -0.06708985567092801, -0.071732871234416, 0.028986295685172, 0.037549823522567, 0.07728206366300501, 0.065180733799934, -0.040431879460811004, 0.023916052654385, 0.008409403264522, 0.010508989915251002, 0.019574951380491, -0.065276749432086, -0.037073120474815, -0.066651374101638, 0.078732252120971, -0.06345869600772801, -0.002648329129442, 0.08321885019540701, 0.037151839584112, -0.040912684053182005, -0.026316203176975, 0.081958755850791, 0.04766185209155, -0.063351415097713, -0.020122045651078002, 0.022997280582785003, -0.018064415082335, -0.021646425127983003, 0.09324308484792701, 0.001055085216648, 0.096382819116115, 0.087286807596683, 0.00208784150891, 0.040577840059995006, 0.003014556830748, 0.026401923969388, 0.044654060155153004, -0.006057592574506001, 0.006027262657880001, -0.070382155478, -0.0039142654277380005, -0.04743161797523401, -0.033904545009136006, -0.024032624438405002, 0.042403258383274, -0.108021706342697, 0.031704708933830004, 0.033380508422851, 0.042323794215917004, -0.051006551831960005, -0.0067671779543160004, 0.073951579630374, -0.031452193856239, -0.0683214366436, 6.425264060209124e-34, 0.033136762678623005, 0.012307077646255, -0.006908567622303001, 0.015704968944191003, -0.025274934247136, -0.006166239734739, 0.006778351496905001, 0.077039584517478, -0.072168052196502, 0.053072515875101006, -0.03981159627437501, 0.040475144982337, 0.004703356884419, -0.042384024709463, -0.055908855050802, 0.06858253479003901, 0.018495175987482, -0.038598977029323, 0.019149951636791, 0.013097176328301001, 0.029378116130828004, -0.07002065330743701, -0.066747166216373, -0.069516226649284, -0.024398909881711003, -0.010804842226207001, -0.026062292978167003, -0.008383817039430001, 0.0008404033142140001, -0.031321883201599, -0.044597540050745, 0.006966847460716001, 0.017619531601667, 0.048129051923751005, 0.008911240845918001, 0.023251740261912002, 0.0035177154932170005, 0.012187859043478001, 0.005772300530225, -0.074006766080856, 0.078464798629283, 0.017345659434795, -0.015065746381878001, -0.09158543497323901, 0.04331677034497201, 0.024033278226852, 0.08461118489503801, -0.12466811388731001, 0.071518249809741, 0.010106129571795, 0.14032977819442702, 0.0033138252329080005, -0.048078954219818004, 0.07910338044166501, 0.09096473455429001, -0.010248037055134001, -0.024019431322813003, 0.025336595252156, -0.07909952104091601, 0.13665443658828702, 0.032457310706377, -0.047510396689176004, 0.051829010248184, -0.013186841271817, 0.07894867658615101, 0.029199918732047, 0.014209222048521002, 0.030686056241393003, -0.067582197487354, -0.026359656825661004, -0.012284730561077001, -0.09214241057634301, 0.009184884838759, 0.026449097320437, -0.036541316658258, -0.005064879078418001, 0.06834632903337401, -0.10680472105741501, 0.026549965143203003, 0.014962216839194001, -0.030973864719271004, 0.06056592240929601, -0.016044951975345, -0.09759351611137301, -0.07306304574012701, -0.016931697726249, 0.043346323072910004, 0.104801729321479, 0.020571107044816003, -0.080669403076171, 0.042041223496198, -0.051172260195016, 0.026999950408935002, 0.033043727278709, -0.009411858394742, -3.9716820687156184e-33, -0.070682890713214, -0.063127271831035, -0.054466504603624004, 0.025369212031364, 0.09781099110841701, 0.0035754239652300004, 0.007699148729443, 0.05185193568468, -0.04409159719944, 0.020945500582456002, 0.097553148865699, -0.003171682357788, 0.045987974852323005, -0.032829344272613005, 0.097918264567852, -0.042766295373439005, 0.010609269142150001, 0.00034142986987700005, 0.076604165136814, 0.017090998589992003, 0.052060637623071004, 0.075145363807678, 0.069563701748847, -0.073981188237667, -0.049637239426374005, -0.035440150648355005, 0.049067676067352003, 0.02191007323563, -0.042238801717758005, 0.09775972366333001, -0.086037307977676, 0.050168145447969006, 0.008820591494441001, -0.032605271786451, -0.066186614334583, 0.078791037201881, -0.058370102196931006, -0.017835041508078003, 0.0044048344716420005, -0.013587533496320001, 0.019815955311059, 0.014561654068529, 0.019662523642182003, -0.086438909173011, 0.044020511209964, 0.004928553476929, 0.025166939944028, 0.126307234168052, 0.016228485852479, -0.0000254758633673191, 0.03872587159276, -0.04673560336232101, -0.08995147049427, 0.000599401828367, -0.034195836633443, 0.08914127945899901, -0.0011419210350140001, 0.041167240589857004, -0.063419215381145, -0.039379056543111, -0.012700052000582001, 0.018063025549054, -0.04288658127188601, -0.079874172806739, -0.008908653631806, -0.021828617900609002, -0.029233094304800002, 0.031970828771591, 0.045917812734842, 0.052649099379777006, -0.020227670669555, -0.024381753057241003, 0.05125271901488301, 0.078198373317718, 0.067948810756206, -0.0018294785404570002, 0.081908099353313, -0.022740244865417, 0.06348194181919001, 0.004469441249966, -0.074981585144996, 0.09924110025167401, 0.063339471817016, -0.051281243562698, -0.019081700593233, -0.09195020794868401, -0.09270404279232, -0.025736367329955, -0.09541031718254, 0.066452696919441, -0.07857496291399, -0.142467677593231, -0.0030682734213760003, -0.007794545032083, -0.09324231743812501, -4.8717929246322456e-8, 0.044896129518747004, -0.008547740988433, 0.069491945207118, 0.07340046018362001, -0.003959538415074001, 0.053360261023044, 0.032379627227783, 0.08695161342620801, 0.014083025045692001, 0.004312372766435001, 0.07785420864820401, 0.011221599765121, 0.026667537167668003, -0.069448180496692, -0.037465028464794006, 0.10468259453773401, 0.01771693304181, -0.010800924152135, 0.007110471371561001, 0.027137489989399, 0.09628554433584201, 0.040954574942588, -0.014346117153763, -0.053249523043632, 0.033449180424213, -0.002980635501444, 0.046276777982711, -0.037977706640958, -0.05292580276727601, -0.030481671914458, -0.011795112863183, -0.04671289399266201, 0.056828860193490004, -0.11397965997457501, -0.042857162654399004, -0.037952776998281, -0.062421903014183, -0.010537143796682, 0.032019842416048, 0.042122479528188005, 0.026532093062996, 0.062567129731178, -0.08509325236082001, -0.05470259487628901, -0.030711006373167003, 0.054271418601274005, -0.020771177485585, -0.047948315739631, -0.001264035468921, 0.012252180837094001, -0.040823969990015, 0.019386660307645003, 0.01903898641467, -0.056390512734651004, 0.077432386577129, -0.037541948258876, -0.054981954395771006, 0.030487891286611002, -0.012915814295411, 0.005081039387732, -0.029819536954164002, -0.062868319451808, 0.023938322439789002, 0.006866023875772001 ]
0704.0004
A determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata
We show that a determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata. The proof involves a bijection from these automata to certain marked lattice paths and a sign-reversing involution to evaluate the determinant.
[ "math.CO" ]
[ -0.072438545525074, -0.016826102510094, -0.057654924690723, 0.007210647687315001, -0.008430263958871, 0.057396739721298, 0.033863808959722005, -0.049570698291063, -0.001025282428599, -0.05525761842727601, 0.023326253518462, -0.08718047291040401, 0.081449933350086, -0.018179785460233, -0.024723889306187, 0.012303291819989001, -0.043483458459377004, -0.05412136018276201, 0.038875859230756, -0.059204190969467003, -0.014083324931561001, 0.0051228972151870006, -0.051050305366516, -0.025837190449237, 0.058082327246665004, -0.035507801920175004, -0.09122546762228001, -0.010480505414307001, 0.06841427832841801, -0.006907155271619001, -0.109018042683601, 0.120929226279258, 0.025379676371812, 0.019246328622102002, 0.084483295679092, -0.026048552244901, 0.035733308643102, 0.027539892122149003, 0.047038197517395006, 0.048939019441604004, 0.071221806108951, 0.007952871732413, 0.065605878829956, 0.005824256222695, -0.026593947783112002, 0.033510688692331, 0.027706678956747003, 0.025958344340324003, -0.10390378534793801, -0.022579971700906, 0.036844193935394, 0.066193677484989, -0.047027055174112, 0.005381766241043, -0.030585126951336004, -0.08857946842908801, -0.015956044197082003, -0.06737980246543801, 0.034260366111993006, -0.028681928291916, 0.014561178162693, -0.013007816858589, -0.10830041021108601, -0.01903879456222, 0.046732135117053, 0.07259204238653101, -0.008219781331717, -0.034124955534935004, 0.006411138456314001, 0.07312023639678901, -0.018442988395690002, -0.089415296912193, -0.016343843191862002, 0.026298509910702, 0.06531778723001401, 0.039741422981023004, -0.005985126364976, -0.07866406440734801, -0.041354652494192005, -0.067069642245769, -0.07147680222988101, 0.010094052180647, -0.0017347278771920002, -0.006203370634466, -0.00009229898569174112, 0.023627741262316003, -0.044204939156770005, 0.010543641634285, 0.08972115069627701, 0.032717522233724004, -0.0035720409359780003, -0.019394438713788, 0.144029706716537, 0.017540734261274, -0.07405515760183301, 0.051348134875297005, 0.017093509435653003, 0.11711706221103602, 0.041451517492532, 0.058305174112319, 0.005459667183458, 0.08001229166984501, -0.002010295167565, -0.000314646575134, -0.046990692615509005, 0.04783795773983, -0.000845892936922, 0.000909993832465, -0.036781676113605, -0.023748351261019002, 0.0037987537216390005, -0.022906193509697, 0.04817563667893401, 0.040560722351074004, -0.036790177226066, -0.030567146837711, -0.018486766144633, 0.012368298135697, 0.031237732619047002, 0.001803051913157, 0.05331577360630001, -0.048986978828907006, -0.018593233078718, 0.09890516847372001, 0.05087002366781201, 0.020107422024011, -0.049778733402490005, 3.017034270067045e-33, -0.013066538609564, 0.040058143436908, 0.083219684660434, -0.004678082652390001, 0.101003341376781, -0.034882888197898004, -0.016895046457648, -0.080338835716247, -0.009912529028952, 0.06656310707330701, 0.025120582431554003, 0.15397873520851102, 0.014006852172315001, -0.017556758597493, -0.078018739819526, 0.025843571871519002, 0.010702976956963001, -0.019407702609896, 0.023212289437651003, -0.041929010301828, 0.047398645430803, 0.10588246583938501, 0.011967547237873001, -0.011477126739919002, -0.059860989451408005, -0.033708151429891, 0.018706558272242, 0.011463244445621001, 0.00866802688688, 0.035973940044641, -0.051844596862792004, 0.032627183943986005, 0.032642286270856004, 0.08840985596179901, 0.019563881680369002, -0.019109664484858003, -0.011773160658776, -0.005378026980906001, 0.006695815827697, -0.023145979270339002, 0.008880600333213001, 0.009498268365859, -0.044346489012241, -0.039124097675085005, 0.039352353662252, -0.062119301408529004, 0.00021938155987200002, 0.00809418130666, -0.029837114736437003, 0.008013915270566, 0.03241991251707, -0.014799983240664002, -0.018540171906352, -0.06957402080297401, -0.06773740053176801, 0.02671568095684, 0.005088282749056001, 0.041168734431266, 0.0072585353627800005, 0.107240058481693, -0.088552549481391, 0.07969509065151201, -0.009922948665916, -0.026941327378153003, -0.026504430919885, 0.026516873389482002, -0.027748251333832002, -0.030357006937265004, 0.0994358882308, 0.025166742503643, -0.0386782027781, 0.031472720205783004, -0.08473974466323801, 0.025750352069735003, 0.05955034866929, -0.049476344138383005, 0.050664268434047005, -0.08672558516263901, -0.044529728591442004, 0.056906595826148, -0.10911498218774701, 0.057774577289819, -0.023958753794431003, -0.022086150944232, 0.06013541296124401, -0.067353710532188, -0.081459291279315, -0.005964044947177001, -0.08362690359354001, -0.059071417897939, 0.05699106305837601, -0.071021370589733, 0.065510384738445, 0.030006421729922003, 0.009638212621212, -4.7921639012781284e-33, -0.026333076879382, -0.091586217284202, 0.07302700728178001, 0.018042676150798003, -0.06220523267984301, -0.043918982148170006, 0.017008058726787, 0.037556387484073, 0.031130399554967002, 0.023452635854482002, 0.046091977506875006, 0.11491132527589701, 0.042033445090055, 0.092491492629051, 0.016847424209117, -0.078929059207439, 0.10316789895296001, 0.012342054396867001, -0.014619892463088001, 0.008263817988336001, 0.011947873979806001, 0.10732459276914501, 0.003536140779033, 0.034813024103641003, -0.093597628176212, 0.007487149443477, -0.062637396156787, 0.043513990938663004, 0.07313269376754701, 0.11353888362646102, 0.04899512603878901, -0.026827143505215003, 0.019981550052762, -0.029517088085412, 0.002521983580663, -0.060092512518167, 0.020770093426108003, 0.020822593942284, -0.06738048791885301, 0.06784486770629801, -0.010088670998811, -0.058313917368650006, -0.016701601445674, 0.00048221484757900006, 0.062574781477451, 0.028572812676429003, -0.024923579767346, 0.031152313575148003, -0.036551740020513, -0.04236214607954, 0.035794295370578, 0.040678843855857, -0.016342807561159002, -0.049709118902683, -0.013670716434717001, 0.021608989685773003, 0.032452512532472, 0.061192382127046, 0.044476367533206, -0.028229737654328003, -0.059188179671764006, -0.009694084525108, -0.004823683295398, -0.08837237209081601, 0.088892094790935, -0.10384243726730301, -0.035569902509450003, -0.022762449458241, 0.005955974105745001, 0.0032989457249640005, 0.084984168410301, 0.067131236195564, -0.07437913119792901, -0.048671204596757, -0.011214422062039, -0.020878246054053, 0.009817777201533, -0.028325036168098002, -0.018874013796448, -0.035387270152568005, -0.15069741010665802, 0.010481408797204, -0.06461814045906, 0.071942746639251, -0.151462793350219, -0.058936454355716004, 0.09990667551755901, -0.019332829862833002, 0.077469788491725, 0.021195514127612003, 0.026920096948742003, -0.008949407376348001, 0.065717428922653, 0.07421847432851701, -0.000638467085082, -3.197645881414246e-8, 0.002997043542563, 0.040380194783210005, 0.055504813790321, -0.017765145748853, 0.038115661591291004, -0.005103439092636, -0.029272822663187002, -0.005713732913136001, -0.006713682785630001, -0.025034200400114, 0.09189655631780601, 0.011652024462819, -0.015114244073629001, -0.015104664489626001, -0.038045473396778, 0.006190214306116001, -0.010640122927725001, 0.035617627203464, -0.034115370362997, 0.026748485863208, -0.019270366057753, -0.018315069377422, 0.014011184684932001, 0.008179415017366, -0.051728378981351006, -0.129372775554656, -0.017603542655706, -0.072087727487087, -0.07209930568933401, -0.014449809677898, 0.029064236208796, -0.035156421363353, 0.038783974945545, 0.016623236238956, -0.034817583858966, 0.024920031428337003, -0.025383200496435002, -0.060313757508993, 0.050140161067247, -0.024590648710727, -0.012180731631815002, -0.007405882235616001, -0.079318970441818, 0.021116154268383, -0.079682752490043, -0.033351156860589, -0.027016341686248002, -0.07357450574636401, -0.06613898277282701, -0.065456338226795, -0.029259964823722003, -0.062667876482009, -0.0073693855665620004, -0.092737644910812, -0.000540071865543, 0.009231204167008001, -0.002426498802378, -0.027229519560933002, 0.08531060814857401, 0.084574975073337, -0.034394171088933, 0.084875933825969, 0.02718099951744, -0.0067803286947300005 ]
0704.0005
From dyadic $\Lambda_{\alpha}$ to $\Lambda_{\alpha}$
In this paper we show how to compute the $\Lambda_{\alpha}$ norm, $\alpha\ge 0$, using the dyadic grid. This result is a consequence of the description of the Hardy spaces $H^p(R^N)$ in terms of dyadic and special atoms.
[ "math.CA", "math.FA" ]
[ 0.041168045252561, 0.0024056097026910004, -0.107305623590946, -0.003542532911524, 0.035340379923582, 0.04383815824985501, 0.046264503151178006, 0.010279029607772001, 0.025894371792674002, -0.11483709514141001, 0.019302509725093002, 0.03643151000142, -0.055798172950744004, 0.003400027519091, 0.002425281330943, -0.062029357999563, -0.041049163788557004, -0.004656797740608, -0.14307148754596702, 0.093111410737037, 0.025749482214450004, -0.029445322230458003, 0.041723348200321, 0.038071975111961004, -0.06826174259185701, 0.012801401317119002, 0.043998774141073005, 0.05983457714319201, 0.063660018146038, 0.015455598011612, 0.060857459902763006, -0.034762471914291, 0.093093797564506, 0.038810160011053, 0.029815664514899004, 0.027796125039458, -0.002178625436499, 0.00787596963346, -0.0033282786607740002, 0.020139418542385, -0.015861310064792, 0.036953169852495006, 0.051403518766164, 0.07555744051933201, -0.050716027617454, 0.0074201081879430005, -0.039016235619783006, 0.010428914800286002, -0.037650402635335006, -0.061036217957735006, -0.028955249115824002, 0.042557727545499004, 0.051829013973474, -0.007568975910544001, -0.053499598056077007, 0.017252311110496, 0.055339545011520004, -0.05531086400151201, 0.06785774230957001, -0.066227249801158, 0.013937404379248002, -0.029724251478910002, 0.058649323880672004, 0.025001099333167003, -0.05306764692068101, -0.015890950337052002, 0.040794853121042, 0.025092935189604003, -0.007824820466339, 0.054348468780517, -0.07038469612598401, -0.024989936500787003, -0.082742765545845, -0.072793662548065, -0.043602608144283, -0.0048600072041150005, 0.005074716173112, -0.060659620910882006, 0.036677412688732, -0.0039678327739230005, 0.012118645012378, -0.015110002830624001, -0.067477047443389, 0.051073815673589006, 0.021271731704473003, 0.010881322436034001, -0.093293890357017, -0.060220658779144, 0.053074628114700005, -0.03763385489583, -0.045260269194841, -0.030906978994607003, -0.032393224537372, 0.011916261166334001, -0.18299725651741, 0.058747474104166, 0.029083803296089002, 0.019208148121833, 0.016243306919932, 0.07733125239610601, -0.059847626835107005, -0.0939736738801, 0.009461509995162001, 0.038773953914642, -0.032892119139432005, -0.014671353623270001, 0.0165481492877, 0.0034916761796920004, -0.023368421941995003, 0.022524023428559, 0.050864595919847, -0.07192000746726901, -0.018037041649222003, 0.009121492505073001, 0.044701546430587005, -0.053467556834220005, 0.12235713750123901, 0.095395036041736, 0.058875396847724006, -0.010507272556424, 0.050906356424093004, -0.028281742706894004, 0.07288133352994901, -0.005322373472154001, 0.030794270336627003, 0.035794854164123, -0.08386375010013501, -2.1903948674871422e-33, 0.094325304031372, 0.010880078189074001, -0.04437690600752801, 0.029933335259556004, 0.025837609544396, 0.00292643927969, -0.051968276500701, 0.024116110056638003, 0.026568809524178002, -0.013809883967041001, 0.044149115681648005, 0.053263518959283, 0.026956997811794003, -0.087367266416549, -0.021354839205741, 0.020293351262807003, -0.024199301376938, 0.050824865698814004, 0.064683683216571, 0.02497792057693, 0.050656024366617, 0.079243294894695, 0.09530192613601601, 0.07136969268321901, 0.0024899265263220003, -0.09208375960588401, 0.027733629569411004, -0.047226283699274, 0.014366644434630002, -0.0006215072353370001, 0.033558562397956, 0.004972234833985001, 0.004261365160346, 0.004551046993583, 0.021286824718117003, 0.023630976676940002, -0.123876251280307, -0.000023470298401662152, -0.029278269037604002, -0.050562359392642, -0.06109257042407901, -0.08177027851343101, 0.023692809045314, -0.01921759173274, -0.015569027513265, 0.036093086004257, 0.083545692265033, 0.032027825713157, 0.045282304286956, -0.039693757891654004, 0.045725014060735, 0.005848176777362, -0.06582830101251601, -0.037977982312440005, 0.0054251579567790005, -0.030421713367104003, -0.05899429693818001, 0.065862879157066, 0.095000475645065, 0.058332867920398004, -0.026893936097621002, -0.009021421894431001, 0.022519266232848, -0.015722637996077, 0.028052937239408004, -0.114981509745121, 0.039705134928226006, -0.050710458308458, 0.089185141026973, -0.028890313580632, 0.041146636009216, 0.015813708305358002, 0.045905772596597005, 0.035681530833244005, 0.008146503008902, 0.049015633761882005, -0.062038816511631005, -0.10446687787771201, 0.016640180721879002, -0.0063656060956410005, -0.070711992681026, 0.040240485221147, 0.047667048871517, 0.012739849276840002, -0.015373203903436002, -0.114521585404872, -0.024473171681165, -0.000583516026381, -0.019431199878454, -0.056142840534448006, -0.041584774851799004, -0.09529402107000301, 0.033784884959459, -0.053493749350309004, 0.007291039917618001, 1.0457566923609621e-33, -0.065826974809169, -0.054885439574718003, -0.071881726384162, 0.052529018372297, 0.018069041892886002, 0.01598479039967, -0.011644475162029001, 0.068269856274127, -0.014642497524619002, 0.032619334757328006, 0.064340330660343, 0.0015463531017300002, -0.058297384530305, 0.002412830712273, 0.06568402796983701, 0.0010864040814340002, 0.056891292333602, 0.00541722215712, -0.030179398134350003, -0.021683283150196003, 0.07118718326091701, -0.041648630052804, 0.031199336051940002, 0.085178613662719, -0.024645689874887, -0.017469491809606, 0.006617136765271, 0.053211290389299004, -0.017560133710503002, 0.016804760321974, 0.06417196989059401, -0.027480144053697003, -0.047671750187873, 0.044154502451419005, -0.011558985337615001, -0.043342005461454, -0.019599493592977, 0.071724809706211, -0.055769432336091, 0.04894096031785, -0.038816351443529004, 0.010363764129579001, 0.0070987301878630005, 0.060383066534996005, -0.034392666071653005, 0.004286032170057, 0.04258969053626, -0.049098957329988, 0.029423292726278003, -0.003679737914353, -0.045382194221019, -0.058136101812124, 0.032359462231397004, 0.047894656658172004, -0.011825503781437001, 0.020476473495364002, 0.018261384218931, 0.05958711355924601, 0.07209651172161101, -0.033702448010444, -0.063999854028224, -0.011033250018954001, 0.037939675152301004, 0.123966477811336, -0.009580221958458, -0.053442388772964006, -0.050627201795578, -0.11827888339757901, -0.047832995653152, 0.078469358384609, 0.0030096338596190004, 0.00463695731014, 0.021684765815734003, 0.038056898862123004, -0.028129486367106, -0.025815589353442, 0.12891618907451602, -0.101582914590835, -0.00106548552867, -0.009222198277711001, -0.028266888111829, 0.043273996561765005, -0.008092852309346001, 0.045116707682609, -0.024351391941308, -0.09823370724916401, 0.08632718771696, 0.054701082408428005, -0.015101815573871, -0.039349976927042, 0.046212859451770005, -0.013625522144138001, -0.023063108325004, -0.070935957133769, 0.08392696082592001, -3.62702756717681e-8, 0.033426381647586004, -0.095413751900196, -0.049116823822259, -0.066535919904708, 0.057531245052814005, -0.073079735040664, 0.02035198546946, 0.010613250546157001, -0.011064308695495, 0.09169457852840401, 0.070361338555812, -0.005904714111238001, -0.009763310663402, -0.0077042486518620005, 0.014312567189335, -0.016267996281385002, -0.009725106880068, 0.015830632299184, -0.025647876784205003, 0.00611114129424, 0.006965263281017001, 0.004049562849104, -0.016898034140467002, 0.001686183968558, -0.050006244331598004, -0.07493945956230101, -0.040964934974908, -0.16997906565666202, -0.00045810180017700006, -0.058594528585672004, 0.028032205998897, 0.042352940887212004, 0.102572999894618, 0.043956149369478004, -0.052215997129678005, 0.05609148368239401, 0.063649885356426, -0.074721530079841, -0.06379310786724, 0.08774820715188901, -0.027284253388643, -0.014723647385835, 0.034299571067094005, -0.040047954767942005, 0.052721187472343, 0.035173807293176006, -0.056475847959518, 0.138240367174148, 0.019199108704924, 0.076031789183616, -0.013715323992073002, 0.033096630126237, -0.029923386871814003, -0.036708638072013, -0.093222863972187, -0.047561515122652005, -0.065084122121334, -0.046851713210344, 0.0069260373711580005, -0.025191489607095004, 0.037820361554622005, 0.020883237943053003, 0.034254763275384, -0.031161785125732002 ]
0704.0006
Bosonic characters of atomic Cooper pairs across resonance
We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} \ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
[ "cond-mat.mes-hall" ]
[ -0.044402178376913, 0.0033760899677870004, -0.048713743686676005, 0.05100630223751, -0.048035338521003, 0.08637636154890001, -0.009062255732715001, 0.022349575534462002, 0.037755336612463004, -0.111049965023994, -0.037221498787403, 0.010721891187131, -0.023797998204827003, -0.045268770307302, 0.017016550526022002, -0.007921217940747, 0.083758130669593, -0.08104440569877601, -0.062111996114254005, 0.064722217619419, -0.005602590274065, -0.020423462614417003, 0.06623709201812701, 0.002791155828163, 0.053715296089649006, -0.043432064354419, 0.06882942467927901, 0.028818391263484, 0.046069663017988004, -0.002390576060861, 0.062116757035255, 0.0022595101036130003, 0.07933431118726701, -0.014565724879503, 0.034741759300231004, -0.117121152579784, 0.07965038716793, 0.035790294408798, 0.024043355137109004, -0.070696637034416, -0.0063971341587600004, 0.083932675421237, -0.047557041049003004, 0.051563031971454, -0.048950169235467, -0.017706096172332, 0.078905910253524, -0.021090989932417002, -0.037207942456007004, -0.048301123082637, 0.031986769288778, 0.12307293713092801, -0.057306513190269005, 0.06351651996374101, 0.014783673919737, 0.072473734617233, -0.10195025056600501, -0.025695957243442, -0.044513843953609, -0.039568785578012, -0.055960550904273, 0.010227259248495001, 0.008535963483154, -0.014040401205420001, 0.120695173740386, -0.014474126510322, -0.015032877214252002, 0.005772139411419, 0.0038496004417530004, 0.06973379850387501, -0.010257378220558, -0.036950919777154, 0.022350121289491, 0.045775704085826006, 0.07772708684206, 0.063150599598884, 0.030079513788223003, -0.035499330610036, 0.055926859378814, -0.051312047988176006, -0.058427322655916006, -0.036283135414123, -0.052460707724094, 0.0016312527004620002, -0.039264313876628, -0.015506537631154001, -0.10674569755792601, -0.065747685730457, -0.04284323006868301, -0.053583864122629006, -0.012468215078115002, -0.09171230345964401, 0.00039968779310500005, -0.051142688840627004, -0.026398127898573, -0.0065890215337270006, 0.07890211045742, 0.064571402966976, 0.076855413615703, 0.068860881030559, 0.019363140687346, -0.03315382823348, 0.0047190249897530005, 0.0006218483322300001, -0.06570206582546201, 0.043266061693429, 0.04817893356084801, 0.046728000044822006, 0.020344302058219, 0.013166512362658, 0.06829046458005901, -0.05194508656859301, 0.038428653031587004, -0.045254066586494, -0.022501658648252, -0.02457807585597, -0.01860729791224, 0.061873763799667005, 0.030660148710012002, -0.08589879423379801, 0.046666610985994006, 0.007672486826777, -0.000108920190541, 0.05683154612779601, -0.035749919712543, 0.009864170104265001, -0.083190433681011, 3.6244689554735474e-33, 0.058416604995727005, 0.086789764463901, 0.025938030332326, 0.008014149963855001, 0.008824589662253001, -0.013487162068486, 0.004038286861032, -0.11421702802181201, -0.10804271697998001, 0.06960604339838, -0.014272976666688001, 0.039681375026702, 0.101026222109794, -0.06844660639762801, 0.004876776598393, 0.025914436206221, -0.019770324230194, -0.006048066541552001, -0.0009316360228690001, 0.0037526828236870004, 0.080110698938369, 0.11770843714475601, -0.018454901874065, 0.0020272764377290003, 0.015654917806386, 0.001390772638842, -0.004715151153504, -0.057844959199428, -0.09360581636428801, 0.022520573809742, 0.023354476317763002, 0.13948215544223702, -0.022677900269627002, 0.007159966044127001, 0.011970938183367, -0.100120387971401, -0.11763118207454601, -0.025990854948759003, -0.002126451581716, -0.045232512056827004, -0.03522415831685, 0.007477109320461001, -0.052360959351062004, 0.013235166668891001, 0.06381797790527301, -0.076689504086971, 0.044965639710426004, 0.058158122003078, 0.030884198844432, -0.018716936931014002, 0.010273452848196, -0.013459392823278002, -0.026618482545018002, 0.07058351486921301, 0.076758831739425, -0.023601977154612003, 0.075715169310569, -0.005027928855270001, 0.008849873207509, 0.024600233882665003, 0.001014835666865, 0.048149153590202005, 0.045661855489015, -0.012403970584273002, -0.00019581236119800002, 0.019301170483231, -0.144431799650192, -0.030308771878480002, 0.090035825967788, 0.015258133411407, 0.008667672052979001, 0.13036774098873102, 0.022395379841327, -0.029828740283846, -0.006983227096498, -0.027197446674108002, 0.009599538519978001, -0.11597406864166201, 0.030402397736907002, 0.017722813412547, -0.050543759018182005, -0.07605057954788201, 0.029398668557405003, -0.008179798722267, -0.081083759665489, -0.026680696755647004, -0.106793344020843, -0.052397415041923, -0.019335065037012003, 0.047196634113788, -0.056697078049182004, -0.050705194473266005, 0.030798941850662002, -0.05837208405137, -0.038770962506532, -4.243910764660721e-33, 0.043888665735721005, 0.023335920646786003, 0.012009382247924002, -0.060991559177637, -0.015626678243279003, -0.008553838357329, -0.015718802809715, 0.005854189861565001, -0.014383840374648, -0.017950721085071, 0.083602167665958, 0.040721144527196, 0.016076728701591003, -0.0037998766638330005, 0.013771861791610001, 0.044126812368631, 0.029727566987276, -0.037978004664182004, 0.08187106996774601, -0.025639243423938002, -0.035564817488193005, -0.011650488711893002, 0.043770175427198, -0.018118508160114, -0.09888112545013401, 0.027690446004271, 0.096196211874485, -0.022822629660367, 0.08903791755437801, 0.008485347963869001, -0.0024255937896660003, 0.04535049572587, -0.005682786926627, 0.002792488317936, -0.026621978729963, 0.0066331010311840004, 0.005899539217352001, -0.030053850263357003, -0.028569841757416004, -0.051918178796768, -0.041661031544208006, 0.058956526219844006, 0.001117426902055, -0.016538912430405003, 0.033271916210651, 0.047485597431659005, -0.00029255732079, -0.036477532237768, -0.034959871321916004, -0.065870128571987, 0.0019045067019760002, -0.049361478537321, -0.012955292128026001, -0.012640876695513, -0.04829060658812501, -0.047893598675727005, 0.034846186637878, 0.013331573456525001, 0.10293910652399, 0.00040608481504000003, -0.004012312274426001, -0.006118446588516, 0.109633944928646, 0.008915668353438001, 0.028293330222368, 0.0026876679621630002, -0.072152875363826, 0.06121391057968101, 0.08244404196739101, -0.007301232311874001, -0.06318012624979001, -0.07272276282310401, 0.050460610538721, 0.014128843322396, 0.011358102783560002, 0.004802805837243, 0.06389562785625401, -0.05764855444431301, -0.009788463823497, 0.08323474973440101, -0.149598300457, 0.035765562206506, -0.053400062024593006, 0.033387366682291, 0.007243969943374001, 0.020566234365105, -0.07718260586261701, 0.052857615053653, 0.036144107580184, 0.049383845180273, -0.00199796189554, 0.0029575140215450002, 0.068152897059917, -0.022927725687623003, 0.051304135471582, -4.732276792651646e-8, 0.01300027500838, -0.09211216121912001, -0.07218873500823901, 0.027375947684049003, 0.02743718586862, 0.045778419822454, -0.029355280101299, -0.050417933613061, -0.037071224302053, 0.018527036532759, 0.0191963147372, 0.036059468984603, -0.0036971860099580004, -0.059786949306726005, 0.029756160452961002, -0.008202501572668, -0.021384922787547, -0.10310011357069, -0.044792052358388006, -0.068920359015464, -0.046668156981468006, 0.045469470322132007, 0.003011548193171, 0.047202497720718, -0.07345939427614201, -0.013329557143151, -0.06589758396148601, -0.059227246791124004, -0.045021869242191, 0.031796783208847004, -0.034597937017679, 0.027293119579553, 0.066399335861206, 0.062849789857864, 0.044941559433937, -0.052507601678371006, -0.09080177545547401, 0.04531530663371, -0.060840535908937, 0.039883781224489004, 0.033533543348312, 0.084557600319385, -0.011520669795572001, 0.07985395938158, 0.110529392957687, -0.012180611491203001, -0.009356634691357, 0.013003970496356002, -0.014862836338579, -0.014765319414436002, -0.06349406391382201, 0.069707944989204, -0.029501924291253003, -0.026671381667256, -0.07265935093164401, 0.010104175657033001, -0.096684128046035, -0.009634817950427001, 0.050761170685291006, -0.012919375672936, 0.00209229812026, -0.021612726151943002, -0.043120529502630005, -0.022063860669732 ]
0704.0007
Polymer Quantum Mechanics and its Continuum Limit
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.
[ "gr-qc" ]
[ -0.048069596290588004, -0.021847963333129, 0.010979495011270001, 0.017822604626417, -0.06533695757389, 0.09635341912508001, 0.0046644187532360005, 0.015140078030526001, 0.04628929868340401, -0.081413894891738, 0.04138584062457, 0.009377397596836, -0.12087079137563701, 0.056284084916114, 0.062993876636028, -0.010058162733912001, -0.043773621320724, 0.029214749112725, -0.019702067598700003, 0.012700820341706002, 0.079004295170307, 0.005755815189331001, -0.002333189127966, 0.031760618090629, -0.026442546397447003, -0.0009021948790170001, 0.04346203058958, -0.051261968910694004, 0.028103843331336004, 0.039696540683507, 0.014941792003810002, -0.013187424279749001, -0.037496257573366006, -0.003974698483943001, 0.10747683793306301, 0.073041059076786, 0.042610619217157, -0.0038532034959640003, 0.007778846658766001, -0.007702036760747001, 0.089093945920467, 0.039359990507364, -0.045582931488752004, 0.0037136401515450003, -0.002105557359755, -0.038761965930461, -0.04812674596905701, 0.005054571200162001, -0.111713968217372, -0.010914973914623, 0.011507648974657001, 0.06522749364376, 0.01179630216211, -0.054348785430192004, 0.034323152154684004, 0.037445936352014, 0.023712711408734002, -0.035882577300071, 0.021868776530027, -0.151657596230506, -0.059476245194673004, -0.034337483346462, -0.016970131546258, 0.06264581531286201, 0.083667017519474, -0.014332533814013, -0.027556436136364004, 0.008655171841382, 0.044209390878677, 0.099622122943401, -0.087527506053447, 0.062867574393749, -0.054084222763776, -0.001963630784302, 0.071359671652317, -0.045262467116117006, 0.012503732927143001, 0.06110120564699101, 0.007322299294173, 0.089147970080375, -0.022427763789892002, -0.010194442234933002, 0.001983979251235, -0.027164038270711004, 0.018794188275933002, 0.0190613232553, 0.016017640009522, 0.047691434621810004, -0.041676759719848, -0.028412986546754, -0.056125588715076, -0.077036723494529, -0.013666615821421, -0.046601086854934005, 0.038811076432466, 0.068901419639587, 0.05299186706542901, -0.009177503176033, 0.050134778022766, -0.022275455296039002, 0.065643206238746, -0.099067650735378, 0.06092713400721501, 0.041647542268037005, 0.056420966982841006, -0.035527307540178, -0.023938573896884002, -0.05409688130021, 0.009286236017942, -0.005341534968465, 0.050478570163249005, -0.057798799127340005, 0.099993832409381, -0.015532968565821, -0.07137443125247901, -0.013119477778673, 0.039540197700262, 0.08602540940046301, -0.024300340563058003, 0.031639192253351, -0.013873245567083001, -0.039093680679798, -0.005108957178890001, -0.046812508255243, -0.011124350130558, -0.003501717466861, -0.039561089128255005, -7.113834671787241e-34, 0.048623509705066, 0.0032690027728670005, 0.056775230914354005, -0.0019293368095530002, 0.102587915956974, -0.001900646137073, 0.061872418969869, -0.003193855751305, -0.066578619182109, 0.027913076803088, 0.031812135130167, 0.029618373140692003, 0.030314544215798003, 0.027255969122052002, -0.024655230343341, 0.026347531005740003, -0.032325852662324, 0.016744026914238, 0.149908453226089, -0.053134486079216, 0.003841030178591, 0.05934714898467001, -0.016484297811985002, 0.08883784711360901, -0.082396291196346, -0.038638446480035005, 0.010969898663461, 0.025001998990774002, -0.071777552366256, -0.011798276565968002, -0.051001042127609, 0.079607874155044, 0.00924186501652, 0.038315340876579, 0.032920964062213, 0.024730838835239, -0.031518846750259004, -0.038978490978479004, -0.038270719349384, -0.019617768004536, 0.018030550330877002, -0.036829210817813006, 0.002343573607504, -0.07013125717639901, -0.028048373758792003, 0.016320399940013, 0.14442941546440102, -0.09418812394142101, -0.09166532754898, 0.05282228812575301, 0.014024787582457001, 0.016667056828737002, -0.08842895179986901, 0.014481820166110002, 0.019032057374715, -0.090336792171001, 0.011903669685125, 0.013588814996182001, -0.073753252625465, 0.040677789598703, -0.025274537503719, 0.071963831782341, 0.073259100317955, 0.015126848593354001, -0.022951597347855002, -0.041173655539751004, 0.007510852999985, -0.053193502128124, 0.025111725553870003, -0.019428316503763, -0.033630441874265005, 0.08033674955368, -0.049289051443338006, 0.051949054002761, 0.050451010465621005, 0.002637054538354, -0.07086026668548501, -0.12479681521654101, -0.029852051287889002, -0.007325499318540001, 0.022762779146432002, -0.044810503721237, -0.022175576537847002, -0.004842112772166, -0.025670390576124, -0.111402943730354, -0.05279923602938601, -0.019710121676325, 0.051479283720254, -0.072222299873828, -0.09239751845598201, -0.089731313288211, 0.060342881828546004, -0.011094914749264, -0.010145849548280001, -3.419932571088485e-33, -0.03705021739006, -0.091060973703861, 0.06583413481712301, 0.031955704092979, 0.033752162009477005, 0.010488762520253, -0.05337643250823, 0.088879875838756, -0.058485802263021004, -0.126931026577949, 0.10087496787309601, 0.017003774642944003, 0.042167276144027, 0.09248559921979901, 0.01001189276576, 0.06178730353713, -0.010199915617704001, -0.022200809791684, 0.010369922034442002, -0.030284900218248003, 0.021051784977316003, -0.061254449188709, 0.003445900278165, 0.043861795216798005, 0.012251838110387001, 0.08923942595720201, 0.101281180977821, -0.011104613542556001, 0.087580114603042, 0.039629861712455, 0.023910712450742003, -0.040332466363906, -0.01695686019957, 0.084484450519084, -0.051950208842754, -0.03717491403222, -0.005506107583642001, 0.06582301855087201, 0.00012529344530700002, -0.026534605771303003, 0.011343947611749, -0.015545746311545, 0.10133469849824901, -0.015166112221777002, 0.012382566928863002, -0.100611202418804, 0.03702025860548, -0.037819448858499, -0.062842942774295, -0.027716066688299002, -0.032462578266859, 0.009342815726995001, 0.023551970720291002, 0.011562492698431001, -0.12163941562175701, 0.07123404741287201, -0.021192789077758, -0.066901057958602, 0.037281330674886, -0.015831034630537002, -0.016443280503153003, 0.029150040820240003, 0.061884388327598, 0.085904791951179, 0.023649860173463003, -0.030340598896145002, -0.033745251595973004, -0.038751367479562, -0.041348107159137004, -0.09481053799390701, -0.006197778973728, -0.05665364116430201, -0.012162523344159001, 0.055387996137142, 0.05923340842127801, -0.045425407588481, 0.02737296372652, -0.049257889389991004, 0.038581360131502006, -0.04938593134284, -0.036539699882268004, 0.03746984899044, 0.06263681501150101, -0.028470011427998, 0.001060183276422, -0.091481976211071, -0.035312987864017, -0.044718410819768004, -0.008828397840261001, -0.016077358275651002, 0.015427856706082, -0.01203697733581, -0.05703269317746101, 0.054846961051225, 0.034821506589651004, -4.483375093400355e-8, -0.010084440931677001, -0.009951606392860001, -0.005620460025966, 0.010816895402967, 0.029208410531282, 0.09454673528671201, 0.0190603826195, -0.04329527914524001, -0.039886966347694, 0.041651058942079, 0.026983393356204, -0.024762123823165002, -0.12620918452739702, 0.04923872649669601, 0.007909742183983, 0.063626013696193, -0.071062587201595, 0.013453704304993002, 0.0033301613293580004, -0.034093938767910004, -0.015398784540593001, 0.034770701080560004, -0.0038717044517390005, -0.023912852630019, -0.052114166319370006, 0.020604899153113, -0.029782041907310004, 0.0476632155478, 0.044218067079782, -0.040320139378309, -0.072211518883705, 0.033534161746501, -0.024419400840997002, 0.087104447185993, -0.098920866847038, -0.08199106901884001, -0.029027806594967002, -0.05239972099661801, -0.041083298623561006, 0.04526609182357701, 0.07947547733783701, 0.06349300593137701, -0.039585266262292, 0.030443675816059, 0.018879577517509002, -0.004345975816249, -0.059963177889585, 0.040158402174711005, -0.00009100575698539616, 0.11504967510700201, -0.078460350632667, 0.046494606882333006, -0.047019775956869, -0.05056016519665701, -0.05186565965414, 0.045109067112207, -0.043271761387586004, -0.001525146886706, -0.052572853863239004, 0.039220929145812, -0.051477123051881006, -0.045494690537452004, 0.044268578290939005, 0.034304127097129 ]
0704.0008
Numerical solution of shock and ramp compression for general material properties
A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.
[ "cond-mat.mtrl-sci" ]
[ -0.075468078255653, 0.052233114838600006, 0.106310673058032, 0.07757237553596401, -0.021904695779085003, -0.063681066036224, -0.07773596793413101, 0.09117696434259401, -0.037735588848590004, 0.017289653420448, -0.099736168980598, -0.0036993834655730004, 0.020322548225522003, 0.016555981710553003, 0.045281425118446, -0.051847591996192, -0.014343291521072, 0.053633570671081, -0.010459415614604001, 0.059549871832132006, 0.09638775885105101, 0.013651688583195001, -0.08547153323888701, -0.030467160046100002, 0.09199015796184501, 0.004237176850438, -0.009975568391382, 0.033682387322187, 0.058517210185527004, -0.018720025196671, 0.003119973931461, -0.028404630720615002, -0.153680235147476, 0.040685847401618, -0.026228541508316, 0.028040608391165, -0.014512199908494, 0.058860659599304005, -0.06544537097215601, -0.011322737671434002, -0.051821392029523, 0.06905163079500101, 0.06456453353166501, 0.017023142427206, 0.066604524850845, -0.058567333966493, 0.069019936025142, 0.020901851356029, -0.082343384623527, -0.009110582992434, 0.029579017311334003, 0.060850068926811, 0.099337682127952, 0.046689182519912005, -0.05105135589838, -0.010897655971348001, 0.098606005311012, -0.06844034790992701, -0.008007043972611, 0.017856426537036, -0.063087373971939, -0.040393535047769005, 0.08209905773401201, -0.058208536356687005, 0.032128535211086, 0.09178211539983701, 0.05080987885594301, 0.020455760881304002, 0.027892682701349, 0.048330131918191, -0.030033331364393002, -0.026176568120718002, 0.049896784126758006, -0.011779888533055002, 0.047679103910923004, -0.001622151932679, 0.010756317526102, 0.081866137683391, -0.084450408816337, 0.010657074861228001, -0.00024108271463700001, -0.05324375629425, 0.009122144430875001, -0.13703323900699602, -0.10051464289426801, 0.033105231821537004, 0.015250332653522, -0.014678001403808, 0.025499017909169003, 0.070023119449615, 0.06540910154581, 0.09688538312911901, 0.01172134373337, -0.0037432212848210003, 0.040795598179101, 0.0031211082823570002, -0.019023342058062002, -0.057514566928148006, 0.077930010855197, 0.0028944462537760004, -0.025744600221514, 0.039729829877614004, 0.019595801830291002, 0.032887697219848, -0.010374623350799, -0.090929806232452, -0.014732275158166, -0.00291133346036, 0.043059144169092005, 0.07022101432085001, 0.032432314008474, -0.023471469059586, -0.004890375304967, -0.08581506460905, -0.0022498290054500003, -0.052467558532953006, -0.077436991035938, -0.0052217827178530005, 0.0015161555493250001, -0.050338171422481, 0.064366802573204, -0.024609137326478, 0.002567485906183, -0.002306309295818, -0.0017542272107670001, -0.049823302775621005, -0.048945017158985006, 1.4183681977624722e-33, 0.00019715898088100002, -0.031864736229181005, -0.043345335870981, 0.101077564060688, -0.021797653287649002, -0.09594211727380701, 0.041150741279125005, 0.072484068572521, -0.017191119492053, 0.003622174728661, 0.017043782398104, 0.03956564515829, 0.021866938099265, 0.011454014107584001, 0.0033231540583070003, 0.040444482117891006, 0.036469042301177, -0.017616592347621002, -0.015402751043438, 0.008545097894966, -0.056997619569301, -0.035852495580911005, 0.045721273869276005, 0.012687722221016001, 0.022253490984439003, 0.083381615579128, -0.016269642859697002, -0.029119521379470003, -0.059931766241788004, -0.037860680371522, -0.023410852998495, 0.0045791459269820005, -0.054559040814638006, 0.051721032708883, 0.073055826127529, 0.041341394186019, 0.002738023875281, -0.049019761383533006, -0.012335691601037, 0.007304805330932001, -0.046495843678712005, -0.025725927203893002, 0.11442439258098601, 0.077164940536022, -0.039062727242708005, -0.032233294099569, -0.010335330851376001, 0.009693651460111, -0.10896371304988801, -0.052500165998935006, -0.024379629641771, 0.082257665693759, 0.030188014730811, -0.016808463260531002, -0.047795351594686, 0.034007336944341, 0.040187172591686006, -0.069669865071773, 0.05585966259241101, 0.0034446439240120004, 0.004307752009481, -0.039884943515062006, 0.033098351210355, -0.0071180276572700004, 0.072013363242149, 0.06587368249893101, -0.09178444743156401, 0.07674556970596301, 0.011298730038106001, 0.062990762293338, 0.012740979902446001, -0.031412918120622, 0.08771321922540601, -0.00045799824874800005, 0.019791793078184003, 0.049339260905981, 0.023294212296605003, -0.038967087864875, -0.012771121226251, -0.073076367378234, 0.00898597203195, 0.00043248463771300004, 0.001212087110616, -0.024963989853858, 0.005160603206604, -0.021443417295813002, 0.035618014633655, -0.025643737986683002, 0.027497656643390003, -0.070326305925846, -0.027258589863777, -0.011823516339063, 0.087554521858692, -0.02552074752748, 0.032693620771169, -2.4370097251988192e-33, 0.06754347681999201, 0.0176742374897, -0.08378960937261501, -0.017958674579858003, -0.005520793609321, -0.041873075067996, -0.031644091010093, 0.037038899958133004, -0.010624255053699001, -0.07866432517766901, 0.036075007170438, -0.080073878169059, -0.00864574778825, 0.062363985925912004, 0.004269160330295001, 0.010715650394558001, -0.01689544506371, -0.077754534780979, -0.019009279087185003, -0.043038532137870004, -0.00023568834876600003, -0.013303970918059, -0.065816715359687, -0.00915053114295, -0.011481523513793002, -0.07895052433013901, -0.020501272752881, -0.02014054916799, -0.021166555583477003, 0.025361655279994, -0.043119147419929005, -0.008775750175118, -0.0033839072566470003, 0.031604196876287, -0.031375627964735, 0.038163889199495, -0.037548262625932, -0.031026547774672, 0.102463088929653, -0.20652998983860002, 0.026466010138392, 0.033828556537628, -0.056839019060134006, 0.022973988205194, 0.026774967089295002, -0.016257559880614, -0.033490598201751, -0.0045168111100790005, 0.05820882692933001, 0.072800941765308, 0.037069421261548004, -0.013450211845338001, -0.005000467412173, -0.047756943851709005, 0.054827895015478, -0.004363719373941, 0.009768530726432, -0.033564385026693004, -0.019552210345864, 0.057531770318746005, -0.045253291726112005, -0.010007614269852002, 0.063161306083202, -0.018667904660105, -0.074496798217296, -0.09293168783187801, -0.084902197122573, -0.08893910050392101, -0.028663417324423002, -0.033142104744911, 0.046894002705812, 0.059476464986801, 0.10998503118753401, -0.036122597754001, 0.048172079026699004, -0.05518237128853701, 0.062190640717744, 0.031380012631416, -0.048117361962795, -0.0034279667306690003, 0.04226991534233, 0.033883351832628, -0.031221739947795004, 0.049472268670797, -0.05874061211943601, 0.026203377172350002, -0.015735220164060003, 0.11695297807455, 0.015422553755342001, -0.020110197365283, -0.00108160439413, 0.022248869761824, 0.12379278242588002, 0.029745379462838003, -0.044630274176597005, -4.813088594346482e-8, -0.045618005096912, 0.069663509726524, 0.03272682800889, -0.018719689920544, 0.011602990329265001, 0.131645634770393, 0.013957741670310001, -0.036260269582271, -0.007123155053704, -0.11487589031457901, 0.010310545563697001, -0.05452260375022801, 0.043493561446666, 0.025327663868665, -0.058907002210617, 0.027919694781303003, 0.048687938600778004, 0.036846399307250005, -0.047588996589183, -0.026316873729228002, -0.085977956652641, -0.011587410233914, 0.066887259483337, 0.034089177846908, 0.004880256485193001, -0.007001805584877001, -0.023443873971700002, 0.036523930728435, 0.033915847539901005, -0.029187126085162003, -0.137109205126762, -0.025787301361560003, -0.027958054095506002, 0.05807114765048001, 0.0054658479057250004, 0.11124627292156201, 0.018960863351821, 0.054613314568996006, 0.07075652480125401, 0.025773145258426004, -0.011988482438027002, 0.0016198464436450002, 0.015312841162085, -0.00040426987106900004, 0.054245304316282, 0.007554506883025, -0.14354170858860002, 0.028771230950951004, -0.00011512295168300001, 0.055659983307123004, -0.048203878104686, 0.031375516206026, -0.06704204529523801, 0.05528676509857101, 0.07550758123397801, -0.000795894942712, -0.071856386959552, 0.030209358781576004, 0.0066845226101570005, 0.008368954062461001, 0.032693855464458, -0.040799103677272006, -0.0064153843559320006, -0.022188544273376003 ]
0704.0009
The Spitzer c2d Survey of Large, Nearby, Insterstellar Clouds. IX. The Serpens YSO Population As Observed With IRAC and MIPS
We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy observations of the Serpens star-forming region. In particular we present a set of criteria for isolating bona fide young stellar objects, YSO's, from the extensive background contamination by extra-galactic objects. We then discuss the properties of the resulting high confidence set of YSO's. We find 235 such objects in the 0.85 deg^2 field that was covered with both IRAC and MIPS. An additional set of 51 lower confidence YSO's outside this area is identified from the MIPS data combined with 2MASS photometry. We describe two sets of results, color-color diagrams to compare our observed source properties with those of theoretical models for star/disk/envelope systems and our own modeling of the subset of our objects that appear to be star+disks. These objects exhibit a very wide range of disk properties, from many that can be fit with actively accreting disks to some with both passive disks and even possibly debris disks. We find that the luminosity function of YSO's in Serpens extends down to at least a few x .001 Lsun or lower for an assumed distance of 260 pc. The lower limit may be set by our inability to distinguish YSO's from extra-galactic sources more than by the lack of YSO's at very low luminosities. A spatial clustering analysis shows that the nominally less-evolved YSO's are more highly clustered than the later stages and that the background extra-galactic population can be fit by the same two-point correlation function as seen in other extra-galactic studies. We also present a table of matches between several previous infrared and X-ray studies of the Serpens YSO population and our Spitzer data set.
[ "astro-ph" ]
[ -0.059517703950405, -0.039250247180461, 0.08139153569936701, 0.031676843762397, 0.04954494535923001, -0.09421519190073001, 0.010088779963552001, 0.017028700560331, 0.06147189065814, 0.03748857229948, -0.038612749427556006, -0.04791086539626101, 0.027750862762331, -0.088506363332271, 0.039303094148635004, -0.048711221665143, 0.06345028430223401, -0.105331376194953, 0.022899819537997003, 0.04817130789160701, -0.013198283500969, 0.021508321166038003, -0.042380921542644, 0.013757930137217001, 0.050894256681203, -0.032431319355964, -0.024002952501177, 0.022923739627003, -0.007439324632287, -0.047172661870718, 0.056533247232437, 0.025471357628703003, -0.015333851799368001, -0.005917621776461, 0.037513792514801005, -0.08826009929180101, 0.060487959533929006, -0.033404145389795005, -0.012928845360875001, -0.006660183425992, -0.007191341370344001, -0.039013400673866, -0.010971961542963002, 0.009091211482882, -0.049811333417892005, -0.025324083864688002, -0.071627102792263, 0.033942550420761004, -0.074446104466915, -0.038044780492782, -0.037197373807430004, -0.055462453514337005, -0.03542998060584, 0.07827772200107501, 0.055895149707794, 0.007507355883717001, 0.039774276316165, -0.131352290511131, 0.07473907619714701, -0.020078480243682, 0.015739442780613, -0.008029351010918001, -0.025614060461521003, -0.0644356533885, 0.00458636926487, 0.016435747966170002, -0.002150081098079, 0.033336579799652, 0.017122436314821, -0.009840134531259, 0.007756694220006001, 0.059351723641157005, -0.074658326804637, 0.05078715458512301, 0.032840136438608, 0.04928757995367, 0.06515724956989201, -0.024373646825551, 0.050927110016345006, -0.08353359252214401, 0.035406485199928006, 0.098032772541046, 0.005273080896586, 0.066482067108154, -0.06372631341218901, -0.07238657772541, -0.07424792647361701, 0.029168823733925, -0.012135491706430001, 0.005165848881006001, 0.019565805792808002, 0.009249401278793, -0.106821484863758, -0.008035267703235, -0.0039325435645870006, 0.02065085247159, 0.043009433895349, -0.07710624486207901, 0.11264909803867301, 0.042922358959913004, 0.003350143320858, -0.029352512210607, 0.047663904726505, -0.021714065223932003, -0.037163443863391, -0.010834743268787, 0.074171185493469, -0.041187219321727, -0.023841973394155003, -0.0056677884422240005, 0.037863202393054005, 0.0025531444698570003, -0.12377931177616101, -0.011505589820444001, -0.011937594041228001, -0.012952527031302001, -0.045938801020383, 0.069923065602779, -0.12106057256460101, -0.09713992476463301, -0.009694650769233001, 0.073779687285423, 0.025357013568282002, 0.069697223603725, 0.022692427039146, -0.014949912205338001, -0.086748994886875, 4.1635201753759225e-34, 0.097391158342361, -0.023144440725445, 0.017800789326429003, 0.071088939905166, -0.021918905898928, -0.002588536590337, -0.025673678144812, 0.059989608824253006, -0.024509647861123002, 0.00306506617926, -0.08368062227964401, -0.038814138621091, 0.0006384016014630001, 0.016952561214566002, 0.073201842606067, -0.013076893985271001, 0.011409764178097002, 0.039140842854976, -0.08941216766834201, 0.022857444360852002, -0.037169910967350006, -0.010383596643805, 0.012548065744340002, -0.051540404558181006, 0.07397524267435, 0.069629527628421, 0.00854218378663, -0.06737844645977001, 0.0054444973357020005, 0.031705323606729, 0.023061482235789, 0.038608375936746, 0.051360946148633006, 0.071363292634487, 0.039120130240917005, -0.009828991256654, -0.062334958463907006, -0.007239043246954, -0.07378295063972401, -0.063673831522464, 0.032843109220266, 0.080100886523723, -0.034298110753297, 0.051419068127870005, 0.03264058753848, -0.026673180982470002, 0.020051795989274, -0.10293635725975, 0.025734640657901, 0.055926956236362006, 0.05542289093136701, 0.000812072772532, -0.09423553943634001, -0.024643586948513003, -0.044852819293737, 0.051426175981760004, 0.020677218213677, -0.05681402981281201, 0.00731135951355, 0.017988953739404002, -0.001127370866015, 0.019252896308898003, 0.055324476212263, -0.046590339392423005, -0.002239804947748, 0.17906637489795602, -0.038608286529779004, 0.017360741272568002, -0.041218876838684006, 0.05125635862350401, -0.06297320127487101, -0.0009363004937760001, 0.029344214126467004, -0.06578738242387701, 0.039936043322086, -0.036161392927169, 0.11885076761245701, 0.038366664201021, 0.016320396214723, 0.0065070735290640004, -0.09454767405986701, -0.045839369297027005, -0.095811262726783, -0.123585671186447, -0.08385796099901201, -0.013608960434794001, -0.005733738653361, 0.065269663929939, -0.027702324092388, -0.0007485545938830001, 0.06395611166954, -0.00877193454653, -0.036874126642942005, -0.04397394135594301, -0.160036861896514, -3.936852171100754e-33, -0.004030677024275, 0.040685500949621006, -0.031774278730154, 0.01296052057296, -0.045206956565380006, 0.033990781754255, 0.027091352269053, 0.023974090814590003, -0.055621281266212005, -0.08037714660167601, -0.066980741918087, 0.094969317317008, 0.014193379320204001, -0.072217777371406, 0.027332322672009003, -0.026735302060842, -0.0036264886148270003, 0.015741750597953002, -0.08331239968538201, -0.015624072402715001, 0.04758084565401, -0.022573476657271, 0.10226248949766101, -0.038458008319139, -0.032469633966684, 0.021690497174859002, -0.044912882149219006, 0.0018529639346520001, -0.018607165664434003, 0.0011772426078090002, -0.002460992196574, -0.061191610991954005, 0.032776650041341004, -0.0037086063530290003, -0.004953733645379, -0.010793347842991002, -0.001953318715095, -0.005044849589467, -0.103154882788658, 0.000253877427894, -0.041384421288967, 0.004390772432088, -0.062948986887931, 0.04351682960987, -0.014088878408074, -0.046373408287763006, 0.004437041003257001, 0.053885817527770004, -0.0020543807186180004, -0.028667587786912002, -0.006897331215441001, -0.029356230050325, -0.01717747375369, 0.10780999064445401, -0.007311206776648001, 0.049923025071620004, -0.03718913346529, 0.066146902740001, 0.030918529257178, 0.04898228496313001, -0.022574799135327003, -0.010665873996913001, 0.005112995393574, 0.011449139565229001, 0.05381754040718, -0.101849965751171, 0.100924037396907, -0.000992309418506, -0.001633929088711, 0.017060551792383, 0.061058264225721005, -0.070077061653137, -0.027482129633426004, -0.031298667192459, 0.064671240746974, 0.011544720269739002, -0.04518262296915, -0.084341190755367, 0.012700061313807002, 0.030164914205670003, -0.089590467512607, 0.06676980853080701, 0.038553494960069004, 0.008436264470219001, 0.07880931347608501, -0.004891589749604, -0.030089046806097003, -0.067334115505218, 0.026914166286587, 0.008430873043835, 0.005512528587132, 0.0066671501845120005, 0.01532497536391, -0.0034148909617210004, 0.034456793218851, -5.0096339521132904e-8, 0.037956587970256, 0.065273948013782, 0.080620393157005, 0.09536683559417701, 0.040284261107444, -0.069969072937965, -0.024402344599366, 0.06608669459819701, 0.020452868193387, 0.06543815881013801, 0.103436402976512, -0.011054622009396001, -0.011619928292930001, -0.138977453112602, 0.04867468774318601, -0.053307346999645004, 0.016110576689243, -0.051192265003919005, -0.058169592171907, 0.07776312530040701, -0.002464659279212, 0.033098194748163, -0.012135962955653001, -0.043009314686059, 0.018207715824246, -0.008944431319832, -0.032924059778451004, 0.042974721640348004, -0.014912306331098002, 0.015350892208516001, 0.042379669845104, -0.008391479961574001, 0.027714392170310003, -0.029648561030626002, 0.020213391631841, 0.030348869040608004, -0.040067367255687006, 0.020126020535826003, 0.002929694019258, 0.05622605979442501, -0.022526139393448, 0.029538867995142003, -0.036424510180950005, 0.005356129258871, 0.001821486279368, 0.12587423622608102, -0.026667049154639, -0.075722344219684, -0.042549829930067, 0.097564905881881, -0.043340425938367004, -0.041050795465707, -0.039049874991178006, 0.056971617043018, -0.08690138906240401, 0.001252458547241, -0.053701609373092006, 0.035490587353706006, 0.026064643636345003, 0.041376948356628, 0.09492298960685701, -0.043415781110525006, -0.073864229023456, 0.056318718940019004 ]
0704.0010
Partial cubes: structures, characterizations, and constructions
Partial cubes are isometric subgraphs of hypercubes. Structures on a graph defined by means of semicubes, and Djokovi\'{c}'s and Winkler's relations play an important role in the theory of partial cubes. These structures are employed in the paper to characterize bipartite graphs and partial cubes of arbitrary dimension. New characterizations are established and new proofs of some known results are given. The operations of Cartesian product and pasting, and expansion and contraction processes are utilized in the paper to construct new partial cubes from old ones. In particular, the isometric and lattice dimensions of finite partial cubes obtained by means of these operations are calculated.
[ "math.CO" ]
[ 0.028423333540558003, 0.038170855492353, -0.015587397851049001, -0.024360319599509003, -0.077891558408737, -0.039224315434694006, -0.013877422548830001, -0.015293619595468001, -0.016862198710441003, -0.066564053297042, -0.07998948544263801, 0.0073113935068240005, 0.014355925843119002, 0.038632482290267, 0.02321632951498, 0.0028318369295440003, 0.025305338203907003, 0.06864454597234701, -0.012461397796869, 0.05895927175879401, -0.009700437076389, -0.10602997988462401, -0.060696642845869, 0.011625715531408001, 0.034986637532711, 0.030965138226747003, 0.010086481459438001, 0.016941893845796002, 0.031435672193765, 0.027745166793465004, -0.033561054617166006, -0.038964360952377, 0.030644197016954002, 0.014027156867086001, 0.043652404099702, 0.02092195302248, -0.061014603823423004, 0.010776032693684, 0.058676488697528006, 0.056651130318641, 0.040234770625829, 0.03290208056569, 0.032081317156553005, 0.07504693418741201, -0.063580445945262, 0.030569307506084, -0.11324245482683101, 0.06478404998779201, -0.08604020625352801, -0.050324726849794006, -0.099099524319171, -0.027593750506639002, -0.078241042792797, 0.086487844586372, 0.052283432334661005, -0.061729814857244006, -0.021555243059992003, -0.036509994417428006, 0.045558456331491005, -0.07069934159517201, 0.054660990834236006, -0.045046404004096006, 0.017845554277300002, -0.07734064012765801, -0.020833052694797002, 0.020640984177589, -0.037638448178768005, -0.047252111136913, -0.07325438410043701, 0.12351019680500001, 0.005336937960237, 0.012598709203302002, -0.11582722514867701, 0.041001375764608, 0.028078993782401, -0.017144545912742, 0.019461574032902003, 0.020827688276767002, -0.08962985873222301, -0.049186233431100006, -0.098781429231166, 0.045676287263631, -0.06556994467973701, -0.005927932448685, -0.07110782712697901, -0.011241913773119, -0.07603088766336401, -0.028721492737531003, -0.014720305800437001, -0.032919999212026, 0.004342663101851, 0.025223108008503, -0.00463836081326, -0.006912396755069001, -0.008394874632358001, -0.071334190666675, 0.051858447492122005, 0.07376330345869, 0.09874206036329201, -0.007310802116990001, 0.06403955817222501, -0.051790922880172, -0.009328544139862002, 0.000952215283177, 0.008418058976531001, 0.07950630784034701, -0.07139254361391001, 0.016042992472648, 0.0014429248403750002, -0.07225354760885201, -0.038118910044431006, -0.020925564691424002, 0.021340996026992003, 0.002436289563775, -0.024803319945931, -0.068714745342731, 0.046594858169555005, -0.018846176564693, 0.058558788150548005, -0.000430147716542, 0.10436151921749101, 0.039673294872045003, 0.035368785262107, 0.012884525582194, -0.008123711682856001, -0.013620411977171001, 0.012115415185689002, 2.6290335232323552e-33, 0.059523381292819005, 0.057886738330125004, -0.012809006497263001, 0.067059874534606, 0.032930150628089, 0.10199535638093901, 0.000583967601414, -0.009824319742619, 0.077518351376056, 0.029129786416888, -0.11118885874748201, 0.09228243678808201, 0.054134808480739004, 0.025951309129595004, 0.023150442168116, 0.039452545344829004, 0.023085385560989, 0.027929391711950004, 0.019770575687289002, -0.045503459870815006, 0.032865475863218, 0.05397746711969301, -0.025351006537675, 0.097643375396728, -0.022936858236789003, -0.030604425817728, 0.016679540276527002, -0.076920874416828, -0.062473904341459004, -0.020013378933072, -0.004812920466065, -0.008018842898309, 0.0012574936263260001, 0.046164941042661, -0.0053850966505700005, 0.012897302396595001, 0.007828897796571001, -0.005152070429176, -0.08486142754554701, -0.064696118235588, 0.061920315027236, -0.017821263521909003, 0.016587115824222003, -0.070105738937854, -0.03669524565339, 0.019790738821029, 0.014844175428152001, 0.04723323136568, 0.029006969183683003, -0.049864035099744006, -0.006338752340525, 0.013456525281071, -0.009201621636748, -0.034232206642627, -0.044791769236326, -0.002881597261875, -0.014400238171219002, 0.047862026840448005, 0.012719836086034001, 0.133646145462989, -0.04637252539396201, 0.048077937215566004, 0.060432367026805, 0.0338946133852, -0.131050169467926, 0.027905013412237, -0.040155928581953, -0.046772219240665006, 0.11350460350513401, -0.046988625079393005, -0.081813067197799, 0.043222069740295, -0.028333958238363002, 0.07969877868890701, -0.013870751485228, -0.07469534873962401, -0.06992254406213701, -0.159254297614097, 0.012125222943723, -0.021960167214274, -0.100508481264114, 0.037038598209619, 0.11677511781454, -0.083890974521636, -0.009492668323218, -0.093488112092018, -0.045937921851873, -0.025148192420601, -0.009285310283303, 0.029524130746722003, -0.07499048858880901, 0.008314432576298, 0.033856622874736, 0.005709490273147, 0.049969922751188, -4.3034267783268234e-33, -0.026116503402590002, -0.049829170107841006, 0.004885809961706, 0.016206802800297, -0.029541511088609, -0.032862212508916, -0.037400748580694004, 0.071134626865386, -0.072638370096683, 0.0071613122709090005, 0.06035408005118301, -0.037200804799795005, 0.011339586228132002, -0.032129235565662, -0.012334888800978001, 0.058029301464557, -0.031934075057506, -0.05869968235492701, -0.058502055704593006, -0.038203541189432005, 0.017780691385269002, 0.048114262521266, -0.044565118849277004, 0.014114661142230001, -0.015436967834830001, 0.035264674574136005, -0.021589584648609002, -0.015594578348100002, 0.07447796314954701, 0.14233386516571, 0.019289392977952003, -0.074904240667819, -0.079134784638881, 0.032466787844896004, 0.041802037507295005, -0.052810024470090006, 0.0015132868429640002, 0.041645932942628, 0.074991382658481, -0.049443621188402, 0.001723639550618, -0.004839315079152, -0.011535170488059, 0.058126758784055, 0.054327294230461, 0.040306519716978004, 0.049670044332742004, 0.045570783317089004, -0.080188333988189, -0.01240689586848, -0.062479488551616, -0.027863934636116004, 0.086560241878032, -0.006243692710995, 0.03010825254023, 0.001155265024863, -0.06948651373386301, 0.036039989441633, 0.119094803929328, -0.020540686324238, -0.006805072072893, -0.005995507352054, 0.10142463445663401, -0.000242752750637, 0.024018479511141003, -0.006660753395408001, 0.002956565003842, -0.026358904317021002, -0.024540174752473002, 0.047690864652395006, 0.07937974482774701, 0.066297553479671, -0.09099218994379, -0.021650496870279003, -0.002991398097947, 0.012963087297976001, 0.002518975874409, 0.09478733688592901, -0.013921774923801, 0.054747391492128004, -0.035146914422512006, 0.08135376125574101, 0.055322848260402006, -0.03149377554655, -0.010453677736222002, -0.015137019567191, 0.024935938417911002, 0.058907359838485, -0.05589624121785101, -0.028646403923630003, -0.00018158937746100002, -0.024150621145963003, -0.021756790578365003, 0.068189479410648, 0.06086191907525001, -3.960547090287036e-8, -0.05858923494815801, -0.024598322808742003, -0.04805235564708701, -0.051335331052541004, 0.009773245081305, -0.075288191437721, 0.048766359686851, 0.13078944385051702, -0.03821911662817, 0.035696700215339, 0.096011705696582, -0.052726943045854006, -0.060746889561414004, 0.042371872812509, 0.01251792628318, -0.027296824380755, 0.028358995914459003, -0.034271527081727, 0.000434112444054, 0.009743443690240002, -0.06897117197513501, -0.030419118702411003, 0.025137243792414003, 0.058249082416296005, 0.007914659567177, -0.033761542290449004, -0.066863909363746, -0.029541457071900003, 0.070092968642711, 0.027679545804858003, 0.064587734639644, 0.008117828518152001, 0.139540269970893, 0.035336449742317005, 0.025665873661637, 0.05857535824179601, -0.017346978187561, 0.0017898293444880001, -0.009230216965079, 0.002251130295917, -0.033244013786315, -0.047828368842601006, -0.025563240051269, -0.026524936780333002, 0.09135203808546001, -0.052505481988191, -0.05280617624521201, 0.015575052239000001, -0.099836707115173, 0.037293173372745, -0.049829035997390005, -0.040346350520849006, 0.018971333280205, -0.07770027965307201, 0.036551825702190004, 0.022507457062602, -0.029972173273563003, -0.036792490631341004, 0.041225593537092, -0.018817560747265, -0.023578666150569003, 0.06542570143938001, 0.017894547432661, -0.008199339732527 ]
0704.0011
Computing genus 2 Hilbert-Siegel modular forms over $\Q(\sqrt{5})$ via the Jacquet-Langlands correspondence
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $\Q(\sqrt{5})$. In those examples, we identify Hilbert-Siegel eigenforms that are possible lifts from Hilbert eigenforms.
[ "math.NT", "math.AG" ]
[ -0.067605838179588, 0.008281525224447, 0.005605866201221, -0.06725806742906501, -0.046513736248016004, 0.001582311931997, -0.036930363625288, 0.035048779100179006, -0.019718281924724003, -0.041782297194004, 0.022027933970093002, 0.025886964052915, -0.015359689481556001, -0.014765973202884001, -0.057078883051872004, -0.009834254160523, -0.04715104401111601, -0.016993623226881003, -0.017970645800232003, 0.021090578287839, 0.051618713885545, 0.009604496881365, -0.06914431601762701, 0.031814727932214, 0.069669134914875, -0.002035837853327, 0.07007373124361001, 0.088261932134628, 0.055760268121957, -0.08556962013244601, -0.050541225820779, 0.013661994598805, 0.017422040924429002, -0.015941619873046, -0.018634455278515, -0.006022497080266, 0.071190893650054, 0.054561868309974004, -0.0047230557538560005, -0.04788105189800201, -0.019926378503441002, -0.027394611388444002, -0.071723155677318, 0.009438583627343, -0.00363299017772, -0.037550166249275006, 0.046342115849256, 0.018302772194147002, 0.039351239800453006, -0.10682950168848, -0.030525512993335002, -0.011165969073772, 0.010772029869258001, 0.061336040496826005, -0.057972386479377004, -0.06022177636623301, 0.031562194228172004, -0.058876145631074, -0.006309018470346, 0.056852743029594005, -0.007529990281909001, 0.051333498209714, -0.031593594700098, -0.044227499514818004, -0.08480881899595201, 0.048431251198053006, 0.007328446488827, -0.10962442308664301, -0.016473745927214, -0.019939204677939002, -0.038492940366268005, -0.024757225066423003, 0.045837555080652, 0.001195592689327, -0.07662698626518201, 0.011954957619309, -0.10108825564384401, -0.011280355043709, -0.038884300738573005, 0.007089193910360001, -0.006416549906134001, 0.018333330750465, 0.054762825369834005, -0.024671502411365002, 0.044817212969064005, -0.027536468580365, -0.07612614333629601, 0.031622994691133, 0.10783086717128701, -0.032891817390918, 0.030555453151464, -0.024971444159746004, -0.044089820235967005, 0.020007358863949002, -0.12143538892269101, 0.050674807280302006, 0.08724875748157501, 0.067191772162914, 0.022516665980219, 0.039175692945718, 0.04914492368698101, -0.005457781255245001, -0.022491035982966003, -0.017315492033958, 0.07295589894056301, 0.027966674417257004, 0.065842680633068, 0.036227386444807004, -0.042637385427951, -0.13142408430576302, -0.040031056851148, -0.047388821840286005, -0.05327433720231001, -0.001107543357647, 0.061405669897794, 0.009337467141449, 0.044534370303153006, 0.040540106594562, -0.090812966227531, 0.038975775241851, 0.043391704559326005, -0.00624977517873, 0.042955800890922005, 0.038078144192695, -0.011064909398555001, 0.023936355486512, -0.15982511639595, 2.567873837856018e-33, 0.092778272926807, 0.19148713350296, 0.009219749830663001, 0.108008183538913, -0.080377750098705, -0.039535257965326004, -0.010559596121311, 0.050972357392311006, 0.043581563979387006, 0.008157643489539, 0.0363649725914, -0.013627004809677, 0.070541083812713, -0.099041245877742, 0.045242976397275, -0.021007167175412, -0.08325857669115001, -0.019187727943062, 0.017795838415622, -0.065665021538734, 0.07760456949472401, 0.035168293863534004, 0.012452758848667, -0.025393210351467, 0.058857917785644004, 0.11926553398370701, 0.087177887558937, 0.0066339033655820005, 0.025961872190237004, 0.05913161113858201, -0.016235625371336, -0.049940388649702, -0.047307793051004, -0.017105154693126002, 0.041374430060386005, -0.0020221446175120003, 0.0022511936258520003, -0.0029970246832810004, 0.034457769244909, -0.058879632502794, 0.0004902755608780001, -0.022545939311385002, -0.005738585256040001, -0.019526936113834003, 0.020357012748718, 0.028521018102765004, 0.051108058542013, 0.069398321211338, 0.06324627995491, -0.10568142682313901, -0.0024903416633600003, -0.032347582280635, -0.002336720703169, 0.076610766351222, 0.07741872221231401, 0.035314690321683, -0.010304389521479001, 0.005782151594758001, -0.034699644893407, 0.070019848644733, 0.07116086781024901, -0.00921166036278, -0.10428596287965701, -0.038031812757253, -0.065002739429473, -0.032360818237066005, -0.042615205049514, -0.047758415341377, 0.035440493375062006, 0.106736227869987, -0.020179321989417003, 0.021778041496872003, 0.036178942769765, 0.024662723764777003, 0.06550996005535101, -0.10633772611618, -0.004339717328548, -0.056520681828260005, -0.06223697215318601, 0.033031713217496005, -0.007960873655974001, 0.010150661692023001, -0.031525880098342, -0.006184502970427001, 0.012659523636102002, -0.107793524861335, 0.040650617331266, 0.015808101743459, -0.072902560234069, -0.105697877705097, 0.011133018881082, -0.07011092454195, 0.034109938889741, 0.023191528394818, -0.029648019000887003, -2.2783051308683482e-33, 0.052600104361772, -0.052385561168193005, -0.009183889254927, 0.021315261721611002, 0.011411430314183001, -0.021790727972984, 0.0006286166026250001, 0.027017567306756002, 0.000766357581596, 0.030425360426306003, -0.030677253380417, 0.009095109067857, 0.062864370644092, 0.0028269924223420003, 0.042702879756689, -0.023083597421646, -0.007847418077290001, -0.05749268084764401, 0.009821122512221002, -0.044870249927043006, -0.097160264849662, -0.014898498542606001, 0.031514972448349, -0.027510002255439002, -0.008400062099099001, 0.060846433043479003, -0.015816690400242, -0.0036714610178020003, 0.023299304768443004, 0.09822295606136301, 0.007448543328791001, -0.08725533634424201, -0.016276976093649, 0.0027792067267000003, -0.112242884933948, 0.012018267996609001, 0.026142472401261004, 0.022755037993192003, -0.0018085489282380002, 0.043540738523006, -0.039777748286724, -0.004155069589614, 0.08820562809705701, -0.008482374250888, -0.04046731442213, 0.042351692914962005, 0.039364878088235, 0.083894453942775, 0.0029478480573740004, -0.057587083429098004, 0.071831405162811, -0.040026117116212005, -0.12313361465930901, 0.098914355039596, -0.054522555321455, 0.0020754062570630004, 0.009324764832854, 0.01445922628045, -0.052769672125577004, 0.019400659948587, 0.005768034607172, 0.035078559070825, -0.038170870393514, -0.000574196048546, 0.061073556542396004, -0.08325868844985901, 0.026444407179951, 0.01334633398801, -0.0015965864295130001, 0.031448706984519, 0.018856199458241, -0.105702780187129, 0.055669669061899005, 0.034464370459318, 0.013054552488029001, 0.015358471311628001, -0.022288441658020002, 0.056470911949872006, 0.032831005752086, 0.0017042537219820002, 0.07179929316043801, -0.047631673514842, -0.060958802700042, 0.018766531720757002, -0.032276973128318, -0.026695938780903, 0.060364924371242, 0.058696430176496006, 0.022413779050111, -0.050032068043947005, 0.023248312994837, 0.067928656935691, 0.065777890384197, 0.10928985476493801, 0.090847611427307, -3.11187697832338e-8, 0.08510781824588701, -0.0433194860816, -0.015674149617552, -0.059754587709903, -0.0044672396034000006, -0.011638483963906002, -0.046530187129974004, 0.06527994573116301, 0.021733755245804003, 0.032044067978858004, -0.008610180579125, 0.03012916073203, 0.001166496193036, -0.002754203276708, -0.031298428773880005, 0.011214520782232, 0.053082320839166, 0.056983634829521006, -0.006021197419613, -0.041695959866046, 0.053850043565034006, -0.043725851923227005, -0.030594257637858002, 0.008840694092214, -0.08268919587135301, -0.032316930592060006, -0.072472222149372, -0.082762643694877, 0.028230395168066, 0.033760119229555005, -0.019896503537893, 0.05016450211405701, 0.056810516864061, -0.046966090798377005, -0.040433820337057, 0.073981761932373, -0.070676177740097, -0.028065815567970002, 0.018701042979955, 0.103054009377956, 0.068946100771427, 0.027834199368953, -0.062694899737834, -0.023485612124204, 0.106281824409961, 0.0085802199319, -0.019211968407034003, 0.020401680842041, 0.033382285386323006, 0.070241339504718, -0.086311265826225, -0.009038256481289001, -0.00803530588746, -0.013964767567813001, -0.08104932308197, -0.059542100876569005, -0.076023332774639, -0.05447606742382, 0.07814583182334901, -0.035031914710998, -0.036201730370521004, 0.047531254589557, 0.015443121083080002, 0.038211286067962 ]
0704.0012
Distribution of integral Fourier Coefficients of a Modular Form of Half Integral Weight Modulo Primes
Recently, Bruinier and Ono classified cusp forms $f(z) := \sum_{n=0}^{\infty} a_f(n)q ^n \in S_{\lambda+1/2}(\Gamma_0(N),\chi)\cap \mathbb{Z}[[q]]$ that does not satisfy a certain distribution property for modulo odd primes $p$. In this paper, using Rankin-Cohen Bracket, we extend this result to modular forms of half integral weight for primes $p \geq 5$. As applications of our main theorem we derive distribution properties, for modulo primes $p\geq5$, of traces of singular moduli and Hurwitz class number. We also study an analogue of Newman's conjecture for overpartitions.
[ "math.NT" ]
[ -0.112580642104148, 0.001256066723726, 0.045214086771011006, 0.051779761910438, 0.032096832990646, 0.09754883497953401, 0.07909372448921201, 0.12439208477735501, 0.014146298170089002, -0.026736909523606002, -0.028712304309010003, 0.030004290863871002, 0.022874366492033, -0.012021169066429001, -0.02164950966835, -0.07671708613634101, -0.046778999269008005, -0.055891979485750004, -0.0032163471914820004, 0.036001220345497, -0.002328493632376, 0.018818181008100003, -0.014226633124053001, 0.010301264934241001, 0.081381976604461, -0.065583236515522, -0.024240087717771003, 0.056744817644357, 0.039775948971509004, -0.025633407756686002, 0.004201322328299, 0.035194922238588, 0.004077507182955, -0.034263595938682, 0.06434992700815201, -0.013211182318627002, 0.046102665364742, 0.044931508600711004, -0.0009437942062500001, -0.044236995279788006, 0.055443402379751004, 0.039316233247518005, -0.05343559011816901, 0.015700750052928, -0.031788740307092, 0.008555078878998, 0.08170511573553, 0.046201933175325005, -0.059151098132133005, -0.033889543265104, 0.020274439826607, 0.102491080760955, 0.054132606834173, 0.01642657443881, -0.09474535286426501, -0.083029553294181, 0.014020939357578002, -0.09377641230821601, 0.010787794366478, 0.014376441948115002, -0.08285702019929801, 0.026101047173142003, -0.038484368473291, -0.022216938436031, -0.008736632764339001, -0.011765526607632, 0.024583671241998003, -0.075886145234107, 0.05385071784257801, 0.009237049147486001, 0.030781297013163, 0.029094811528921002, -0.037875514477491004, 0.008618746884167, -0.036597561091184005, -0.010294285602867001, -0.06386371701955701, -0.066055171191692, -0.113973729312419, -0.010333850048482, -0.006997997406870001, -0.028928734362125, 0.033668588846921005, -0.08064213395118701, 0.08114774525165501, 0.010085029527544, -0.09360267966985701, 0.035783622413873, 0.034806117415428, 0.036419577896595, -0.015938779339194003, -0.023531513288617002, 0.031840633600950005, 0.08284214138984601, -0.070473626255989, 0.052986603230237, -0.013267643749713, 0.020307609811425, 0.056360024958848, 0.06531511247158, 0.002716036047786, -0.010877740569412, 0.036656957119703, -0.020267888903617002, 0.00980119779706, 0.06180952116847001, 0.0036498974077400002, 0.0044126124121240005, -0.00042123181628900004, -0.053126499056816004, 0.027602307498455003, -0.103102549910545, 0.029116434976458, -0.033584851771593004, -0.005960522685199, -0.017329139634966, 0.046726182103157, 0.09300827234983401, -0.07199415564537001, 0.005125930532813, 0.07167649269104001, -0.018169643357396, -0.08847261965274801, 0.020387042313814, -0.00596541725099, 0.022958027198910002, -0.1103982552886, 1.9914051633990292e-33, 0.059963319450616004, 0.046760015189647, -0.017996011301875, 0.046211618930101006, 0.017731199041008002, 0.038190156221389, 0.028510630130767003, 0.096854664385318, 0.01822305470705, 0.0007845343789080001, 0.008326171897351001, 0.0016864789649840002, 0.027733214199543003, -0.07861997932195601, 0.016389803960919002, -0.020239612087607002, -0.00007435865700244904, -0.019966334104537003, 0.071875341236591, -0.060640383511781006, 0.044156998395919, -0.007873530499637, 0.035906042903661, 0.05117765069007801, 0.12925888597965202, 0.076005764305591, 0.038637381047010005, -0.057546410709619, -0.05215020477771701, 0.052365850657224, -0.020368803292512002, 0.011662789620459002, -0.008771345950663001, -0.011810176074504, 0.025614649057388, -0.04865713045001, -0.067442074418067, 0.011125996708869, -0.07748179882764801, 0.034488297998905, -0.043059643357992006, 0.05289373919367701, -0.06933055818080901, -0.07164040952920901, 0.009060421027243, -0.045330546796321, 0.104441806674003, 0.018339803442358003, 0.035271052271127, -0.022382389754056, 0.002604227280244, -0.032588522881269004, -0.01631935313344, 0.033323228359222, 0.011289863847196002, 0.046999134123325, 0.0024919935967770003, 0.018217615783214, 0.00014931996702200002, 0.048552967607975006, 0.05663767084479301, 0.014364414848387002, -0.073420643806457, -0.027110375463962003, -0.045224294066429006, -0.08041813224554001, 0.054866187274456, -0.029703810811042, 0.050760511308908005, 0.023485438898205, -0.025205502286553, 0.068166956305503, -0.023830726742744, 0.0058496431447560004, 0.021164111793041, -0.054987240582704, -0.051124662160873004, -0.014631504192948001, 0.0008629048825240001, 0.043229684233665, 0.035170696675777005, -0.01911786943674, 0.059144556522369, -0.0022717814426860003, -0.02122931741178, -0.077071115374565, 0.016075991094112, 0.020417125895619, -0.013219923712313002, -0.07948667556047401, 0.057349227368831, -0.073871634900569, 0.021488580852746002, -0.016914604231715, -0.035124849528074, -1.1887696309694061e-33, -0.045912314206361, -0.06482467800378801, -0.011019032448530001, 0.028974875807762004, -0.06610045582056001, -0.019152741879224, 0.009140870533883001, 0.086470037698745, 0.014985071495175, 0.014459189027547002, 0.040695179253816, -0.019340239465236, 0.038759220391511, 0.029336085543036003, -0.027707180008292, -0.053574893623590004, -0.010726477950811001, 0.1293326318264, 0.002887471113353, -0.01671715080738, -0.08648864924907601, 0.0021019394043830003, 0.020365444943308, 0.032523389905691, -0.11092384904623001, 0.030639050528407003, -0.050737418234348006, -0.026804238557815004, 0.033281374722719005, 0.11227426677942201, -0.0009090007515620001, -0.041113484650850005, -0.0282330699265, -0.093517631292343, -0.031837668269872, -0.052462052553892004, 0.07592120766639701, 0.049107871949672005, -0.005699614528566, 0.085620149970054, 0.035557780414819, -0.007487076800316001, 0.137996777892112, -0.056167591363191, -0.041625041514635, -0.022010028362274003, 0.086489185690879, -0.008991805836558, -0.015146559104323002, -0.057562533766031, 0.025391740724444, -0.052326459437608004, -0.008637609891593, 0.13357777893543202, -0.017852198332548003, -0.07358180731534901, 0.025093732401728002, 0.037936512380838006, -0.012197986245155001, -0.038510732352733, -0.01261293515563, 0.074204824864864, -0.032127562910318, 0.014672422781586002, 0.046395894140005, -0.055953372269868004, -0.017091827467083, -0.07147090882062901, 0.006467994768172, 0.024276340380311002, -0.020202085375785002, -0.12297514081001201, 0.07110408693552, 0.042374297976493, -0.042659655213356004, 0.06449314951896601, 0.015343308448791, 0.013721446506679, -0.021721564233303, 0.051211327314376005, -0.07280156016349701, -0.058843530714511004, -0.09731506556272501, -0.006454345770180001, 0.022319875657558, -0.05313387885689701, 0.07201329618692301, 0.045666255056858, -0.012017328292131, -0.045591499656438, 0.005844338797032, 0.067494802176952, 0.154776826500892, 0.071130543947219, 0.12056732922792401, -3.613699206539422e-8, 0.04608866572380001, -0.060608409345149, -0.146790608763694, -0.041287370026111006, 0.10074459761381101, 0.0130578847602, -0.017332088202238, -0.006652756128460001, -0.030905276536941, 0.06729733198881101, 0.056443404406309, 0.005212919786572, 0.036794420331716, 0.008665266446769, 0.009917001239955, 0.033506918698549, 0.010376491583883, 0.069115005433559, -0.010263240896165001, -0.05705711990594801, -0.01463935803622, 0.033953730016946, 0.000773211068008, -0.061515066772699, -0.099311716854572, -0.0026961511466650004, -0.072295673191547, -0.11839897185564001, -0.0018765837885430002, 0.015455831773579001, -0.028503794223070002, 0.034265935420989005, -0.003068736288696, -0.073279574513435, 0.005510331131517001, 0.061037003993988, 0.041610743850469006, -0.082298964262008, 0.008758996613323, 0.04814182594418501, 0.066749610006809, -0.031581401824951005, -0.023172453045845, -0.012933153659105, 0.123449027538299, -0.058987457305192004, -0.030586695298552003, 0.025312883779406003, -0.07080578804016101, 0.06394341588020301, -0.057666864246129004, -0.004834790248423, -0.01236957591027, -0.024040207266807, 0.007132320199161, 0.015411492437124, 0.015731628984212, -0.10187668353319101, 0.032465431839227, -0.038232263177633, -0.00027611301629800004, -0.006885117385536, -0.0015600431943310002, 0.034237261861562 ]
0704.0013
$p$-adic Limit of Weakly Holomorphic Modular Forms of Half Integral Weight
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(\mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $\Gamma_{0}(4N)$ for $N=1,2,4$. A proof is based on linear relations among Fourier coefficients of modular forms of half integral weight. As applications we obtain congruences of Borcherds exponents, congruences of quotient of Eisentein series and congruences of values of $L$-functions at a certain point are also studied. Furthermore, the congruences of the Fourier coefficients of Siegel modular forms on Maass Space are obtained using Ikeda lifting.
[ "math.NT" ]
[ -0.088236957788467, 0.023266704753041, 0.09538872539997101, 0.021000385284423002, 0.077232584357261, 0.045368857681751, 0.043433211743831, 0.126293629407882, 0.017773890867829, -0.06884355843067101, 0.012223764322698002, 0.007124909199774001, -0.016433656215667003, -0.023412674665451, 0.01773103326559, -0.06281114369630801, -0.055471129715442005, -0.002270817523822, -0.035855419933795006, 0.06601896136999101, 0.10511995851993501, 0.011363379657268, 0.011923046782612001, 0.028512207791209002, 0.045916818082332, 0.024000259116292003, 0.018825920298695002, 0.08317328244447701, 0.050117928534746004, 0.000535094586666, -0.039243023842573006, -0.040076505392789, -0.002379260025918, -0.037325304001569005, -0.001324207987636, -0.006569934543222001, 0.07343679666519101, -0.015672031790018002, 0.009618435055017001, -0.049778915941715005, 0.024196144193410003, 0.08557800948619801, -0.031636599451303, -0.02335181646049, -0.084063120186328, -0.014369954355061, 0.06908053159713701, -0.021613320335745003, -0.037882711738348, 0.00002635385499161202, -0.015609858557581001, 0.047832444310188, 0.019642727449536, 0.039874598383903004, -0.079469159245491, -0.08658233284950201, -0.012344880960881, -0.031548462808132005, 0.067420125007629, -0.003994449507445001, -0.038263034075498005, 0.011856405995786001, -0.041273597627878, -0.059093348681926006, 0.015659179538488, 0.00247983704321, 0.016767406836152, -0.135624051094055, -0.017437193542718003, -0.018429193645715002, 0.047534924000501, 0.006889618933200001, -0.046060223132371, 0.010544134303927, -0.09545415639877301, 0.0057573793455950005, -0.135283708572387, -0.055585999041795, -0.097207114100456, -0.020745079964399, 0.050405643880367, -0.019595965743064003, 0.021913394331932002, -0.031753249466419005, 0.028174314647912, -0.011895031668245001, -0.089079648256301, 0.039497178047895, 0.057351153343915, -0.008468833751976, 0.060770109295845004, -0.010805863887071, -0.019557503983378, 0.06951955705881101, -0.067791678011417, 0.028824580833315003, -0.026284525170922002, 0.09180039912462201, -0.0032921072561290002, 0.052530907094478003, 0.021434670314192, 0.036580078303813005, -0.015769826248288002, -0.024792877957224003, 0.007132054772228001, 0.033209674060344, 0.025323830544948002, -0.012238442897796001, -0.024863196536898002, 0.018353758379817002, -0.037399187684059004, -0.103403829038143, 0.042853627353906, -0.0017931517213580002, 0.014079935848712002, 0.004714457318186, 0.076625391840934, 0.024963952600955002, -0.07188917696475901, 0.030743287876248002, 0.009350825101137, -0.005989013705402, 0.050845298916101005, 0.022752918303012, 0.09692233800888, -0.018471455201506, -0.168419256806373, 2.5788094250675194e-33, 0.07211413234472201, 0.06999944150447801, 0.023238636553287003, 0.10140542685985501, -0.023258801549673, 0.004760568495839001, -0.002911341376602, 0.08313523977994901, 0.028313910588622003, 0.010674817487597, -0.037204086780548005, 0.032532971352338, 0.044449124485254, -0.07413806766271501, 0.04561473429203, -0.016152709722518, 0.055434025824069005, 0.0077729881741100005, 0.072066836059093, 0.00008708416135050358, 0.042351506650447006, 0.0008294162689700001, 0.08732192963361701, 0.0609364323318, 0.09500452876091, 0.052835889160633004, 0.017346879467368, 0.016548540443181003, -0.031617406755685, 0.050764877349138, 0.035908915102481, -0.05607450008392301, -0.01995300501585, -0.089275680482387, 0.035629712045192004, -0.049881897866725006, -0.073544926941394, 0.010467277839779, -0.04796203598380001, -0.004130880814045001, -0.009347915649414, 0.0032995191868390003, -0.053032021969556004, -0.024200711399316, -0.024789586663246002, 0.013571562245488, 0.05175033584237, 0.071933336555957, 0.054089579731225, -0.038967076689004, 0.043492611497640006, -0.040929995477199006, -0.080186635255813, 0.011081496253609002, 0.005242170765995, 0.033977042883634005, -0.09931230545043901, 0.00275452597998, -0.010370991192758, 0.067111261188983, 0.090791806578636, 0.016864808276295003, -0.041657257825136004, 0.052262693643569, -0.027770262211561002, -0.078100316226482, -0.005104843992739001, -0.012838031165301002, 0.047167181968688, 0.017000548541545, -0.032553266733884, -0.067054398357868, 0.022315999493002003, 0.05508509650826401, 0.019925406202673003, -0.058088764548301, -0.048737648874521006, -0.076068542897701, 0.011840247549116, 0.08839774876832901, -0.016264509409666002, -0.0028022292535750002, 0.027488322928547002, -0.00562198460102, -0.015813311561942, -0.08387281000614101, 0.033473752439022, 0.004639106336981, -0.050115182995796, -0.06514615565538401, -0.015499874949455001, -0.097058281302452, 0.004182562697678, -0.050379835069179, -0.07343792170286101, -3.547212160659644e-33, 0.027402311563491002, -0.06420237571001, -0.014713252894580002, -0.057991847395896, -0.084274902939796, 0.033046375960111, 0.031360231339931, 0.034937363117933, 0.026486720889806, 0.026352945715188, 0.11240056902170101, -0.038142461329698, 0.05343047901988, 0.045286402106285005, 0.022543502971529003, -0.07435967773199001, -0.05383457988500501, 0.04457908868789601, 0.036343149840831, -0.037585575133562005, -0.064487814903259, -0.029310464859008, -0.024026857689023, 0.051285222172737004, -0.09916316717863001, 0.019125556573271002, -0.017740944400429, 0.009030056186020001, 0.035863857716321, 0.078394681215286, -0.015443503856658, -0.022475196048617002, 0.010520111769437, -0.010521357879042001, -0.06599611043930001, -0.03964702039957, 0.034565083682537, 0.039120797067880006, 0.026051335036754, 0.071300700306892, -0.004671618342399, -0.00035966988070800003, 0.11138854920864101, -0.057869780808687, -0.084236122667789, -0.062984079122543, 0.085947170853614, -0.043856732547283006, -0.052681904286146004, -0.062814764678478, 0.020469348877668003, -0.103041097521781, -0.043318014591932005, 0.066447362303733, -0.020793689414858003, -0.044226713478565, -0.042331598699092005, 0.029564155265688, -0.030330974608659002, 0.016198340803384, 0.011389675550162001, 0.035166285932064, 0.028397390618920004, 0.0676781386137, 0.052993342280387004, -0.05095431208610501, 0.033516887575387004, -0.11366802453994701, 0.00046640730579300003, 0.006316950079053, -0.018356207758188, -0.096598416566848, 0.099938325583934, 0.11766161024570401, -0.000380453740945, 0.023497313261032, 0.005006676539778001, -0.010041178204119, -0.053963463753461005, -0.022533293813467, -0.083960048854351, -0.074774973094463, -0.09012205898761701, -0.064136549830436, -0.012787669897079001, -0.032973028719425, 0.041265562176704004, 0.038457054644823005, 0.009247073903679001, -0.08266389369964601, -0.015833036974072002, 0.028606908395886, 0.12512998282909302, 0.09066990762948901, 0.11263119429349801, -3.761234168564442e-8, 0.018719788640737003, -0.019513089209794002, -0.07258066534996001, -0.009718183428049, 0.036233037710189, -0.005018661729991001, -0.048223800957202, -0.006044274196028001, -0.020013248547911002, 0.043921843171119, 0.05057156085968, 0.011724540032446001, -0.017232859507203, -0.018990738317370002, -0.0020072816405440003, -0.010506002232432001, 0.008842865005135, 0.031840164214372, -0.005916057154536, -0.06853462755680001, 0.016761697828769, -0.009408568032085, -0.004960952792316, -0.024272862821817003, -0.029392629861831002, -0.0417360663414, -0.09167275577783501, -0.058250878006219, -0.022346680983901003, 0.041846986860036, 0.041353043168783, 0.00026842439547100004, 0.070574171841144, -0.098458275198936, 0.026708751916885, 0.012385687790811001, 0.015160871669650001, -0.060649130493402, 0.008341551758348, 0.11418750882148701, 0.073455773293972, -0.026991518214344003, -0.0019453607965260003, -0.026364725083112002, 0.148247137665748, -0.0017395124305030001, -0.024524036794900003, 0.066093645989894, -0.027660170570015002, 0.065051347017288, -0.018349260091781002, 0.04898140951991, -0.07829510420560801, 0.008604750968515, -0.004731323570013, -0.0015829178737470002, -0.016725981608033, -0.06533613055944401, 0.023947622627019, -0.050052251666784, 0.048826247453689006, 0.007238784804940001, -0.038690730929374, 0.020136622712016 ]
0704.0014
Iterated integral and the loop product
In this article we discuss a relation between the string topology and differential forms based on the theory of Chen's iterated integrals and the cyclic bar complex.
[ "math.CA", "math.AT" ]
[ -0.060343150049448006, 0.049399618059396, -0.014103047549724001, -0.044075276702642004, -0.090728722512722, 0.018104569986462, 0.07813096791505801, 0.101148404181003, 0.014196658506989, -0.126396164298057, 0.033184885978698, 0.025085173547267, 0.045356169342994, -0.040032636374235, -0.0033664733637120002, 0.039615646004676, -0.14079515635967202, -0.014667367562651001, -0.014310139231383, 0.008330069482326001, -0.069597385823726, 0.044342771172523006, 0.044456686824560006, 0.021600149571895003, -0.024482348933815002, 0.036252845078706006, 0.059809047728776, 0.064556077122688, 0.047214817255735, 0.0013988522114230001, 0.011414149776101001, -0.037919521331787005, -0.008886226452887001, -0.007943523116409001, 0.040891285985708, -0.0030972720123820002, 0.033233791589736, -0.014774398878216001, 0.029581466689705002, 0.062020272016525005, 0.09975681453943201, 0.005356030538678, 0.051777709275484, -0.025019712746143, 0.026209030300378, 0.051027152687311006, -0.093937158584594, -0.003758294973522, -0.101438552141189, -0.044564791023731, 0.023629894480109003, 0.033685818314552, 0.01106484979391, 0.004420348908752, 0.026465930044651004, 0.016441522166132, -0.052261061966419005, 0.046734783798456005, 0.051879588514566005, -0.049946580082178005, 0.09854938834905601, -0.016470905393362, -0.00989029649645, 0.05805080011487, -0.031413275748491, 0.018702495843172, 0.024204686284065, 0.032380696386098, 0.037079498171806, -0.032518379390239, -0.038867872208356004, 0.02461820654571, -0.126981526613235, -0.036779373884201, 0.0028902122285210004, 0.026773346588015, 0.009623867459595, -0.012203714810311002, -0.043106395751237, -0.022703196853399003, -0.030436383560299003, 0.00246283924207, -0.0026081474497910003, -0.069646552205085, 0.018337696790695003, 0.087344050407409, -0.079465627670288, 0.0038623437285420005, -0.01741673797369, 0.033251654356718, 0.010332721285521, -0.077621661126613, -0.041684903204441, -0.027997395023703003, -0.020226942375302003, 0.031603395938873, -0.0034728043247010004, 0.052656669169664, 0.037173066288232005, 0.016124937683343003, 0.047879558056592005, -0.086123041808605, 0.016413874924182, -0.011887249536812, 0.010175081901252, 0.004322326276451001, 0.038469690829515006, -0.001451035146601, -0.03866508603096, -0.028934532776474002, -0.009443681687116, -0.10742028057575201, 0.096154250204563, -0.021038247272372003, -0.09117179363965901, 0.057910688221454, 0.029841374605894002, 0.11421905457973401, 0.04906253144145, 0.048365168273448, 0.057576559484004, 0.010040787048637001, -0.06730324029922401, 0.027118444442749003, -0.062447141855955006, -0.037246972322463004, 0.021275077015161, -3.864047561140591e-33, 0.002751782536506, 0.017870843410491, 0.020882055163383, -0.039418473839759, 0.014285452663898001, -0.050196267664432005, -0.033465530723333005, -0.026670115068554, 0.053204830735921006, 0.015205243602395, 0.018526619300246003, 0.080055452883243, -0.055984985083341, -0.012328303419053001, 0.022818127647042, -0.030604410916566002, 0.047136295586824, 0.020494576543569003, 0.047786511480808, -0.024974662810564003, 0.06571792811155301, 0.11172360926866501, 0.05124919116497, -0.022666994482278, -0.0005965710734010001, 0.044190786778926, 0.052585076540708, 0.033061768859624, -0.047451164573431, 0.019488096237182003, -0.040181469172239005, -0.093874372541904, -0.058489967137575004, 0.048712227493524, 0.0389702655375, -0.012655079364776, -0.023142568767070004, -0.018348893150687003, -0.056256417185068006, 0.078620061278343, -0.014207663945853, -0.07118163257837201, 0.015833815559744002, 0.023205116391181002, -0.068620473146438, 0.08443112671375201, 0.093002952635288, 0.030800761654973002, -0.002255941275507, -0.08081995695829301, 0.0038108311127870004, -0.000760790950153, -0.09846244007349, -0.013940746895968002, 0.006533960811793, -0.009898021817207002, -0.060845151543617006, -0.004171635024249, -0.07341912388801501, 0.12355731427669502, -0.046520642936229005, 0.038801413029432005, -0.032246973365545, 0.001161963213235, -0.10481517761945701, -0.031968828290700003, 0.087326370179653, -0.05869293212890601, 0.068969063460826, -0.050575282424688006, -0.070631235837936, 0.07777145504951401, -0.08920542895793901, -0.030375409871339003, 0.07084383815526901, 0.015125161968171002, -0.07129121571779201, -0.075130075216293, -0.046962276101112005, 0.010517926886677001, -0.063145294785499, -0.06721825897693601, 0.008040887303650001, 0.07817224413156501, 0.058794941753149005, -0.06948616355657501, 0.000800717796664, -0.029590986669063003, -0.017280070111155, -0.041027810424566005, -0.08418531715869901, -0.010425608605146, 0.069525875151157, -0.033266197890043, 0.064536988735198, -2.225811869428944e-34, 0.0014434632612390001, -0.127166077494621, 0.032989386469125005, -0.001215311349369, -0.014917538501322, 0.024059254676103002, 0.023501481860876, 0.074229702353477, -0.035955823957920005, -0.035123910754919004, -0.0032763159833840002, 0.07649592310190201, 0.044402930885553006, -0.015701046213507, -0.01341082714498, -0.011479765176773, -0.00829423032701, 0.025740042328834003, 0.003936049528419, -0.053847815841436004, -0.021442951634526003, -0.014743213541805002, 0.029313193634152003, -0.067494466900825, -0.10832291096448801, 0.067160546779632, -0.009298719465732, 0.026964275166392004, 0.09111892431974401, 0.10785432159900601, 0.091017983853816, -0.079519085586071, -0.016472635790705, 0.038839884102344006, -0.091247476637363, 0.010480347089469001, 0.08261915296316101, 0.031651809811592005, 0.015569114126265, 0.034273561090230005, -0.018331835046410002, -0.019107017666101, 0.071439251303672, 0.035274274647235, -0.029877793043851002, -0.0015479889698320002, -0.033332593739032, 0.040811400860548006, -0.107201598584651, -0.012471375986933, 0.058217238634824, 0.016843896359205, 0.015046498738229, -0.026168711483478, -0.077626578509807, 0.07360090315341901, -0.027639264240860002, -0.031190525740385004, -0.035011921077966, -0.024914227426052003, -0.013853029347956002, -0.035722222179174, 0.04795596376061401, 0.030688492581248002, 0.078364521265029, -0.032490998506546, -0.016827022656798002, -0.134963810443878, -0.041687652468681, -0.056297246366739, 0.098557077348232, -0.046595308929681, -0.043247263878583006, -0.014800726436078002, 0.006642627064138, -0.007790598087012, 0.033057484775781, -0.017852028831839003, 0.047812819480895004, 0.030552629381418003, -0.023072632029652002, 0.024323256686329002, -0.014356952160596001, 0.022826382890343003, -0.010165017098188001, -0.033932223916053, -0.014329809695482, 0.030810330063104, -0.007501335348933, -0.028741592541337003, 0.022830475121736003, 0.049880336970090006, -0.042507216334342006, 0.189380958676338, 0.017313012853264, -2.298970258607369e-8, -0.012983568012714001, -0.07695934921503, -0.088965259492397, -0.048208367079496, 0.0027566475328050003, -0.028270741924643003, -0.05565469339489901, -0.027745692059397004, 0.012987314723432002, 0.040512692183256004, 0.029886417090892, -0.001843065954744, -0.06911962479352901, -0.033349853008985006, -0.020316369831562, 0.002792007522657, -0.040413666516542004, 0.008459530770778, -0.030888132750988003, -0.059366617351770005, 0.044240087270736, 0.015618827193975001, -0.06910648196935601, -0.083204083144664, -0.041586309671401006, -0.095449268817901, -0.046330396085977006, 0.010792059823870001, 0.047997165471315, 0.030184313654899004, 0.045926705002784, 0.05665312334895101, -0.041475482285022, 0.004408541135489, -0.07820027321577, -0.05226465687155701, -0.014864818193018001, -0.070672683417797, 0.028989659622311002, 0.08103745430707901, 0.052903711795806004, 0.008003626950085, 0.06196679174900001, 0.029375124722719, 0.029627392068505003, -0.06803041696548401, 0.040489174425601, 0.094677902758121, 0.034385938197374004, 0.109181761741638, -0.087882257997989, 0.024719838052988, -0.007021662313491, -0.0160275362432, 0.023218827322125, 0.03261075168848, -0.017417954280972002, -0.036235399544239, -0.039607349783182005, 0.011028411798179, -0.072189979255199, -0.026532078161835, 0.081311553716659, 0.013586886227130002 ]
0704.0015
Fermionic superstring loop amplitudes in the pure spinor formalism
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them to calculate the kinematic factors of the one-loop and two-loop massless four-point amplitudes involving two and four Ramond states.
[ "hep-th" ]
[ -0.040885522961616, 0.005749852396547001, -0.04469630494713701, -0.075167782604694, -0.05214345082640601, 0.041496433317661, -0.018258290365338003, 0.084202364087104, -0.048134163022041, -0.074421502649784, 0.055798165500164004, 0.050731323659420006, -0.0049115917645390006, -0.022491207346320003, -0.050831623375415004, 0.059272099286317007, -0.050124935805797, 0.07261320948600701, -0.094393916428089, -0.032556347548961, 0.10909701883792801, -0.051277726888656006, 0.06497649848461101, 0.001103309914469, 0.07389358431100801, 0.009861375205218001, 0.010468382388353, -0.024653637781739002, 0.031863860785961005, 0.047517482191324005, 0.031403642147779, 0.002613176358863, -0.034605488181114, -0.009503469802439001, 0.064075119793415, -0.03410006314516, 0.063729904592037, 0.003006642917171, 0.061495773494243004, -0.0030947679188100003, 0.113942489027976, 0.007815567776560001, 0.041910264641046004, -0.040065690875053, 0.021262090653181003, 0.040445905178785005, -0.028401998803019003, 0.021538961678743, -0.007304451428353001, -0.017035944387316003, 0.09360989928245501, 0.036472089588642, -0.021241547539830003, -0.032469388097524005, 0.001016997732222, -0.008999927900731002, 0.005359257571399, -0.05466739833354901, -0.046218238770961005, -0.037458527833223, 0.030805015936493003, -0.031497847288846005, -0.012551338411867001, 0.009942924603819, 0.06899762153625401, 0.017969718202948, -0.08122159540653201, 0.012491522356867001, -0.035031791776418006, 0.027324300259351002, -0.043071970343589006, -0.031661909073591, -0.088637612760066, 0.017119405791163, 0.007829648442566001, -0.027722649276256003, 0.011169518344104, -0.042624372988939, 0.035308867692947006, 0.09252480417490001, -0.013655011542141, -0.085249654948711, 0.038199391216039005, -0.025990180671215002, 0.021000910550355002, 0.04861357808113, -0.033880937844514, 0.066240720450878, -0.04682369530200901, 0.054123252630233, 0.04766795039176901, -0.101264908909797, -0.09570294618606501, -0.041195437312126, 0.018192404881119003, 0.032813221216201005, -0.03632665798068, 0.034149643033742, -0.073922500014305, -0.037976622581481004, 0.05452468246221501, -0.116861775517463, 0.029506502673029, -0.042166844010353005, 0.022020582109689, 0.049570843577384005, 0.041473396122455, 0.06436201930046001, -0.036000777035951004, -0.036001242697238006, 0.007966117002069001, -0.048059247434139, 0.06866049766540501, -0.015018555335700002, -0.021051358431577002, 0.07673660665750501, 0.028551317751407002, 0.09104103595018301, 0.051769822835922005, -0.036034218966960005, 0.042970594018697, 0.083413422107696, 0.014457724988460001, 0.063548028469085, -0.045671369880437004, 0.027452753856778003, -0.14711704850196802, 1.617815058950459e-33, -0.008644602261483001, 0.06823642551898901, 0.068944074213504, 0.000851502001751, -0.07312686741352001, 0.021359832957386003, -0.058546390384435, -0.056911427527666, 0.12180329859256701, 0.040024165064096, -0.015986932441592, -0.024663239717483004, 0.045963130891323006, -0.08154472708702, -0.010368407703936001, -0.06632759422063801, 0.036076661199331006, -0.029928898438811004, 0.079482898116111, 0.008886567316949001, 0.10298822075128501, 0.12812276184558802, -0.005963786039501, 0.019222585484385, 0.018136043101549003, 0.0032472992315880004, -0.051254872232675004, 0.055249340832233006, -0.07365293800830801, 0.002124603604897, 0.019472608342766002, -0.041530415415763, -0.086779035627841, -0.047438841313123, 0.034293621778488, -0.10614194720983501, 0.045110568404197006, -0.024336405098438003, -0.037183821201324005, -0.013069992884993002, -0.045113757252693, -0.06953549385070801, -0.010109124705195, -0.039792701601982006, -0.07880023121833801, 0.022097919136285, 0.06078372150659501, 0.05720555037260001, 0.091336980462074, -0.0013762753224, 0.015526676550507, -0.010347889736294, -0.031110992655158, 0.027871521189808002, 0.062778323888778, 0.006147454492747, 0.029160929843783004, -0.058122768998146, -0.037882421165704006, 0.08328066766262, -0.07319165766239101, 0.052729502320289, 0.026160871610045003, -0.022074922919273002, -0.035669196397066005, -0.068380802869796, 0.058807447552680005, -0.040278285741806, 0.044893380254507, -0.009534897282719001, -0.100805662572383, 0.09470868855714701, -0.0026756464503700002, -0.046877279877662006, 0.08389817178249301, -0.037773557007312004, 0.009220036678016, -0.09362665563821701, -0.006815995555371, 0.052415344864130006, 0.016309738159179, -0.008816238492727, -0.013862271793186002, 0.029184084385633004, 0.039510704576969, 0.002410649787634, -0.062665946781635, -0.08847435563802701, 0.020217828452587003, -0.07946652919054001, -0.030749838799238004, -0.042919959872961, -0.024289920926094003, -0.011554514989256, -0.020193180069327, -4.3564727976176016e-33, 0.018866669386625002, -0.058209270238876, 0.092031605541706, 0.005425695329904, -0.018565993756055003, 0.042291831225156, 0.024722816422581003, -0.026093715801835, 0.0070534646511070005, -0.047151602804660006, 0.026603491976857, 0.027792613953351003, -0.009191843681037001, 0.032333385199308, 0.110893838107585, 0.037354733794927, -0.048922929912805, 0.0018342206021770002, 0.075462661683559, -0.028104742988944, 0.026437165215611003, 0.07336442917585301, -0.013043256476521001, -0.052012965083122004, -0.036343235522508004, -0.035827439278364, 0.047894105315208005, -0.015555511228740002, 0.11849118769168801, 0.075307339429855, 0.06059125438332501, -0.006688967347145001, 0.017264878377318, 0.08238651603460301, -0.11699589341878801, 0.011486622504889, 0.059984408318996006, 0.025557853281497, 0.024978881701827, 0.0061243190430100005, -0.003562309779226, -0.005342407152056, 0.050107661634683005, 0.031584251672029, 0.0024154500570140003, -0.004656260367482, -0.005214686971157001, 0.035986352711915005, -0.08348862081766101, -0.039964541792869006, -0.053566448390483, -0.060951989144086005, 0.014900575391948001, -0.035032477229833006, -0.070967875421047, -0.018841056153178, -0.06647855043411201, -0.018287351354956002, -0.03757420182228, -0.042198583483695006, -0.002686969470232, -0.078221999108791, 0.0018786059226840002, -0.018038539215922002, 0.038619033992290004, -0.029581530019640003, 0.025270560756325004, -0.056604962795972005, -0.069021046161651, -0.017425093799829, 0.037423275411129005, -0.041099749505519007, -0.038794603198766, 0.018255831673741, 0.08019792288541701, 0.022082107141613003, 0.031132403761148, -0.048379845917224, 0.049188006669282004, -0.022478256374597, -0.073045171797275, 0.07635859400033901, -0.069235272705554, -0.055999793112277006, 0.05482188239693601, 0.035245183855295, -0.06034819036722101, 0.089487917721271, 0.030637938529253003, -0.058636792004108006, -0.029241202399134, 0.07058177143335301, 0.044985674321651, 0.12793192267417902, -0.029454102739691002, -3.569386208823744e-8, -0.037167411297559, -0.006933049298822, -0.060650240629911006, -0.040865033864974004, -0.007155453320592001, 0.025277120992541, -0.07824399322271301, -0.070030100643634, 0.021151460707187, 0.032914880663156, -0.005362929310649, -0.031917728483676, -0.13120305538177401, -0.06470238417387, -0.00022536166943600003, -0.036077238619327004, -0.06273659318685501, -0.020005358383059002, 0.02176403440535, 0.0014101254055270001, -0.023769292980432, 0.070192359387874, -0.054445482790470005, -0.095330163836479, -0.055484518408775, 0.008226313628256, 0.031473968178033, 0.035202290862798004, 0.04900482296943601, 0.014055633917450001, 0.048960864543914004, -0.004758853465318001, -0.016587091609835, -0.05068017914891201, -0.056158281862735006, -0.033965244889259005, -0.079332195222377, 0.023683231323957003, 0.128449022769927, 0.1237208917737, 0.004663872532546001, 0.024898229166865002, 0.076965935528278, 0.06207240745425201, -0.010535796172916001, -0.014409113675355, 0.015376540832221001, -0.007202773354947001, 0.0065245912410310004, -0.0008119546691880001, -0.041529648005962004, 0.031058814376592, -0.0672272965312, 0.015853142365813002, -0.006052214186638, 0.040904242545366, 0.011782212182879, 0.053944885730743006, -0.026280863210558003, 0.071387849748134, -0.02473441325128, 0.013369149528443001, -0.075629144906997, 0.023341303691267003 ]
0704.0016
Lifetime of doubly charmed baryons
In this work, we evaluate the lifetimes of the doubly charmed baryons $\Xi_{cc}^{+}$, $\Xi_{cc}^{++}$ and $\Omega_{cc}^{+}$. We carefully calculate the non-spectator contributions at the quark level where the Cabibbo-suppressed diagrams are also included. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment, if more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
[ "hep-ph" ]
[ -0.12753677368164001, -0.047329951077699, 0.042513266205787006, 0.098003253340721, -0.034018740057945, -0.065036408603191, -0.080124609172344, 0.09019555151462501, 0.032909806817770004, -0.058036148548126006, -0.011139332316815001, 0.018353426828980002, -0.01992442831397, -0.10253332555294001, 0.007385172881186001, 0.021551860496401003, 0.055228926241397004, -0.059409037232398, -0.062458049505949007, 0.021053636446595, -0.051358025521039005, -0.10829972475767101, -0.0040920227766030005, 0.019700771197676003, -0.020071521401405, -0.065270021557807, 0.009838176891207001, -0.010158001445233001, 0.057873558253049004, -0.004148568492382001, 0.006724995095282, 0.016298675909638002, 0.030455179512500003, 0.00001926084587466903, -0.007760815788060001, 0.055104386061429006, 0.08515525609254801, -0.065110944211483, -0.015557033009827002, -0.035912565886974, 0.055399388074874004, 0.07988703250885, 0.0072857737541190005, 0.043669834733009005, 0.028838763013482004, -0.068611398339271, 0.004596638958901, -0.08270039409399, -0.12001097202301, 0.068483188748359, -0.02118307352066, 0.072040930390357, 0.035968903452157, 0.049168054014444004, 0.00682631926611, -0.001351100974716, 0.00537315569818, -0.06804838031530301, 0.061870329082012, -0.008747398853302, -0.043271724134683005, 0.0019298829138270001, -0.0030583310872310003, -0.034208826720714, 0.032298106700181003, 0.011746862903237001, -0.050308644771575005, 0.027826150879263004, 0.031232489272952003, 0.117584437131881, -0.035631004720926, -0.038100142031908, -0.08192105591297101, -0.029292769730091, -0.0011990629136560001, 0.005910302978008, 0.051559437066316, -0.021288556978106003, 0.053152307868003006, -0.07638280093669801, -0.049060076475143, -0.050005793571472, -0.013422012329101, -0.051208738237619005, -0.039215054363012, 0.007374128326773001, -0.040879070758819004, 0.024393273517489003, 0.005808638408780001, -0.038140404969453, 0.06444770842790601, 0.025628298521041003, -0.0182511433959, -0.063527844846248, 0.0221400372684, 0.071425549685955, 0.06986148655414501, 0.044364750385284, 0.026968028396368002, 0.075103767216205, 0.071718044579029, 0.005213064607232001, -0.010998678393661001, 0.0050068390555670006, -0.04156332835555, -0.035032831132411006, 0.057083625346422, 0.005510009825229, -0.020605603232979, 0.016583619639277, 0.04250076785683601, -0.050801102072000004, 0.055718943476676004, 0.013942529447376001, -0.008534296415746, -0.013470364734530001, -0.011035565286874001, 0.11813735961914001, 0.086703099310398, -0.022124934941530002, 0.057399783283472006, 0.01897731795907, 0.058208748698234, 0.039953302592039004, -0.041966553777456006, -0.010372164659202, -0.066143564879894, 3.236453698630464e-33, 0.067431218922138, -0.030200494453310002, -0.008735381998121001, -0.001313052722252, -0.054565113037824006, 0.004058613441884001, 0.01492937002331, -0.005499076563864, -0.029045861214399, 0.033178783953189, -0.017356529831886, -0.012091718614101, 0.012746587395668, -0.057823672890663, -0.026625413447618002, -0.023084361106157, -0.038943707942962, 0.004117485135793001, 0.004358868580311001, -0.022927213460206, 0.09087907522916701, 0.007272563874721001, -0.043027322739362, -0.004691883921623, 0.09032632410526201, -0.011452916078269001, -0.013231020420789, 0.0033263976220040004, -0.096158996224403, 0.025100283324718003, 0.021755449473857002, 0.073870487511157, -0.029980802908539002, 0.038958821445703, -0.024321710690855, -0.032937921583652004, -0.027116335928440004, 0.009431415237486, 0.014650900848209001, -0.08851971477270101, 0.001263104029931, 0.006905108690261, -0.037252180278301, -0.056975524872541004, -0.035830203443765, -0.050903629511594, 0.122707217931747, 0.004928661976009, 0.019861835986375, -0.07976610213518101, 0.010392832569777001, -0.03370938822627, -0.005005446728318001, 0.026805561035871003, 0.001285147387534, -0.045237679034471005, 0.070825710892677, -0.039825011044740004, 0.008345385082066, 0.06749054044485, 0.051273394376039005, 0.056519009172916, 0.077606156468391, -0.026352467015385003, 0.004414197988808001, 0.143017143011093, -0.081294208765029, -0.044581659138202, 0.023133644834160003, -0.030319411307573003, 0.019826628267765, 0.047074150294065004, -0.071631237864494, -0.144176810979843, 0.027387082576751, -0.097956158220767, 0.030339378863573, -0.018657542765140003, 0.028356146067380003, 0.046263378113508, -0.0025296821258960003, -0.06941094249486901, -0.053819265216588, 0.028851298615336002, 0.047817058861255, -0.033612970262765, -0.002382806036621, -0.04962297901511101, -0.08238149434328, -0.006117908749729, 0.032904393970966, -0.044913411140441006, 0.05719566345214801, -0.031415089964866, -0.051418263465166, -3.206538469427991e-33, -0.070888400077819, -0.025523670017719, 0.045525252819061, 0.08875554800033501, -0.004108836874365, -0.012926223687827, -0.090985663235187, 0.077941417694091, 0.020409718155860002, -0.029028130695223003, 0.09227059781551301, -0.011557627469301002, -0.056224700063467005, -0.006119951140135, 0.043253436684608, 0.017091576009988, 0.050878427922725004, 0.030146820470690002, -0.024353642016649003, -0.025010379031300004, 0.075761191546916, -0.025428151711821, 0.006018721498548, -0.035183899104595004, 0.017420481890439002, 0.06042170524597101, 0.09247150272130901, -0.04269878938794101, 0.033186297863721, -0.044933978468179, -0.000207968914764, 0.033722598105669, -0.034845650196075, 0.024736512452363003, 0.040511216968297, 0.023635998368263002, 0.001072516082786, 0.040798947215080004, -0.05554649233818001, -0.07460314035415601, 0.033999152481555, 0.121627062559127, -0.006079971790313001, 0.04292298108339301, 0.031037583947181, 0.009027579799294, -0.036364771425724, 0.044848106801509004, 0.013065290637314, -0.016649400815367, 0.030535310506820002, -0.099526040256023, -0.006623999681323001, 0.111104696989059, -0.045316614210605004, 0.081186786293983, 0.025380954146385002, 0.07049045711755701, -0.009772481396794, -0.04372801631689, -0.08907363563776001, -0.05603374168276701, 0.03409781306982, 0.003854961367323, 0.003709660610184, 0.019397763535380003, 0.006462341174483001, 0.080296471714973, 0.010398497804999001, -0.096844978630542, 0.118350848555564, -0.00421561487019, -0.06155810132622701, -0.025569833815097, -0.014839538373053001, 0.086494654417037, 0.063999503850936, -0.051692385226488, 0.031758427619934006, 0.003286998951807, -0.098575808107852, 0.09035668522119501, -0.009455271996557001, -0.040250301361083006, 0.027099382132291003, -0.070123024284839, 0.014667132869362002, 0.052467122673988, 0.011098713614046001, 0.04812129959464, -0.004958719946444001, -0.044744923710823004, 0.033244624733924005, 0.045422993600368, 0.052276309579610006, -4.976244127874452e-8, 0.049349796026945, 0.027380550280213002, -0.058365497738122, 0.024040063843131003, 0.068083010613918, 0.032880272716283, 0.033303916454315005, -0.050962153822183005, -0.07147017121315001, 0.09044964611530301, 0.10590826719999301, 0.028314152732491, -0.036433849483728, -0.07842992246150901, -0.011569426394999001, 0.053604014217853005, 0.023287260904908003, -0.037035576999187005, -0.018650161102414003, 0.0032662067096680004, 0.060156878083944, -0.023868687450885002, 0.12825380265712702, -0.020990692079067, -0.10906890779733601, 0.006071042735129001, -0.061870619654655006, -0.058180749416351006, 0.021064899861812002, -0.027403203770518, -0.009928526356816, -0.003337244037538, 0.007310514803975001, -0.006344657391309001, 0.046889577060937, -0.06134797260165201, -0.11558091640472401, -0.052827358245849006, 0.09699539095163301, 0.08779713511466901, 0.001354684238322, 0.006646960508078, -0.047992456704378, 0.063416868448257, 0.027387334033846, 0.021164147183299002, -0.09140198677778201, 0.0006088243098920001, -0.07237050682306201, 0.083717569708824, -0.044926624745130005, 0.041622262448072, -0.035023044794797, -0.05538535863161, -0.030495332553982003, 0.0037576986942440002, -0.013801015913486002, 0.085827901959419, -0.047157097607851, 0.002718757139518, 0.09494562447071, -0.058029737323522006, -0.040112223476171, 0.001498792786151 ]
0704.0017
Spectroscopic Observations of the Intermediate Polar EX Hydrae in Quiescence
Results from spectroscopic observations of the Intermediate Polar (IP) EX Hya in quiescence during 1991 and 2001 are presented. Spin-modulated radial velocities consistent with an outer disc origin were detected for the first time in an IP. The spin pulsation was modulated with velocities near ~500-600 km/s. These velocities are consistent with those of material circulating at the outer edge of the accretion disc, suggesting corotation of the accretion curtain with material near the Roche lobe radius. Furthermore, spin Doppler tomograms have revealed evidence of the accretion curtain emission extending from velocities of ~500 km/s to ~1000 km/s. These findings have confirmed the theoretical model predictions of King & Wynn (1999), Belle et al. (2002) and Norton et al. (2004) for EX Hya, which predict large accretion curtains that extend to a distance close to the Roche lobe radius in this system. Evidence for overflow stream of material falling onto the magnetosphere was observed, confirming the result of Belle et al. (2005) that disc overflow in EX Hya is present during quiescence as well as outburst. It appears that the hbeta and hgamma spin radial velocities originated from the rotation of the funnel at the outer disc edge, while those of halpha were produced due to the flow of material along the field lines far from the white dwarf (narrow component) and close to the white dwarf (broad-base component), in agreement with the accretion curtain model.
[ "astro-ph" ]
[ -0.037511166185140006, -0.05568865686655, 0.0011241795727980001, -0.03605855628848, 0.079822167754173, -0.023562548682093003, -0.026458946987986003, 0.038142245262861, 0.022774109616875003, -0.004248030483722001, -0.019943574443459, -0.024234434589743004, 0.046473864465951004, -0.024156967177987, 0.053222186863422005, -0.016029814258217, -0.06672155112028101, -0.093585111200809, -0.006061555817723, 0.047667939215898, -0.012199141085147, -0.01439931243658, -0.005635078996419, 0.07157944887876501, -0.037098325788974006, 0.030889367684721003, -0.061670612543821, -0.066042050719261, -0.009974353015422, 0.004104559775441, 0.023092659190297002, 0.04493049159646, -0.062018174678087006, -0.028538895770907003, -0.006397082004696001, 0.046452708542346004, 0.031475365161895, 0.029768554493784002, -0.019021349027752002, -0.042411897331476, -0.018042800948023, -0.029598942026495004, 0.022997580468654, -0.025106826797127002, -0.038871198892593, 0.025464091449975003, 0.06486379355192101, -0.0074717574752860005, -0.021937847137451002, -0.019564989954233003, 0.0008882291149340001, -0.04951684921979901, -0.026047825813293003, 0.008570558391511001, 0.0025439432356500003, 0.001927269971929, -0.010119193233549002, -0.149151563644409, 0.020321642979979, -0.049506139010190006, 0.0035156612284480003, -0.009893850423395, -0.07777449488639801, -0.039709176868200004, -0.033595729619264006, -0.020082300528883, 0.0020550927147260003, -0.019678184762597, 0.019037252292037, 0.026843825355172, -0.00993573013693, 0.05829153209924601, -0.07878235727548501, -0.020214324817061, -0.037609338760375005, 0.039828535169363, -0.008705856278538001, 0.022654946893453, -0.009601466357707, -0.072192408144474, -0.060074687004089, 0.010969450697302001, -0.004311604425311, 0.008681895211338001, -0.03630706295371, 0.020411800593137002, 0.031992934644222, -0.016622370108962, -0.051944695413112, 0.025297192856669003, 0.023444710299372003, 0.032627135515213006, -0.09428458660840901, -0.057976685464382005, 0.06250983476638701, 0.037265785038471, -0.008546458557248001, -0.040060319006443, 0.094719894230365, -0.044391956180334, 0.028442019596695, 0.011790570802986, -0.06777761876583101, 0.042897149920463, -0.023075049743056002, -0.035114027559757004, 0.063313260674476, 0.06319918483495701, 0.05755503475666, 0.057243138551712, -0.052200816571712, -0.073949217796325, -0.020665656775236, -0.045890886336565004, -0.036698583513498, 0.041945219039916, -0.046598620712757007, 0.078320272266864, -0.084734395146369, 0.069376751780509, -0.047500934451818, 0.141194805502891, -0.024399690330028003, 0.060494221746921005, 0.09354829043149901, 0.00233315420337, -0.00005188840077607893, 4.223838463936462e-33, 0.13131609559059101, -0.027546940371394, 0.011472558602690001, 0.11785957217216401, -0.046996071934700005, 0.008657613769173001, -0.031041961163282002, 0.032763145864009004, -0.0027495564427220003, 0.012552362866699002, -0.043427750468254006, 0.018388632684946, 0.020326429978013, -0.11501915752887701, -0.054961763322353, -0.010258412919938, 0.046185128390789004, -0.031972002238035, -0.08701896667480401, -0.018139421939849, -0.039380718022584006, 0.048046585172414, -0.034264571964740004, 0.000543014961294, -0.004943443927913, 0.04493311047554, 0.03089833818376, 0.00136446300894, -0.093838974833488, 0.043166041374206, -0.008575524203479, -0.051272593438625, -0.085617616772651, 0.091628558933734, -0.014961800538003, -0.0017456812784070002, -0.033077619969844, 0.005102248396724, 0.026382749900221002, 0.061111360788345004, 0.074866771697998, -0.041737105697393, 0.009900570847094, 0.046546135097742004, -0.004170327913016, -0.026991013437509002, 0.104757346212863, -0.025020604953169, 0.036228984594345, 0.058795031160116, 0.08916097134351701, 0.033681031316518, -0.09435983747243801, 0.025946471840143003, -0.05817152559757201, -0.007172007113695001, 0.017269207164645, -0.028708321973681002, -0.038203250616788004, 0.04761905223131101, 0.08899761736392901, 0.05092031136155101, 0.010871694423258001, -0.013218910433351001, 0.016198448836803003, 0.054461855441331, -0.041242830455303005, 0.021386364474892002, 0.024153258651494, -0.011918324977159, 0.0039970837533470005, -0.00888701621443, 0.09317994862794801, 0.048993580043315006, 0.055596735328435, 0.0038839902263130004, -0.011262487620115, -0.026618739590048002, 0.08110541105270301, 0.059677045792341, -0.04343068599700901, -0.046645630151033006, 0.046929687261581005, -0.03010756522417, -0.052633177489042005, -0.021648986265063, 0.049479328095912004, 0.003559904405847, 0.019010191783308, -0.007864285260438001, -0.041615918278694, -0.036709886044263, 0.05265337228775, -0.050358034670352006, -0.048791438341140005, -6.76037454075452e-33, -0.021088153123855, -0.012280354276299001, 0.025288112461566002, 0.010363220237195, 0.021288884803652, 0.053048696368932, -0.028989404439926002, 0.15767821669578502, -0.128960981965065, -0.14362908899784002, 0.0664679184556, 0.082261025905609, 0.014159561134874002, -0.022528236731886003, -0.006592239718884001, -0.025139559060335003, -0.001782945590093, -0.05452607944607701, -0.007878967560827, -0.019184848293662002, -0.018214585259556, -0.16596981883049, 0.048694733530282, -0.034235246479511004, 0.065076678991317, 0.028508588671684, 0.077232629060745, -0.038677845150232, 0.035108339041471, 0.066444784402847, -0.004212229512631001, 0.063590846955776, -0.021071262657642, 0.052189242094755006, -0.053267322480678, -0.013019311241805002, 0.004463037475943001, -0.04670675843954, -0.10917802900075901, -0.076213784515857, -0.038575265556573, 0.035385824739933, 0.12232519686222001, -0.058680713176727003, 0.012258112430572001, -0.079637691378593, -0.047183912247419, 0.120941706001758, 0.038223266601562, -0.026610577479004003, -0.06934404373168901, -0.014657046645879001, 0.03656468167901, 0.077581591904163, -0.020255658775568, 0.062586233019828, 0.061305031180381005, 0.0515075661242, 0.038417369127273004, -0.04342471063137, 0.05994639918208101, 0.030600268393754, 0.06797804683446801, -0.04593069106340401, -0.025251755490899003, -0.09363592416048001, 0.121000379323959, 0.05636667460203101, -0.029145266860723003, 0.021213021129369, 0.038017317652702005, -0.012118933722376001, -0.012404083274304001, -0.017677458003163, 0.056212082505226, 0.036936569958925004, 0.071947127580642, -0.1478061825037, -0.058258794248104005, -0.031163459643721, -0.075269132852554, 0.061360646039247006, -0.049814127385616004, -0.045103356242179, 0.049979191273450005, -0.06747643649578, -0.027067186310887004, -0.11100348830223, -0.008027318865060001, -0.059562537819147006, 0.016543291509151, -0.055006522685289, -0.0365338511765, 0.020668908953666, 0.057589050382375, -5.3023693880049905e-8, 0.077152960002422, 0.060239829123020006, -0.02815038524568, 0.08839880675077401, -0.001526917912997, 0.033140800893306004, 0.0027444348670540002, 0.02858854457736, 0.030951747670769, -0.028081290423870003, 0.110522732138633, -0.024142879992723004, 0.096880815923213, -0.041197627782821, -0.030158342793583003, 0.017868589609861003, 0.004442226141691001, -0.10169570893049201, 0.0034126776736220004, 0.027148703113198003, 0.031964186578989, -0.008812422864139, 0.044735569506883004, -0.06440991163253701, 0.0037171384319660003, 0.03511756286025, 0.010397643782198, 0.04880975559353801, -0.067830435931682, -0.119578517973423, -0.016805469989776, -0.013121585361659001, 0.007181236520409, -0.060374457389116, -0.026005959138274002, 0.024381985887885003, -0.004765263292938001, 0.058768451213836004, -0.045729923993349006, 0.058583777397871004, 0.040290631353855, -0.021586548537015002, -0.028894016519188003, -0.010990887880325002, 0.02861064299941, 0.037626907229423, -0.045220736414194, 0.003280553268268, -0.019485432654619002, 0.017391145229339003, 0.027785334736108003, 0.046731129288673005, 0.058896932750940004, 0.000503400166053, -0.046454779803752004, 0.005201676860451, -0.092845849692821, -0.036701649427413004, -0.043406404554843, 0.009556379169225, -0.019771989434957, -0.048728313297033005, -0.08011082559823901, -0.00590861774981 ]
0704.0018
In quest of a generalized Callias index theorem
We give a prescription for how to compute the Callias index, using as regulator an exponential function. We find agreement with old results in all odd dimensions. We show that the problem of computing the dimension of the moduli space of self-dual strings can be formulated as an index problem in even-dimensional (loop-)space. We think that the regulator used in this Letter can be applied to this index problem.
[ "hep-th" ]
[ -0.042365945875644004, 0.04613734036684, -0.015857541933655, 0.032294437289237005, -0.080166809260845, 0.028965806588530003, 0.10899718850851, 0.066542409360408, 0.053270649164915, -0.07561780512332901, 0.10806211829185401, -0.007266771513968001, -0.04412592202425, -0.033434811979532006, -0.054530844092369, 0.032148890197277, -0.112997844815254, -0.0027109188959, -0.024458561092615003, 0.035050734877586004, 0.053482666611671004, 0.08120249211788101, -0.007755396421998, 0.0076425443403420005, -0.023017447441816, 0.069842532277107, 0.008785741403698, 0.097662799060344, 0.073633268475532, 0.016989089548587, 0.000267513678409, 0.056572623550891, -0.013241061940789, 0.0050946604460470005, -0.003402347676455, -0.0026543347630640004, 0.015881167724728, 0.00043197098420900005, 0.026083199307322003, 0.0006016835686750001, 0.024828743189573003, 0.014490076340734001, 0.014412048272788, -0.030062140896916, -0.02821303345263, 0.007701111026108, -0.029288476333022003, 0.073517203330993, -0.042149279266595, -0.070233665406703, 0.023307343944907, 0.045865561813116004, -0.067578412592411, 0.040258452296257005, 0.060346737504005, -0.019323410466313, -0.043796308338642, -0.042440991848707005, 0.037923768162727, 0.021296901628375, 0.082252085208892, 0.023014001548290003, -0.023887800052762, -0.056538458913564, 0.011021183803677, 0.040599323809146, 0.00866166781634, -0.037897493690252006, -0.08311078697443, 0.024681417271494, -0.046378545463085, 0.013012556359171002, -0.062591455876827, 0.005160994362086, -0.03229559212923, 0.046961292624473, -0.046876296401023004, -0.061610456556081, 0.028654217720031003, 0.07812196761369701, 0.005652480758726, -0.06433755159378, 0.063362434506416, -0.013898589648306, 0.031430050730705004, -0.021070312708616, -0.08925493806600501, -0.011026002466678, 0.014439162798225002, 0.020238451659679, -0.001550041604787, -0.06912250816822, 0.023551214486360002, 0.03173092007637, -0.073896937072277, 0.0019969104323530004, 0.0016387766227120002, 0.07669984549283901, 0.025646602734923002, 0.026985196396708003, -0.040080361068248006, -0.085650272667407, -0.0012165767839170001, 0.04470220953226001, 0.00027404242428, 0.06316251307725901, 0.008180539123713, -0.06459607928991301, 0.069629952311515, -0.09016493707895201, 0.0066110412590200006, -0.06980732828378601, 0.030696671456098, -0.015704873949289003, -0.071969449520111, -0.05125965923070901, 0.011365696787834001, 0.055840272456407006, 0.11219593137502601, -0.009395977482199001, 0.023111630231142002, 0.0011065270518880001, 0.01643719151616, 0.018678583204746, 0.020582152530550003, 0.030111048370599, -0.038502778857946, -1.6222813864706074e-33, 0.060373596847057, 0.12388998270034701, 0.026878718286752003, -0.053640466183423004, -0.010817677713930001, 0.012691371142864002, -0.052903372794389, -0.01813949458301, 0.05591949447989401, 0.027321439236402, -0.016160480678081002, 0.05023880675435, 0.052930634468793, -0.014988186769187001, 0.091467291116714, -0.025074379518628002, 0.077879324555397, -0.009460065513849, 0.080308578908443, -0.065067671239376, 0.108615778386592, 0.08580609411001201, 0.05522556602954801, -0.051327597349882, 0.027418009936809002, -0.017762187868356, 0.027812603861093, -0.10303530842065801, -0.0027622068300840004, 0.015434516593813001, -0.061985738575458006, -0.023127865046262002, -0.019458223134279, -0.006538616493344001, 0.101963967084884, 0.009127940051257001, -0.048553835600614006, 0.039802215993404, -0.051757272332906, 0.019684979692101003, -0.039975143969058005, 0.0030895974487060002, 0.050580676645040006, -0.024505648761987003, -0.07874132692813801, 0.066909112036228, 0.037105619907379005, 0.033188838511705, 0.059043303132057, -0.077140003442764, -0.055328622460365004, -0.030735416337847002, -0.07561288774013501, 0.03773283585906, 0.029839938506484004, 0.007216396741569001, -0.048901882022619005, 0.079363040626049, 0.048928197473287006, 0.11666464805603001, -0.031114941462874003, 0.0016046266537150002, 0.030602177605032, 0.035778969526290005, -0.041697584092617, -0.038992837071418006, 0.09217043220996801, -0.11001081019639901, 0.114447079598903, 0.01811396330595, -0.07451191544532701, 0.038116842508316005, 0.03003560937941, -0.081976071000099, -0.015133875422179002, -0.029255144298076, -0.007391231600195, -0.12698118388652802, -0.07118247449398, 0.018780451267957, -0.027495425194501003, -0.02108396589756, 0.09903624653816201, -0.078297689557075, 0.051740378141403004, -0.104868322610855, -0.050558406859636, -0.0184215195477, 0.017862567678093, -0.10066580772399901, -0.042928513139486, -0.046725820749998, -0.023136967793107, -0.086933068931102, -0.015813443809747002, -6.278424611982266e-34, 0.0024804309941820002, -0.13624599575996402, -0.025982402265071, 0.02473509684205, 0.015120219439268001, -0.061844650655984004, -0.005258720833808001, 0.08308316767215701, -0.037274494767189005, -0.051092188805341006, -0.022147459909319003, 0.09567242860794001, 0.06310667842626501, 0.041184242814779004, 0.110461749136447, 0.053356979042291, -0.06296409666538201, 0.012298563495278001, 0.009114053100347, -0.07071904093027101, -0.033786594867706, 0.019009247422218, -0.031281158328056, -0.009548269212245001, -0.056200511753559, -0.017388906329870002, -0.086073711514472, 0.003264916827902, 0.058942012488842004, 0.047068130224943, 0.039568830281496006, -0.082833707332611, 0.0032369182445100004, 0.010038768872618, -0.030777277424931002, -0.012321240268647001, 0.010290288366377002, -0.000446817779447, 0.060516562312841006, 0.112309835851192, -0.042374894022941006, -0.014034411869943001, 0.070086002349853, 0.07330889254808401, 0.020569488406181002, -0.059579484164714, 0.0029187931213520003, 0.0017530348850410002, -0.038579743355512, -0.07629758864641101, 0.002688167151063, -0.0016247946768990001, 0.017508298158645002, 0.019739536568522002, 0.008412443101406, -0.016659677028656002, -0.047584801912307004, -0.045659422874450004, -0.009600915946066001, 0.020982243120670003, 0.044721294194459006, -0.094812430441379, 0.08891265094280201, -0.011104364879429, 0.07906734943389801, -0.044260341674089, -0.04689559713006, -0.151457339525222, -0.019087873399257, -0.023374821990728, 0.017299154773354003, -0.073105782270431, -0.08292518556118, 0.018459847196936, -0.04885708540678001, 0.015081637538969002, 0.035373985767364, -0.007960673421621, 0.028012238442897002, 0.023396166041493003, -0.014731041155755001, 0.061169274151325004, 0.0036201314069330003, 0.038634967058897005, -0.009226699359714001, -0.000663050916045, 0.096034586429595, 0.04446130990982, -0.021045424044132, -0.06717452406883201, 0.033288490027189005, -0.041208535432815004, 0.056190602481365, 0.031466163694858, 0.04437718912959, -3.389276059806434e-8, -0.082814879715442, -0.092039123177528, -0.07907941937446501, 0.014661692082881001, 0.06744872033596, -0.08520070463418901, 0.001080365967936, -0.024369612336158003, -0.0036548159550870004, -0.0039105676114550006, 0.055450540035963, -0.023446919396519002, -0.08100521564483601, -0.021005103364586, -0.002111449604853, 0.0005666924407700001, -0.046260394155979004, 0.090844497084617, -0.026474975049495003, 0.017227599397301, -0.048457197844982, 0.03993834555149001, -0.0036646132357410002, -0.065097749233245, -0.06572613120079, -0.063406527042388, 0.008716497570276, -0.08151219785213401, 0.063680179417133, 0.063623562455177, 0.026292271912097, 0.025509491562843004, 0.017553739249706, 0.008770521730184, -0.110571011900901, 0.0017473837360730002, -0.06053103134036, -0.005592292174696, -0.0016570696607230001, 0.027022635564208003, 0.050117071717977, 0.011240226216614, 0.007786804810166001, 0.034492772072553, 0.096992701292037, -0.015059114433825, 0.055991161614656004, -0.009165070019662, 0.04345928505063, 0.043681871145963, -0.03653647750616, -0.006217096466571001, -0.004077771678566, -0.007213050965219001, 0.028414115309715004, 0.015960747376084, -0.07621356099843901, 0.06362473964691101, 0.021207274869084, 0.017088593915104002, -0.008503482677042, 0.026119528338313002, -0.011813686229288, -0.032828208059072 ]
0704.0019
Approximation for extinction probability of the contact process based on the Gr\"obner basis
In this note we give a new method for getting a series of approximations for the extinction probability of the one-dimensional contact process by using the Gr\"obner basis.
[ "math.PR", "math.AG" ]
[ -0.08951636403799, -0.028764124959707003, 0.09333248436450901, -0.006656119134277, -0.031822185963392, -0.064295351505279, 0.083628870546817, 0.063757471740245, 0.086577266454696, 0.0028301954735070003, 0.021464375779032003, -0.011362601071596002, -0.002652643481269, -0.025911202654242002, -0.033256061375141005, -0.004474244546145, -0.01512673869729, -0.125730872154235, -0.016572413966059, 0.09583493322134001, -0.017472751438617002, 0.08527830988168701, 0.032582264393568004, -0.069477036595344, -0.001100610126741, -0.091860324144363, 0.08386269211769101, 0.005562361329793, 0.054198268800973004, 0.017009623348712002, 0.082030914723873, 0.014462244696915, 0.0032407168764620005, -0.015926560387015003, 0.014173780567944001, 0.041560407727956, -0.025600688531994, 0.004406326450407, -0.027504846453666004, 0.053407598286867, 0.036616068333387, 0.10236853361129701, 0.00393488863483, 0.032316509634256, 0.07129677385091701, -0.015729898586869, -0.028615329414606, -0.05502580478787401, -0.045342463999986, -0.07690143585205, 0.053372021764516005, 0.00256222859025, 0.024206763133406, -0.005462035536766, 0.061635356396436004, -0.044845785945653006, 0.031344220042228005, -0.05643093958497, -0.04900604113936401, 0.0016029059188440002, 0.016686480492353002, 0.041179686784744006, -0.088867790997028, -0.052274655550718, -0.008373883552849001, 0.0036430726759130003, 0.058579802513122003, -0.020019512623548, 0.008723912760615, 0.08502969890832901, -0.130197092890739, 0.015678325667977, -0.145152375102043, -0.028450997546315002, 0.017623845487833002, -0.048740338534116, -0.084003694355487, 0.012204252183437, -0.025082746520638, 0.005384438671171001, 0.023354332894086, -0.06221666932106001, -0.046501286327838, -0.14662529528141002, -0.05969256535172401, 0.026696015149354, 0.019416589289903002, 0.009174592792987001, 0.127720952033996, -0.058407537639141006, -0.035152375698089, -0.034862097352743, -0.068776577711105, 0.020304109901189003, -0.10544039309024801, 0.020069021731615, 0.04431689530611, -0.05586138740181901, 0.072479978203773, 0.010636725462973002, -0.06852138042449901, -0.085267752408981, -0.049207780510187, 0.031789258122444, -0.013132880441844, -0.017673099413514002, -0.011665106751024001, 0.048530921339988, -0.00175079179462, 0.067217618227005, 0.08037997782230301, -0.034870933741331, -0.019811656326055003, 0.175288781523704, -0.075937032699584, -0.06217678636312401, 0.080692194402217, 0.008113015443086001, 0.048721011728048005, -0.015257569961249001, 0.005981083028018, 0.04311728477478, -0.062232334166765005, -0.026846984401345003, -0.052295923233032005, -0.060778267681598004, 0.10152891278266901, -1.6593316827115793e-33, 0.057645551860332, -0.047015413641929, -0.027048218995332003, -0.076780833303928, -0.013482233509421002, 0.019572606310248, -0.039489142596721004, -0.00047578662633800003, 0.0773631259799, -0.025260565802454, -0.042152561247348, -0.014590657316148002, -0.009730200283229, -0.049218419939279, -0.036800343543291, 0.011833324097096, 0.10169372707605301, 0.038443863391876006, -0.04609646275639501, -0.019957829266786003, 0.006936545949429, 0.032883014529943, -0.028245585039258003, 0.012004443444311001, 0.02221911214292, -0.010093179531395, -0.06932322680950101, -0.10656771063804601, 0.02402738854289, -0.026708990335464002, 0.017195811495184, 0.054744586348533006, -0.05304230749607, 0.028887188062071002, 0.040969852358102, 0.00083211105084, -0.006088193040341, 0.030498953536152004, 0.000753983855247, -0.047199659049510005, -0.07182641327381101, -0.016091104596853003, 0.060334414243698, 0.000652827729936, -0.00047020954662000005, -0.05716082453727701, 0.10063694417476601, 0.010046566836535, 0.003777670441195, -0.031274788081645, 0.036494344472885, -0.034969050437211005, -0.018816629424691002, 0.11785893887281401, -0.011092621833086002, 0.0133364405483, 0.050004765391349, -0.018929604440927002, 0.005396347492933, 0.04058060050010601, -0.00044319999869900004, -0.019378624856472, 0.07059217989444701, -0.010468535125255, 0.13102541863918302, 0.008322607725858001, -0.023886311799287, -0.045077815651893005, 0.009991377592086001, 0.027287201955914, 0.0023209035862230003, 0.07025399059057201, 0.0029369806870810002, -0.118334904313087, 0.029053874313831003, -0.047413878142833, 0.06094602122902801, 0.006793736480176, 0.01604781858623, 0.022357095032930003, -0.043948233127593, -0.00010579045920100001, -0.05566993355751, -0.12044467777013701, -0.05414962023496601, 0.013454448431730002, 0.029240814968943003, -0.001968207070603, -0.08629923313856101, 0.011868241243064001, -0.0059090666472910005, -0.015545963309705, -0.024477973580360003, -0.022438764572143003, 0.036372572183609, -9.4346581680088e-34, 0.021764649078249, 0.003765662200748, 0.091054692864418, 0.00963444635272, -0.07236911356449101, 0.013940482400357002, -0.006202735938131001, 0.048024944961071, -0.025668187066912002, -0.058919169008731, -0.05810011178255001, 0.125376984477043, 0.081156946718692, 0.07790141552686601, -0.013560489751398001, 0.01740887761116, 0.07901636511087401, 0.056563850492239005, -0.060822501778602, -0.057339336723089, 0.053248878568410006, -0.016020078212022, -0.007208462338894, -0.060547769069671006, -0.059665020555257006, -0.048325788229703, 0.047537479549646, 0.037805367261171, -0.05641278252005501, -0.04850873723626101, -0.023966515436768, -0.10134686529636301, 0.023777583613991002, 0.035012312233448, -0.002139751799404, 0.032375920563936005, 0.036268733441829, 0.13828159868717102, 0.007822967134416001, -0.036236673593521, 0.057100433856248, -0.0017665873747310002, -0.064518950879573, -0.012034421786665, 0.054353687912225, -0.0032295605633400003, -0.0013677719980470001, -0.003950939048081001, -0.013395876623690002, -0.050710786134004, -0.033748943358659, 0.026073852553963002, -0.068358615040779, 0.019790897145867, -0.008839129470288, 0.064158298075199, 0.04227615520358, -0.048894215375185006, 0.002249175217002, -0.007251535076647, 0.01821637712419, -0.030224500223994002, 0.07386140525341, 0.050726078450679, 0.060195468366146004, 0.048227127641439, -0.08269856870174401, 0.02851996384561, 0.040274322032928, 0.014866922982037001, 0.027537224814295002, 0.11279997229576101, -0.0051770303398370006, -0.042457565665245, -0.006246951408684, -0.015455857850611002, 0.036841113120317, -0.10003627836704201, 0.024825556203722003, 0.010689025744795001, -0.073814399540424, 0.086648739874362, 0.015307916328310002, 0.01692303083837, 0.047710221260786, -0.016573492437601003, 0.020236525684595, -0.078196294605731, 0.05395960062742201, -0.067983768880367, -0.00448643323034, 0.0052390377968540005, 0.10352914780378301, -0.040859419852495006, -0.052153572440147004, -2.875350446629454e-8, 0.071556620299816, 0.0032486629206680004, 0.009957857429981001, 0.008988073095679, 0.12429980188608102, 0.08280774950981101, 0.025426484644412002, -0.023709170520305002, -0.065425477921962, -0.047507245093584005, -0.04824012517929, -0.017087606713175, -0.012426959350705001, 0.039709489792585005, 0.070152625441551, 0.046719372272491004, 0.014615835621953002, -0.011938685551285001, -0.044142067432403, -0.031469903886318006, -0.015704087913036, -0.058863282203674004, 0.03485208377242, 0.041937727481126, -0.039258185774087004, -0.0016872193664310001, -0.013453655876219, -0.025443343445658, -0.031853638589382005, -0.0071830865927040004, -0.052503678947687, -0.021541561931371002, 0.060079485177993004, 0.07312572002410801, 0.003914182540029, 0.015336018055677001, -0.040323108434677006, 0.006914663594216001, 0.014165145345032002, 0.036391615867614004, 0.02788533270359, 0.000285233807517, -0.007780122570693, 0.046800676733255005, 0.102356605231761, 0.114715456962585, -0.027575332671403004, -0.039585076272487, 0.008353032171726001, 0.036329150199890005, -0.009984085336327001, 0.017782393842935, -0.04961812123656201, 0.033317819237709004, -0.020515333861112, -0.010381651110947, -0.05845987796783401, -0.039518740028142006, -0.0033729693386700004, -0.034782864153385, 0.002158081158995, -0.002633613534271, -0.052427202463150004, 0.047737512737512006 ]
0704.0020
Measurement of the Hadronic Form Factor in D0 --> K- e+ nue Decays
The shape of the hadronic form factor f+(q2) in the decay D0 --> K- e+ nue has been measured in a model independent analysis and compared with theoretical calculations. We use 75 fb(-1) of data recorded by the BABAR detector at the PEPII electron-positron collider. The corresponding decay branching fraction, relative to the decay D0 --> K- pi+, has also been measured to be RD = BR(D0 --> K- e+ nue)/BR(D0 --> K- pi+) = 0.927 +/- 0.007 +/- 0.012. From these results, and using the present world average value for BR(D0 --> K- pi+), the normalization of the form factor at q2=0 is determined to be f+(0)=0.727 +/- 0.007 +/- 0.005 +/- 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
[ "hep-ex" ]
[ -0.065129950642585, 0.0034224241971960003, -0.038302738219499005, 0.047321345657110006, 0.0170403663069, -0.019622592255473, -0.087802037596702, 0.145341411232948, 0.034288421273231, 0.026782281696796, 0.004655881784856, -0.07036145776510201, 0.010451229289174, 0.040753562003374, -0.013592446222901, -0.057760462164878006, -0.064159423112869, 0.017224572598934, -0.09389020502567201, 0.020839940756559, -0.11203012615442201, -0.005631491541862, 0.021548425778746, -0.024598760530352003, 0.058470901101827004, -0.008904668502509, 0.031943202018737, -0.04317058250308, 0.078636713325977, -0.050987213850021, 0.027409486472606003, 0.046996228396892006, 0.09743812680244401, -0.008318405598402, 0.056415949016809006, -0.046702068299055, 0.04018672555685, -0.0126374065876, -0.032076153904199003, -0.04863853752613, 0.055162813514471006, 0.053982723504304005, 0.061415143311023004, -0.011090647429227002, 0.08520382642745901, -0.000631852890364, -0.030071217566728002, -0.017670743167400003, -0.041210014373064006, 0.008760770782828001, 0.11432729661464601, 0.047034371644258006, -0.029684266075491003, 0.060552228242158, -0.049794845283031006, -0.002166137099266, 0.038589987903833, -0.063634306192398, -0.008865080773830001, 0.039892770349979005, -0.071305632591247, -0.000663085433188, 0.00432069087401, -0.085223749279975, 0.045096747577190004, 0.038732875138521, -0.053631760179996005, -0.107776887714862, 0.00781565438956, 0.058184780180454004, -0.08338868618011401, -0.032526977360248004, -0.10491890460252701, -0.091471821069717, 0.049465402960777005, -0.046431943774223, -0.024666523560881, 0.029810557141900004, -0.028435023501515003, 0.001586188678629, 0.007492436096072001, -0.04106655344367, 0.021272914484143, -0.063061788678169, -0.026789594441652003, 0.076683662831783, -0.033295635133981004, -0.021239653229713003, 0.02953484840691, 0.01761152409017, -0.023873198777437002, -0.028087234124541, -0.050640765577554, -0.014408497139811, -0.008772534318268, 0.087943203747272, -0.0009340731194240001, 0.10577576607465701, 0.06119902059435801, 0.029522424563765002, 0.031074801459908003, -0.04355289414525, -0.059005111455917005, -0.018659010529518003, -0.0065613505430510005, 0.030541870743036003, 0.052553687244653, 0.050552885979413, 0.026289651170372002, 0.020311538130044, 0.027570810168981, -0.040599837899208006, -0.019055198878049, 0.002861457876861, 0.045848231762647004, -0.015954136848449003, 0.073713794350624, 0.018290610983967, 0.014545311219990002, -0.069312565028667, 0.070551961660385, 0.042515415698289004, 0.013945342041552001, 0.07128400355577401, 0.015412660315632001, 0.015098125673830001, -0.038985218852758005, 2.8822983728918253e-33, 0.036464232951402005, 0.021722326055169, 0.033982146531343, -0.020812921226024003, -0.09706883132457701, 0.032145101577043, -0.10072603821754401, 0.002741696778684, -0.014545759186148002, -0.023154508322477, -0.0645287707448, 0.011365609243512001, 0.0072532347403460005, -0.18197637796401903, -0.052586909383535003, -0.004951511509716001, 0.013629823923110001, 0.032037880271673, 0.008468472398817001, 0.004038023296743, 0.11431370675563801, 0.0006925901398060001, -0.005419282708317001, -0.006879283580929, 0.098259203135967, 0.03938103467226, -0.012953988276422001, 0.049335371702909005, -0.07641609758138601, -0.024034427478909003, -0.018862748518586003, -0.007197314407676, -0.07229009270668, -0.023539943620562002, -0.066036187112331, -0.06286177039146401, -0.034662507474422004, 0.058999869972467006, 0.030823439359664, -0.024084297940135002, -0.0062736817635590005, 0.072653621435165, -0.029532570391893, -0.064852327108383, -0.007854091934859, -0.066274344921112, 0.13494908809661801, 0.036174889653921, 0.054858334362506006, 0.049906849861145006, -0.044181704521179005, -0.035724267363548, -0.019799074158072003, 0.006458446849137001, 0.038524087518453, 0.037904288619756005, 0.12877258658409102, 0.003097533481195, 0.037535920739173, 0.073346950113773, 0.023414675146341, 0.095766924321651, 0.019929805770516, 0.009323420934379, -0.036357816308736, 0.056475568562746006, -0.05907737091183601, 0.039694543927907, -0.011794229038059, -0.005092470906674001, -0.014244056306779001, 0.046791583299636, 0.024887917563319, -0.026382816955447003, 0.069329679012298, -0.09414897859096501, -0.036551047116518, 0.018139664083719, 0.028355859220027, 0.016003483906388002, -0.014014060609042001, -0.010680392384529001, -0.028907852247357, 0.015448561869561001, -0.07031850516796101, -0.03291280567646, -0.016294009983539002, -0.054901834577322006, -0.042138740420341006, -0.044806875288486, -0.047853503376245006, -0.031754340976476, 0.008226981386542001, 0.031148128211498004, -0.005575021263211, -2.7653949086895722e-33, -0.097477249801158, 0.00030264258384700004, -0.033333778381347004, 0.074515275657176, -0.020904080942273, -0.019597813487052, -0.021723097190260002, 0.019708609208464, 0.09054536372423101, 0.004279240965843, 0.11117139458656301, 0.062066301703453, -0.052840571850538004, -0.052913572639226004, 0.075679302215576, 0.007758281659334, -0.010102269239723, 0.07600612193346, 0.044634256511926006, 0.019426451995968, -0.028712963685393004, -0.0018660564674060002, -0.074720792472362, -0.04304714128375001, -0.030592972412705, 0.06164446845650601, 0.042495720088481, -0.05238477513194, 0.047652903944253006, -0.005131465382874001, -0.07193728536367401, 0.009719962254166001, -0.006095241755247001, 0.031076796352863003, -0.030741306021809002, -0.051744349300861005, -0.017767326906323003, 0.035455469042062, -0.009899920783936, -0.11289770156145001, -0.028884392231702003, 0.140508204698562, 0.01425798330456, -0.022908894345164, 0.055215809494256, 0.021393412724137, 0.024869715794920002, 0.036504447460174005, 0.034274335950613, -0.017367223277688002, 0.03487978503108, -0.016108069568872, 0.0055190064013, 0.113481223583221, -0.10439338535070401, 0.090809077024459, 0.013774171471595001, 0.09308591485023401, -0.015799487009644002, -0.04507702589035, -0.053819704800844005, -0.07997794449329301, 0.035005297511816004, 0.018539186567068003, -0.019846025854349, -0.006493797991424, -0.018775183707475003, 0.07701571285724601, -0.015067870728671, -0.052230883389711005, 0.045094970613718005, 0.023496609181165, 0.06095591187477101, 0.061243683099746, -0.019624525681138, -0.038945276290178, 0.071203708648681, -0.06059021875262201, 0.080872133374214, 0.07017348706722201, -0.109726190567016, 0.058123592287302, -0.070365071296691, -0.06787426769733401, 0.017774950712919003, -0.090283013880252, -0.065841555595397, 0.066918149590492, 0.016481198370456, -0.027825528755784004, -0.053670488297939, -0.009482196532189001, -0.04885016381740501, 0.012175537645816002, 0.029357157647609003, -5.392577762108885e-8, -0.000785863609053, -0.050969384610652, -0.11811694502830501, -0.016180181875824002, 0.080724909901618, -0.011208713054656, -0.0038021609652780005, -0.010201735422015001, -0.035706851631402005, 0.0077812126837670005, 0.06904920935630701, 0.039471518248319, -0.066038958728313, -0.066982977092266, -0.004569549579173, 0.069503359496593, 0.022894298657774002, -0.030967772006988, 0.012609635479748001, 0.05630512535572001, 0.05252770334482101, -0.013763601891696, 0.039490230381488, -0.080362729728221, -0.088558197021484, -0.005132970400154001, -0.009670208208262001, 0.040138237178325, -0.030528442934155003, -0.010576298460364, 0.028234541416168, -0.005458480678498001, 0.055263973772525, 0.034003671258687, 0.010189238004386, -0.022486902773380002, 0.017263017594814002, 0.027741704136133003, 0.030090562999248, 0.16826841235160803, 0.010427743196487, -0.018299024552106, -0.022288510575890003, 0.028400916606187, 0.012908115983009002, 0.070454217493534, 0.0076841507107010005, -0.026784282177686, -0.008527508936822, -0.019003670662641, 0.013333549723029001, 0.038298174738883, -0.067710183560848, -0.08673796057701101, -0.042933404445648006, 0.043824058026075, 0.014963747002184, -0.024426849558949002, -0.018991868942975002, -0.030387170612812004, 0.10268646478652901, -0.052380532026290005, 0.006552740931510001, 0.031885370612144005 ]
0704.0021
Molecular Synchronization Waves in Arrays of Allosterically Regulated Enzymes
Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave patterns of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.
[ "nlin.PS", "physics.chem-ph", "q-bio.MN" ]
[ -0.022260319441556, -0.14653597772121402, -0.060153149068355005, -0.042201817035675, -0.047459315508604, -0.040694769471883004, -0.035985026508569, -0.060670416802167004, 0.043789863586425004, -0.058407329022884, 0.020491965115070003, 0.10058642178773801, 0.007233412936329, -0.037316583096981, 0.016187909990549, 0.087327398359775, -0.107159666717052, -0.0054626441560680005, -0.009586058557033001, -0.065883614122867, 0.010656281374394, -0.02570316940546, -0.07548331469297401, 0.001197842764668, 0.015618410892784, 0.028764717280864, 0.033160347491502006, -0.03594621270895, -0.072357721626758, -0.009685312397778001, 0.027684055268764003, -0.04575827717781, 0.018647557124495, -0.016616839915513, 0.012932039797306002, 0.016535032540559002, -0.05415310710668501, -0.01313317939639, 0.005105884280055001, -0.019408738240599, 0.061825715005397006, -0.02109501697123, -0.07633179426193201, -0.030405072495341003, -0.058927748352289006, -0.030023561790585, 0.0005441212560980001, 0.0032906236592680003, -0.047198805958032004, -0.05777271091938001, -0.039627365767955, -0.003904955927282, -0.057472538203001, -0.024000801146030003, 0.018136966973543, 0.027116710320115003, 0.020679293200373, 0.040336836129426006, -0.029648767784237, -0.071874342858791, 0.08744242042303, 0.026217026636004, 0.008656822144985001, 0.0027630110271270004, 0.064370162785053, 0.0025734105147420003, 0.07941065728664301, 0.050308682024478, 0.060446724295616004, 0.010072860866785, -0.054397862404584, -0.0042509837076060005, -0.018496254459023, 0.00856265053153, 0.054195005446672, -0.000599577615503, -0.10564861446619, 0.029452811926603, -0.013103091157972, -0.037212833762168, -0.0037113898433740002, -0.018039925023913002, 0.053987868130207006, -0.07525859028100901, -0.007590664550662001, 0.01170842628926, 0.028942054137587003, 0.005271662026643, 0.092272587120532, -0.06194062158465301, -0.032454010099172, 0.041999649256467, -0.016026441007852003, -0.030390188097953002, -0.031624969094991004, 0.04079369083046901, 0.122091725468635, 0.055351331830024005, 0.04665030166506701, -0.050991505384445, 0.007127226796001001, -0.038973901420831, -0.00039107273914800003, 0.034970328211784, 0.026211395859718004, -0.0017902288818730002, -0.010880152694880001, 0.099343605339527, -0.014053276740014001, 0.054631542414426006, 0.0010586914140730001, 0.075483806431293, 0.10529585927724801, 0.117558144032955, -0.023582903668284003, 0.07601422071456901, 0.017188010737299, -0.038772311061620005, 0.006379187572747001, 0.032482959330081, 0.047196526080369006, -0.020344449207186, 0.005416541360318001, 0.041877482086420004, -0.044009741395711004, 0.10444797575473701, -0.016083443537354, -2.528054196310653e-34, 0.052463617175817004, 0.005898696836084001, -0.0010869458783410002, -0.060432754456996, 0.038278255611658006, -0.024171033874154, -0.039337962865829, -0.012131745927035, -0.07069706916809, 0.082520201802253, -0.013106853701174, 0.055220626294612, 0.013523135334253, 0.012903677299618001, -0.048500854521989004, -0.063996337354183, 0.07156037539243601, 0.031921833753585004, 0.036886200308799, 0.008969216607511, -0.018030302599072002, -0.010264195501804001, -0.10499379038810701, -0.00045917285024100004, -0.082428932189941, 0.063622415065765, -0.026353804394602002, 0.06927392631769101, 0.012923934496939002, 0.010368456132709002, 0.032003417611122, 0.018504263833165002, -0.046281289309263, -0.055522128939628004, 0.11358439922332701, -0.057706810534, 0.018129773437976, 0.013174652121961, -0.012478562071919, -0.022111991420388003, 0.047481503337621, -0.023819029331207, 0.020232897251844, -0.07018365710973701, -0.018362347036600002, 0.022273855283856003, 0.022423697635531002, 0.083198420703411, 0.028923749923706003, 0.01907642558217, -0.01606317795813, -0.035019595175981, 0.08071771264076201, -0.02056960761547, 0.029803976416587004, 0.07824306190013801, 0.020892281085252002, -0.050057932734489004, -0.022909816354513002, 0.07519556581974, -0.052725337445735, -0.00027708776178700004, 0.015851384028792, -0.026094576343894, 0.051443133503198006, 0.051442965865135006, -0.046431586146354, 0.000550570024643, 0.03657428920269, 0.14243055880069702, 0.020245961844921, 0.07857343554496701, -0.092633619904518, -0.015191316604614001, 0.013697588816285002, -0.0034318563994020002, 0.0054756072349840005, 0.031253285706043, -0.0496163405478, 0.04123442992568, -0.010523609817028, -0.052175246179103005, -0.078646555542945, -0.011920783668756001, -0.072842270135879, -0.013369919732213001, -0.05954050272703101, -0.026121182367205002, -0.162768080830574, 0.025920651853084002, 0.016451353207230002, -0.002224095864221, 0.12147773802280401, 0.016374718397855002, 0.0077809621579940005, -3.955172617900304e-33, 0.09439069777727101, -0.07959482818841901, 0.05134757235646201, -0.032053004950284, 0.06751892715692501, 0.131422296166419, -0.019188415259122002, 0.0038783443160350004, 0.0009433120139870001, 0.059035804122686004, 0.036374472081661, -0.023534510284662, -0.05119671300053501, 0.07571734488010401, -0.031830132007598, -0.020306531339883003, 0.09051218628883301, 0.059044685214757, 0.118517003953456, 0.006870249286293001, -0.032176233828067, -0.027323303744196004, 0.047532711178064006, 0.008185875602066, 0.044986627995967005, -0.058669824153184, -0.038275010883808004, 0.055587582290172, 0.007273528259247, 0.008011358790099, -0.037770312279462, -0.035930495709180006, 0.017084814608097, 0.023451281711459, -0.011154131032526, 0.113394491374492, -0.050952371209859, 0.024748103693127, 0.108875513076782, -0.036988932639360005, 0.014859998598694002, -0.020050931721925, -0.039034135639667004, 0.036642242223024, 0.061517622321844004, 0.022343091666698, -0.096281841397285, 0.07234129309654201, -0.061301808804273, -0.045332234352827, 0.011847294867038002, 0.060485731810331005, 0.004118474666029001, -0.06791353970766001, -0.055087074637413004, 0.13373303413391102, 0.033963870257139005, -0.05419297516345901, -0.029615456238389, -0.051005940884351, -0.099008955061435, -0.11856858432292901, 0.011403114534914001, -0.090094067156314, -0.03794976696372, -0.014246319420635001, -0.044851556420326004, -0.063025705516338, 0.10354553163051601, -0.04693309217691401, 0.038839604705572, -0.009436193853616002, -0.061134885996580006, 0.066364884376525, -0.027006505057215004, -0.061389140784740004, -0.028164487332105, -0.12092491239309301, 0.01227409299463, -0.040112890303134, -0.044180452823638, 0.08024879544973301, -0.022089406847953002, -0.09473874419927501, -0.060377575457096, -0.0036310635041440003, 0.026673454791307002, -0.016879934817552, 0.016379179432988, -0.007865305058658, 0.053192522376775006, 0.011110831983387, -0.05417114123702001, 0.039724871516227, 0.026502540335059003, -3.640202450583274e-8, 0.082818739116191, 0.0046648057177660004, 0.063992626965045, 0.039444763213396, 0.051419857889413, 0.06633799523115101, 0.037806518375873004, -0.11489935964345901, 0.047629345208406004, -0.062779352068901, -0.036332827061414004, -0.032622590661048, -0.028065389022231, 0.009792844764888, 0.019224094226956003, -0.0015001269057390001, -0.124758161604404, -0.033344011753797004, -0.041499506682157, -0.009816118516027001, 0.014717926271259, 0.020788129419088003, -0.09215455502271601, 0.05999858677387201, -0.004933859687298, -0.049083780497312005, 0.016463454812765, -0.018753621727228, -0.014671302400529001, 0.005309764761477, 0.015591868199408, -0.016205959022045, 0.034179855138063, 0.067772187292575, -0.063490822911262, -0.07039996236562701, -0.068201147019863, -0.030981065705418004, -0.040982708334922006, -0.024669762700796002, -0.044440396130084006, -0.0067144148051730005, -0.04188971966505, -0.014825407415628001, -0.041221309453248006, 0.037733875215053, 0.010167503729462, -0.033597972244024, 0.066329136490821, 0.034162573516368006, 0.032553322613239004, 0.013306626118719002, -0.037195548415184, -0.05152581632137201, 0.010815027169883001, 0.007935896515846001, -0.020189050585031003, -0.09695316851139, 0.004480075556784, -0.016905697062611, 0.012012783437967, 0.0053443661890920004, 0.0036312083248040005, -0.063036762177944 ]
0704.0022
Stochastic Lie group integrators
We present Lie group integrators for nonlinear stochastic differential equations with non-commutative vector fields whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action, and subsequently pull back the flow to the corresponding Lie algebra via the exponential map. We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the Lie group and then to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. These involve using an underlying ordinary differential integrator to approximate the flow generated by a truncated stochastic exponential Lie series. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Further, we show that some Castell--Gaines methods are uniformly more accurate than the corresponding stochastic Taylor schemes. Lastly we demonstrate our methods by simulating the dynamics of a free rigid body such as a satellite and an autonomous underwater vehicle both perturbed by two independent multiplicative stochastic noise processes.
[ "math.NA" ]
[ -0.07037353515625, -0.024961652234196, 0.034419424831867, 0.004474489949643, -0.024435305967926, -0.05383855849504401, -0.000166196943609, -0.086829774081707, 0.05519762635231001, -0.04677177965641, 0.077157370746135, -0.007714384701102001, -0.06013628095388401, -0.08494582027196801, -0.002695502480491, -0.039488974958658, -0.03904665634036, 0.16053169965744002, -0.0036179644521320002, -0.027058498933911, -0.016006890684366, 0.08549161255359601, 0.030574645847082003, 0.035013277083635004, -0.012204813770949001, -0.047921665012836005, -0.01295462064445, -0.016985263675451, -0.056654445827007, -0.021307483315467002, 0.109228573739528, -0.019634623080492002, -0.11968837678432401, -0.037988673895597, -0.07281968742609, 0.060720868408679005, -0.025593047961592, 0.024298470467329, -0.11403251439332901, 0.017824595794081, -0.010891684330999001, 0.04926838353276201, 0.06655687093734701, 0.052679106593132005, 0.0036882928106930003, -0.06229539960622701, -0.016100285574793, -0.126191437244415, -0.030697261914610002, 0.028723878785967, -0.016014918684959002, 0.070764578878879, 0.006033919285982001, -0.016618613153696, 0.024522369727492003, -0.09538689255714401, -0.022123562172055, 0.022552080452442003, 0.033955518156290006, -0.031310096383094004, 0.07365220040082901, -0.029447903856635003, 0.046965032815933005, 0.033143159002065, -0.12739011645317, 0.0008417828939850001, 0.07969889789819701, 0.04994510859251, 0.033091772347688, 0.034738156944513, -0.042078390717506006, -0.040235921740531005, -0.060485895723104005, 0.009497543796896001, -0.06185896694660101, -0.016429258510470002, 0.019738858565688, -0.0014991587959220002, -0.024857023730874003, 0.050013352185487005, 0.030512979254126004, 0.031964991241693004, 0.05536825954914001, -0.058883599936962, -0.027447499334812, 0.069752819836139, -0.046754449605941, -0.023502161726355, 0.000766970450058, -0.06537193804979301, 0.031140556558966002, -0.0004908823757430001, -0.078375644981861, -0.011312516406178, 0.05719406157732, -0.031051736325025003, -0.024177733808755, 0.031416364014148004, 0.054238669574260004, 0.023017076775431, 0.020526919513940003, -0.07465997338294901, 0.027722643688321003, -0.007418466266244, 0.015424783341586002, -0.07412104308605101, 0.011020930483937002, -0.0031792321242390003, -0.062671847641468, 0.00039927911711800003, -0.017382392659783003, -0.00029230446671100005, 0.0007026073872110001, 0.05756788700819, -0.022056188434362002, -0.033893398940563, 0.0016268434701480002, 0.0008075248333620001, 0.041945174336433, 0.084111839532852, 0.032304104417562006, 0.038156121969223, -0.012666219845414, 0.036557126790285, 0.050558701157569004, 0.059122052043676, 0.06302441656589501, 1.728128591619408e-33, -0.026108231395483003, -0.005623086355626, 0.034162450581789, 0.01291496772319, 0.030289694666862002, -0.06084807217121101, 0.016200834885239, -0.001533829024992, -0.012946176342666002, 0.09417776763439101, -0.07166304439306201, 0.022623687982559003, -0.053978040814399005, -0.002734834793955, -0.021924868226051, -0.08685283362865401, -0.076020576059818, 0.010939714498817001, 0.045800693333148006, -0.056575119495391006, 0.150704115629196, 0.040318895131349, 0.022261815145611003, -0.006447309628129, -0.027157578617334, 0.050241973251104, 0.040749799460172, 0.06739157438278101, 0.048592776060104, 0.031507618725299, 0.0041083018295460004, -0.12932054698467202, -0.020917654037475003, -0.01829183474183, 0.006652750540524, -0.0009309898596250001, -0.037090837955474, -0.02201260626316, -0.045975398272275, -0.052035864442586004, -0.006888713221997001, -0.034115258604288004, -0.028317837044596002, -0.003407798474654, -0.07643526792526201, -0.026471311226487004, -0.006903129164129, 0.058760646730661004, 0.097644731402397, -0.013239601626992002, -0.017913190647959, -0.029530633240938003, -0.012808036990463002, -0.004895377904176001, 0.007992156781256001, 0.0020340776536610003, 0.018447110429406003, 0.001450613839551, -0.005393500439822001, 0.017543429508805, -0.10866837948560701, 0.015507631003856001, -0.028118086978793002, -0.12210861593484801, 0.014452309347689, -0.00351334689185, -0.008732065558433, 0.059758767485618, 0.00703154085204, -0.09616374224424301, -0.008215910755097, -0.020895497873425, -0.080204360187053, 0.006521559786051001, 0.01852736249566, -0.025170778855681003, 0.025949884206056, -0.02105320803821, -0.05771898105740501, 0.021466072648763, -0.07211317121982501, -0.007423053961247, -0.054064139723777, 0.09159345179796201, 0.015076975338160001, -0.015005616471171001, -0.090679869055747, 0.009322260506451002, -0.033295556902885, -0.029695753008127, -0.0728360414505, -0.037467628717422, 0.047151096165180005, 0.035742338746786, 0.023533375933766, -4.277950509666642e-33, -0.00306908134371, -0.031876973807811, 0.080295234918594, 0.088294982910156, 0.07362167537212301, -0.029350284487009003, 0.032442618161439, 0.030621388927102002, 0.102164141833782, -0.045316908508539006, -0.08948868513107301, 0.052277721464633005, -0.024054033681750003, 0.008373101241886, 0.057727962732315, -0.09130759537220001, 0.020568137988448, 0.016418993473052, -0.016222380101680003, 0.008827497251331001, -0.035028193145990004, 0.076785899698734, 0.050753101706504, -0.017250819131731, 0.016218923032283002, 0.036586716771125, -0.017820620909333, 0.092034980654716, -0.039433728903532, -0.006088024936616, 0.038197726011276, -0.115180529654026, -0.029329501092433003, 0.06747522205114301, -0.079215630888938, 0.053392257541418006, 0.013402439653873001, 0.15034647285938202, -0.037960823625326004, 0.08410342782735801, -0.010488549247384, -0.007001067977398001, 0.021385276690125, 0.043062645941972004, 0.07858629524707701, 0.046317484229803, -0.026919420808553002, -0.033472664654254004, -0.021083651110529, 0.061145149171352005, -0.045243583619594005, 0.11303538084030101, -0.031757153570652, 0.011872852221131, -0.029864402487874003, 0.07472654432058301, 0.005007871426641, -0.10636769980192101, -0.031288038939237005, 0.011410872451961, -0.010617696680128, -0.064894951879978, 0.08908019959926601, 0.026747830212116002, -0.029105369001626004, -0.0030455267988140004, -0.073041655123233, -0.07174751907587, 0.027905024588108004, 0.011538140475749002, 0.006434138864278001, -0.034153625369071, -0.11000007390975901, 0.017530435696244, 0.039496310055255, -0.082198649644851, 0.073162257671356, 0.019087562337517003, 0.040805950760841, -0.10591697692871001, 0.055779859423637, 0.015322911553084002, 0.082912065088748, -0.028353599831461, 0.066704839468002, -0.019219901412725, 0.0013039483455940001, -0.10844734311103801, 0.032268110662698, -0.007920866832137, -0.0030996317509560003, -0.017336549237370002, 0.053239006549119006, 0.04105569422245001, -0.107610717415809, -3.966255945897501e-8, -0.008758509531617002, 0.021241405978798002, 0.046195805072784, -0.028011737391352, 0.06586467474699001, -0.005483952816575001, -0.06958575546741401, 0.016906049102544, 0.066835880279541, -0.060279998928308, 0.06528516858816101, 0.028082501143217004, -0.037657417356967, -0.10796954482793801, -0.003587551880627, 0.040794394910335006, -0.06547834724187801, 0.011612066999077, 0.005949937738478001, -0.021158823743462, 0.054431200027465, 0.016076792031526, -0.058100771158933, 0.049428414553403, 0.062277734279632006, 0.010620071552693, -0.068071380257606, -0.0031196991913020004, 0.06639392673969201, 0.059062916785478, -0.005344687495380001, 0.039562337100505, 0.016926901414990002, 0.10833226889371801, 0.005169221200048001, -0.039721570909023, 0.014061201363801, 0.047947410494089, -0.034012619405984004, 0.029364638030529, 0.01076045166701, 0.04423073679208701, 0.040301829576492004, -0.011476845480501001, -0.011038373224437, 0.070046193897724, 0.00020969190518300003, -0.018651774153113, 0.051463801413774005, 0.12045845389366101, 0.034038171172142, -0.017200073227286002, -0.092390783131122, 0.084276258945465, -0.010229337029159001, -0.016876349225640002, 0.01851930655539, -0.10086054354906, 0.017767472192645, -0.035915710031986, -0.06621601432561801, 0.012936120852828002, -0.013530712574720001, 0.000619792030192 ]
0704.0023
ALMA as the ideal probe of the solar chromosphere
The very nature of the solar chromosphere, its structuring and dynamics, remains far from being properly understood, in spite of intensive research. Here we point out the potential of chromospheric observations at millimeter wavelengths to resolve this long-standing problem. Computations carried out with a sophisticated dynamic model of the solar chromosphere due to Carlsson and Stein demonstrate that millimeter emission is extremely sensitive to dynamic processes in the chromosphere and the appropriate wavelengths to look for dynamic signatures are in the range 0.8-5.0 mm. The model also suggests that high resolution observations at mm wavelengths, as will be provided by ALMA, will have the unique property of reacting to both the hot and the cool gas, and thus will have the potential of distinguishing between rival models of the solar atmosphere. Thus, initial results obtained from the observations of the quiet Sun at 3.5 mm with the BIMA array (resolution of 12 arcsec) reveal significant oscillations with amplitudes of 50-150 K and frequencies of 1.5-8 mHz with a tendency toward short-period oscillations in internetwork and longer periods in network regions. However higher spatial resolution, such as that provided by ALMA, is required for a clean separation between the features within the solar atmosphere and for an adequate comparison with the output of the comprehensive dynamic simulations.
[ "astro-ph" ]
[ -0.022165991365909, 0.013022687286138, 0.031784877181053, 0.07270411401987001, -0.053343560546636005, -0.041069209575653, -0.032992579042911, -0.017636755481362003, 0.047767877578735005, -0.040214978158473004, -0.08669249713420801, -0.05136401951313, -0.006311892531812, -0.0951624289155, 0.08704173564910801, 0.010244281962513, 0.069238483905792, -0.046124164015054, 0.057103689759969004, 0.003478330560028, -0.028835278004407, -0.002289287280291, -0.07954619824886301, 0.003913225606083, 0.057150948792696006, 0.02102711610496, -0.08322705328464501, -0.014914769679307001, -0.021774217486381003, 0.014326393604278, 0.013155371882021, 0.09107451885938601, 0.058595944195985, 0.023377913981676, 0.035046402364969004, 0.024754336103796, 0.06740374863147701, -0.052353750914335, -0.028007166460156004, 0.075813673436641, 0.022867152467370002, -0.04632981494069, -0.032957058399915, -0.009131203405559, -0.042603403329849, -0.04427511617541301, 0.069441378116607, 0.049859669059515006, -0.06483710557222301, 0.031577683985233, -0.023518318310379, 0.015300028026103002, -0.032227993011474006, 0.032238140702247, 0.009845595806837, 0.046672124415636, -0.014273786917328002, 0.010762467980384001, 0.099845141172409, 0.039955504238605, -0.06498588621616301, -0.010305079631507001, -0.103094898164272, 0.029240211471915002, 0.038553975522518005, -0.007968094199895, 0.014023181982338002, -0.007548862136900001, 0.085284374654293, -0.030343798920512, -0.040609259158372005, 0.056369226425886, -0.085955075919628, -0.048258941620588004, -0.0070979190059, 0.080813005566596, 0.085775069892406, -0.017710294574499002, 0.087564624845981, -0.050716519355773, 0.0037299878895280004, -0.020466698333621, -0.062306772917509, -0.037782460451126, -0.045709311962127006, 0.05147498473525, -0.016796505078673002, 0.050622459501028005, -0.008733115158975001, -0.06370410323143, -0.018761849030852002, -0.055470131337642004, -0.065757289528846, -0.009295057505369, 0.043306604027748004, 0.07240756601095201, 0.10399780422449101, -0.04958761855959801, 0.10095639526844001, 0.023726932704448003, 0.08008453249931301, 0.0020838635973630002, -0.037992510944604006, 0.049732714891433, -0.0022829105146220004, 0.036957237869501, 0.038167111575603006, 0.086325481534004, -0.06963899731636, 0.015741361305117, -0.04623569175601001, 0.038729395717382, -0.010947504080832001, -0.030334860086441002, 0.056842911988496, 0.036361746490001005, -0.008010711520910001, 0.053877338767051, -0.080400258302688, 0.027757328003644003, -0.044423423707485005, -0.006802112795412001, -0.0025461127515880003, 0.10900893062353101, 0.041917502880096005, 0.011048384010791001, -0.0043665636330840005, 3.1055260358099246e-33, 0.049575198441743004, 0.07762055844068501, -0.020272750407457, 0.001952692517079, -0.013910161331295, 0.039159279316663, -0.059983726590871006, 0.069651111960411, -0.060187183320522, 0.022045126184821, -0.0179178789258, 0.10662157833576201, 0.080105364322662, 0.019043341279029003, 0.033546473830938, 0.015122650191187002, 0.029315846040844, 0.031593136489391, -0.030028272420167004, 0.035169493407011004, -0.09793411195278101, 0.0066456105560060005, 0.003402217058464, -0.047267101705074005, -0.038083508610725, 0.06350205838680201, 0.080528788268566, 0.032932002097368004, -0.024267770349979, 0.004489335697144, 0.037192519754171004, -0.04998450726270601, 0.0073982286266980005, 0.045892536640167, 0.028596144169569, -0.082623407244682, -0.06320308893918901, 0.044252611696720005, -0.10508527606725601, -0.040223885327577, -0.029945440590381, 0.043519198894500004, 0.00008336595783475788, 0.06796039640903401, 0.047026462852954004, -0.03796798735857, 0.043662007898092006, -0.030081341043114003, -0.031180264428257002, 0.04742934927344301, -0.019914569333195003, 0.05051042139530101, -0.036199368536472, 0.012250323779881, 0.07847836613655, 0.042665384709835004, 0.097525432705879, -0.07170181721448801, -0.070556968450546, 0.065574139356613, 0.014782753773033001, -0.012284534983336001, 0.031120827421545004, 0.029107566922903002, 0.043994776904582006, 0.037056140601634, -0.05972733721137, 0.008965682238340001, -0.013740822672843002, 0.006632363889366001, 0.074065431952476, 0.031693510711193, 0.11058130860328601, -0.018470248207449, 0.008880321867763, -0.052931457757949, 0.042901135981082, 0.005849486216902001, -0.056033551692962, 0.069901771843433, -0.02266726642847, -0.10505206137895501, 0.10980366170406301, -0.067221067845821, -0.10461883246898601, -0.045336324721574006, -0.044677298516035004, -0.021410284563899002, -0.040064398199319, -0.06069685146212501, 0.012350651435554002, 0.010766703635454001, 0.008126685395836001, 0.0038924443069840004, -0.057792507112026006, -3.9656980677859644e-33, 0.015025078319013, 0.049402799457311006, -0.038185432553291, -0.029381545260548002, -0.060592178255319006, 0.049577668309211, -0.014082130044698, 0.07071936130523601, -0.09134019911289201, -0.050552163273096, 0.055189162492752006, -0.0061046238988630005, -0.030112655833363002, -0.079410575330257, 0.004385947249829001, -0.060352541506290006, 0.07003352046012801, -0.015305514447391002, -0.011728706769645, 0.049257099628448, -0.024489870294928003, -0.007949758321046, -0.010174505412578002, -0.004275052342563, 0.001623471966013, 0.011686731129884002, 0.052486721426248, -0.065534129738807, -0.048168435692787004, 0.059959452599287005, -0.099995911121368, 0.017307216301560003, 0.000687436840962, 0.043199628591537004, 0.079090021550655, 0.08398796617984701, 0.042339507490396, -0.010369876399636001, -0.030347110703587, -0.020982775837183002, -0.054665934294462, 0.080671802163124, -0.021937593817710002, -0.13865120708942402, 0.026602640748023, 0.019626520574092, -0.011674808338284002, 0.12124197185039501, -0.027733081951737, 0.006575702223926, 0.018268499523401, -0.044254712760448005, -0.025983586907386003, 0.046520601958036006, 0.00000491279888592544, 0.0030526835471390004, -0.01516527403146, 0.07386898249387701, 0.06933605670928901, 0.009341933764517, 0.039400141686201005, -0.10930685698986001, 0.034252274781465, -0.040094301104545, 0.026837727054953003, -0.059381373226642005, -0.024547062814235, 0.00582518056035, -0.008105868473649, 0.052483100444078, -0.028066502884030002, -0.10734191536903301, -0.048392999917268004, 0.024639546871185, 0.001238617929629, 0.019713778048753003, -0.01061278488487, -0.109989829361438, -0.07348057627677901, 0.012201119214296001, -0.08496881276369, 0.045953854918479003, -0.019372833892703, 0.026549214497208002, 0.044607259333133004, -0.022037032991647002, -0.050637643784284, -0.08271829783916401, -0.05461050570011101, 0.06181839108467101, -0.001537428935989, 0.031782884150743006, -0.057511553168296, -0.012410665862262001, 0.033934220671653005, -5.406496939031058e-8, 0.032229945063591, 0.026471246033906003, -0.01690674573183, 0.031468570232391004, 0.039979148656129004, 0.024161387234926, -0.025186989456415003, -0.096155673265457, 0.0061840438283970005, 0.027248451486229, 0.054947137832641005, -0.05395471304655, 0.016642944887280003, -0.010457383468747, -0.004803704097867001, -0.018083604052662003, 0.005781163461506001, -0.12474688142538001, -0.0070690833963450005, 0.022711358964443002, 0.053658951073884006, 0.043815311044454006, 0.0169248431921, 0.02244758978486, 0.086224175989627, 0.032346874475479, 0.000568178889807, 0.10490508377552, 0.012261543422937001, 0.031191388145089004, -0.0014383876696220002, -0.030154891312122, -0.010080630891025, -0.09641004353761601, -0.10517431050539001, 0.056875139474868004, -0.047121591866016006, 0.063667550683021, -0.008978092111647, 0.031816944479942, -0.05705503001809101, 0.009891111403703001, -0.053397025913, 0.019638199359178002, 0.001493542338721, 0.009651673026382, 0.043210867792367005, -0.06842780113220201, -0.012846558354794, 0.019996536895632, -0.012609602883458, -0.031928092241287, -0.002047915477305, -0.186100751161575, -0.03188594803214, -0.020767042413353, -0.06211697310209201, -0.077527105808258, 0.013013975694775, 0.05139057338237701, 0.013491902500391001, 0.011748976074159001, -0.11477255821228001, -0.092005275189876 ]
0704.0024
Formation of quasi-solitons in transverse confined ferromagnetic film media
The formation of quasi-2D spin-wave waveforms in longitudinally magnetized stripes of ferrimagnetic film was observed by using time- and space-resolved Brillouin light scattering technique. In the linear regime it was found that the confinement decreases the amplitude of dynamic magnetization near the lateral stripe edges. Thus, the so-called effective dipolar pinning of dynamic magnetization takes place at the edges. In the nonlinear regime a new stable spin wave packet propagating along a waveguide structure, for which both transversal instability and interaction with the side walls of the waveguide are important was observed. The experiments and a numerical simulation of the pulse evolution show that the shape of the formed waveforms and their behavior are strongly influenced by the confinement.
[ "nlin.PS" ]
[ 0.000620502512902, -0.046469338238239004, -0.0817177221179, -0.037555914372205006, -0.08499982208013501, 0.012795291841030001, -0.08651848882436701, -0.025441959500312, -0.08894945681095101, -0.09603273868560701, -0.004742671269923, 0.091922655701637, 0.0020891849417230004, -0.052088506519794006, 0.0031484318897120004, 0.05302358418703, -0.008812956511974, -0.078767552971839, 0.046010475605726006, -0.004259070847183, 0.013440372422337001, -0.156306743621826, -0.0040300502441820004, -0.014651461504399001, -0.10083158314228001, 0.031076405197381002, 0.11660694330930702, -0.068327389657497, -0.062378156930208005, 0.013565368019044, 0.042902398854494005, 0.04885242506861601, -0.112518951296806, 0.049855984747409, -0.09023918211460101, -0.014021396636962, 0.0017803397495290002, 0.050268176943063, 0.052597656846046004, -0.033789694309234, 0.011901680380105, -0.030125848948955, -0.035555090755224006, -0.041109532117843, 0.04896874725818601, -0.094393610954284, 0.08769717812538101, 0.066831357777118, 0.0072053624317040006, -0.0068413461558520005, -0.14211650192737502, 0.031307630240917005, -0.040967088192701, -0.010685208253562001, 0.08304461836814801, -0.014647996984422, 0.019291533157229, 0.025161750614643003, -0.026962639763951003, -0.033817388117313, 0.034184515476226, -0.009204898029565001, 0.008014419116079, -0.038852378726005006, 0.048844419419765, -0.034288823604583005, -0.033238630741834, 0.077561765909194, 0.029210064560174002, 0.023366743698716, 0.0039755441248410005, 0.0026976226363330004, 0.034649264067411, 0.004776529967784, 0.005981652531772, 0.021940102800726002, -0.018607953563332003, 0.11298242211341801, -0.042194813489913004, 0.007847007364034, -0.047918751835823004, -0.05301562696695301, -0.005073636770248, 0.029221141710877002, -0.056372165679931, 0.015863144770264, -0.017715549096465, -0.070164285600185, -0.070703983306884, 0.023109111934900003, 0.057254716753959004, 0.045760728418827, -0.032631270587444, -0.036176137626171, 0.090098276734352, -0.08532655239105201, -0.113980256021022, -0.010003126226365, -0.005779305007308001, -0.041555274277925006, 0.026821473613381, -0.016574146226048, -0.0012555021094150002, 0.016749892383813, -0.009840524755418, -0.014784911647439001, 0.035636622458696005, 0.08830094337463301, -0.075949437916278, 0.028984067961573, 0.0016637974185860001, 0.095693260431289, -0.000424687343183, -0.005059134215116, -0.042026124894618, -0.010544396936893, 0.003872239030897, 0.040059980005025, -0.012144487351179001, 0.09482312947511601, 0.042001239955425006, 0.12348221987485801, -0.019034385681152, -0.08473567664623201, -0.059414874762296004, 0.039062850177288, -0.07063067704439101, 9.785788432503996e-35, 0.11841978877782801, 0.013710214756429001, -0.058852151036262006, 0.020967101678252, -0.075766421854496, -0.045452125370502, 0.097666196525096, -0.06274357438087401, -0.029970321804285, 0.016506247222423002, -0.008745547384023, 0.023984786123037, -0.001297434791922, -0.012398557737469002, -0.037398423999547, -0.029703633859753, -0.03956951573491, -0.04742779582738801, -0.10231166332960101, 0.035601008683443, -0.016475953161716, 0.011180711910128, -0.014524281956255, 0.007172402460128, 0.005688732024282, -0.006897119339555001, -0.035407301038503, -0.013093391433358002, -0.028915435075759003, 0.043852292001247004, 0.057213280349969, 0.040455296635627004, -0.013327206484973, -0.017138570547103, 0.171099483966827, -0.005024501122534, -0.0035526216961440002, -0.009862722828984, 0.030451772734522, -0.0035193192306900004, -0.033853955566883004, -0.09782726317644101, 0.011827072128653, 0.09271564334630901, 0.00851422548294, -0.044707030057907, 0.047473095357418005, -0.040724627673625, -0.046287789940834004, -0.062413509935140006, 0.052262987941503004, -0.129452139139175, 0.002127596875652, 0.029089553281664002, 0.046470500528812006, -0.08224108070135101, 0.090106606483459, -0.001577755669131, -0.032603748142719005, 0.020386744290590002, 0.045749630779027, -0.029126292094588002, 0.06918902695178901, -0.019718943163752, 0.006986232008785001, -0.029254699125885002, 0.06339825689792601, 0.029314093291759002, 0.07941973209381101, -0.018219858407974, 0.08242223411798401, 0.027023578062653004, 0.003896511392667, 0.03875732421875, 0.10671679675579, -0.048695094883441, 0.052634928375482004, 0.045887753367424004, 0.07343441247940001, 0.017020761966705, 0.044191300868988, -0.07879999279975801, -0.02816042304039, 0.045205287635326004, -0.035713948309421005, 0.11685568839311601, -0.038949958980083, -0.059284336864948, -0.044771708548069, -0.023134551942348, -0.09124419838190001, 0.050580073148012, 0.061169870197772, -0.046865053474903, -0.022466557100415, -2.856562209777517e-33, 0.022462684661149, -0.032128900289535, 0.004743513185530001, -0.036289796233177005, -0.039434410631656, 0.03407672047615, 0.020714778453111003, 0.064235016703605, -0.005528660025447001, -0.002631346462294, 0.061913613229990005, -0.06732955574989301, 0.034248910844326005, -0.037336349487304, -0.09929589927196501, 0.0034435295965520004, 0.044003427028656006, -0.048327073454856005, 0.020285541191697003, -0.06736592203378601, -0.04997184872627201, -0.021313829347491, 0.051612850278615, 0.010454009287059, 0.065878070890903, -0.004894365556538, 0.044049203395843006, 0.062056496739387006, 0.023269649595022, 0.072418756783008, 0.022419890388846002, 0.023481775075197, -0.027427963912487002, -0.022545460611581, -0.024540171027183002, 0.031743079423904, -0.008446280844509001, -0.09747570008039401, 0.077526621520519, -0.087556220591068, -0.06513983011245701, 0.049316845834255, 0.069406859576702, -0.03963728994131, -0.022408153861761003, -0.013187017291784, -0.0041054044850170005, 0.01654010079801, -0.057417519390583004, 0.047644991427659, -0.00631036190316, 0.054072074592113, 0.030217725783586002, -0.015347421169281, -0.042359974235296007, 0.015696316957473002, -0.004308924544602, 0.032596766948699, 0.054531682282686005, 0.063830949366092, 0.0016679744003340001, -0.03016860038042, 0.047153610736131, -0.076140917837619, 0.036366105079650005, 0.027848521247506003, 0.026076160371303003, 0.045852769166231, 0.10847478359937601, -0.013420799747109, 0.056328400969505005, 0.0023639148566870004, 0.025691740214824003, -0.021375915035605, 0.008532367646694001, 0.037717033177614004, -0.019775429740548002, 0.002328430302441, -0.017650339752435, 0.01203531678766, -0.0026595792733130003, 0.033994898200035005, 0.007656626403331, -0.052528120577335004, 0.045328825712203, -0.07463985681533801, 0.034730132669210004, -0.025475611910223003, -0.041287142783403, 0.046317208558321006, 0.096987523138523, -0.077722296118736, 0.030501956120133, -0.11030229181051202, -0.009371201507747002, -4.951763088456573e-8, 0.031007517129182004, 0.039354588836431004, 0.013779001310467002, 0.034924928098917, 0.042134102433919005, 0.07988752424716901, -0.061250645667314, -0.048957455903291, 0.08909832686185801, -0.045809373259544005, -0.040531061589717005, -0.031007029116153002, -0.04891375824809, -0.042756006121635, -0.0034270095638930004, -0.011704253964126, -0.01165765337646, 0.052988190203905, 0.010835142806172001, 0.016299717128276003, 0.043679203838109006, -0.016415283083915003, 0.015076550655066, 0.023848129436373003, -0.055761832743883, 0.037307411432266006, -0.008751804009079, -0.08289284259080801, 0.04112782329320901, -0.010378891602158, 0.010310270823538002, -0.033029168844223, 0.049117058515548005, 0.028563152998685, -0.122866749763488, -0.030496377497911002, -0.096627205610275, -0.010848761536180002, 0.021303853020071, 0.032952122390270004, -0.023272987455129002, 0.001861950964666, 0.04935924708843201, -0.0014414015458890002, -0.022769024595618, -0.028959074988961, -0.004081745631992001, 0.117094464600086, -0.062431424856185004, 0.021530462428927002, 0.056113239377737004, 0.030233012512326, 0.083531707525253, -0.058797549456357005, 0.080262586474418, -0.035420674830675, 0.019272373989224, 0.005226098466664, 0.066208191215991, -0.01237860135734, -0.04661145806312501, 0.00044170737965000003, -0.044792465865612, 0.044818636029958 ]
0704.0025
Spectroscopic Properties of Polarons in Strongly Correlated Systems by Exact Diagrammatic Monte Carlo Method
We present recent advances in understanding of the ground and excited states of the electron-phonon coupled systems obtained by novel methods of Diagrammatic Monte Carlo and Stochastic Optimization, which enable the approximation-free calculation of Matsubara Green function in imaginary times and perform unbiased analytic continuation to real frequencies. We present exact numeric results on the ground state properties, Lehmann spectral function and optical conductivity of different strongly correlated systems: Frohlich polaron, Rashba-Pekar exciton-polaron, pseudo Jahn-Teller polaron, exciton, and interacting with phonons hole in the t-J model.
[ "cond-mat.str-el", "cond-mat.stat-mech" ]
[ -0.038834389299154004, -0.061959043145179006, -0.020224750041961, 0.012017541565001, -0.044076837599277004, 0.04829142615199, 0.03855836763978, 0.042960941791534, 0.015054888091981002, 0.043141458183526, 0.08472144603729201, 0.007004079874604, -0.049394000321626004, 0.024365529417991003, 0.10105010867118801, -0.004572600591927, -0.005769272334873001, -0.018183762207627, -0.015015365555882001, 0.024133510887622, -0.053688783198595005, -0.03712286427617, 0.0017891555326050002, -0.11675296723842601, 0.023593716323375, -0.006197458133101, 0.09970789402723301, -0.022515565156936, -0.023531954735517002, 0.057957064360380006, 0.08670200407505001, -0.038559734821319004, 0.009811052121222, -0.021182050928473, -0.02383891493082, -0.013667290098965001, 0.07945993542671201, -0.09274189919233301, 0.009112628176808, -0.001777620986104, 0.049220956861972004, 0.130821928381919, 0.058249790221452005, -0.064430810511112, 0.068309687077999, -0.048211775720119004, 0.069446444511413, -0.024131556972861002, -0.010588561184704, -0.071913167834281, 0.021273817867040003, 0.027048163115978, -0.034946467727422, -0.009180554188787, 0.060279577970504004, 0.05628377571702001, 0.042064666748046, -0.014235592447221002, -0.022521125152707003, -0.012913435697555, 0.04586911201477, 0.019712770357728, -0.06456287950277301, -0.008157222531735, 0.06574325263500201, -0.03489401191473, 0.000599495135247, 0.047169540077447, 0.018520655110478002, 0.045312155038118, -0.07109273225069, 0.010512597858905001, -0.008585393428802001, -0.043985433876514005, 0.008260183036327001, 0.10496861487627, -0.019853444769978003, 0.028797652572393, -0.033492509275674, -0.10452965646982101, -0.037405114620923004, -0.068096727132797, 0.01601181179285, -0.030265342444181, 0.011567054316401001, 0.08673450350761401, -0.048865795135498005, 0.008388510905206, -0.024655679240822, -0.019261769950389, 0.034810539335012006, -0.091685079038143, -0.040612664073705, -0.050799347460269005, -0.09777567535638801, 0.021192299202084, 0.082023173570632, 0.047980859875679, -0.0065566520206630004, 0.007370476145297001, 0.099436305463314, -0.032699666917324004, 0.07394980639219201, -0.067865766584873, -0.040847092866897, 0.014965841546654, 0.095900706946849, 0.072277627885341, 0.012173409573733002, -0.053362812846899005, -0.036202151328325, -0.042983129620552, -0.012926299124956001, 0.012473154813051002, -0.115979477763175, 0.08911979198455801, 0.046487942337989, 0.012953788042068001, 0.061831306666135004, 0.055768147110939005, -0.008803949691355001, 0.012078375555574, 0.0018289178842670001, 0.047746181488037005, -0.040043570101261, -0.040660370141267006, -0.033307332545518, 1.9126507153137823e-33, 0.034844245761632, 0.010821831412613002, 0.074136473238468, -0.076091088354587, 0.057675205171108, -0.08699145913124001, -0.003972686827182, -0.080957613885402, -0.04190880805253901, 0.010183243080973, 0.004791212268173001, 0.052647531032562006, -0.026197079569101, -0.030614856630563004, -0.010634157806634001, 0.04494908824563, -0.09026841074228201, -0.029343720525503002, 0.042574029415845004, 0.025645233690738, 0.10317198187112801, -0.008706651628017, 0.006588330492377, 0.06761123239994, 0.028685232624411004, 0.0025449953973290004, 0.064925335347652, 0.06829193234443601, -0.103899091482162, 0.036708027124404005, 0.079375125467777, 0.097737625241279, -0.023550482466816, 0.048340432345867004, 0.045305375009775, -0.018951464444398002, 0.025378279387950002, 0.000841136788949, 0.061630170792341, -0.08815781772136601, 0.010168055072426001, -0.08312756568193401, -0.036671869456768, 0.15774552524089802, -0.028224907815456002, -0.10967922955751401, 0.09830074012279501, -0.056889872997999004, 0.102309018373489, 0.008108141832053, -0.05829292163252801, -0.041226290166378, -0.023627864196896, 0.116707049310207, 0.007303432095795001, -0.026514967903494002, 0.066117353737354, 0.022814951837062003, 0.012153960764408, 0.0033246721141040004, 0.036860786378383005, 0.009869072586297, 0.0030898218974470004, -0.055002976208925004, -0.01698057539761, 0.06984034925699201, -0.053473535925149, 0.0037383935414250003, 0.034464757889509, -0.020452426746487, 0.081607148051261, 0.049388065934181005, 0.032263159751892, -0.11571152508258802, 0.09507623314857401, -0.021361969411373003, 0.009460474364459001, 0.006533415522426001, -0.038853049278259, -0.005203743465244001, -0.031973700970411, 0.022269614040851003, -0.062534376978874, 0.033688507974147006, -0.083392277359962, -0.015380821190774002, -0.010047816671431, 0.024362856522202003, -0.09287194162607101, -0.01652992516756, 0.006035179365426, -0.024324275553226003, 0.009949773550033, -0.062806114554405, -0.012257936410605, -3.5373442529264765e-33, -0.055145289748907006, 0.073787882924079, 0.028920775279402, -0.051677793264389, -0.039971157908439005, -0.07580225169658601, 0.01675446331501, 0.031128888949751004, 0.055273190140724, -0.020039144903421003, 0.014978882856667002, -0.017467826604843, 0.011653698980808001, -0.0031720667611800004, -0.0059782317839560005, -0.014337522909045, -0.016952306032180002, -0.013447678647935002, 0.099593050777912, -0.05370002239942501, -0.062186084687709, -0.043179459869861006, 0.071458615362644, -0.001057021436281, 0.022583512589335, 0.015808602795004, 0.000017985796148423102, 0.030744601041078002, -0.075687646865844, 0.026116169989109, -0.007560704369097001, 0.034328814595937, -0.07961246371269201, 0.024574747309088003, -0.054896354675292004, 0.022927835583686003, -0.034036301076412, -0.0009482002933500001, 0.039890274405479, -0.026818817481398003, 0.029009534046053, -0.035701386630535, 0.017891189083456, -0.017655191943049, 0.037711512297391, 0.023013232275843003, -0.077294677495956, 0.010703267529606, -0.037165686488151, -0.033189430832862, -0.017208730801939, 0.030762642621994, -0.005897673778235001, 0.0036320183426140004, -0.025471000000834004, 0.053187239915132, -0.014664057642221002, 0.07239237427711401, 0.045533537864685, -0.024635639041662, -0.134081438183784, -0.09827951341867401, 0.016998255625367, -0.001186085748486, -0.024237399920821003, -0.043257802724838, -0.010830896906554002, -0.024159770458936, 0.187893912196159, -0.030871368944644, -0.001468221773393, 0.053303159773349006, -0.014630112797021002, 0.017155494540929, -0.06368096917867601, -0.015534032136201002, 0.005596028175204, -0.06716065108776001, -0.029374390840530003, -0.005001961253583, 0.082881212234497, 0.075470596551895, -0.051670514047145004, -0.12069986760616301, 0.074562326073646, 0.024456674233078003, -0.042431823909282004, 0.019287640228867, -0.066091738641262, -0.061493519693613004, 0.068863846361637, 0.01341928821057, 0.083254225552082, -0.012814435176551, -0.012374737299978001, -4.154147248414119e-8, 0.036785464733839, -0.018378566950559002, 0.0035805967636400003, 0.015148854814469, 0.11033777892589501, -0.015316151082515002, -0.004592320416122, -0.061903778463602004, 0.0038483433891080003, -0.011561457067728001, 0.072614349424839, -0.046953149139881, 0.021338088437914002, -0.023818293586373003, 0.007523992098867001, -0.049970518797636004, -0.036083620041608006, -0.032974757254123, -0.036340333521366, -0.001297047943808, 0.008864405564963, 0.030370222404599002, -0.006414841394871001, 0.084871016442775, -0.017374599352478003, 0.054312225431203, -0.051455467939376005, -0.062549449503421, -0.045385286211967, 0.06393065303564001, -0.010729401372373, -0.034020837396383, -0.040448755025863, 0.127456068992614, -0.034863024950027, -0.014455560594797, -0.006754899397492, 0.006829661317169, -0.048657801002264, -0.006461642682552, -0.047069288790225004, 0.025801585987210003, 0.0008219548617480001, 0.05795079842209801, 0.005859328433871, 0.043811656534671006, 0.009121752344071001, 0.047263335436582, 0.071835584938526, 0.032093171030282, -0.053887270390987, 0.015017123892903002, -0.09029463678598401, -0.040173206478357, -0.07917372137308101, -0.061927650123834006, -0.047730684280395, 0.031439293175935, -0.048415083438158, 0.06713145226240101, 0.004957317840307, 0.026873262599110003, -0.077930778264999, -0.016149085015058 ]
0704.0026
Placeholder Substructures II: Meta-Fractals, Made of Box-Kites, Fill Infinite-Dimensional Skies
Zero-divisors (ZDs) derived by Cayley-Dickson Process (CDP) from N-dimensional hypercomplex numbers (N a power of 2, at least 4) can represent singularities and, as N approaches infinite, fractals -- and thereby,scale-free networks. Any integer greater than 8 and not a power of 2 generates a meta-fractal or "Sky" when it is interpreted as the "strut constant" (S) of an ensemble of octahedral vertex figures called "Box-Kites" (the fundamental building blocks of ZDs). Remarkably simple bit-manipulation rules or "recipes" provide tools for transforming one fractal genus into others within the context of Wolfram's Class 4 complexity.
[ "math.RA" ]
[ 0.002029967261478, 0.003004288533702, -0.050156757235527004, 0.016358625143766, -0.005101518239825, -0.116577357053756, -0.087728336453437, -0.010016086511313001, 0.073399901390075, -0.000579994986765, -0.052253164350986, -0.033936612308025, -0.05917030572891201, 0.011797974817454001, -0.047262262552976005, -0.0074204881675540004, -0.061740480363368, 0.007119188085198001, -0.035583652555942, 0.06328145414590801, 0.09968652576208101, -0.00493796588853, -0.0047115394845600005, 0.020728576928377002, 0.029092995449900003, -0.012016171589493, -0.081737130880355, 0.012054271064698, 0.179392650723457, -0.08966591209173201, 0.052521813660860006, 0.11669142544269501, 0.018492475152015003, 0.018784737214446002, 0.070657476782798, 0.058329932391643004, 0.07905939221382101, 0.015087306499481002, -0.008757133036851, 0.058547645807266006, 0.028360728174448003, 0.06231776252388901, 0.043283082544803, 0.08123207092285101, -0.023520097136497, 0.079670302569866, 0.014727527275681001, 0.019122445955872, -0.028407793492078, -0.046108730137348, -0.028325129300355002, -0.028488028794527002, -0.100099273025989, 0.09468268603086401, 0.038123641163110004, 0.0032044837716960002, -0.029129959642887, -0.06090166047215401, 0.051608774811029004, -0.046433977782726, 0.012620527297258, 0.007013806141912, 0.0064247632399200005, -0.035114418715238, 0.042884085327386, 0.056921053677797005, -0.089492045342922, -0.043461453169584004, -0.026650944724678, 0.017949543893337, -0.01863152347505, 0.054720215499401, -0.003918133676052001, 0.077850542962551, 0.060881298035383, 0.038206256926059, -0.033757090568542, -0.10216183960437701, 0.019122255966067002, 0.046365156769752, -0.020146030932664, 0.014042667113244001, 0.016528671607375003, 0.026225449517369003, -0.024475594982504, -0.018391549587249003, -0.014259897172451002, 0.063056796789169, 0.044474329799413, -0.043590359389781, -0.055160451680421003, 0.014577715657651001, 0.011142592877149, -0.041615959256887006, -0.08415503054857201, -0.009157453663647001, 0.048534464091062005, 0.010162644088268, 0.043559979647397, 0.026045370846986, 0.06877246499061501, -0.042100697755813, 0.046692714095115, 0.004091694485396, 0.0036318334750830004, 0.006320819258689001, 0.030098410323262003, 0.06884428113698901, -0.040346268564462, -0.025739397853612, -0.039044432342052, -0.032453067600727005, -0.014793584123253002, -0.032219357788562004, -0.028741359710693002, -0.042862519621849005, -0.037916652858257, 0.03519644588232, -0.042521215975284, -0.029648292809724003, 0.05588358268141701, 0.007290314882993001, 0.060603659600019004, 0.059722684323787, 0.019306501373648, 0.013649388216435, -0.161919847130775, 9.04011450941484e-34, 0.060191866010427, 0.09194467216730101, -0.010319604538381, 0.071325488388538, 0.09237885475158601, -0.049557536840438, -0.047708291560411, 0.00040159412310400005, 0.048569232225418, 0.14065378904342601, -0.064119473099708, 0.017293473705649, 0.08769243955612101, 0.069292955100536, 0.11135296523571, -0.078231014311313, 0.024774840101599003, -0.053901962935924, -0.058344516903162, -0.053517509251832004, 0.042438402771949005, 0.06945469230413401, -0.029824219644069002, -0.006796292960643001, 0.05997882410883901, 0.044782847166061006, -0.009195299819111, -0.02797558158636, 0.042091365903615, 0.015938138589262, 0.007067411206662001, -0.041321761906147, -0.048310078680515005, 0.018577553331851, 0.061930246651172007, 0.040323380380868, -0.034537184983491, -0.056223031133413, 0.007044266443699001, -0.046871423721313005, 0.023577610030770003, -0.034176670014858, -0.029046399518847, -0.015126704238355002, 0.022669639438390003, -0.033864483237266, 0.067076824605464, 0.0551866479218, -0.044712007045745, -0.049767315387725004, 0.028477232903242004, 0.04907064884901, -0.066420041024684, -0.048087943345308005, 0.023559115827083, -0.02819986641407, 0.027550261467695004, -0.030098250135779003, -0.001421074732206, 0.13184320926666201, 0.020415795966982002, -0.006978773511946001, -0.050467271357774006, 0.077873758971691, -0.05217500776052401, 0.010739591903984, -0.040859874337911, -0.06849988549947701, 0.052863273769617004, 0.010576167143881, -0.07995545119047101, 0.065091826021671, -0.02292700856924, 0.028358496725559002, -0.0027651314157990004, -0.08495581150054901, -0.010962708853185002, -0.10103692114353101, -0.035750914365053, 0.057573068886995, -0.111187510192394, -0.005405297968536, -0.033151544630527004, -0.08856243640184401, -0.050767518579959, -0.10693053156137401, 0.036794919520616004, 0.014271236024796002, -0.049193508923053006, -0.095542907714843, -0.032008044421672, -0.118565149605274, 0.11030624806880901, -0.057588633149862005, -0.022559950128197, -1.9523214456021274e-33, -0.10343843698501501, -0.032166581600904, -0.012994708493351001, -0.004028568975627, -0.025922300294041002, 0.024949470534920002, 0.022950641810894002, -0.028798874467611, 0.020461909472942002, -0.055750522762537, -0.040290605276823, 0.106190308928489, 0.036582414060831, 0.005587991792708, 0.032494433224201, 0.029383143410086004, -0.06875520944595301, -0.044985745102167005, -0.001867957646027, -0.041661549359560006, -0.0029972698539490004, 0.047931544482707006, -0.004522504750639001, -0.011931851506233, 0.016200933605432, 0.082319408655166, 0.025230808183550002, -0.05616603791713701, 0.057586431503295, 0.13567711412906602, -0.06698106229305201, -0.07676569372415501, 0.023839011788368003, -0.055107515305280005, -0.041964005678892004, -0.009879399091005001, 0.01768416725099, -0.052495021373033, -0.036587823182344, -0.058323465287685006, -0.028348034247756, 0.0020257697906340003, 0.016652893275022, 0.057717636227607005, -0.001514196163043, 0.010193572379648, -0.03653610497713, 0.10490213334560301, 0.000595165940467, -0.029728805646300004, -0.028441647067666, 0.027680490165948, 0.011623990722, 0.005672121886163, 0.066413573920726, 0.034131500869989, -0.048337593674659, 0.051018554717302, 0.071444347500801, -0.02366186119616, -0.043338332325220004, -0.092252887785434, 0.05953078716993301, -0.036042705178260005, 0.019824767485260002, -0.011319177225232001, -0.001572458771988, -0.042232323437929, -0.09567442536354001, 0.029935562983155, 0.096797227859497, 0.034862294793128, -0.04913192614912901, -0.049762062728405006, -0.07372259348630901, -0.022305611521005003, 0.002961783902719, 0.07230877876281701, -0.025226078927516, 0.030289197340607, 0.000834463280625, 0.040131099522113, 0.008139493875205, 0.024104667827486003, 0.027036886662244002, -0.060416392982006004, 0.095741592347621, 0.055779125541448, -0.008903061971068, 0.009469302371144002, 0.011318779550492, 0.020314324647188003, 0.052464321255683004, 0.115242213010787, 0.05398301035165701, -4.5012001237410004e-8, -0.049364674836397004, 0.024551875889301, -0.043623201549053005, -0.07636681944131801, 0.002222290029749, 0.02057584002614, 0.031923439353704, 0.005760849919170001, -0.028769241645932003, -0.020279476419091003, 0.056810360401868, 0.06703058630228001, -0.07939097285270601, 0.015755491331219, 0.07180862873792601, 0.017837835475802002, -0.015345283783972001, -0.018714381381869, -0.038670215755701, 0.041555818170309004, -0.047608528286218005, 0.00203409534879, 0.017233472317457, 0.024394875392317, -0.090441800653934, -0.034597359597682, -0.010036036372184, -0.07725606858730301, 0.019956288859248, 0.045132417231798005, 0.024444177746772003, 0.071545533835887, 0.06932145357131901, -0.007842916995286001, -0.034437552094459, 0.027565754950046, -0.121348477900028, 0.044296681880950005, -0.029267342761158003, 0.009013504721224001, 0.038211300969123, -0.00288914470002, -0.01847212947905, -0.006773959845304001, 0.0017694164998820002, 0.023718865588307003, -0.036143016070127, -0.026717329397797, -0.016302976757287, 0.04626726359128901, -0.035293541848659, 0.061838686466217006, -0.047435857355594004, 0.004889021161943, -0.024712849408388003, 0.026447778567671002, -0.079098455607891, -0.079611226916313, 0.021126186475157002, 0.036275576800107005, 0.001026815734803, 0.029382379725575003, 0.012734819203615001, -0.008368925191462 ]
0704.0027
Filling-Factor-Dependent Magnetophonon Resonance in Graphene
We describe a peculiar fine structure acquired by the in-plane optical phonon at the Gamma-point in graphene when it is brought into resonance with one of the inter-Landau-level transitions in this material. The effect is most pronounced when this lattice mode (associated with the G-band in graphene Raman spectrum) is in resonance with inter-Landau-level transitions 0 -> (+,1) and (-,1) -> 0, at a magnetic field B_0 ~ 30 T. It can be used to measure the strength of the electron-phonon coupling directly, and its filling-factor dependence can be used experimentally to detect circularly polarized lattice modes.
[ "cond-mat.mes-hall" ]
[ -0.060996066778898, -0.034795448184013006, -0.007287632673978001, -0.014851039275527, 0.034723628312349, 0.023182986304163003, 0.008286207914352, 0.009351438842713, -0.07620105147361701, 0.0067895464599130005, -0.023969482630491003, 0.055547568947076006, -0.013717700727283, 0.039547238498926, 0.09670616686344101, 0.042473025619983, 0.02330207824707, -0.07236489653587301, 0.023503357544541, 0.021433997899293, -0.022700244560837003, -0.11923123896121901, 0.051082309335470005, -0.10309083014726601, -0.016210129484534, 0.030508762225508003, 0.061306238174438005, -0.046172313392162004, 0.050092715770006006, 0.024415209889411003, 0.09883192181587201, 0.049234513193368, -0.121901981532573, 0.073894716799259, -0.046898901462554, -0.00136118021328, 0.08704107254743501, -0.047358836978673005, 0.023337360471487, -0.031147480010986002, 0.05274254828691401, 0.07580878585577, 0.065162159502506, -0.045127842575311, 0.036870718002319, 0.015784936025738, 0.014471192844212001, -0.007158658001571, -0.0038689454086120005, -0.09947283565998001, 0.033048592507839, -0.0036739646457130005, 0.013701857067644001, -0.010102901607751002, -0.016095727682113002, 0.08308598399162201, 0.08260802924633001, -0.022734344005584002, 0.025624383240938003, 0.00995398312807, -0.008634797297418001, -0.013068338856101001, -0.07850481569766901, -0.022190103307366003, 0.012411038391292002, 0.08253864198923101, 0.01734247803688, -0.071163088083267, -0.05732486769556901, 0.07998592406511301, 0.05383890494704201, 0.042709622532129, -0.051592960953712005, -0.030335571616888, 0.046158172190189, 0.094339087605476, -0.024231664836406003, 0.062738269567489, -0.099774323403835, -0.03274555131793, -0.06769917905330601, -0.042551849037408, -0.0005596719565800001, 0.077591262757778, -0.00020000211952700002, 0.019327266141772003, -0.025619708001613003, -0.021374087780714, -0.130875349044799, 0.090557791292667, 0.017012454569339003, 0.015105320140719001, -0.089488476514816, -0.024103740230202002, -0.07611861824989301, 0.050528917461633, 0.11719457060098601, -0.023690694943070002, -0.009259103797376001, 0.017699547111988, 0.020944729447364002, -0.079833902418613, -0.012496333569288, -0.005858089774847, -0.078334778547286, 0.016409022733569003, 0.024898797273635, -0.008481249213218, 0.018523041158914, -0.040156029164791, -0.0063860579393800005, 0.039159573614597, 0.10126813501119601, 0.026702458038926003, -0.034344177693128, 0.014538299292325, 0.004528925754129, 0.040466099977493, 0.017916051670908, 0.09988902509212401, 0.0051598139107220005, 0.086909502744674, -0.078078135848045, -0.007205044850707, -0.068513266742229, 0.016256673261523, -0.08703875541687, -8.58561512879917e-34, 0.061362601816654004, 0.072056174278259, 0.099200390279293, -0.022797713056206002, -0.005883192643523, 0.018059380352497, -0.089967407286167, -0.031350024044513, 0.025573778897523002, -0.042139369994401, -0.026701670140028003, 0.0188396461308, 0.022829830646514, -0.045757178217172005, -0.03632042184472, -0.010221276432275, 0.013442419469356, -0.042049378156661, 0.045335404574871, -0.000512815255206, 0.034382171928882, -0.021564040333032, 0.024641744792461003, 0.119212299585342, 0.022755099460482, -0.062127918004989006, -0.003879224183037, 0.026107540354132003, -0.043237358331680006, 0.006081204861402001, 0.008095417171716001, 0.06310187280178, -0.007881367579102001, 0.000673298665788, -0.02218990959227, -0.074276275932788, -0.031309962272644, 0.016609352082014, 0.051365297287702005, -0.148034200072288, 0.030471906065940003, -0.07609918713569601, -0.0076953251846130005, 0.103685408830642, -0.09399285912513701, -0.057814255356788004, 0.059345457702875005, -0.071273006498813, 0.033089820295572, -0.011525297537446001, -0.060109477490186004, -0.07401984930038401, -0.00181844132021, 0.028010196983814004, -0.006460476201027, -0.010286588221788, 0.142984256148338, -0.035826507955789004, 0.00044322889880200005, -0.05529456213116601, 0.14597748219966802, -0.013001706451177, 0.05552876368165, 0.040866866707801, -0.018773032352328002, 0.011637699790298, -0.03338773176074, -0.05473865196108801, 0.016937769949436, -0.047839425504207, 0.0052813533693550005, 0.068179421126842, -0.03922114893794, -0.016235340386629, 0.11425892263650801, 0.003383546834811, -0.05216022208333, -0.046236112713813005, 0.075524747371673, 0.002478344133123, -0.024350436404347003, -0.026434956118464, -0.000200735099497, 0.019868124276399002, -0.056188698858022, 0.028230551630258, -0.020983479917049002, -0.042332254350185006, -0.004893106408417, -0.037105079740285006, -0.025421436876058003, -0.126638129353523, 0.044288586825132, -0.031078457832336003, -0.069186680018901, -1.4143023648410701e-33, -0.013875555247068001, 0.01056367624551, 0.107920043170452, 0.016700638458132, 0.044637072831392004, -0.017618395388126002, 0.07885200530290601, 0.0692775323987, 0.011543639004230001, 0.06031484529376, 0.095268860459327, -0.007506064604967001, 0.021549293771386, -0.085551761090755, -0.025282310321927, 0.017175463959574002, -0.066804960370063, -0.052288286387920005, 0.126695707440376, 0.034512851387262004, -0.023788325488567002, -0.08926054835319501, 0.010589037090539, 0.04105760902166301, 0.039531458169221004, 0.027803935110569004, -0.059514615684747, -0.056438378989696, 0.052280448377132006, 0.061113499104976, 0.019124055281281003, 0.035547912120819, -0.007942661643028, -0.040684890002012, 0.0074972473084920005, 0.013495828956365, 0.028273981064558, -0.06066095456480901, -0.0016516669420520002, -0.032039497047662, -0.001183538231998, 0.00458339555189, -0.031059788540005004, 0.00003738613668247126, 0.008955388329923, 0.040082152932882004, -0.037699855864048004, 0.025146661326289003, -0.11822375655174201, 0.012730246409773001, -0.026834046468138, 0.07126198709011, 0.038881044834852004, 0.020159933716058002, -0.0280118919909, 0.015179568901658001, -0.004233214538544, 0.066998854279518, 0.039170533418655, 0.006934053264558, -0.053481832146644, 0.044927600771188, -0.0066899601370090005, -0.033391512930393004, -0.033670954406261, -0.005672959145158, 0.014260057359933001, -0.053903020918369, 0.08336340636014901, 0.001121608773246, 0.054580558091402005, 0.046577751636505, 0.005665728822350001, -0.012979000806808002, 0.045663449913263, 0.023986022919416, 0.085954129695892, -0.035640608519315005, -0.06882209330797101, 0.023433996364474, 0.046161133795976, 0.060361646115779, -0.059797871857881005, -0.05963810160756101, -0.008126384578645, 0.047904442995786, -0.008924637921154001, 0.003526075975969, -0.010887921787798, -0.028856322169303002, 0.065962992608547, 0.010083876550197001, -0.025539306923747004, -0.007346051745116, 0.080779217183589, -4.406437170700883e-8, -0.043703757226467, -0.05700267851352601, 0.037470161914825, -0.009831464849412, 0.015516971237957, -0.11550050973892201, 0.11996651440858801, -0.010748584754765, -0.001396802952513, -0.0321048758924, 0.063362121582031, -0.11941705644130701, -0.054696392267942005, -0.040909569710493005, -0.03715256601572, 0.024221241474151, -0.012819298543035, 0.028970904648303004, 0.023303680121898002, 0.073422089219093, 0.0028441946487870002, -0.056573271751403004, 0.006109686568379001, -0.037476304918527, 0.006198482122272001, -0.06003034487366601, -0.137820020318031, -0.06079513952136, -0.061403926461935, 0.007027864456176001, -0.003469971241429, -0.024167295545339, 0.023239955306053002, 0.018362650647759, -0.08961314707994401, 0.039010170847177006, -0.07259227335453, -0.017093116417527, 0.011159190908074, -0.017220068722963, 0.030686823651194003, 0.081452377140522, 0.012074361555278001, 0.0033857747912400004, -0.026242580264806, 0.009057571180164, 0.031710177659988, 0.08078045397996901, 0.032415255904197006, 0.023593410849571003, -0.005154239479452, 0.00426929583773, -0.016626186668872, -0.07263400405645301, -0.026189304888248003, -0.03938566148281, -0.059671815484762004, -0.00015036373224500002, -0.011647962965071, -0.001386222313158, 0.036279030144214006, -0.045764897018671, -0.046067204326391005, 0.004405021201819 ]
0704.0028
Pfaffians, hafnians and products of real linear functionals
We prove pfaffian and hafnian versions of Lieb's inequalities on determinants and permanents of positive semi-definite matrices. We use the hafnian inequality to improve the lower bound of R\'ev\'esz and Sarantopoulos on the norm of a product of linear functionals on a real Euclidean space (this subject is sometimes called the `real linear polarization constant' problem).
[ "math.CA", "math.PR" ]
[ -0.024462670087814, -0.043460194021463006, -0.064199961721897, -0.032205507159233, 0.008912530727684, 0.11531084030866601, 0.083207763731479, 0.002285479567945, -0.047716729342937005, 0.00046175881288900003, 0.024861661717295, 0.060962110757827, -0.013139239512383001, -0.014365235343575, -0.0030451149214050003, -0.025962237268686003, -0.0031554014421990005, 0.025131534785032, -0.043152470141649, 0.08919917792081801, 0.018120739609003, 0.027403939515352003, 0.024252723902463, 0.072094686329364, 0.033936303108930005, -0.062170617282390005, 0.08311675488948801, 0.021647820249199003, 0.0014899155357850002, 0.028073450550436002, -0.011130292899906, 0.038715351372957, 0.09191981703042901, -0.026442728936672003, -0.026119096204638002, 0.035187724977731004, -0.013061280362308001, -0.014903088100254001, -0.0061471411027010005, -0.062181163579225006, 0.029747629538178003, -0.024414362385869002, 0.038706298917531, 0.049134846776723, -0.10418982803821501, -0.068871080875396, 0.107667975127696, -0.052029203623533006, 0.050104379653930005, -0.074075743556022, -0.081285960972309, 0.05452778562903401, 0.009687742218375001, -0.00549594964832, -0.11347372829914001, -0.12620078027248302, -0.008383501321077, -0.017144417390227002, 0.050732105970382003, -0.012297882698476, 0.031792037189006, -0.020345881581306003, 0.018660129979252, -0.024536959826946002, -0.023053165525197, 0.028389170765876003, 0.023874966427683, -0.08315325528383201, -0.043003261089324, 0.08192976564168901, -0.074153192341327, 0.009908922947943, -0.14583405852317802, -0.065516777336597, -0.013338928110897002, 0.037708524614572005, -0.0016009404789650002, -0.0077112033031880006, -0.0259480625391, -0.032886032015085005, 0.046054258942604, -0.040393196046352005, -0.028682688251137, 0.031974498182535005, 0.06798876821994701, -0.003404645016416, 0.020530860871076, -0.08862897753715501, 0.050640676170587005, -0.051806945353746005, 0.045212622731924, -0.012052124366164001, 0.012133442796766002, 0.022881701588630003, -0.08900608122348701, -0.124567754566669, -0.010672810487449001, 0.08177682012319501, 0.008429887704551001, 0.032689601182937005, -0.007354263681918, -0.10628439486026701, -0.041423860937356005, 0.034426920115947, -0.023569978773593, -0.035741146653890006, 0.006500768009573001, -0.04636852070689201, 0.047353006899356, 0.044813808053731, 0.037371199578046, -0.009302724152803001, -0.026508534327149003, 0.020353564992547, 0.00564816314727, 0.022794976830482, 0.025276521220803, -0.040490042418241, 0.053931545466184005, -0.07657017558813001, -0.013819620944559002, -0.016310237348079, 0.014640259556472001, 0.038126964122056003, -0.000733408669475, 0.029803104698657, -0.08253000676631901, 2.591917656447126e-33, 0.013542955741286, 0.036827623844146, 0.09238018095493301, -0.011438935995101, -0.045507848262786005, 0.024637186899781, -0.044238876551389, -0.012662671506404, 0.023452484980225, -0.037773031741380005, 0.010704798623919001, 0.09952275454998001, -0.012685126625001, -0.029461689293384004, 0.039971172809600004, -0.015050604008138001, -0.021889325231313, -0.047890100628137006, 0.08671652525663301, -0.09971942007541601, -0.051767066121101005, -0.028440149500966003, 0.022704953327775, 0.022075735032558, 0.039041638374328, -0.12056679278612101, 0.051528912037611, -0.008300977759063001, -0.11912169307470301, -0.009078691713511, -0.014420026913285, 0.002730642212554, 0.072236187756061, 0.039290864020586, 0.023004889488220003, -0.002837756415829, -0.068273656070232, 0.020775258541107, -0.07789663225412301, -0.031685549765825, -0.059779807925224006, 0.013787010684609, -0.025517042726278003, -0.0022739227861160003, 0.004499434027820001, -0.077564440667629, 0.037843890488147, 0.11734469234943301, 0.07906456291675501, -0.030992586165666, 0.028232818469405, 0.083333440124988, -0.061537764966487, -0.024620957672595003, -0.0060206037014720005, -0.047134194523096, -0.039253495633602004, 0.047146096825599004, 0.102452643215656, 0.057056307792663005, -0.028191555291414, -0.047034788876771004, 0.088106550276279, -0.06530899554491, -0.017509005963802, 0.056766748428344005, 0.012913287617266001, -0.069701083004474, 0.041341830044984006, 0.023404764011502002, -0.014015676453709, -0.014067803509533001, 0.05414044111967001, -0.024251101538538003, 0.004152910318225, 0.106079772114753, -0.056468997150659006, -0.008776910603046001, -0.04989834874868301, 0.047621369361877004, -0.061287134885787006, -0.009522584266960002, 0.012162889353930001, -0.044874016195535, -0.06867472827434501, -0.10283364355564101, -0.022354133427143003, -0.035364601761102, -0.032163918018341, 0.04491686820983801, -0.018492868170142, -0.06322836130857401, 0.017567636445164, 0.041374072432518005, 0.030948761850595002, -3.5020731775880685e-33, -0.018488507717847002, -0.119640201330184, -0.105697236955165, -0.010524848476052001, -0.0029673790559170002, -0.075996093451976, 0.033496461808681, 0.05854292586445801, -0.099302418529987, 0.028441790491342003, 0.032871577888727, -0.011876483447849001, 0.027747502550482, 0.030303742736577002, 0.004446513019502001, 0.0017557846149420001, 0.057436034083366005, 0.05957723408937401, 0.014057871885597002, -0.030676178634166003, -0.015587013214826001, 0.04820132255554101, 0.051602367311716, 0.083507716655731, -0.07569508254528001, -0.014991244301199, 0.014693268574774002, 0.060355391353368, -0.12747500836849202, 0.007618228904902001, 0.056031037122011004, -0.0029227610211810004, -0.10648081451654401, 0.00206979131326, -0.026324914768338002, -0.046126302331686006, 0.016664620488882002, 0.030147964134812, 0.0017865591216830001, 0.13980469107627802, 0.018973866477608, -0.040415391325950005, 0.023490622639656, 0.043947286903858004, 0.004768437240272001, -0.055559836328029, -0.005793705116957, -0.062054108828306004, -0.044587541371583, -0.011603801511228001, 0.030378613620996003, 0.072422228753566, 0.052507456392049005, 0.004795171320438001, -0.036188516765832006, 0.003657779423519, -0.061164394021034005, 0.040623869746923, 0.071511641144752, -0.026343502104282, -0.06788235157728101, 0.033792845904827, -0.046500235795974, 0.044748742133378004, 0.07663638144731501, -0.110458336770534, -0.017812464386224, -0.021609643474221, 0.070149354636669, 0.038397844880819, -0.007866081781685, 0.014388511888682001, -0.001091083628125, 0.06537253409624101, -0.043372359126806, 0.07600051164627, 0.12323477864265402, -0.0066431844606990005, -0.032738156616687004, 0.090538650751113, 0.051766529679298005, -0.032370768487453, 0.01087887212634, 0.05232967436313601, -0.063874699175357, 0.031470000743865, 0.0035514598712320005, 0.007740668952465001, 0.028541184961795002, 0.032154295593500005, 0.025805704295635, -0.040897756814956006, -0.031174093484878002, 0.009917118586599001, 0.091606318950653, -3.389676450638035e-8, 0.019786683842539003, -0.086285561323165, -0.051798958331346005, 0.013905827887356, -0.008047381415963001, -0.051215697079896004, -0.03433134034276, 0.005316218361258, -0.054408598691225, 0.086053624749183, -0.013197680003941002, -0.022891575470566, -0.0011944730067620002, -0.043394703418016004, -0.015252673998475002, -0.013759062625467002, -0.052907280623912006, 0.004825653508305001, 0.018595967441797, -0.046652689576148, 0.071689575910568, -0.038956224918365, 0.013894396834075002, 0.071952871978282, -0.0036759395152330004, -0.05131738632917401, 0.07329262793064101, -0.09039177000522601, -0.04843533411622, 0.11106774955987901, 0.045631662011146004, 0.0018693575402720002, 0.045218065381050006, 0.054424189031124004, 0.055815655738115005, -0.00821038801223, 0.060355558991432, -0.050992563366889, -0.089370660483837, 0.10191074758768001, -0.052920043468475, 0.069643430411815, -0.030394623056054, -0.031815681606531004, -0.008670476265251, 0.058386124670505, 0.011140883900225001, 0.047961022704839006, 0.029797803610563, 0.040260739624500004, 0.028552571311593004, 0.070512816309928, -0.025652525946497, 0.018011124804615003, 0.037053246051073005, -0.037676852196455, 0.03660124912858, 0.00725061353296, -0.035164453089237005, -0.010993076488375001, 0.08090770989656401, 0.052779410034418, 0.021532572805881, 0.027898233383893002 ]
0704.0029
Understanding the Flavor Symmetry Breaking and Nucleon Flavor-Spin Structure within Chiral Quark Model
In $\XQM$, a quark can emit Goldstone bosons. The flavor symmetry breaking in the Goldstone boson emission process is used to intepret the nucleon flavor-spin structure. In this paper, we study the inner structure of constituent quarks implied in $\XQM$ caused by the Goldstone boson emission process in nucleon. From a simplified model Hamiltonian derived from $\XQM$, the intrinsic wave functions of constituent quarks are determined. Then the obtained transition probabilities of the emission of Goldstone boson from a quark can give a reasonable interpretation to the flavor symmetry breaking in nucleon flavor-spin structure.
[ "hep-ph" ]
[ -0.09421896189451201, -0.07264058291912001, 0.054659899324178, 0.010817848145961002, -0.0077825458720320005, -0.012024488300085, 0.041113574057817, -0.00100869894959, -0.014588849619030002, -0.030436923727393, 0.033693771809339, -0.014462001621723002, -0.06594305485486901, 0.009827309288084, 0.13353537023067402, 0.096798814833164, -0.013812207616865002, 0.013365007936954, -0.037615776062011004, 0.034788712859153005, -0.003922751173377001, -0.001683625043369, -0.018602250143885002, 0.012769363820552, -0.014902059920132, -0.013103208504617, 0.068844094872474, 0.045725792646408005, 0.040345549583435, -0.073359951376914, 0.057688351720571004, -0.028717380017042004, 0.085055217146873, -0.028061369433999003, 0.031598791480064004, -0.005077359266579, 0.029383860528469002, -0.035942435264587, 0.02819743566215, -0.10172490030527101, 0.09803876280784601, 0.10067244619131001, -0.028602499514818, -0.009519847109913, 0.017881516367197002, 0.019217589870095003, 0.002180365845561, -0.051481693983078, -0.022249953821301002, -0.01200480479747, 0.047253642231225, 0.091499984264373, -0.076730072498321, -0.026585672050714004, 0.019149275496602003, 0.039983533322811, -0.006883285939693001, -0.09097363054752301, -0.022360431030392, -0.043464012444019005, 0.021393662318587, -0.026198886334896, -0.022273423150181, 0.007969350554049001, 0.033190920948982, 0.012297166511416002, 0.024563403800129002, 0.029563060030341003, 0.065341837704181, -0.030195996165275, -0.005188985727727, -0.02423408254981, -0.14424082636833102, -0.054812259972095004, -0.002525703515857, 0.043368738144636, 0.067469142377376, -0.05528622493147801, 0.009527978487312001, -0.040460392832756, -0.06924768537282901, -0.009540841914713001, 0.083068490028381, -0.08118001371622001, 0.033687364310026, -0.029614381492137003, -0.025022186338901003, -0.043949957937002, -0.06193020194768901, 0.040752273052930006, -0.008717837743461, -0.030362118035554, -0.014007597230374001, -0.045933030545711004, 0.066329173743724, 0.044680356979370006, 0.116275317966938, -0.041242267936468006, 0.044022366404533005, 0.043655697256326, 0.07100170105695701, -0.026183696463704, 0.039112187922000004, -0.0022372889798130003, 0.108518376946449, -0.002981556812301, 0.044664785265922005, -0.000418705312767, -0.020955126732587002, 0.014600431546568001, 0.048329934477806, -0.080409176647663, 0.026069242507219002, -0.086870975792407, -0.121634662151336, 0.022437665611505002, -0.038369707763195, 0.09776383638381901, 0.025229338556528, 0.024226162582635002, 0.030495788902044, 0.016629535704851, -0.024559764191508, 0.08278004825115201, -0.004302594810724, -0.054067127406597006, -0.054980654269456, 4.161368653371934e-33, -0.0078099854290480004, 0.032740592956542004, -0.032400991767644, -0.021420544013381, 0.062374185770750004, 0.011210708878934, 0.062514550983905, -0.058018401265144, 0.017841730266809002, 0.061333499848842, -0.029822178184986003, -0.051801282912492, -0.040512956678867, -0.087987996637821, -0.029937991872429, 0.026682293042540002, -0.12023445963859501, 0.000186765435501, -0.036613330245018005, -0.006147248670458001, -0.022464709356427002, 0.014335514046251002, -0.047679096460342005, 0.08104755729436801, -0.031484555453062, -0.007397181354463001, -0.014733601361513, 0.039383094757795, -0.156284555792808, 0.019034046679735, 0.06201083958148901, 0.040920596569776, -0.010596573352813, 0.083865374326705, 0.057277768850326004, -0.004660994280129001, -0.005602772347629, -0.044985778629779004, 0.0032880178187040003, -0.118030130863189, 0.0030350021552290004, -0.021131442859768, -0.053507663309574, -0.008214275352656, -0.162512779235839, -0.032034553587436, 0.05084767565131101, -0.02108441106975, -0.027339750900864, -0.062810614705085, -0.017993900924921, -0.015129839070141001, 0.066063299775123, 0.09083122760057401, 0.005952205043286, -0.00010540388757300001, 0.09132678806781701, -0.0070109176449470005, -0.003059832844883, 0.035838790237903005, 0.038279898464679, 0.077311314642429, 0.04756616055965401, -0.009984076023101, -0.045747146010398004, 0.027369890362024002, -0.039528489112854004, -0.051712814718484004, 0.007503626402467001, 0.058529306203126005, 0.023275719955563, 0.06303903460502601, -0.036217354238033, -0.08508823066949801, 0.013207154348492001, -0.034304194152355, -0.038924653083086, -0.06748483330011301, 0.015334165655076, 0.08799204230308501, 0.016657657921314, -0.023095605894923002, 0.003232282586395, -0.009046047925949001, -0.090789727866649, -0.00043737838859600004, 0.0045654736459250006, -0.119647227227687, 0.026057016104459003, 0.014279806055128002, -0.061180602759122, -0.018818821758031002, 0.06504757702350601, -0.021695839241147003, -0.025487139821052003, -5.622506294734114e-33, -0.100762650370597, -0.011755868792533, 0.050410579890012006, 0.060569699853658, -0.06035529077053001, -0.018918175250291002, -0.044604707509279, 0.050142057240009, -0.00026930531021200003, 0.012369369156658, 0.008613008074462001, 0.024789687246084, -0.021087510511279002, 0.0060101929120710005, -0.022926760837435, 0.063563294708728, 0.06894451379776001, 0.046746484935283, -0.00845587067306, 0.0028698791284110002, -0.020294653251767002, 0.037149716168642, -0.055023599416017005, -0.044251639395952, 0.024602899327874003, 0.004986753687262001, 0.040377210825681006, -0.020137455314397, 0.12838771939277602, 0.024880858138203003, -0.074183404445648, 0.023680869489908003, 0.0048956591635940004, 0.063935361802577, -0.038195606321096004, 0.004506718367338, 0.038311325013637, 0.047368168830871006, -0.055852949619293005, 0.079388327896595, 0.019838575273752, 0.009035548195242, 0.015696585178375, 0.09488748013973201, 0.035313569009304005, 0.038776710629463, 0.075056791305541, 0.021949924528598, -0.07978170365095101, -0.027962792664766003, 0.044202294200658, -0.029317729175090002, 0.069778725504875, 0.11904283612966501, -0.07827635854482601, 0.072466388344764, 0.017865886911749, 0.009303489699959, -0.001295848982408, -0.023771956562995, -0.083313271403312, -0.08908931910991601, 0.006132734008133, -0.036805670708417004, -0.020048595964908003, -0.039797604084014004, -0.087980091571807, -0.002392813563346, 0.034516226500272, -0.082691200077533, -0.04933896660804701, -0.030838748440146002, 0.0012168938992540002, -0.03620783239603, -0.001194587443023, 0.034541979432106004, 0.003518331330269, -0.11037971079349501, 0.054214283823966, -0.09476751089096001, -0.060673527419567004, 0.024967424571514, -0.026904162019491, 0.024192979559302, 0.06897229701280501, -0.033631071448326, 0.006964932661503001, 0.08499156683683301, -0.085642717778682, -0.07285145670175501, -0.016662085428833, 0.021248871460556002, 0.036987110972404, 0.054331492632627, -0.006850780453532001, -4.0009588531120244e-8, 0.024189919233322, -0.09520827233791301, -0.008244460448622001, 0.055299963802099006, 0.12305606901645601, 0.09576673805713601, 0.030670741572976, -0.051507476717233006, -0.017528673633933, 0.044156417250633004, 0.005773200187832001, 0.036719981580972005, -0.08434893935918801, -0.07829020172357501, -0.015124003402888001, 0.057366702705621005, -0.040103483945131004, 0.07198517769575101, -0.031765211373567005, -0.024667695164680002, 0.026216935366392, 0.054667964577674005, -0.011472114361822001, -0.055712487548589006, -0.066085375845432, 0.017229033634066002, -0.000816591258626, 0.0005367660778570001, 0.016602739691734, -0.004681824706494001, 0.036825809627771, 0.029160732403397, -0.031486473977565, 0.020787369459867002, -0.040327612310647, 0.013126422651112002, 0.0000169484264915809, -0.060669533908367004, 0.04892886430025101, -0.044398885220289, -0.07485342770814801, 0.029079334810376, -0.066825725138187, 0.086990982294082, -0.059454221278429004, 0.017905719578266, -0.047809727489948, 0.023991379886865002, -0.006876703351736, 0.10868315398693001, -0.033637106418609, 0.026415066793560003, -0.025720683857798, -0.080146394670009, -0.01334255374968, 0.00579557288438, 0.045371200889348005, -0.001390221179462, 0.024092100560665002, 0.056440159678459, 0.044512040913105004, -0.002241097856312, 0.028589354828000003, -0.05975317209959 ]
0704.0030
Tuning correlation effects with electron-phonon interactions
We investigate the effect of tuning the phonon energy on the correlation effects in models of electron-phonon interactions using DMFT. In the regime where itinerant electrons, instantaneous electron-phonon driven correlations and static distortions compete on similar energy scales, we find several interesting results including (1) A crossover from band to Mott behavior in the spectral function, leading to hybrid band/Mott features in the spectral function for phonon frequencies slightly larger than the band width. (2) Since the optical conductivity depends sensitively on the form of the spectral function, we show that such a regime should be observable through the low frequency form of the optical conductivity. (3) The resistivity has a double kondo peak arrangement
[ "cond-mat.str-el" ]
[ -0.08463393151760101, -0.011708351783454, 0.029205601662397003, 0.08806373178958801, -0.075488030910491, 0.006567033473402001, 0.008943082764744, 0.014145547524094, -0.043325025588274, -0.013557340949773001, 0.010485797189176001, -0.035894148051738003, -0.013446751050651, 0.0014762762002640002, 0.096117429435253, 0.006083994638174, 0.067178517580032, 0.01096018962562, 0.019536880776286, 0.027936041355133, 0.074897035956382, -0.06530912220478001, 0.050324928015470005, -0.117348693311214, 0.028077989816665, 0.015581713058054001, 0.069449193775653, 0.019184527918696, 0.039929397404193004, -0.039661608636379006, 0.053196858614683006, 0.069034449756145, -0.050146918743848, 0.053401146084070004, -0.088713496923446, -0.019791843369603, 0.0755475461483, -0.063182763755321, 0.070304840803146, 0.031611673533916, 0.042287662625312, 0.11754968762397701, 0.026894705370068002, -0.092344656586647, 0.0013370377710080002, -0.040758401155471004, 0.07278673350811, -0.021642621606588003, -0.155865624547004, -0.051836635917425, 0.076399400830268, 0.040500603616237, 0.07522015273571, -0.016771920025348, -0.009076554328203, 0.034363131970167, 0.037206172943115005, 0.078078433871269, 0.014552352949976002, 0.008450651541352001, 0.011706111952662001, 0.007778487633913001, -0.087174713611602, 0.032250463962554, 0.078687027096748, -0.028000218793749, 0.023434717208147, -0.021311899647116002, 0.0017196538392450001, 0.05135865136981001, -0.053057510405778004, 0.004343759268522001, 0.022236142307519, 0.004017116501927, 0.070294372737407, 0.044848591089248005, -0.008847639895975, 0.05109181255102101, 0.000562254688702, -0.06405009329319, -0.017845656722784, -0.040497057139873005, -0.023431651294231002, -0.044447880238294005, 0.069168768823146, 0.046513754874467, -0.06928574293851801, -0.020859707146883, -0.09442774951457901, -0.052540589123964004, -0.021790713071823002, -0.050255440175533, -0.065370745956897, 0.010190620087087, -0.093688108026981, 0.029473779723048002, 0.074381023645401, 0.016737088561058003, 0.022429928183555003, 0.029808007180690002, 0.07926425337791401, 0.045576564967632, -0.05150605738162901, 0.039994210004806005, -0.043959923088550006, -0.020356204360723003, 0.05588584765791801, 0.029707048088312003, -0.043026596307754, -0.005908477120101001, 0.057166296988725, -0.024058254435658, 0.048045463860034006, 0.0035511178430160002, -0.054658859968185, 0.027460947632789, -0.044535528868436, 0.01797585375607, 0.032537080347537, 0.045281887054443005, -0.07188700139522501, -0.062962941825389, -0.069944240152835, 0.07141952961683201, -0.081248387694358, -0.00614556716755, -0.058641515672206004, 3.111805012353238e-33, 0.078452698886394, -0.036115553230047004, 0.013190670870244002, -0.091732591390609, 0.08388382941484401, -0.08812757581472301, -0.044653970748186, 0.0015943320468060002, -0.073545612394809, -0.058644000440835, 0.032567527145147004, 0.075535424053668, -0.0037682305555790004, -0.025338925421237002, -0.027980336919426002, 0.035639449954032, -0.062435932457447, -0.003451828146353, 0.08024117350578301, -0.013704473152756, 0.050555925816297004, -0.046341013163328004, 0.024751454591751, 0.13127996027469602, -0.011491137556731, -0.03328913077712, 0.035948570817708005, 0.024521874263882002, -0.053789880126714006, -0.004656083881855001, 0.024308174848556, 0.060030825436115, 0.066958382725715, 0.004257529042661, -0.041491765528917, -0.038025759160518, -0.032722719013690005, 0.025949651375412, 0.073920853435993, -0.055115677416324005, -0.11899094283580701, -0.044290527701377, 0.028239265084266003, 0.088284499943256, -0.058644980192184004, 0.001008125720545, 0.10176476091146401, -0.027778413146734002, -0.012074235826730001, -0.01073286589235, -0.0033818657975640005, -0.044806785881519005, -0.030148629099130003, 0.07299058884382201, 0.055249661207199006, 0.001504389801993, 0.08768017590045901, -0.011413392610847001, 0.019775502383708003, 0.003538496093824, 0.06764404475688901, 0.012396372854709, 0.043120186775922005, -0.001047451980412, -0.033119168132543, 0.053325537592172005, 0.0065480424091210005, -0.039205748587846, 0.028971875086426003, -0.025308482348918002, 0.051141604781150006, 0.059331662952899, 0.012661692686378002, -0.055879626423120006, 0.10752123594284001, 0.031755689531564005, -0.035427551716566, -0.065362252295017, -0.002395624993368, -0.005151946097612, 0.036204859614372004, -0.054541796445846, 0.009114574640989, -0.034433953464031004, -0.11126864701509401, -0.030143709853291, -0.052312836050987, -0.08448551595211001, -0.046775225549936, -0.10636539012193601, 0.006767835468053001, -0.10805295407772, 0.037374649196863, -0.057786017656326, 0.016863118857145, -3.9038108616090634e-33, 0.061702705919742, 0.085388056933879, 0.093138135969638, -0.02640401571989, -0.039289534091949005, 0.0019291816279290001, 0.029660701751708003, 0.080855645239353, 0.056277994066476, 0.023116277530789, 0.094523951411247, -0.030632024630904003, -0.008908420801162002, -0.02224737778306, -0.020547104999423003, -0.006150409113615, -0.010550660081207001, -0.029862660914659004, 0.12796178460121102, -0.0040889694355420005, 0.040132936090230005, -0.020449951291084, -0.027227431535720003, 0.035077016800642, -0.01937185972929, 0.022827325388789003, -0.0375702008605, -0.035242274403572006, -0.017566764727234, -0.006166474893689, 0.010298318229615001, 0.031400453299283, -0.035031635314226005, -0.016767766326665, 0.00889981444925, 0.0035897395573550005, -0.028538653627038002, 0.067583590745925, 0.01254912558943, -0.040866248309612004, -0.004164486657828001, -0.023881899192929, 0.05734323710203101, -0.037917457520961005, 0.05518489331007, -0.026774490252137004, -0.088913194835186, -0.059162527322769005, -0.047637451440095006, -0.040549226105213006, 0.012477708980441002, 0.081712178885936, 0.028123794123530003, -0.06995089352130801, -0.05792719498276701, 0.05591011792421301, -0.023016361519694002, 0.07160165160894301, 0.067049041390419, 0.031707067042589, -0.029382968321442004, -0.048282306641340006, 0.031259968876838004, 0.004608229734003, -0.07141024619340801, 0.017233679071068, -0.058333039283752004, -0.034491565078496, 0.144185647368431, 0.017651660367846, -0.016871891915798, 0.011679184623062002, -0.0017233940307050002, -0.030515827238559, -0.050441142171621, -0.028101623058319, 0.007009329739958, -0.10199013352394101, -0.056082062423229, 0.10141571611166, 0.014762639068067001, 0.033198401331901, -0.023585170507431003, -0.09013240784406601, -0.007016815245151, 0.029796067625284, -0.017999302595853, 0.006855797488242001, 0.023179082199931002, 0.0028508219402280004, 0.044160034507513005, -0.007156261708587, 0.06592883169651001, -0.11148036271333601, 0.015615331940352, -4.382890850251897e-8, -0.012788499705493001, -0.031254556030035005, 0.011458006687462, 0.071374729275703, 0.09386663883924401, -0.046516694128513, 0.040314022451639, -0.064882099628448, 0.010302950628101, -0.026730045676231003, 0.05736436694860401, -0.037070326507091, -0.031016362830996003, 0.0040255202911790005, 0.024693582206964004, -0.007767479866743001, -0.011409303173422002, -0.08968898653984, -0.021508352831006, -0.021159360185265003, -0.025864619761705003, -0.005074426531791, 0.030698562040925, 0.042737051844596, 0.072856470942497, 0.015651172026991, -0.076745487749576, -0.034639734774827, -0.017793005332350002, 0.08514136075973501, -0.098358117043972, -0.040058106184005, -0.016472848132252003, 0.07096152752637801, -0.040424551814794006, -0.019063793122768003, -0.068256616592407, -0.023276619613170003, -0.038819327950477, -0.011305545456707, -0.000662758189719, -0.007884121499955, 0.066671945154666, 0.11770012974739001, 0.025222437456250003, 0.041955381631851, 0.029468134045600003, 0.021854454651474002, 0.072929769754409, -0.009233645163476, -0.011484364047646, -0.017602436244487003, -0.029276384040713, -0.06367371231317501, -0.070229820907115, -0.052191112190485, -0.077352277934551, 0.07814729958772601, -0.044186796993017, 0.061949416995048, 0.021974600851535003, -0.05023211240768401, -0.024106733500957003, 0.011947367340326 ]
0704.0031
Crystal channeling of LHC forward protons with preserved distribution in phase space
We show that crystal can trap a broad (x, x', y, y', E) distribution of particles and channel it preserved with a high precision. This sampled-and-hold distribution can be steered by a bent crystal for analysis downstream. In simulations for the 7 TeV Large Hadron Collider, a crystal adapted to the accelerator lattice traps 90% of diffractively scattered protons emerging from the interaction point with a divergence 100 times the critical angle. We set the criterion for crystal adaptation improving efficiency ~100-fold. Proton angles are preserved in crystal transmission with accuracy down to 0.1 microrad. This makes feasible a crystal application for measuring very forward protons at the LHC.
[ "hep-ph" ]
[ 0.006570385769009, -0.032853536307811, 0.026272408664226, 0.023829268291592, 0.043733391910791, -0.041591752320528, -0.010106621310114, 0.032949671149253006, -0.046152167022228005, -0.059420447796583, -0.01620258949697, 0.003593696281313, -0.018722511827945, 0.050053477287292, -0.024928878992795, -0.061698306351900004, 0.06522694230079601, 0.023241177201271, -0.031346842646598004, -0.036346811801195006, -0.037268597632646006, -0.07000853121280601, 0.014184463769197, 0.0025705629959700002, 0.0018775962525970002, -0.040500462055206, 0.047015663236379006, -0.060528963804244, 0.026757083833217003, -0.073978312313556, 0.017549758777022, 0.005013119895011, -0.07587202638387601, -0.0016219407552850002, -0.006817656569182, 0.014000982046127002, -0.007613322697579, -0.009707721881568, 0.031516168266534, -0.012826347723603, 0.061246600002050004, 0.05688873678445801, 0.07730114459991401, 0.027081614360213002, 0.046118970960378, 0.023105563595891002, 0.07183846086263601, -0.045041926205158005, -0.020325833931565, -0.002747518708929, 0.036020781844854, 0.06881242990493701, 0.026719162240624, 0.020349694415926, -0.071486994624137, 0.102993912994861, 0.011785220354795001, -0.048093352466821004, -0.047562677413225, 0.029654989019036, -0.006593070458620001, -0.000587713788263, 0.036563839763402, -0.029323134571313, -0.101234339177608, 0.021535389125347002, 0.037339884787797005, 0.09037408977746901, 0.094051338732242, -0.034521911293268, -0.028875116258859003, 0.028002563863992, -0.012926820665597001, 0.042509160935878004, 0.017261438071727, -0.0264233648777, 0.031188435852527, -0.072987534105777, -0.000625708722509, 0.010479856282472002, -0.029750557616353004, -0.08106110244989301, -0.049941450357437, 0.0018378177192060001, -0.018236903473734002, 0.006567061878740001, -0.087970919907093, 0.041552167385816005, -0.000359091063728, -0.05892943963408401, 0.010166449472308001, -0.038954358547925005, -0.055633660405874, -0.01642020791769, -0.047119557857513004, 0.029985597357153, 0.06266244500875401, -0.029597558081150003, -0.035208716988563, 0.071626782417297, 0.10555648803710901, 0.014162055216729, 0.043811034411191004, 0.076167225837707, -0.10189958661794601, -0.069126695394515, 0.07899907231330801, 0.073767773807048, -0.058765280991792006, 0.023528717458248003, 0.106437660753726, 0.021746858954429002, 0.091090016067028, -0.047670271247625004, 0.06970852613449001, 0.036192040890455, -0.046321686357259, 0.02546283788979, 0.009201697073876, -0.101199671626091, -0.029280954971909003, 0.040365103632211005, 0.000280256674159, 0.09015312045812601, 0.08385166525840701, -0.028076184913516003, -0.053716238588094004, 4.653635657289063e-34, 0.035367842763662005, 0.068897232413291, 0.004882471170276, 0.029611153528094004, -0.062672570347785, 0.010180553421378, 0.072039104998111, 0.011664802208542002, -0.016760440543293002, 0.08478029072284601, -0.005959101021289001, 0.00975854601711, 0.00834359973669, -0.129656806588172, -0.042100183665752, -0.018617052584886003, -0.028030935674905003, 0.12866500020027102, -0.053037278354167, 0.131401643157005, -0.043928600847721, -0.05691348388791, -0.05569563433527901, -0.033343899995088, 0.06354672461748101, 0.119765050709247, -0.072668500244617, 0.050744924694299004, 0.033742230385541, 0.017465619370341003, 0.047630026936531004, 0.144421458244323, -0.025955462828278, 0.084500260651111, 0.040077622979879005, -0.064056649804115, -0.07947725802659901, 0.013070586137473, 0.038046121597290004, -0.021824097260832002, 0.06790551543235701, 0.07004249840974801, 0.05131514742970401, -0.057842493057250005, 0.031091623008251003, -0.07467000186443301, 0.025742290541529003, -0.0028593309689310003, -0.037554755806922004, -0.08093163371086101, 0.063391231000423, -0.049286600202322006, -0.081906385719776, 0.046587616205215, 0.08232917636632901, -0.024252189323306, 0.0008647042559450001, 0.042027816176414004, 0.096394263207912, 0.092472292482852, 0.036715764552354, 0.010500403121113, -0.08419054001569701, 0.042325116693973, -0.027419304475188002, 0.05711518973112101, -0.10161811113357501, 0.009066282771527, -0.039938267320394, 0.054012600332498, -0.016268672421574003, 0.009939427487552001, -0.051339365541934, -0.045508708804845005, 0.064206823706626, 0.011158270761370001, -0.069269970059394, -0.001420893822796, 0.070429891347885, 0.056509446352720004, -0.037854697555303005, -0.041990973055362, -0.043426305055618, -0.037932962179183, -0.0600614733994, 0.083388864994049, 0.021301405504345002, -0.057007744908332006, -0.039891112595796, -0.083796769380569, -0.018035419285297002, -0.026017965748906004, 0.06648479402065201, -0.007297458592802001, -0.056255720555782006, -1.536116273022891e-33, -0.07609470188617701, -0.026154598221182, 0.014681736007332, 0.06001939997076901, -0.0044445628300300005, -0.014439133927226, 0.0065528419800100005, -0.015216177329421002, 0.071456760168075, -0.031992632895708, -0.0050915614701800005, -0.030488735064864003, -0.06494669616222301, -0.05689708516001701, 0.023544715717434002, -0.004182338248938, 0.096394896507263, -0.01706644706428, 0.024956777691841, 0.019473230466246, 0.037331897765398005, 0.00041191480704500004, 0.017741890624165, -0.028279222548007, 0.056421771645545, 0.0055560045875600005, 0.11707034707069301, -0.044663976877927, 0.043865241110324006, 0.0038060573861000003, -0.07296276837587301, -0.033150348812341, 0.006194002926349001, -0.0044363136403260004, -0.006215422414243, 0.008804995566606001, -0.038992837071418006, -0.054525703191757, 0.036856573075056, -0.053156517446041, 0.032275315374135, 0.038665290921926006, -0.04925988987088201, 0.06957815587520601, -0.039597302675247005, 0.09688371419906601, 0.005015272181481001, 0.012202761135995001, 0.101405993103981, -0.012002199888229, -0.045996695756912, -0.10212882608175201, 0.049602802842855, -0.005306658800691, -0.032443173229694006, 0.08307471871376, -0.044779255986213004, 0.093550585210323, 0.028467316180467002, -0.017955301329493002, -0.13350433111190702, -0.031438618898391, -0.028520500287413004, -0.062342274934053005, -0.04967499896883901, 0.021053312346339, 0.030116055160760002, 0.008192986249923, -0.005531431641429, 0.0062386044301090005, 0.061465092003345004, 0.0166587959975, 0.051302794367074, 0.020573236048221002, 0.0030428543686860004, 0.007389922626316001, -0.00519745517522, -0.014735097065567, 0.03522178903222, 0.017915477976202, -0.012218721210956001, 0.008390263654291, -0.021547961980104002, -0.07450464367866501, 0.138039708137512, -0.079295344650745, -0.076275527477264, 0.051227703690528, -0.05151057243347101, -0.005696295294910001, 0.010789904743432001, -0.06252855807542801, 0.05346523970365501, -0.040178734809160004, 0.045531012117862, -4.091308269948968e-8, 0.09266498684883101, -0.054840318858623005, -0.054050173610448005, -0.036096069961786, -0.048185043036937006, 0.0013844961067660002, -0.024533841758966002, -0.000902155879884, -0.041488133370876, -0.026147961616516002, 0.055660631507635006, -0.000836772203911, -0.046902604401111006, 0.025302680209279, 0.018149726092815, 0.060193438082933, -0.018669782206416, -0.009112546220421, -0.043913099914789006, 0.010995666496455002, 0.026014210656285, -0.025678981095552, 0.037318609654903, -0.05494359880685801, -0.12119048088788902, 0.07098051160573901, -0.064564310014247, -0.013287723064422, -0.0008685762877570001, -0.07386165857315001, 0.047135181725025004, -0.058570411056280004, 0.053571414202451005, 0.07860083132982201, 0.020863080397248, 0.0020862338133150003, -0.058079693466424005, 0.034386154264211, 0.073810204863548, -0.004558333195745, -0.022017039358615, -0.025024661794304, -0.054589919745922005, 0.035519015043973, -0.018598964437842, 0.024372706189751, -0.040158305317163, 0.034529224038124, -0.088571302592754, 0.000156900990987, 0.004359943326562, 0.017482159659266, 0.008268566802144, -0.07647296041250201, -0.007989163510501001, 0.013856520876288001, 0.011367938481271002, -0.084393851459026, -0.056284397840499004, 0.019574455916881003, -0.017299927771091, 0.011465009301900001, -0.059939526021480005, -0.070130474865436 ]
0704.0032
Probing non-standard neutrino interactions with supernova neutrinos
We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelope within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant conversions, which may take place in the most deleptonised inner layers. We study the possibility of detecting NSI effects in a Megaton water Cherenkov detector, either through modulation effects in the $\bar\nu_e$ spectrum due to (i) the passage of shock waves through the SN envelope, (ii) the time dependence of the electron fraction and (iii) the Earth matter effects; or, finally, through the possible detectability of the neutronization $\nu_e$ burst. We find that the $\bar\nu_e$ spectrum can exhibit dramatic features due to the internal NSI-induced resonant conversion. This occurs for non-universal NSI strengths of a few %, and for very small flavor-changing NSI above a few$\times 10^{-5}$.
[ "hep-ph" ]
[ -0.11341723799705501, -0.026869250461459004, 0.067049130797386, 0.062233593314886, 0.036371987313032005, -0.033786796033382, -0.029947116971015004, -0.001242129248566, -0.026876805350184003, -0.125001460313797, -0.028922507539391, -0.058031015098094, -0.075293689966201, 0.015544934198260002, -0.006937985774129, -0.025992430746555002, 0.143328353762626, 0.00001119635271606966, -0.06734102219343101, 0.017043622210621, 0.062134079635143, 0.002721558092162, 0.0015866131288930002, 0.000859074934851, 0.009305806830525001, -0.093946248292922, -0.036840237677097, -0.026008650660514002, 0.023491468280553002, 0.003635012544691, 0.072711139917373, -0.005561379715800001, -0.008187142200767, 0.005643696058541, 0.069811955094337, -0.047896638512611, 0.026102297008037, -0.026834500953555003, -0.01561245881021, -0.067823253571987, 0.034903634339571006, -0.046554598957300006, -0.047870848327875005, 0.0231753885746, 0.026791589334607003, -0.036301180720329, -0.039962865412235, -0.050763335078954, -0.004350416827946, -0.0075154886581000006, 0.06034120544791201, -0.04734629392623901, 0.017785673961043, 0.018086759373545, -0.010051779448986001, 0.007360586896538001, 0.049114815890789004, -0.078972235321998, 0.048196051269769, 0.017036737874150002, 0.021604496985673002, -0.057235952466726005, -0.038115654140710005, -0.006853461731225001, 0.095007985830307, 0.048284769058227005, -0.006939903367310001, 0.044778250157833, 0.054766304790973004, 0.02052230015397, 0.064239017665386, -0.0045233452692620005, -0.098668739199638, -0.056414324790239, 0.022718274965882003, -0.057828627526760004, 0.051726188510656, 0.048924051225185006, 0.006971966475248, 0.016036052256822, 0.016609281301498, -0.026685576885938003, 0.011697512120008, -0.062834918498992, 0.050242766737937004, -0.017527053132653, -0.075159557163715, 0.06113537028431801, -0.06262465566396701, 0.040702730417251004, -0.053877376019954, -0.037983357906341005, -0.046301297843456005, 0.005725507158786, 0.099099904298782, 0.058596741408109006, -0.046628005802631003, -0.079451367259025, 0.051211688667535005, 0.072846695780754, 0.021439416334033002, -0.012312436476349001, -0.058512151241302005, 0.05343541502952501, 0.045994590967893004, 0.045996654778718005, 0.078897602856159, 0.04416112601757, -0.061332572251558005, 0.037552665919065004, 0.054265175014734005, -0.060005325824022, 0.007062955293804, -0.06872014701366401, 0.0052426462061700005, -0.008056909777224001, 0.012177979573607, 0.138187497854232, -0.053152706474065003, -0.0903160572052, 0.009891700930893001, 0.026266125962138002, -0.050354771316051004, 0.00563372997567, 0.03734253719449, 0.068455003201961, -0.106383115053176, 2.4445958881944462e-33, 0.051365222781896, 0.022500177845358002, -0.13584701716899802, 0.026998665183782, -0.057113595306873, 0.0061295828782020004, -0.009978978894650001, 0.041824657469987, -0.048269521445035005, 0.063878364861011, -0.017512992024421, 0.032176855951547005, -0.009813343174755, -0.045663390308618004, -0.014148158021271002, -0.001681123161688, 0.023167176172137, 0.034399140626192, 0.001821319456212, 0.011030555702745, 0.0012219301424920002, -0.022072872146964, -0.013926937244832, -0.049744971096515, -0.0036937831901010004, -0.035438142716884, -0.007867475040256, -0.019427103921771, 0.0054241507314140005, -0.040506511926651, -0.011072102002799001, 0.049437996000051006, 0.051110394299030006, 0.09243120253086001, -0.000954144517891, -0.018383000046014, -0.0035635081585490003, -0.014690720476210001, -0.0015241039218380002, 0.028528813272714, -0.033436059951782005, 0.091321311891078, -0.07928782701492301, 0.014010183513164002, -0.010008493438363, -0.034184079617261005, 0.08489856123924201, -0.002008857671171, 0.046257764101028005, -0.053948298096656, 0.013526134192943, 0.000996419345028, -0.04565447196364401, 0.085180051624774, 0.040536157786846, -0.015186831355094, 0.097917221486568, 0.004052314441651, 0.074875429272651, -0.066992327570915, -0.009232921525835, -0.00012021091970300001, 0.08816085755825001, 0.038870390504598, 0.013099864125251002, 0.11573946475982601, -0.024365488439798, 0.04079471156001, 0.030977223068475, -0.0065643424168220004, -0.127780303359031, 0.11298419535160001, 0.059710182249546, -0.022438164800405003, 0.064336486160755, -0.029918035492300002, 0.0015518493019040002, -0.010884193703532, 0.021423146128654, 0.035805854946374005, 0.024492083117365, -0.057969916611909006, 0.051123671233654, 0.037062283605337004, -0.00004189516403130255, 0.070310443639755, -0.07771298289299, -0.08044097572565001, 0.038866031914949, -0.08908499032258901, 0.019823897629976002, -0.039628405123949, 0.042564798146486005, -0.069564029574394, -0.021630510687828, -1.841171291563179e-33, 0.039405610412359, 0.028137052431702003, -0.028356296941637, 0.043497394770383, 0.026088967919349, 0.054980818182229, -0.043204002082347, 0.010115198791027001, -0.040529996156692005, -0.021676870062947003, 0.010283424519002, 0.037669442594051, -0.008861307054758, -0.113902933895587, 0.009524106979370001, -0.023850815370678003, 0.013580502010881, 0.026870366185903, 0.046829830855131004, -0.06490200012922201, 0.093598321080207, 0.005334670655429001, -0.046038798987865004, 0.041279170662164, 0.014184429310262, 0.032439086586236, 0.008886856026947, -0.053844679147005005, 0.082747586071491, -0.032366335391998, -0.05868496745824801, 0.06898708641529, 0.007478118874132001, 0.022806765511631, 0.060223273932933, 0.09382218122482301, 0.029874062165617003, 0.08365570008754701, -0.060701746493577007, 0.004564622882753, 0.01061766128987, 0.10233663022518101, 0.008678699843585, 0.001737816957756, -0.013389906845986002, 0.052294887602329004, 0.0005804263055320001, 0.075723782181739, 0.026160687208175003, -0.026124447584152003, -0.0009166043018920001, -0.08067543059587401, -0.039581291377544, 0.048069428652524004, 0.002761190989986, 0.054691188037395005, 0.080273024737834, -0.009496667422354001, -0.001853639958426, -0.026130020618438003, 0.01701708137989, -0.044375978410243, 0.035243816673755, -0.09468600898981001, -0.058491054922342, 0.028753647580742003, -0.038259483873844, 0.070226468145847, 0.004688772372901001, 0.021379500627517003, 0.017263839021325, -0.06030412390828101, -0.007347596809267, -0.062809973955154, -0.019066488370299003, 0.016650721430778, -0.01596581749618, -0.116420321166515, -0.005556061863899, -0.012515078298747002, -0.059534683823585004, 0.085386730730533, 0.031054673716425004, -0.051943223923444005, 0.147994324564933, 0.002741386648267, -0.068246319890022, 0.006936802994459, 0.052012383937835006, -0.047890838235616004, -0.031731661409139, 0.019626127555966003, 0.007198719773441001, 0.000725644640624, 0.051308289170265, -5.184438123251311e-8, 0.138880521059036, 0.035660695284605005, -0.06661958992481201, 0.06278995424509, -0.017290888354182, 0.0050696679390960005, -0.019580600783228, -0.012057872489094, -0.046037934720516004, -0.006325640715658, 0.0011357830371700002, -0.049844030290842, -0.065521195530891, -0.09816651046276001, 0.033276323229074, 0.037084061652421, 0.025051485747098003, -0.06505735963582901, -0.043952547013759, -0.03302901238203, 0.069679170846939, 0.05025102943181901, 0.009284674189984, -0.050417933613061, -0.088443413376808, 0.018446553498506, -0.006112525239586, 0.086947567760944, 0.020486602559685003, -0.102016009390354, -0.013275986537337001, -0.015982532873749, -0.05518839880824, -0.0015414385125040002, -0.022495590150356, 0.089194804430007, -0.047369915992021006, 0.007033721078187001, 0.11940867453813502, 0.003116740146651, -0.051669903099536, -0.031170250847935004, -0.02869664132595, 0.053774796426296005, -0.082757048308849, -0.008484664373099, -0.016558814793825, -0.072630435228347, -0.0057483157142990005, 0.10282738506793901, 0.022188585251569002, -0.011270498856902001, -0.03677699714899, -0.00054328906117, -0.023592287674546002, 0.11235259473323801, -0.024259418249130003, -0.024572823196649003, -0.031190492212772, 0.039915516972541004, 0.114953771233558, -0.10515053570270501, -0.055204927921295006, -0.016751712188124 ]
0704.0033
Convergence of the discrete dipole approximation. I. Theoretical analysis
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in the range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
[ "physics.optics", "physics.comp-ph" ]
[ -0.052616614848375, -0.035696413367986006, 0.056584004312753004, -0.033603306859731, 0.066112168133258, -0.06383042037487001, 0.01051855366677, 0.045041892677545006, 0.004357828292995, -0.003935533110052, -0.019911982119083002, 0.08413360267877501, -0.021284596994519, -0.012609447352588002, -0.0042792605236170005, -0.058793183416128006, 0.038580171763896005, 0.027037991210818003, 0.011180194094777001, 0.06520261615514701, -0.008513140492141, 0.025609822943806003, -0.020403638482093003, 0.061647694557905, 0.052656572312116005, 0.020417287945747, 0.073805972933769, -0.032451938837766, -0.002079994650557, 0.018553541973233, 0.035851955413818005, 0.00031599894282400003, -0.068471051752567, -0.008536111563444, 0.057966489344835004, -0.071395479142665, 0.03408008813858, 0.078719325363636, -0.013240336440503, 0.072884894907474, 0.026474777609109, 0.07932014018297101, 0.01993821747601, -0.0061680255457750004, 0.008417889475822001, -0.09020073711872101, 0.040050685405731, -0.045908942818641, 0.05304389819502801, -0.055291086435317, 0.029505692422389002, 0.010833678767085, 0.005645122844725001, 0.038215395063161, -0.010400216095149, -0.061334934085607, 0.033842410892248, -0.014044668525457, 0.011045469902455, 0.006736307404935001, -0.040503196418285, -0.014462316408753001, 0.06299529969692201, 0.004521504510194001, 0.105960376560688, -0.029247164726257, -0.000985293765552, -0.071040116250514, 0.019111711531877, 0.09986605495214401, -0.11391597986221301, 0.08983857929706501, -0.07362306863069501, 0.01393352355808, 0.028508309274911003, 0.015992760658264, -0.038178436458110004, 0.024903777986764002, 0.023706352338194, -0.05635155364871, -0.027481200173497002, 0.06388434022665, -0.030743453651666003, -0.07629092037677701, -0.053854368627071006, 0.07399791479110701, -0.071625404059886, 0.024964263662695003, 0.017125185579061, -0.06137728318572001, -0.0032762712799010003, 0.007264152169227001, -0.12310586869716601, 0.010012633167207, -0.11243663728237101, -0.024457288905978, 0.06997898966073901, -0.015072735957801002, 0.032876711338758004, 0.04124829173088, 0.06107185781002, 0.005179103929549, -0.041511837393045, 0.00168093224056, -0.061224985867738, -0.066509895026683, 0.024745067581534, -0.041173979640007005, -0.036090340465307, 0.018885647878050003, 0.0024129170924420003, -0.059620734304189, -0.031846150755882, 0.055048406124114005, -0.07011453062295901, -0.127286627888679, 0.028552461415529, -0.021778909489512003, -0.031380448490381005, -0.07188316434621801, 0.004303860943764001, 0.042925752699375, 0.008572337217628, 0.099122434854507, 0.043537445366382, 0.054414175450801, -0.042349025607109, 2.567888715206395e-33, 0.08651054650545101, 0.030963409692049002, 0.016785265877842, 0.06629958748817401, -0.098750278353691, 0.0043828864581880005, 0.035183358937501005, 0.005017635878175, 0.0028971743304280003, 0.10786207765340801, -0.024120919406414, 0.023960271850228, 0.032903928309679004, -0.025803415104746003, 0.065221540629863, 0.011825681664049001, 0.011451696045696002, 0.08423904329538301, 0.038951344788074, 0.004534443374723, 0.014147429727017002, -0.098012723028659, -0.004183374345302001, 0.042899630963802005, -0.037855148315429, 0.017803020775318, -0.052001338452100004, 0.07861127704381901, 0.049851085990667, 0.010932822711765001, -0.019409235566854, 0.053615722805261, 0.06347719579935, -0.0009232528973370001, 0.054684452712535005, -0.07732605934143001, -0.033379528671503005, -0.064365781843662, -0.006907364819198, 0.004530292004346, 0.013428587466478, 0.023780705407261002, 0.10930427163839301, -0.05602282285690301, -0.004074485972523001, 0.042792193591594, 0.042101729661226, -0.059134513139724, 0.035561434924602, -0.019411861896514, 0.017482595518231, -0.017691100016236, -0.0033480590209360003, 0.07444944977760301, 0.129019200801849, -0.023610562086105003, -0.020641414448618, -0.061170626431703005, -0.00007889728294685483, -0.012874526903033002, -0.021805187687277003, 0.008825543336570001, -0.023795068264007003, -0.0019488499965510003, -0.012017091736197002, 0.054875791072845, -0.05529195070266701, 0.071274422109127, 0.0024477483239020003, -0.007377939764410001, 0.011792751029133, 0.085355825722217, -0.042934160679578004, -0.0013694008812300002, 0.031988590955734, -0.081854000687599, 0.024741725996136003, -0.010572732426226, 0.040306523442268004, -0.027772298082709004, -0.042609531432390005, -0.031356737017631, -0.025238152593374003, -0.128802761435508, -0.15909874439239502, -0.086442068219184, -0.006115362979471001, -0.031814388930797, -0.061286386102437, -0.06990409642457901, -0.067609637975692, 0.01621819846332, 0.054196875542402004, -0.017480272799730003, -0.003415289800614, -4.8462212130526e-33, -0.068623855710029, 0.002986873500049, -0.006556682754307001, -0.013543106615543001, -0.02433818206191, 0.025230702012777002, 0.015048336237668, 0.062176175415515005, 0.04793631285429, -0.08436256647109901, -0.033548768609762004, 0.025597240775823003, -0.037104804068803, 0.05745030939579, -0.016649538651108003, 0.07619389891624401, -0.06021171063184701, -0.040537688881158, 0.021832386031746, -0.062218159437179, 0.014542613178491, -0.036864232271909006, 0.10813707113265901, 0.007750257849693001, -0.05784919112920701, -0.0034725598525250003, 0.005629859864711001, -0.007450305391103001, -0.039572883397340004, -0.023722607642412002, 0.020157288759946, 0.027071056887507, -0.052746135741472, 0.043373450636863, -0.018991956487298, -0.019258933141827, 0.032873947173357, -0.017136145383119, 0.044013567268848, -0.039333067834377004, 0.002207079902291, 0.003034133696928, 0.061108924448490004, -0.069544717669487, 0.005122301634401001, 0.011046336963772, 0.007015626877546001, 0.014310630969703001, 0.009167708456516, -0.016833225265145, -0.07460000365972501, -0.034880518913269, 0.08883780986070601, 0.09779722243547401, -0.007361695170402, 0.032837845385074005, 0.030113492161035003, 0.016583686694502, 0.052414771169424, -0.064133018255233, -0.09594596922397601, -0.036444611847400006, -0.040187116712331, 0.054158065468072, -0.071792863309383, 0.001143474364653, -0.033677253872156004, -0.040396299213171005, 0.05118334665894501, 0.038232114166021, 0.006355376914143, -0.022352393716573, 0.051522135734558, 0.043625712394714, -0.07887065410614001, -0.11933144927024801, 0.101240620017051, -0.026809351518750003, 0.014441255480051, 0.040615838021039005, -0.038005594164133, 0.146092385053634, -0.020795103162527, -0.035990763455629, 0.043371357023715, 0.009648707695305, -0.045539192855358006, 0.022617308422923, 0.004595685750246, -0.051984343677759004, 0.016908623278141, 0.007108463905751001, 0.155119329690933, -0.040650520473718005, 0.07562090456485701, -4.4943877952619005e-8, 0.005650392267853001, -0.023768700659275003, -0.023481933400034002, -0.082944892346858, 0.024020327255129002, 0.036585338413715, -0.04416961595416, -0.026111818850040002, 0.027190750464797003, -0.06352749466896, 0.033892262727022004, -0.0023911565076550003, -0.035088304430246, -0.007359131705015001, 0.038696508854627006, 0.02988276258111, -0.048246003687381, -0.110101826488971, -0.0026488078292450003, 0.024590803310275, -0.010628496296703, 0.048276774585247005, -0.039626002311706, -0.022508336231112, -0.0009368770988650001, 0.030875710770487, -0.046734109520912004, -0.0169811360538, -0.031754847615957, 0.043441914021968, -0.04020744562149, 0.015820723026990002, 0.035447727888822, 0.040357485413551004, 0.052584435790777005, 0.018619174137711, -0.0065303668379780005, 0.09467214345932001, -0.019040005281567, -0.0037864237092430004, -0.038157291710376004, 0.021558662876486, 0.029878834262490002, -0.069307707250118, 0.004581592045724001, 0.035353168845176, -0.08104034513235, 0.07675265520811, -0.008771356195211001, -0.014693657867610002, -0.13302756845951, 0.084531903266906, -0.059535160660743006, 0.025949941948056002, 0.047143835574388004, -0.132808715105056, -0.126710832118988, -0.034730996936559004, -0.020620383322238003, -0.05080674216151201, 0.046490892767906, 0.012881483882665001, -0.134016633033752, 0.089038021862506 ]
0704.0034
Origin of adaptive mutants: a quantum measurement?
This is a supplement to the paper arXiv:q-bio/0701050, containing the text of correspondence sent to Nature in 1990.
[ "q-bio.PE", "q-bio.CB", "quant-ph" ]
[ -0.153007462620735, -0.040674161165952, -0.08108185231685601, 0.09679456055164301, -0.033278848975896, -0.004664809908717001, -0.010731779038906, 0.011364747770130001, -0.009597418829798001, 0.038155280053615, 0.051241587847471, -0.028623215854167, 0.040868911892175, -0.011498725041747001, -0.11629392951726901, 0.046413633972406006, -0.066482923924922, -0.035775166004896004, 0.007581339683383001, -0.005206595174968001, -0.05403139069676301, 0.075128935277462, 0.054309234023094004, 0.046008080244064005, 0.009385851211845, -0.044475257396698005, -0.037306260317564004, 0.013724821619689001, 0.06915739923715501, -0.035800907760858, 0.021759578958153003, 0.093382306396961, 0.017347684130072, -0.017084458842873, 0.018020389601588003, -0.004654136020690001, 0.009307889267802, -0.036075711250305, 0.07066665589809401, -0.005520116537809001, -0.026699300855398, -0.015155622735619002, -0.042646393179893, 0.005361224990338, -0.032875269651412, 0.040638711303472005, 0.079250529408454, -0.037513103336095005, -0.107285112142562, -0.033787503838539006, -0.030069584026932, -0.025292618200182002, -0.017877088859677003, 0.004111520946025, 0.062113564461469005, 0.017888553440570002, 0.018459504470229003, -0.0011561722494660002, 0.009653304703533, -0.025222739204764002, 0.024138858541846, 0.025063773617148, 0.012011812999844001, 0.013138678856194, 0.048424087464809, 0.019955964758992, 0.05824885889887801, 0.023549921810626002, 0.024667324498295003, 0.0041856477037070005, -0.053641121834516005, -0.005122092552483, -0.007511581294238001, -0.009687298908829, 0.06187417730689, -0.003539250232279, 0.015073226764798001, 0.09323235601186701, 0.028675166890025004, 0.039356630295515005, -0.056401800364255, -0.11073733866214701, 0.024628983810544004, 0.015906333923339, -0.020165542140603003, -0.009770513512194, -0.0042715528979890005, -0.030022166669368, -0.031734887510538004, -0.050649102777242, -0.043558090925216, -0.014780362136662001, -0.063120260834693, 0.0038568475283680004, 0.001804389525204, -0.0039946278557180005, 0.043794531375169005, -0.041562750935554005, 0.17863415181636802, -0.040113177150487005, 0.043682873249053004, -0.017955463379621003, 0.019523942843079, 0.101105615496635, 0.033218767493963006, -0.064307130873203, 0.02398975379765, -0.023908946663141, 0.009554177522659, 0.056062314659357, 0.021576160565018, 0.028575176373124, 0.040275238454341, 0.026530060917139, -0.040540345013141, -0.044655553996562, -0.046789269894361, 0.030017023906111003, -0.037476625293493, 0.010993804782629001, 0.018557475879788, -0.021792715415358002, -0.09146684408187801, 0.0281274728477, -0.009580011479556, 0.09508420526981301, -0.097812891006469, -2.8887479797870013e-33, 0.060052260756492004, 0.050925701856613007, 0.036693204194307, 0.016943940892815, 0.053840484470129006, -0.011909543536603001, 0.018955200910568, -0.10218047350645001, -0.064851529896259, -0.08291743695735901, -0.020413748919963, 0.009269394911825001, 0.052771460264921, -0.046712461858987, -0.010810410603880001, 0.013329946435987, -0.158597558736801, -0.013081623241305, 0.029396710917353002, -0.025401160120964, 0.01866559870541, -0.08589931577444, -0.084387004375457, -0.071371905505657, 0.015822390094399, -0.010634693317115002, 0.012956517748534001, 0.017213432118296002, -0.036625362932682, -0.027074730023741, 0.010860882699489, 0.077838085591793, -0.067043587565422, 0.028348252177238003, 0.017691619694232, -0.07488296180963501, 0.016492711380124002, -0.034121345728635004, -0.08722703158855401, 0.014565584249794001, 0.06101887673139501, 0.016131181269884002, 0.058990005403757005, -0.06447818130254701, 0.08603820204734801, -0.013303250074386002, -0.054084818810224006, -0.059934511780738005, 0.0005381124792620001, -0.027416771277785003, -0.026088394224643003, -0.05623185262084, -0.019877472892403002, -0.037075784057378006, 0.05271496996283501, -0.042764671146869, -0.025822201743721, 0.005037724971771, -0.08600111305713601, 0.019259024411439, 0.011447087861597, 0.024672651663422, 0.003764470107853, 0.030466012656688003, 0.038104921579360004, 0.011820265091955, 0.021133141592144, -0.108591109514236, 0.015521350316703, 0.134284988045692, -0.007481412496417, -0.045694030821323006, -0.066795028746128, 0.006813106127083001, 0.060199800878763005, -0.08435038477182301, -0.10575121641159001, 0.013758583925664002, -0.006810695864260001, -0.038793437182903005, 0.060948558151721004, 0.040113676339387005, -0.039364814758300004, 0.048062823712825005, -0.114440143108367, -0.13910701870918202, 0.028538163751363, -0.031798508018255005, -0.048913504928350005, 0.037427671253681, 0.041550561785697, -0.05772123485803601, 0.041100990027189005, -0.006442232523113001, -0.018484128639101, -1.184835398313997e-33, -0.021026343107223, -0.041877940297126, 0.013366144150495002, 0.05808984860777801, -0.008660077117383001, 0.06608702987432401, -0.022638380527496, 0.034035231918096, 0.032537329941987, -0.044310197234153005, 0.045649494975805005, 0.05680985748767801, -0.005713065154850001, 0.0055792662315070005, -0.041635047644376005, -0.005417482927441, -0.020636962726712, -0.034491673111915006, 0.075501099228858, -0.059780828654766006, 0.015079319477081, 0.012166766449809002, 0.022579215466976003, -0.06918796151876401, 0.018614070490002, -0.009644775651395, 0.08861726522445601, 0.14623132348060602, 0.035504840314388005, -0.051428165286779, -0.08948814868927, -0.025459047406911003, -0.034475993365049, 0.081641353666782, 0.02411357872188, 0.045359168201684, 0.078711062669754, 0.053159285336732004, 0.008142770268023, -0.062402125447988004, -0.031041180714964003, 0.07434376329183501, 0.019822491332888003, 0.063594691455364, 0.09212400019168801, 0.042442735284566005, -0.002491891616955, -0.027963593602180002, -0.018403178080916002, -0.009951093234121001, 0.06434436887502601, 0.038826141506433, 0.045201323926448, -0.014770111069083, -0.09880425035953501, 0.019737178459763003, -0.014886189252138, 0.026001563295722, 0.009929823689162, 0.051614712923765, -0.034269727766513006, -0.06785633414983701, -0.0010824678465720002, 0.10313417762517901, -0.061134625226259, 0.066807359457015, -0.011092971079051, 0.09317027032375301, 0.095871940255165, -0.05810547992587001, 0.070562452077865, 0.013116162270307001, 0.007921648211777, -0.011053747497498, 0.036449216306209, -0.024028677493333, -0.07097530364990201, -0.079693719744682, 0.01669224537909, -0.055676870048046, -0.029767017811536, 0.06467309594154301, -0.021172417327761, 0.015228331089019002, 0.043612428009510006, -0.0038516898639500002, 0.015628540888428, 0.07404270023107501, 0.011744241230189, -0.08545418083667701, 0.016614574939012, -0.08050239831209101, -0.08515726029872801, -0.079927243292331, 0.00683243246749, -3.398916703645227e-8, 0.08130347728729201, 0.0017123697325580002, -0.07172756642103101, 0.022586841136217003, 0.07576283067464801, 0.08889635652303601, -0.000783312600106, 0.016829516738653003, -0.006689704954624001, 0.046789247542619004, -0.023616855964064, 0.067683860659599, 0.10065046697854901, 0.079663023352622, 0.085192531347274, 0.047663513571023004, -0.042338747531175, -0.0073687797412270006, -0.025275146588683003, 0.000696238072123, 0.029618518427014004, 0.08720189332962, 0.00412200577557, 0.013847321271896001, -0.057680863887071006, -0.019261088222265, 0.087308347225189, -0.076216496527194, 0.001532410038635, -0.08082207292318301, 0.0135008264333, 0.053865559399127, -0.012332383543252001, 0.040796149522066005, -0.074572846293449, 0.005603947676718001, -0.011771499179303, -0.06286142766475601, 0.009969994425773001, -0.009714283049106001, -0.032645270228385, -0.033697530627250005, -0.08616783469915301, -0.001056127483025, 0.022317171096801, -0.004040631465613001, -0.015984116122126, -0.054768748581409, -0.025377810001373003, -0.022599393501877, 0.06663668155670101, 0.015700725838541003, 0.024451535195112003, -0.138819456100463, -0.0866289883852, -0.014297143556177, 0.022184917703270003, -0.051936734467744, -0.013321500271558002, 0.054626848548650006, 0.054093196988105004, -0.0035826305393120003, 0.013185454532504, -0.01334499195218 ]
0704.0035
Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy
We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different discretizations. The quality of the extrapolation improves with refining discretization reaching extraordinary performance especially for cubically shaped particles. A two order of magnitude decrease of error was demonstrated. We also propose estimates of the extrapolation error, which were proven to be reliable. Finally we propose a simple method to directly separate shape and discretization errors and illustrated this for one test case.
[ "physics.optics", "physics.comp-ph" ]
[ -0.063479587435722, -0.023342553526163, 0.061875853687524004, -0.02467293664813, 0.034613173454999, -0.08238996565341901, -0.011850364506244, 0.05899341776967001, -0.028172764927148004, -0.029339434579014, -0.010264077223837001, 0.019527789205312, -0.026571923866868002, 0.00038483232492500004, 0.018933214247226, -0.09676410257816301, -0.004561407491564, 0.056383699178695006, 0.0024544673506170004, -0.016199667006731002, -0.049650438129901005, 0.019229197874665, 0.00041896183392900005, 0.009206294082105, 0.085659563541412, 0.05394553765654501, 0.023469340056180003, 0.019298955798149, 0.0073122954927380005, -0.008297692984342001, 0.015222798101603001, 0.025341546162962, -0.049482610076665004, -0.071871869266033, 0.036811653524637, -0.088299393653869, -0.009543030522763, 0.08925360441207801, -0.06252267211675601, 0.034802235662937005, -0.019839730113744, 0.032277528196573, 0.049561873078346, -0.0006976702716200001, 0.072513818740844, -0.054930638521909006, -0.033430021256208, -0.048255901783704, 0.07051408290863001, -0.015613169409334, 0.016939390450716, -0.001447918824851, 0.005705596413463, 0.057860493659973006, -0.032753236591815005, -0.10700157284736601, 0.042964514344930003, -0.020211238414049003, 0.022553175687789, -0.049972984939813, -0.030557181686162, -0.014778457581996002, 0.059281934052705, -0.006971024908125001, 0.039117734879255, -0.064083404839038, 0.003939412534236001, -0.07886547595262501, 0.012273472733795001, 0.11110708117485, -0.092595092952251, 0.098483942449092, -0.043109685182571, 0.004392163362354, -0.006433738395571001, -0.0018895864486690001, -0.043392170220613, 0.05449660494923501, -0.012082350440323, -0.055865060538053006, -0.020668795332312, 0.040017586201429006, -0.038944117724895005, -0.099511489272117, -0.040275614708662005, 0.07136991620063701, -0.069876886904239, 0.018859174102544, 0.003286547027528, -0.05236797779798501, 0.05692552402615501, 0.041611462831497005, -0.126489788293838, 0.009611193090677001, -0.09370023012161201, 0.015169775113463001, 0.006170507520437, 0.0007404263596980001, 0.012945232912898001, 0.057329937815666004, 0.0009692290332160001, 0.017913773655891002, -0.049350760877132006, -0.0309823397547, -0.009209153242409, -0.06591077148914301, 0.053940154612064, -0.005785390269011001, 0.034166377037763006, 0.004130512010306, -0.0016161962412290002, -0.06181250512599901, -0.046716801822185, 0.0035580068361010003, -0.009335751645267001, -0.078653119504451, 0.015661206096410002, -0.051420990377664004, 0.007471614982932, -0.011529663577675, -0.019182320684194003, 0.06705347448587401, 0.058419354259967006, 0.09177554398775101, -0.00408815452829, 0.019637925550341002, -0.06353528797626401, 2.095546432371199e-33, 0.019288651645183, 0.010612520389258001, 0.084103658795356, 0.054855022579431006, -0.08179383724927901, 0.074802085757255, 0.020324788987636, 0.011102583259344, 0.057010028511285005, 0.083572752773761, -0.06411788612604101, 0.005327866878360001, 0.016611013561487, -0.034755248576402005, 0.053118582814931, 0.020093968138098002, -0.030589250847697, 0.101118221879005, 0.017895016819238, 0.053960084915161, 0.021134635433554, -0.10485222935676501, -0.000934467650949, 0.025377979502081004, -0.027876965701580003, 0.10687440633773801, -0.005472592543810001, 0.067448325455188, 0.012321915477514002, 0.0058518014848230005, 0.053426809608936005, 0.036846984177827, -0.020395431667566, 0.019527640193700003, 0.10386937856674101, -0.038157530128955, 0.049191854894161, -0.067146264016628, 0.051158845424652, -0.010738945566117, 0.03265207260847, 0.018727589398622003, 0.151471585035324, -0.005595908500254001, -0.013332881964743, 0.034556884318590005, -0.014512300491333001, -0.05795731768012, 0.067760482430458, 0.006937932223081001, 0.031892362982034, 0.040237557142972, 0.056246250867843, 0.032949145883321006, 0.086955301463603, -0.0069294497370710004, -0.028969746083021, 0.004678747616708, 0.014056705869734001, -0.029427494853734002, -0.029593845829367003, 0.053227193653583006, -0.035056315362453, 0.0017493894556530002, -0.011334949173033002, 0.073147051036357, -0.045981917530298004, 0.106820806860923, -0.0042334254831070004, 0.035433463752269, 0.005093560554087001, 0.040716249495744004, -0.024740433320403002, -0.008519954979419, -0.032535959035158005, -0.047970399260520005, 0.0011231694370500002, 0.0037442182656370004, 0.041261114180088, -0.02869396097958, -0.020075101405382, 0.043333474546670005, -0.018221516162157, -0.144995242357254, -0.13918398320674802, -0.082751393318176, 0.014633765444159001, 0.0014785912353540002, 0.012053061276674002, -0.035736672580242004, -0.09119909256696701, 0.011287225410342001, 0.018339551985263002, -0.010142507962882, -0.022457998245954, -3.391154632670431e-33, -0.050988711416721004, 0.03932324796915, 0.023252312093973, 0.0073544289916750005, -0.013826410286128, -0.00780227407813, 0.025026706978678002, -0.0039037507958710003, 0.0492470189929, -0.08533104509115201, 0.0008372974698430001, 0.028186928480863002, 0.035380464047193, 0.057595755904912005, -0.008382917381823, 0.11552710831165301, -0.12331511080265001, -0.087427623569965, 0.044068805873394006, -0.059879880398511005, -0.011548194102942002, -0.06421568244695601, 0.070047549903392, 0.052632380276918, -0.08181698620319301, 0.0013301032595330001, -0.017296770587563, -0.08253315091133101, 0.016083844006061002, -0.092364862561225, -0.002315958496183, 0.016356071457266003, -0.06668694317340801, 0.051592659205198, -0.029807981103658003, -0.035851716995239, 0.0054974849335840004, 0.030794154852628004, 0.07823559641838, -0.11108969897031701, -0.053662959486246005, 0.001966976327821, -0.020702309906482003, -0.082274280488491, -0.0036154733970760002, 0.050907224416732004, 0.046075440943241, -0.004205648787319, 0.019914047792553003, -0.002354909433051, -0.07473114132881101, -0.044637206941843005, 0.026806933805346003, 0.07010001689195601, -0.004090430680662001, -0.005716363899409001, -0.044874764978885005, 0.006073268596082, 0.06940785795450201, -0.067359149456024, -0.06503964215517001, -0.009219788946211002, 0.012894852086901, -0.00042457444942500003, -0.056725017726421, 0.056858517229557, -0.011138394474983, -0.029872300103306004, 0.042380731552839, -0.001795997144654, -0.029247641563415003, -0.021456966176629, 0.066415175795555, 0.029869357123970004, -0.035648368299007, -0.11131817847490301, 0.17626488208770702, -0.061160039156675006, -0.0005840978701590001, -0.019406484439969, -0.0068492363207040005, 0.105424627661705, -0.058243639767169, 0.049063362181186, 0.010617860592901, 0.002419359516352, -0.013622974045574, 0.048144277185201007, 0.017635809257626003, -0.062648050487041, 0.010585621930658, 0.060792937874794006, 0.13384833931922901, -0.016442680731415003, 0.033854037523269, -4.625980309924671e-8, 0.01623092778027, -0.01740014180541, 0.001916324952617, -0.023907981812953002, 0.001530067180283, 0.037091221660375005, -0.05443521589040701, -0.012558701448142001, 0.040072400122880006, -0.14552043378353102, 0.061493411660194, -0.030696252360939, 0.027164407074451002, -0.004681733436882001, 0.056408744305372, 0.004370146431028001, -0.020115688443183, -0.018461886793375, 0.02436819858849, 0.031718179583549, -0.0372363217175, 0.07322183996438901, -0.016860676929354, -0.042455501854419, -0.013877846300601002, 0.030049255117774003, -0.069615818560123, -0.06391784548759401, -0.007674796041101, 0.041781958192586004, -0.047701086848974006, 0.007971592247486, 0.038858905434608, 0.077209502458572, 0.068155661225318, 0.03147192671895, 0.043450832366943005, 0.108148977160453, -0.025880517438054, -0.010459206998348, -0.047842230647802006, 0.049127407371997, 0.013433231972157001, -0.08435964584350501, 0.014809385873377, 0.014813813380897002, -0.034658178687095004, 0.049565985798835005, 0.0010200825054190001, 0.019468335434794003, -0.082792334258556, 0.07268159836530601, -0.029943032190203004, -0.0075754728168240006, 0.032858282327651, -0.086716338992118, -0.129413977265357, -0.044498287141323006, -0.011007013730704, -0.040657334029674, -0.019509930163621, -0.044603083282709004, -0.10703177005052501, 0.07756844162940901 ]
0704.0036
A remark on the number of steady states in a multiple futile cycle
The multisite phosphorylation-dephosphorylation cycle is a motif repeatedly used in cell signaling. This motif itself can generate a variety of dynamic behaviors like bistability and ultrasensitivity without direct positive feedbacks. In this paper, we study the number of positive steady states of a general multisite phosphorylation-dephosphorylation cycle, and how the number of positive steady states varies by changing the biological parameters. We show analytically that (1) for some parameter ranges, there are at least n+1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n-1 steady states (in particular, this implies that for n=2, including single levels of MAPK cascades, there are at most three steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n+1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.
[ "q-bio.QM", "q-bio.MN" ]
[ -0.006275846157222001, -0.07126875966787301, -0.040351714938879006, -0.022528503090143003, -0.010695839300751001, 0.004393096547573, 0.014850746840238, 0.021745108067989002, 0.058077652007341, -0.007659034803509001, -0.023824304342269002, -0.013489344157278002, 0.059579368680715006, -0.006651136092841001, 0.018831336870789, 0.019080288708209003, -0.049244374036788004, -0.008635137230157, 0.018157225102186002, 0.001957165542989, 0.075451426208019, -0.002218411536887, -0.018202284350991003, -0.016334196552634, -0.092426858842372, -0.046559795737266006, -0.019591366872191002, 0.033781085163354, 0.023086629807949, -0.062331024557352004, -0.035610225051641, 0.043546978384256, -0.02408954501152, 0.025179527699947003, 0.017967982217669, 0.021635031327605, -0.021682890132069, -0.03161085397005, -0.025358075276017, 0.048186376690864, 0.055749472230672004, 0.05381179600954, -0.019316632300615002, -0.036482200026512, -0.002140860306099, 0.02877059392631, -0.015419245697557002, -0.009568076580762001, -0.015421584248542002, -0.040032997727394, 0.037874616682529005, 0.0011900077806780002, -0.011597625911235001, 0.056981224566698005, 0.021638557314872003, 0.016249755397439003, -0.044915586709976, 0.012611486017704001, -0.039135612547397, -0.07340664416551501, 0.049082122743129, 0.013366031460464, 0.06370526552200301, -0.018436770886182, 0.10992098599672301, 0.043351873755455, -0.039554085582494, 0.025664689019322003, 0.022409444674849, 0.072896979749202, -0.044587217271327, -0.060375966131687005, -0.017706355080008, -0.054389704018831, 0.07447975128889, 0.020741904154419, -0.056547846645116, 0.025994535535573002, -0.027724828571081002, -0.07962571084499301, -0.024824749678373, -0.087869696319103, 0.047992743551731006, -0.080068610608577, -0.07869869470596301, -0.054224673658609, -0.063928678631782, 0.020053185522556003, 0.13481914997100802, 0.036873441189527005, -0.063255012035369, 0.07486214488744701, 0.057160329073667006, -0.054344441741704004, -0.016185330227017, 0.068472445011138, 0.042200025171041, 0.05678385868668501, -0.012503030709922001, 0.030305700376629004, -0.011901182122528001, -0.012988246977329001, 0.010335404425859, 0.012604752555489, 0.022419698536396002, -0.008191358298063, 0.032377384603023, -0.002908940892666, -0.031038992106914003, 0.010333028621971, -0.039512630552053, 0.016573283821344, 0.126499518752098, 0.10074485093355101, -0.0075322529301040005, 0.00038182031130400005, -0.014202228747308001, -0.028810780495405003, 0.06072148308157901, -0.011357537470757, 0.062317214906215, -0.084667518734931, -0.064574733376502, 0.027138553559780003, -0.07131315767765001, 0.11906791478395401, -0.0044761910103260005, 5.109231094551378e-33, 0.011195590719580002, 0.002401419915258, 0.09344525635242401, -0.005648824386298001, -0.007671462837606001, -0.057141825556755, -0.015448522754013, -0.13070565462112402, -0.034856490790843006, -0.037375610321760004, 0.023720666766166004, 0.049340229481458005, 0.030091350898146, 0.06009552255272801, -0.035716671496629, -0.057572063058614, 0.06374442577362001, -0.033024948090314005, 0.039750769734382005, -0.041851047426462, 0.012581955641508002, -0.051704034209251, -0.08933546394109701, -0.074747949838638, 0.063551411032676, 0.023098826408386, -0.013555173762142, 0.073524057865142, -0.045211017131805004, 0.0033401718828820004, 0.002390704816207, 0.047829672694206, -0.026451952755451, 0.048625349998474, 0.065710559487342, -0.041004069149494005, -0.022506488487124002, 0.033990800380706, 0.013565720990300002, -0.032356966286897, -0.059925507754087004, -0.055340979248285, -0.040944434702396004, -0.0038111009635030005, 0.08963855355978001, -0.033330455422401005, -0.01374564319849, 0.031642690300941, -0.072369880974292, 0.07263813167810401, 0.0046448479406530005, -0.017542600631713, -0.015268574468791, -0.025966487824916003, -0.044087726622819005, 0.014630515128374, -0.063772730529308, -0.027459571138024, -0.039809413254261, 0.126827269792556, -0.025243705138564002, -0.009877705946564001, -0.019550194963812002, -0.04958118498325301, -0.020754555240273, 0.113651469349861, -0.141694232821464, -0.045150812715291005, 0.05799849331378901, 0.053269028663635004, 0.019925244152545003, 0.050606582313776, 0.030691444873809003, -0.12221556901931702, 0.06170567125082001, -0.035504430532455, -0.008308034390211001, 0.013575114309787, -0.12857067584991402, 0.09379716962575901, 0.009468596428632, -0.029847044497728, -0.06130912899971001, 0.026727488264441, -0.032185882329940005, -0.069419212639331, 0.024036517366766003, -0.07975363731384201, -0.103542514145374, 0.024043358862400003, 0.046719353646039005, 0.020171519368886, 0.030824890360236, 0.06849295645952201, 0.022768402472138002, -6.874971280964277e-33, 0.09590945392847, -0.054050639271736006, 0.025888185948133004, 0.029850209131836003, -0.013011519797146001, 0.09934136271476701, 0.021203489974141003, 0.053111296147108, 0.037585556507110006, -0.064533270895481, 0.093147598206996, 0.037915688008069, -0.02512072212994, 0.011281059123575, -0.018144508823752, -0.028549341484904, 0.088662438094615, 0.11729273200035001, 0.106478482484817, -0.008617761544883001, 0.008203215897083001, 0.037685275077819005, -0.101173356175422, 0.070163652300834, 0.025297390297055, -0.007925001904368, -0.134372770786285, 0.030791690573096, -0.042897410690784, 0.058062538504600004, -0.018111240118741, 0.022627282887697, 0.019109118729829, 0.052036099135875, 0.016857048496603, -0.047742929309606004, -0.050335615873336, -0.015612003393471002, 0.031025713309645004, 0.025987658649683002, 0.056373625993728006, -0.053704302757978, 0.055409669876098, 0.029218690469861003, 0.088891796767711, 0.026410920545458003, -0.044526562094688006, 0.066027492284774, -0.013089518994092001, 0.036013256758451004, 0.02110868319869, -0.041747033596038007, -0.06460656225681301, 0.047903105616569006, 0.022971581667661, 0.038366332650184, -0.038206778466701, 0.051456000655889005, 0.004483547993004, -0.086649090051651, -0.1125133857131, -0.07528665661811801, -0.019591897726058002, 0.021088203415274002, 0.033115454018116004, -0.04048827663064, -0.029734527692198004, -0.070831172168254, 0.09000480920076301, 0.009006664156913001, 0.017573991790413003, 0.08999396860599501, 0.0032535973004990002, -0.008159915916621, 0.006662180181592, 0.024214711040258, -0.065212123095989, -0.075126603245735, -0.044187374413013, -0.057170044630765006, -0.17499773204326602, 0.059013973921537004, -0.063423030078411, -0.049655195325613, -0.017717573791742002, -0.07764474302530201, -0.012206617742776002, 0.021072039380669, 0.001298957853578, -0.016057448461651, 0.036714266985654005, -0.072590604424476, -0.046163287013769004, 0.006982495542615001, 0.044570341706275, -5.4293671780669683e-8, 0.09793972223997101, -0.002206489676609, -0.057257279753685004, -0.045662354677915004, 0.034382138401269004, 0.036241490393877, 0.066588714718818, -0.07152272760868, 0.05664495751261701, 0.018802991136908, 0.085166096687316, 0.013645217753946, 0.019271366298198003, -0.054856695234775, -0.0007533693569710001, 0.046485252678394005, -0.028370980173349002, 0.030118288472294003, -0.010413350537419, -0.045487359166145006, 0.017025232315063, -0.041865453124046006, -0.092500396072864, 0.06805191934108701, 0.018700703978538003, 0.009585624560713001, 0.042612254619598, -0.05212350189685801, -0.05507540330290701, -0.07047496736049601, 0.042931620031595, -0.052199397236108, 0.008728020824491001, 0.024602852761745002, -0.007894600741565, 0.057827785611152004, -0.065760180354118, 0.005323834717273, 0.050565358251333, 0.038058944046497005, -0.0039381296373900004, 0.06600684672594001, -0.033815611153841005, -0.034149106591939, 0.017944276332855003, 0.025390069931745002, 0.020673906430602, 0.0033585475757710002, -0.048845455050468, -0.06459756195545101, -0.058746457099914, 0.017865544185042003, -0.022386636584997, -0.03929878026247, -0.10252709686756101, -0.021724846214056, -0.010177473537623001, -0.018119791522622, -0.0068809431977570005, 0.026374848559498003, 0.084372751414775, 0.029319480061531, -0.030197510495781003, -0.062733076512813 ]
0704.0037
The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength
In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA computer program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are considered in this manuscript. Current limitations and possible ways for improvement are discussed.
[ "physics.optics", "physics.comp-ph" ]
[ -0.024586657062172, -0.05450441315770101, 0.08476697653532, -0.031842838972806, 0.034999094903469, -0.162677228450775, -0.047575585544109004, 0.051930647343397, -0.035583727061748005, 0.02423096448183, -0.035521384328603, 0.04567539319396, -0.027337353676557003, -0.0064034215174610006, 0.014921481721103, 0.014445209875702001, 0.048356506973505006, 0.045853860676288, -0.049201700836420004, -0.00031315660453400004, 0.0016254205256700002, -0.030404506251215, 0.002559458371251, -0.029520759359002002, -0.006908573210239, 0.044449195265769, 0.10669650882482501, -0.08943259716033901, -0.020177349448204002, 0.005780593957751001, 0.05161234736442501, 0.034843064844608, -0.053184278309345, -0.031911808997392, -0.000115964132419, -0.037398800253868006, 0.039430800825357, -0.038862470537424004, -0.020180355757474, 0.010222881101071, -0.009227402508258, 0.060768682509660006, -0.007601559162139001, -0.0028577535413200003, 0.060224093496799004, -0.043958965688943, 0.063008405268192, -0.002962081693112, 0.052707802504301, -0.024328636005520002, 0.0013874856522300002, -0.062763795256614, -0.04469522088766, 0.019994553178548, 0.033226728439331, 0.0023472546599800003, 0.014956135302782001, -0.07761885970830901, 0.04410446435213, 0.019357003271579, -0.078452035784721, -0.001505709602497, 0.051678285002708005, -0.027871206402778, 0.053950186818838, -0.05563598126173001, 0.026615681126713003, 0.0025251170154660003, 0.035371284931898006, -0.006572378333657001, -0.06423382461071, 0.051851846277713005, -0.033707723021507, 0.09381393343210201, -0.034103132784366004, 0.049907099455595, 0.00022404831543, 0.039158258587121006, 0.011319509707391, -0.020696941763162002, -0.025029120966792003, 0.010312542319297001, -0.015007740817964, 0.014892198145389002, -0.010084780864417001, 0.04982220008969301, -0.07012810558080601, 0.11603083461523, 0.029728610068559, -0.07009726762771601, 0.023324215784668003, -0.036563329398632, -0.049767021089792, -0.033173959702253, -0.110251925885677, -0.012953326106071, 0.07490482181310601, -0.048313923180103004, -0.021218094974756, 0.048056378960609006, 0.014504658058285002, -0.027323935180902002, 0.07712876796722401, 0.018947836011648, -0.066765755414962, -0.102534100413322, 0.06700317561626401, 0.036782793700695, -0.04284166917204801, -0.029870921745896003, 0.012892331928014, -0.004762955475598, -0.04170748963952, 0.05367816612124401, -0.016041262075304, -0.024611629545688, 0.009432383812963002, -0.051417890936136, 0.0040342947468160004, -0.005478872917592001, -0.031804822385311, 0.087477140128612, 0.064116977155208, 0.110979795455932, 0.04542276635766, 0.021298928186297, -0.089092902839183, 9.904098265494413e-34, 0.07452830672264, 0.10223405063152301, 0.026238104328513003, 0.040898982435464006, -0.021604591980576, -0.10488967597484501, 0.094771206378936, 0.033241536468267004, 0.013570271432399, 0.034847684204578004, -0.039032816886901, 0.019865116104483, 0.06690303981304101, -0.043418824672698, 0.00648493412882, -0.001777990721166, 0.047294989228248006, 0.08769001811742701, 0.010534611530601002, 0.053055796772241, -0.025326969102025, -0.04692405834794, 0.040767300873994, -0.013440826907753, -0.049826811999082, 0.10392084717750501, -0.087066926062107, -0.004948476329445, 0.11093804240226701, 0.0005165847251190001, -0.008033238351345, 0.06311492621898601, 0.013598433695733, 0.088406272232532, 0.041355222463607004, -0.061897657811641006, -0.021832674741744003, -0.09169925004243801, -0.0014780510682610001, 0.00260566920042, -0.085358940064907, 0.040526621043682, 0.12513756752014102, -0.052183978259563, 0.007816812023520001, 0.018377961590886, -0.060863636434078, -0.063379324972629, 0.081443712115287, 0.039828151464462, 0.046179201453924006, -0.032316498458385, -0.006414831615984, 0.030733458697795004, 0.057189095765352006, -0.0027441002894190002, 0.042002383619546, 0.013921783305704, 0.035269811749458, 0.032505996525287004, 0.000966162653639, -0.014108695089817, -0.021311700344085003, 0.0021765620913350003, -0.024823602288961, 0.027812479063868002, -0.06507546454668, 0.063580811023712, -0.048174545168876, 0.054138928651809005, -0.00019091693684400001, 0.008964131586253001, -0.019628964364528, -0.0019470481202000002, 0.063369624316692, -0.06187474727630601, 0.030713694170117004, 0.027192328125238002, -0.004182248841971, 0.030124908313155, -0.055871047079563, 0.050412774085998, -0.077330775558948, -0.130735680460929, -0.053811240941286004, -0.004661702085286001, 0.009827733971178, -0.034407183527946, -0.08579165488481501, -0.11133599281311, -0.059240486472845, 0.041674971580505, 0.07771515846252401, -0.073938779532909, -0.040239866822957, -2.472279147498295e-33, -0.045000415295362, -0.014087784104049001, -0.036285646259784005, 0.057039175182580004, -0.0040199882350860005, -0.00078807468526, 0.04781204462051301, 0.001073985127732, 0.031844817101955004, -0.06864286959171201, -0.056759178638458, -0.012858046218752, -0.028770219534635003, 0.058178085833787, -0.042292669415473, 0.047672171145677004, 0.030470708385109003, -0.039132758975028006, 0.01651488058269, -0.054162532091140005, -0.077585257589817, -0.0008898344822220001, 0.156872108578681, -0.042502146214246, -0.073428675532341, -0.015123083256185001, 0.089968889951705, -0.044757291674613, -0.041988503187894, -0.08956179022789, 0.011677513830363001, 0.040368981659412, -0.009458243846893, 0.016127828508615, 0.036977358162403, -0.017275208607316, 0.037872087210416, 0.004056005738675, 0.05026732385158501, -0.043978411704301, 0.009672888554632001, -0.083476223051548, 0.051701702177524005, -0.047218713909387006, -0.048854719847440005, 0.035141687840223, -0.045149575918912006, -0.023003071546554003, 0.00456990674138, -0.011930159293115, -0.08151461184024801, -0.055523309856653005, 0.062362346798181006, 0.035513006150722004, 0.024930547922849003, -0.030697258189320002, 0.011668386869132, 0.088163174688816, 0.109642662107944, -0.021073039621114002, -0.060129355639219007, -0.06118775159120501, 0.031780127435922005, 0.007918214425444001, -0.055172707885503006, 0.07153084874153101, -0.038381319493055004, -0.019473595544695, -0.030978409573435003, 0.05136508494615501, -0.007439999375492, -0.071408733725547, 0.022425903007388, 0.051127199083566006, -0.007123806048184001, -0.079739280045032, 0.045466978102922, 0.010492728091776002, 0.018531026318669, 0.0007772183744230001, -0.032053101807832, 0.12496380507946, -0.042776823043823006, -0.026853997260332003, 0.046567019075155, -0.031322620809078, -0.012459752149879, 0.005866089835762, -0.040589299052953005, -0.07336477190256101, 0.01540629658848, 0.047369111329317, 0.184204652905464, 0.009974693879485, 0.026212627068161003, -4.431785072256389e-8, 0.051780350506305, -0.0044673620723180004, -0.027481436729431003, -0.022704899311065, 0.014280845411121, 0.015138610266149, -0.07262784242630001, -0.04413815215229901, -0.05553697049617701, -0.043593134731054, 0.054699093103408, -0.08159537613391801, 0.004004427697509001, 0.037666257470846, 0.06256084144115401, 0.00041386345401400005, -0.001544512342661, -0.13665178418159402, -0.018987976014614, 0.005154608748853, -0.019647656008601, 0.048600632697343, 0.05130249261856001, 0.002348284935578, 0.00021150341490200003, 0.050724823027849, -0.037252966314554006, -0.014609937556087001, -0.006201419048011, 0.012824513018131001, 0.014062440022826, 0.015780668705701002, -0.035932015627622, 0.052789472043514, 0.018530827015638, -0.015275903977453001, 0.002763026393949, 0.085717491805553, 0.051564238965511, -0.017810309305787, -0.091891452670097, 0.033885546028614, 0.006807009689509, -0.039782222360372, 0.12882670760154702, 0.044520720839500004, -0.048080023378133004, -0.006610205862671001, -0.013033460825681001, 0.082888737320899, -0.08675596117973301, 0.058717511594295, -0.006353197619318, -0.007545058149844, -0.007174677681177, -0.113502770662307, -0.08429097384214401, -0.013272411189973, 0.021231438964605002, -0.031084287911653, 0.056725978851318005, 0.000872149073984, -0.08263791352510401, 0.05756776779890001 ]
0704.0038
The discrete dipole approximation: an overview and recent developments
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a general framework based on the integral equations for the electric field. We review both the theory of the DDA and its numerical aspects, the latter being of critical importance for any practical application of the method. Finally, the position of the DDA among other methods of light scattering simulation is shown and possible future developments are discussed.
[ "physics.optics", "physics.comp-ph" ]
[ -0.005714906845241, 0.028495462611317003, 0.06553455442190101, -0.046916626393795006, 0.037389688193798, -0.09823410212993601, 0.006701614242047, 0.057704202830791, -0.036262366920709, 0.020992591977119, 0.0078124399296930006, 0.064846292138099, -0.058111619204282004, -0.016875179484486, 0.011706455610692001, -0.029835131019353003, -0.008013640530407, 0.030930995941162002, -0.004000741057097, 0.030474817380309, -0.024325408041477002, 0.014398296363651001, 0.029074847698211004, -0.035973154008388006, 0.025396825745701002, 0.04595947265625, 0.13331052660942, -0.030243398621678002, -0.010672353208065, -0.004670375026762001, 0.035123366862535005, 0.014645299874246, -0.098254725337028, -0.028951521962881, -0.0025388929061590003, -0.075759127736091, 0.014667447656393, -0.029060136526823002, -0.030252572149038003, 0.046204417943954, 0.033824082463979, 0.076578214764595, -0.024181080982089, -0.011577113531529001, 0.07857447117567, -0.06297467648983, 0.047514691948890006, -0.008591828867793, 0.07490620762109701, -0.062575854361057, 0.080705046653747, 0.00012099910964000001, 0.042463440448045, 0.04527748376131, 0.005538236815482001, -0.07030531764030401, 0.012508313171565, -0.07069967687129901, 0.0005889039603060001, 0.00047236718819400006, -0.061611115932464, 0.010874911211431, 0.066458582878112, -0.031946431845426004, 0.07281307131052, -0.035243824124336, -0.026612965390086, -0.050936490297317005, 0.034755397588014006, 0.028237722814083002, -0.130394414067268, 0.039878558367490005, -0.043587312102317005, -0.034190736711025, -0.050135914236307005, 0.033853221684694006, 0.015006919391453, 0.06054979935288401, -0.010499191470444001, -0.012549727223813001, -0.014290889725089, 0.026355013251304002, -0.069339729845523, -0.034876536577939, 0.0028684639837590004, 0.091025911271572, -0.068683966994285, 0.045068375766277, -0.024780362844467003, -0.056708756834268, 0.027820760384202003, -0.038209851831197, -0.091124311089515, -0.0035318036098030002, -0.103863082826137, -0.028321849182248, 0.043292067945003, -0.038683447986841, -0.037034973502159, -0.009724920615553, 0.025025151669979002, -0.005666456185281, 0.068135939538478, -0.018572201952338, -0.028881883248686003, -0.077814184129238, 0.03467833250761, 0.001502140075899, -0.020409705117344003, -0.05713583901524501, -0.012793224304914001, -0.07496067136526101, -0.05790483951568601, 0.05121337622404001, -0.042613700032234005, -0.040833726525306, 0.028054244816303003, -0.011815080419182, -0.0015645802486680001, -0.028431519865989, 0.015626838430762, 0.10849496722221301, 0.026022290810942, 0.11191123723983701, 0.012467555701732, 0.027252394706010003, -0.00601820833981, -4.322426073113972e-33, 0.062215536832809004, 0.056596051901578, 0.005534925963729001, 0.059631731361150006, -0.010337334126234, -0.049677308648824005, 0.090682514011859, 0.048139475286006005, -0.009419973008334, 0.029519183561205004, -0.016446780413389, -0.005681392271071, 0.126990467309951, -0.048732828348875004, 0.019416084513068, -0.011276815086603002, -0.033734429627656, 0.062367085367441004, 0.068160980939865, 0.06856716424226701, 0.033813886344432005, -0.002008305862545, 0.073746718466281, 0.039080910384655006, -0.056733146309852, 0.06733158230781501, -0.079905413091182, 0.06073554232716501, 0.106014154851436, 0.009545695967972001, -0.021556751802563, 0.044074606150388, 0.021800618618726002, 0.006076053250581, 0.06140173971652901, -0.071623593568801, 0.021591061726212002, -0.07995621114969201, 0.008666016161441002, -0.040117695927619004, -0.015168391168117001, 0.018840428441762, 0.12160211056470802, -0.009108129888772, 0.043754696846008, 0.07656347751617401, 0.015127821825444001, -0.045962043106555, 0.110399022698402, 0.062664665281772, 0.016268493607640003, -0.050736840814352, -0.0029455812182270003, 0.011529345996677001, 0.08356035500764801, -0.015843195840716, -0.041073519736528, -0.006793964654207001, 0.002403784776106, -0.050254054367542, -0.00872356723994, 0.03976920992136, -0.026932146400213002, 0.008320580236613001, -0.025329545140266002, 0.034790635108947005, -0.044050596654415006, 0.023548742756247003, -0.051549896597862, 0.00260714138858, 0.025027388706803003, 0.050134066492319, -0.077579133212566, -0.016381727531552003, 0.041246589273214, -0.057856854051351006, -0.008291443809866001, 0.030887069180607, 0.07422160357236801, 0.026517255231738004, -0.041951056569814, 0.018503362312912, -0.083186291158199, -0.129908367991447, -0.055997721850872005, -0.012400541454553, 0.035095404833555, 0.0040339394472530005, -0.040083218365907, -0.12917160987854, -0.055814191699028, 0.07439294457435601, 0.085465438663959, -0.045094244182109, 0.0033349047880610002, 6.4796251638048845e-34, -0.023584751412272002, -0.013610538095235, -0.042078919708728006, -0.005667416378855, -0.036573786288499, -0.014079626649618001, 0.025947760790586003, 0.048242792487144005, 0.060906726866960005, -0.030074562877416004, -0.038214277476072006, 0.028585813939571002, -0.027925675734877003, 0.051923740655183, -0.023172810673713, 0.051350470632314, -0.030357787385582, -0.023018142208456, 0.018206659704446, -0.030427386984229, -0.028330719098448, -0.026023346930742004, 0.12764909863471902, -0.040436949580907, -0.062241438776254, 0.010920707136392, 0.10964757204055701, -0.012830767780542, -0.022442990913987, -0.06310454010963401, 0.021705541759729, 0.05820396170020101, -0.063226856291294, -0.003985246177762, -0.026286080479621002, -0.016398932784795, 0.04178562015295, 0.031209567561745002, 0.066521011292934, -0.049031507223844, -0.036360550671815005, -0.042673822492361006, 0.045511581003665, -0.09321807324886301, -0.036442533135414006, 0.014163729734718002, -0.0033559005241840002, -0.0065289339981970005, -0.060458399355411, -0.022775128483772, -0.056069761514663, -0.036086592823266005, 0.080801106989383, 0.07657460868358601, -0.036336313933134, 0.002361405873671, 0.016612088307738002, 0.022810256108641003, 0.078270629048347, -0.015519012697041002, -0.075533345341682, -0.023334957659244003, 0.091828629374504, 0.013011312112212, -0.085792377591133, 0.033480085432529005, -0.0018571678083380001, -0.013495243154466001, -0.0058087971992790005, 0.001233882387168, 0.014298941940069, -0.032635979354381, 0.033952590078115005, 0.057659916579723004, -0.032918274402618006, -0.098043240606784, 0.130431979894638, -0.009385268203914, 0.042930305004119006, -0.038350142538547, 0.005712876096367001, 0.09108231961727101, -0.046692132949829004, -0.044340506196022006, 0.037442252039909, -0.051671501249074006, -0.049418538808822, 0.026966122910380003, -0.026571286842226004, -0.0496511682868, 0.028058931231498004, 0.013300392776727002, 0.12931844592094402, 0.037820171564817005, 0.07029210776090601, -4.351003113356455e-8, 0.034012518823146, -0.012426171451807001, -0.04113076999783501, -0.031285684555768, 0.059237275272607005, 0.030254494398832002, -0.10006625205278301, -0.07335286587476701, 0.017832791432738002, -0.051040858030319006, 0.024120237678289, -0.036902949213981004, 0.011762306094169001, 0.000442087795818, 0.018084742128849002, 0.007779346778988, 0.025378890335559002, -0.140268489718437, 0.00491746654734, 0.046404145658016004, -0.033958561718463, 0.036864209920167, 0.0037584681995210005, -0.039071500301361, 0.024931726977229, 0.066368982195854, -0.046212565153837, -0.11117732524871801, -0.030696298927068003, 0.05404004827141701, -0.043176386505365004, 0.043760709464550004, 0.023859260603785, 0.017322994768619003, 0.009895789436995001, -0.025807876139879, 0.017893437296152, 0.023938098922371, -0.030255973339080002, 0.01723314076662, -0.06660090386867501, 0.017458906397223, 0.052812825888395004, -0.083079256117343, 0.037748679518699, 0.051060918718576, -0.045509297400712, 0.032627638429403, 0.005123260430991, 0.046057041734457, -0.12068280577659601, 0.036936428397893004, -0.05114937201142301, 0.015730833634734, 0.0068355286493890005, -0.13386768102645802, -0.092519246041774, -0.028194991871714002, -0.032546330243349006, -0.07984453439712501, 0.060424912720918, 0.042544405907392, -0.125787645578384, 0.12466586381196901 ]
0704.0039
Scalar radius of the pion and zeros in the form factor
The quadratic pion scalar radius, \la r^2\ra^\pi_s, plays an important role for present precise determinations of \pi\pi scattering. Recently, Yndur\'ain, using an Omn\`es representation of the null isospin(I) non-strange pion scalar form factor, obtains \la r^2\ra^\pi_s=0.75\pm 0.07 fm^2. This value is larger than the one calculated by solving the corresponding Muskhelishvili-Omn\`es equations, \la r^2\ra^\pi_s=0.61\pm 0.04 fm^2. A large discrepancy between both values, given the precision, then results. We reanalyze Yndur\'ain's method and show that by imposing continuity of the resulting pion scalar form factor under tiny changes in the input \pi\pi phase shifts, a zero in the form factor for some S-wave I=0 T-matrices is then required. Once this is accounted for, the resulting value is \la r^2\ra_s^\pi=0.65\pm 0.05 fm^2. The main source of error in our determination is present experimental uncertainties in low energy S-wave I=0 \pi\pi phase shifts. Another important contribution to our error is the not yet settled asymptotic behaviour of the phase of the scalar form factor from QCD.
[ "hep-ph", "hep-lat", "nucl-th" ]
[ -0.079414620995521, -0.006728962063789001, -0.031498517841100006, 0.009563608095049001, 0.085867695510387, 0.022742811590433003, -0.014833156019449002, 0.06557898223400101, 0.050521984696388, -0.048103559762239005, 0.116254530847072, 0.0321198515594, -0.041633833199739005, 0.020795980468392, 0.014600809663534001, -0.03324594348669, -0.011038468219339001, 0.010316204279661002, -0.039502836763858004, 0.020813006907701003, -0.025665292516350004, -0.014138988219201001, 0.036690395325422, 0.022639688104391, 0.047345798462629006, -0.088786639273166, 0.09554932266473701, -0.06728246062994, 0.07552243769168801, 0.034524995833635004, 0.050375875085592006, 0.125327125191688, -0.050603430718183004, -0.006377833895385001, -0.005405104719102, -0.005707331467419001, 0.164668574929237, -0.003049917751923, -0.008298127911984001, 0.007077231537550001, 0.11245150119066201, 0.059525527060031, 0.06433259695768301, -0.07503107190132101, 0.034658432006835, -0.020128576084971, 0.017699731513857002, -0.026682209223508002, -0.042188353836536005, -0.072778768837451, 0.01129563525319, 0.005258655175566, -0.034668356180191005, 0.010074896737933001, -0.006438828073441, -0.033106956630945004, 0.0028994253370910003, -0.031967654824256, -0.048565715551376, -0.013778826221823002, -0.082005821168422, -0.008214273490011, -0.011139318346977001, -0.065644271671772, 0.012214207090437001, -0.004888460971415, 0.016471922397613, -0.094697378575801, -0.054540511220693005, 0.080721966922283, -0.06947735697031, 0.046262629330158005, -0.10045560449361801, -0.0008985558524720001, 0.029936725273728003, 0.140746355056762, -0.048819210380315003, 0.061065819114446, -0.056290812790393004, 0.019444489851593, 0.033910170197486, -0.078296922147274, -0.068430051207542, -0.024365425109863, -0.05045492947101501, 0.00511007849127, -0.055381268262863007, 0.012616189196705001, 0.044920105487108, 0.019576791673898003, 0.0014168460620560001, 0.0048975022509690005, -0.067860022187232, -0.036160785704851005, -0.017230844125151003, 0.030292795971035003, -0.005380705464631001, 0.115083448588848, -0.000134871341288, 0.028603078797459002, 0.05614523217082001, -0.07283004373311901, -0.016590431332588, 0.000411209795856, -0.028847826644778002, -0.021322071552276, 0.043675750494003004, 0.015045778825879002, 0.043090693652629006, -0.0037217047065490005, 0.038894090801477, -0.006916156038641001, -0.041573487222194005, -0.011950302869081001, -0.057809207588434004, 0.027540117502212, 0.024910498410463004, 0.073714718222618, 0.019599011167883002, -0.064228363335132, 0.05523560568690301, 0.10149290412664401, -0.015750851482152002, 0.10076231509447, -0.042324092239141006, 0.012911456637084002, -0.123379364609718, 4.105398591883484e-33, 0.06233457848429601, 0.14988732337951602, 0.067521579563617, -0.043464362621307005, -0.11371794342994601, -0.010480184108018, -0.023059211671352, -0.015127941034734001, 0.048704829066991, -0.044200476258993, -0.11123424023389801, 0.10044693201780301, -0.029724590480327003, -0.075078785419464, -0.035633649677038005, -0.019498847424983, 0.072759725153446, 0.006680537015199, -0.029939530417323, 0.0035220815334460003, 0.131305053830146, 0.025650328025221002, -0.023261923342943, -0.017176579684019002, 0.034287050366401, -0.017646169289946, -0.045532893389463, -0.08510523289442001, -0.083522006869316, 0.029326777905225, -0.020224137231707, 0.020736580714583, 0.054562348872423005, 0.060914892703294005, 0.049034263938665, -0.081325076520442, -0.03212496265769, 0.022775037214159, 0.011617567390203, -0.030747376382350002, -0.006778404116630001, -0.041207939386367, 0.011875537224113001, 0.002861069282516, 0.033241145312786005, -0.077153868973255, 0.054186280816793005, 0.082557670772075, 0.103284977376461, 0.032320845872163, -0.013310671783983001, 0.017332324758172, -0.07074084877967801, 0.037442013621330004, 0.042772319167852006, -0.068995058536529, 0.069984339177608, -0.065703563392162, 0.031436219811439, -0.030763298273086003, 0.011186618357896002, 0.0005879055242980001, 0.028506131842732003, -0.038697265088558, 0.022077431902289002, 0.055126961320638004, -0.056636076420545, -0.021860823035240003, 0.004517701454460001, 0.051773462444543006, 0.043574500828981004, 0.08946749567985501, -0.0042558130808170004, 0.031395904719829004, 0.077705726027488, -0.11378127336502, 0.06305681169033, 0.026643592864274004, 0.016830492764711002, 0.024812098592519, -0.040397632867097, 0.069236032664775, -0.053298398852348, -0.034525033086538, -0.094285786151885, -0.035378582775592006, 0.049700763076543, 0.02478920854628, -0.066982276737689, -0.074660807847976, -0.038798034191131, -0.012963443994522001, -0.016452321782708, 0.007216415833681, -0.044323891401290005, -4.244670060542955e-33, -0.035876385867595, -0.029802307486534, -0.054084733128547, 0.024615671485662002, -0.039670147001743004, -0.040372919291257005, 0.06430198252201, 0.055035728961229005, 0.04588110744953101, -0.05866882577538401, -0.016697807237505, -0.047180294990539, -0.004773926921188, -0.012817745096981002, 0.04912152513861601, 0.007768879644572, 0.027357749640941002, 0.040644809603691004, 0.0027331230230620003, -0.007713577710092001, -0.103398002684116, 0.049724861979484, 0.051887284964323, 0.033630367368459, -0.07621184736490201, -0.013374806381762002, 0.065127953886985, -0.02502136491239, -0.068515434861183, 0.056793957948684005, -0.061381705105304, -0.022107172757387, -0.030724177137017004, 0.0076780072413380005, -0.016869723796844, 0.068110652267932, 0.022770538926124, 0.018286807462573003, -0.00949496589601, -0.053531143814325007, -0.01775262877345, 0.024096865206956003, 0.012728899717330001, -0.004893259610980001, -0.03865947574377, 0.0018135785358020001, 0.056689050048589006, 0.016911482438445, -0.022021243348717003, -0.00628464249894, 0.025716267526149, -0.040491092950105, 0.115861304104328, 0.07939057052135401, -0.004889280069619, 0.033323362469673004, -0.042420390993356004, 0.0028633791953320002, -0.040063451975584, -0.080720029771327, -0.06822948902845301, -0.059920329600572, -0.06492693722248001, 0.015431253239512001, 0.029039623215794, 0.013729332946240002, -0.022368110716342003, 0.015319412574172001, 0.040506221354007006, -0.06303105503320601, -0.008727038279175, -0.043244071304798, -0.005768785253167001, -0.041205257177352, -0.048166926950216, 0.021940039470791, 0.026648011058568, -0.034016381949186006, -0.022994933649897003, -0.020753895863890003, -0.053364515304565006, 0.032060917466878, -0.061800144612789, -0.072280555963516, 0.044746708124876, -0.027595618739724003, -0.026420775800943003, 0.048345439136028005, -0.008471948094666, -0.029253818094730002, 0.032032825052738, 0.049139611423015005, 0.010234905406832001, 0.037735212594270005, 0.090123161673545, -4.9142986568995184e-8, 0.019725864753127, -0.013233756646513, -0.046020425856113004, 0.060300871729850006, 0.07628034800291, -0.022544648498296002, -0.0011626355117180002, 0.0034009458031500003, -0.073427371680736, 0.044682692736387, 0.006496110931038, -0.053885448724031004, -0.045978881418704, -0.14624197781085901, 0.011023491621017002, -0.031948365271091, -0.061688549816608006, 0.036993365734815, 0.011947376653552002, 0.009697777219116, -0.00021653683506800002, 0.020070483908057, -0.04881077632308, -0.07484378665685601, -0.078773818910121, 0.031106362119317003, -0.025853039696812, -0.012257318012416, -0.011931504122912, 0.066187374293804, 0.0010728822089730002, -0.07803217321634201, -0.029652597382664004, 0.04191678017377801, -0.080804549157619, -0.041372019797563005, 0.08002997189760201, 0.048963572829961007, 0.011132914572954001, 0.08771520853042601, -0.014248188585042001, 0.10748120397329301, -0.014863162301480002, 0.016176095232367002, 0.021016525104641002, 0.053067572414875, -0.0073106260970230005, -0.01222451776266, 0.026759732514619, 0.096982710063457, -0.042460441589355004, 0.067044392228126, -0.064893260598182, 0.029147474095225, 0.027827318757772, -0.089189566671848, -0.006968564819544, 0.0066211628727610005, -0.052699834108352, 0.021846516057848, 0.01322238240391, 0.11703266203403401, 0.014505352824926002, 0.04917749762535 ]
0704.0040
Multilinear function series in conditionally free probability with amalgamation
As in the cases of freeness and monotonic independence, the notion of conditional freeness is meaningful when complex-valued states are replaced by positive conditional expectations. In this framework, the paper presents several positivity results, a version of the central limit theorem and an analogue of the conditionally free R-transform constructed by means of multilinear function series.
[ "math.OA", "math.FA" ]
[ -0.10506697744131001, -0.065852686762809, 0.042073413729667004, -0.037169199436903, 0.057290896773338006, 0.061911981552839, 0.043573047965765006, -0.032409984618425, 0.09184378385543801, 0.022238142788410003, 0.077048175036907, -0.001980325905606, 0.040818933397531, -0.012420785613358002, 0.005875046830624, -0.024305704981088003, -0.11827021092176401, -0.08777943998575201, -0.051896922290325005, 0.05626139789819701, 0.008249615319073, 0.021785860881209002, -0.068768881261348, -0.032972898334264006, 0.053889200091362006, -0.096911676228046, 0.069278635084629, -0.012399390339851001, -0.004588315263390001, 0.026492154225707002, 0.035883523523807005, 0.035025957971811, 0.04609490558505001, -0.022014657035470002, 0.026182740926742002, -0.065585955977439, 0.0034856484271580004, -0.008972465060651, 0.016492651775479, 0.044727813452482, -0.032906185835599004, 0.069620169699192, -0.048821803182363004, 0.021138006821274, -0.029719637706875003, 0.031162980943918003, 0.011902948841452, -0.07011418044567101, -0.037402883172035, -0.050248499959707, 0.06854359805583901, 0.07906449586153001, -0.08403512090444501, -0.00038994193891900004, 0.054768361151218005, -0.042274545878171005, -0.07994266599416701, -0.035456165671348, -0.06367708742618501, -0.007178245577961001, -0.014026826247572, -0.034985788166522, -0.012806118465960002, -0.015434492379426, 0.10504566133022301, 0.009207493625581, 0.01705452427268, 0.11425401270389501, 0.019481766968965003, 0.032155118882656, -0.11513552069664001, 0.018174830824136002, -0.04931642487645101, -0.06085083261132201, -0.022074323147535, 0.046106863766908, 0.0036184729542580005, -0.040230099111795, -0.046131987124681, -0.027080601081252, -0.082006484270095, -0.036757718771696, 0.005755085498094, -0.051431465893983, 0.047809999436140005, 0.05780082568526201, -0.08973744511604301, -0.028957406058907002, 0.06195276603102601, -0.004010531585663, -0.001617476926185, -0.00613979389891, 0.038051262497901, -0.016967110335826003, -0.06629499047994601, -0.014465432614088001, -0.034747872501611, -0.077839136123657, 0.04781561717391, 0.07745171338319701, 0.047966480255126, -0.078023754060268, 0.17188124358654, -0.054246317595243, 0.013669685460627001, -0.040974963456392004, 0.030210820958018, -0.063344463706016, -0.0013405565405260002, -0.028819948434829, 0.011478657834231002, -0.019058289006352, 0.092550039291381, 0.039493359625339, -0.12391255050897501, 0.002646731212735, -0.018990918993949002, 0.038372945040464006, 0.059207834303379, -0.12095671892166102, -0.0050292806699870005, 0.019136417657136, 0.009158532135188, 0.07969579100608801, -0.014216477982699002, -0.02065041847527, 0.055162910372018, 9.516522165993958e-34, -0.01236386410892, -0.047335624694824004, 0.00357649475336, -0.093368731439113, 0.033961132168769004, 0.061917170882225, -0.018323097378015, -0.067272201180458, 0.000989332096651, 0.006219355389475, 0.054487895220518, 0.096696607768535, -0.046382404863834006, -0.033969558775424, -0.029032217338681002, -0.02096714824438, 0.048083215951919, 0.005280456971377001, 0.09495698660612101, -0.00014732008276000002, 0.032402172684669, 0.06124062836170101, 0.055537097156047, 0.047181509435176, -0.032732490450143, -0.093558818101882, -0.024798149242997003, -0.07362890988588301, -0.038035180419683005, -0.010946764610707, -0.046190585941076, 0.11940075457096101, 0.011520218104124002, -0.051658242940902, -0.025365926325321003, 0.0027870540507130004, -0.07219877839088401, -0.036619737744331006, -0.068251878023147, 0.029817614704370003, -0.005141921807080001, -0.030098972842097, 0.043990079313516006, -0.038278121501207005, -0.035606116056442004, -0.059282422065734, 0.020194839686155, 0.027665553614497, -0.011224741116166, -0.058647383004426006, -0.007410391699522001, 0.0013311827788120001, -0.034591950476169, -0.025133781135082002, 0.044468723237514, 0.077167131006717, -0.020546732470393, 0.136504828929901, 0.046130936592817, -0.007419442292302, -0.17142243683338101, 0.018778188154101, -0.060326062142848004, -0.007878737524151, 0.0022597475908690003, 0.017740562558174, 0.005617373622953, 0.03219499439001, 0.115371562540531, -0.045004438608884006, 0.09046874940395301, 0.06515548378229101, -0.045243903994560006, 0.0034453750122330003, -0.011742921546101001, 0.031049851328134002, -0.043730728328228004, -0.07942457497119901, -0.040443651378154005, 0.022570835426449002, -0.040240924805402006, 0.032409831881523, 0.011380073614418, -0.00031659411615600003, 0.048856981098651005, -0.006690889596939, -0.028115913271903003, -0.036082260310649004, -0.046956006437540006, 0.042079497128725, 0.00041987799340800004, -0.021872546523809003, -0.002651874441653, 0.040494766086339, 0.024364640936255, -3.223529138243173e-33, 0.000439961411757, -0.06590840220451301, -0.016984533518552003, 0.012839115224778002, 0.045076582580804006, 0.004947268869727001, -0.0013369474327190002, 0.028896925970911, -0.0004979731165800001, 0.012147248722612, -0.008870981633663, 0.01452561840415, 0.019843384623527003, 0.034964006394147006, 0.014096980914473001, -0.019841795787215, 0.083655625581741, 0.086109466850757, -0.010479933582246, -0.063053399324417, 0.020296569913625002, 0.004706019069999, 0.067745424807071, 0.06718525290489101, -0.051207695156335005, 0.00044337374856600004, -0.038565434515476005, 0.08404307067394201, -0.067466273903846, 0.057569216936826005, -0.018271299079060003, -0.030409015715122, 0.027214869856834002, 0.010292488150298, -0.023603109642863003, -0.11016689240932401, 0.049884241074323, 0.086307018995285, -0.08147300779819401, 0.053411226719617004, 0.003731513163074, 0.051368489861488, 0.0315499342978, 0.02877015992999, 0.009389693848788001, -0.070145241916179, 0.031358405947685006, 0.010165808722376001, 0.064709603786468, 0.034774959087371, -0.033353328704833006, 0.029314672574400003, 0.017998475581407002, 0.029288021847605, 0.00224658800289, 0.003505604108795, 0.008941233158111002, -0.09212575852870901, -0.002365824766457, -0.029724195599555, -0.076282158493995, -0.09201128035783701, -0.057343244552612006, -0.006643832661211001, 0.064425989985466, -0.038710851222276, 0.006031427532434, -0.100487701594829, 0.17802545428276, -0.007801445201039, 0.080214023590087, -0.010415631346404, -0.08611343801021501, -0.066366262733936, 0.0074165626429020005, 0.076633110642433, 0.075551785528659, -0.027036398649215, 0.00000652037124382332, -0.031079508364200002, -0.036857321858406004, -0.077318049967288, 0.011220864020287, -0.030537478625774002, -0.062191613018512004, -0.031114192679524002, 0.05103319510817501, -0.015758235007524, 0.071633361279964, -0.000140953838126, 0.028869008645415, 0.07957398146390901, 0.013906070962548001, 0.015652570873498, 0.002715648850426, -3.450744756605672e-8, 0.044777255505323, -0.07302001863718001, -0.013362082652747001, -0.01119440421462, 0.086367726325988, 0.017998354509472, 0.010852026753127, -0.07535707950592001, -0.025085045024752003, 0.027125922963023002, 0.006397131364792001, -0.028482524678111003, -0.053124397993087005, -0.009134831838309, -0.016447104513645002, 0.010594361461699, -0.025258287787437002, 0.050603609532117004, -0.039050385355949006, -0.009345604106783001, 0.003647923003882, 0.005318070761859001, -0.041042543947696006, 0.057700440287590006, -0.070765659213066, 0.014803455211222002, -0.024715796113014003, -0.003223723266273, -0.029728174209594, 0.049378976225852, 0.005471992306411, 0.077891632914543, -0.001737844082526, -0.042773202061653005, -0.021258806809782, -0.010953649878501, 0.10354447364807101, 0.030383711680769, -0.006736056879162001, 0.049029655754566005, 0.062650069594383, 0.088332675397396, 0.006750157102942, 0.017471125349402, 0.0009256696212100001, -0.11128419637680001, 0.024161702021956003, -0.061872575432062, 0.078847616910934, -0.012626812793314, 0.055628739297389006, 0.040093675255775, 0.026716781780123003, 0.015814853832125, 0.009009026922285, 0.066859878599643, 0.07886623591184601, -0.009036604315042001, 0.008374702185392, 0.031365931034088, 0.029370231553912003, -0.097470000386238, -0.035447411239147006, -0.050336025655269005 ]
0704.0041
Quantum Group of Isometries in Classical and Noncommutative Geometry
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. In fact, we identify the quantum isometry group with the universal object in a bigger category, namely the category of `quantum families of smooth isometries', defined along the line of Woronowicz and Soltan. We also construct a spectral triple on the Hilbert space of forms on a noncommutative manifold which is equivariant with respect to a natural unitary representation of the quantum isometry group. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in \cite{hajac} as the universal quantum group of holomorphic isometries of the noncommutative torus.
[ "math.QA", "math-ph", "math.MP" ]
[ -0.10689759999513601, 0.001963685965165, -0.018381474539637, 0.0029512553010130004, -0.146308928728103, 0.056940846145153004, 0.01934440806508, -0.09334604442119501, 0.049053784459829004, -0.07420600205659801, 0.118827700614929, -0.083709307014942, -0.12119618058204601, 0.000873617478646, 0.06626633554697, -0.034351106733083, -0.021496040746569002, 0.09450894594192501, -0.073802299797534, 0.015984274446964, 0.048054840415716005, 0.018752271309494, 0.084442123770713, 0.07322880625724701, -0.00015503214672200002, -0.08379995822906401, -0.00634561246261, 0.025356827303767003, 0.074169367551803, 0.001848368905484, -0.037086565047502004, 0.007697109598666, -0.05385103821754401, -0.0011356722097840002, 0.006275213323533001, 0.014419731684029002, 0.011320294812321, -0.008625363931059001, 0.0161112844944, -0.049540329724550004, 0.027329420670866002, 0.045904841274023, -0.07230808585882101, 0.032142426818609, -0.008102368563413, 0.018253145739436, 0.093357406556606, -0.006820124574005, -0.05837318673729801, -0.047839071601629, -0.040375035256147, 0.06637411564588501, 0.038841698318719, 0.04336317256093, -0.037552013993263, -0.007775965612381, 0.016402639448642002, -0.01617251895368, 0.045782841742038005, -0.141701862215995, -0.012938266620039001, 0.036457259207963, -0.014357108622789001, 0.039204556494951005, -0.000785155571065, 0.017731226980686, -0.04494696855545, -0.011703842319548002, 0.052502255886793005, 0.025517320260405003, -0.04212649539113, -0.057585369795560004, -0.050199929624795005, 0.019672170281410002, -0.00021385650325100002, -0.022478053346276002, -0.033642452210187, 0.046145390719175006, -0.080230720341205, 0.038655236363410006, 0.052269089967012, 0.005873397458344001, 0.029189687222242, 0.046111647039651, 0.040385343134403, 0.046816449612379005, -0.046719666570425006, 0.015274670906364002, -0.085105814039707, -0.077536508440971, -0.025275019928812002, -0.039800230413675, 0.022414602339267002, -0.036043040454387006, 0.030488960444927004, -0.013521454297006002, 0.037844263017177006, 0.10762750357389402, 0.059232309460639, 0.035453207790851, 0.09617684036493301, -0.072055719792842, -0.08958798646926801, 0.040659163147211005, 0.06689044088125201, 0.046923220157623007, -0.010864992626011, -0.07834676653146701, -0.015916883945465, 0.020761730149388, -0.008375063538551001, -0.011350824497640001, -0.049575019627809004, -0.08203233778476701, -0.089742146432399, -0.027535011991858004, 0.033347871154546, 0.088802568614482, 0.056775718927383007, 0.050419766455888006, 0.036041993647813006, 0.00041903101373400004, 0.039169590920209, 0.029755676165223004, 0.047475460916757, 0.047026202082633, -0.09878134727478001, 1.6019236610242882e-33, 0.044524945318698, 0.012375399470329, 0.034210793673992004, 0.027198316529393002, -0.0169397611171, 0.009008943103253, 0.03686885535717, 0.046278916299343005, 0.022071884945034002, 0.021103158593177, -0.049189522862434006, 0.033758785575628, -0.0017329589463770001, -0.020484611392021002, -0.040284093469381006, 0.003335849614813, -0.057852208614349004, -0.043853756040334, 0.10208573937416, -0.038514118641614005, -0.009625858627259001, 0.12191516906023, -0.045913338661193, 0.051601674407720004, -0.071690887212753, -0.023613967001438002, 0.039660900831222, 0.004110916517674, -0.066820189356803, 0.039667710661888005, 0.061134304851293, -0.072474233806133, -0.040581792593002, -0.023575639352202003, 0.012475493364036002, 0.0062869847752150005, -0.12002932280302, 0.0070580313913520005, -0.055102702230215, -0.008982856757938001, -0.051830913871526, -0.012111079879105001, -0.041346281766891, -0.042741831392049005, -0.029526580125093002, 0.015290001407265, 0.001129544805735, 0.024556096643209003, 0.045653663575649005, -0.020138533785939, -0.0023564128205180003, -0.014667387120425, -0.026449222117662003, -0.053279098123311004, -0.052610177546739, -0.06102092564105901, 0.027871439233422002, -0.019501419737935, -0.009032944217324, 0.045694734901189006, -0.073262996971607, 0.085374899208545, 0.031026314944028, -0.013797800987958, -0.08629263192415201, -0.025500632822513, 0.074993766844272, 0.015493008308112002, -0.014527451246976, 0.045504137873649, -0.046118255704641, 0.044835869222879, -0.010277052409946, 0.078122586011886, 0.029327392578125003, -0.013047651387751002, 0.015223295427858002, -0.086978927254676, -0.036114417016506, 0.0018145270878440001, -0.028443953022360004, -0.044905759394168, -0.027304083108901003, 0.000369480490917, -0.037915915250778004, -0.067050851881504, -0.021572776138782, 0.031743515282869006, 0.046905398368835005, 0.039539497345685, -0.029582498595118002, 0.048318315297365, -0.06329596787691101, 0.059101689606904005, -0.047665290534496, -3.921388175573702e-33, 0.032724354416131, -0.018795128911733003, -0.010872543789446, 0.000477190420497, 0.016881419345736, -0.004250798374414001, -0.037762358784675, 0.044940743595361, -0.029689529910683004, 0.00294316955842, -0.019455894827842, 0.05088247731328, 0.11630885303020401, 0.047880750149488005, 0.013204108923673002, -0.0033711001742630004, -0.021335192024707003, -0.068993858993053, -0.006529327481985, 0.064005643129348, 0.052441142499446, -0.030888583511114003, -0.094388410449028, -0.012004937045276, -0.047832030802965005, 0.043962746858596004, 0.0054387692362070006, 0.00036034177173800003, 0.009463526308536, 0.054932888597249006, 0.050285477191209, -0.11302017420530301, -0.063045106828212, 0.053862877190113005, -0.035989128053188005, 0.006939368788152001, -0.0007888648542570001, 0.100982896983623, -0.12290471792221001, -0.019833784550428002, -0.025312535464763003, -0.039495110511779, 0.024766676127910003, 0.07518678903579701, -0.005572796799242, -0.007860393263399, 0.033317454159259005, -0.07396877557039201, -0.15044830739498102, 0.064843319356441, 0.0027043255977330003, 0.058447305113077004, 0.07946377992630001, 0.072011969983577, 0.015568365342915001, 0.08147998154163301, -0.08698838204145401, -0.08371808379888501, -0.007637783419340001, 0.034402288496494, 0.053884267807006, -0.030253522098064003, -0.033310648053884, 0.04616130515933, 0.053486369550228, -0.0786864310503, -0.053954456001520004, -0.091046325862407, -0.044894460588693, 0.02162404730916, -0.027186071500182003, -0.045788332819938, -0.042444705963134, -0.09670329093933101, 0.038055535405874, 0.057311050593853004, 0.043264079838991006, -0.0025472086854270003, 0.010194496251642001, 0.026829348877072, 0.024252234026789003, -0.023108312860131004, -0.004154775757342, 0.039592895656824, 0.012516166083514002, 0.029225969687104003, -0.01232498884201, 0.069630965590476, 0.023594656959176, 0.013459926471114, 0.073554314672946, 0.0067663774825630005, 0.000368030538083, 0.054542828351259, 0.055954352021217006, -3.8462790286075694e-8, 0.0109528247267, -0.05367986112833, 0.011594385839998, -0.028577709570527004, -0.07952204346656801, -0.016486741602420002, 0.0023519448004660003, 0.041452538222074, -0.123823925852775, 0.060104940086603005, 0.018872575834393, 0.031994678080081, -0.055580742657184004, -0.081867158412933, 0.032291565090417, 0.023713560774922003, -0.031156349927186, 0.039868593215942, 0.002146412618458, 0.0062631834298370005, 0.011946998536586002, 0.000013892276001570282, 0.00039599355659400003, 0.01009376719594, -0.035548418760299, -0.046764101833105004, 0.023183558136224, -0.041226014494895005, -0.034159764647483, 0.001129308366216, 0.041610263288021004, -0.010504159145057, -0.031054543331265002, 0.054908540099859, -0.13206844031810702, -0.0892049446702, -0.092150539159774, -0.068946130573749, 0.059139527380466, 0.057464126497507005, 0.01335203833878, 0.025474820286035003, -0.012618351727724, 0.069081269204616, 0.052171792834997004, 0.083802640438079, 0.037675242871046004, 0.052879534661769007, 0.012512178160250001, 0.14596989750862102, 0.027955431491136003, -0.022071290761232, -0.047477010637521, 0.073103375732898, -0.07982573658227901, 0.11746714264154401, 0.015902088955044, 0.04006177932024, -0.008268540725111, -0.0031864109914740003, 0.034016367048025, -0.026316590607166002, -0.018191358074545, -0.0011371541768310002 ]
0704.0042
General System theory, Like-Quantum Semantics and Fuzzy Sets
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we propose an example of formal quantum coherence.
[ "physics.gen-ph", "quant-ph" ]
[ 0.00960324704647, 0.012728452682495001, -0.016403874382376, -0.019489023834466, -0.07661478221416401, 0.027317101135849002, 0.053206440061330004, -0.048338141292333006, 0.027992850169539, -0.008109072223305001, -0.000372866168618, -0.08631151169538401, 0.017097743228077, 0.016796728596091, 0.0072587807662780005, 0.011527966707944001, 0.11988411098718602, -0.095413468778133, -0.038114286959171004, -0.018755059689283, 0.013790052384138001, -0.018460744991898002, -0.08228453248739201, 0.05682477727532301, -0.06556303799152301, -0.0013858077581970002, -0.004965253174304, -0.012156247161328002, 0.012005174532532002, 0.023622931912541, -0.036011047661304, 0.048004232347011004, -0.043058514595031, -0.011021755635738002, 0.093039691448211, 0.022873142734169002, 0.034336369484663, -0.012734958902001001, 0.007544577587395001, 0.014969943091273, -0.010233664885163, -0.016593856737017, -0.053969778120517, 0.063488282263278, 0.039581730961799004, 0.099854163825511, 0.034578815102577, 0.017783310264348002, -0.077846057713031, -0.085678428411483, -0.045329175889492, 0.034628346562385004, 0.030220959335565, 0.0048175356350830005, 0.17032854259014102, 0.043414287269115004, 0.021432330831885, -0.016942055895924003, -0.090492539107799, -0.13321356475353202, -0.016626639291644003, -0.010494191199541, -0.032786045223474, 0.030487727373838, 0.115682028234004, 0.054375831037759004, -0.052575856447219, 0.032104421406984, 0.031808413565158004, -0.035899952054023, -0.041558600962162004, 0.038133967667818, -0.014426840469241002, 0.003186857094988, -0.024365788325667003, -0.016804395243525002, 0.000519297493156, 0.04785399883985501, 0.032276112586259, 0.069722294807434, -0.05399895459413501, -0.036701198667287, 0.024892596527934, 0.036177635192871004, 0.056158285588026005, 0.026284903287887, -0.014114583842456, -0.028590900823473, -0.107666306197643, -0.017253482714295002, -0.021508134901523, -0.138503775000572, 0.12169539928436202, 0.053052131086587004, 0.06342469900846401, -0.021445995196700002, 0.11845532804727502, -0.013343639671802, 0.06132921949028901, 0.019214682281017, 0.038686465471982005, 0.0009358040988440001, -0.012078085914254001, -0.000435179681517, 0.05442202463746, 0.08489666134119, -0.028157442808151002, -0.048201467841863, 0.040682625025510004, -0.07814942300319601, -0.005910499952733001, -0.07201611250638901, 0.084241673350334, -0.075110606849193, -0.071769572794437, 0.025042900815606003, 0.045598059892654, 0.08456192165613101, 0.033453658223152, -0.098273463547229, 0.037742186337709004, -0.026352601125836, 0.027444776147603003, 0.018940068781375, 0.037400424480438, 0.014385555870831, -0.052923154085874, -2.321129078835025e-34, -0.032692104578018, -0.049657698720693005, 0.028373312205076003, -0.011276110075414, 0.018478170037269002, 0.012842208147048001, 0.045462511479854, -0.05246647447347601, 0.058069616556167006, -0.014224826358258, 0.073155455291271, 0.045627553015947, -0.039206821471452005, -0.029062140733003002, -0.030447617173194004, 0.054778952151536005, -0.042396269738674004, -0.024311108514666002, 0.034838236868381, -0.0019342243904240002, -0.0037527519743880003, 0.083601489663124, -0.11386353522539101, 0.070739641785621, -0.022128783166408, -0.035999611020088, 0.08901613950729301, 0.013240946456789, -0.068212538957595, -0.026422107592225002, 0.008317137137055, 0.038673564791679, -0.0034503578208380003, 0.031866624951362, -0.07664745301008201, -0.007182744797319, 0.013991777785122, -0.035450059920549004, -0.02948691882193, -0.119708187878131, 0.011107906699180001, -0.051725164055824, -0.048740655183792, -0.024300793185830002, 0.033759832382202, -0.009207687340676, -0.09266468137502601, -0.033592369407415, -0.041900943964719, -0.073143556714057, 0.059206251055002004, -0.06602454185485801, -0.042210821062326, -0.019650917500257003, 0.042473651468753, -0.043844122439622005, 0.001987738301977, 0.030339555814862, -0.013098249211907002, 0.018776524811983, -0.122823029756546, -0.041762363165616004, 0.045244764536619006, -0.00698759779334, -0.035046655684709, 0.011418182402849001, -0.077851958572864, -0.106297887861728, 0.021620841696858, 0.073109991848468, -0.037486612796783, 0.052379991859197006, -0.010691167786717, 0.021918516606092002, 0.025841701775789, -0.064809836447238, 0.025912705808877, -0.035864666104316004, -0.023260755464434003, 0.011625465005636, 0.036693148314952004, 0.013443253934383, -0.025030372664332, 0.06737636774778301, -0.00433265697211, -0.024035613983869, -0.12318506091833101, -0.04878444597125001, -0.022108798846602003, -0.008833943866193001, -0.078855536878108, -0.024358998984098, 0.06020214408636, 0.022510014474391, -0.09305921196937501, -1.8859359531524153e-33, -0.015728734433650002, 0.026758808642625004, -0.07857239246368401, 0.006928818300366001, 0.011237147264182, -0.023561466485261, 0.012963103130459001, -0.026955947279930004, -0.0034606223925940003, -0.027224482968449003, -0.0012210477143520001, 0.076776921749114, 0.023815810680389002, 0.057954557240009, -0.052766624838113, 0.041118524968624004, 0.04326207563281, -0.096684753894805, 0.041376113891601, 0.052853640168905, 0.022693715989589, -0.049763962626457006, -0.006209762301295001, -0.035194508731365, 0.09589049220085101, 0.069682769477367, -0.0015929458895690002, 0.039057161659002006, -0.029982583597302003, -0.041969746351242, 0.042771786451339, -0.169216305017471, -0.052717626094818004, 0.051815427839756005, -0.065900169312953, -0.027382368221879002, 0.07524264603853201, 0.026967754587531003, -0.081100650131702, -0.066520668566226, -0.10817422717809601, -0.04666608199477101, -0.019279969856142002, -0.012763968668878, -0.018039675429463, 0.013499871827661, -0.056802131235599004, -0.007861171849071001, -0.053747963160276004, 0.00036520720459500006, 0.017694329842925002, -0.010384119115769001, 0.025014072656631, 0.040714528411626004, -0.02626927383244, 0.046795275062322006, 0.011725700460374001, 0.03703648969531, 0.005669381935149, 0.058030094951391005, -0.012500993907451002, -0.026167135685682002, 0.01202517747879, 0.12244313955307001, 0.022694908082485, 0.044583719223737, -0.07751581072807301, 0.062012705951929, 0.05385518819093701, -0.091019339859485, 0.009487042203545001, 0.0025535332970320003, -0.070076994597911, 0.06820610165596, 0.133724585175514, 0.045974906533956, 0.040857732295989005, -0.032363306730985, 0.068368270993232, 0.052225552499294, -0.07309183478355401, -0.030444063246250003, 0.094248577952384, 0.036475207656621, -0.038785625249147006, -0.032652713358402, 0.026958622038364, 0.022378057241439, 0.054612319916486005, 0.032299570739269, -0.033249698579311, 0.018462786450982, -0.027924718335270004, -0.04945912212133401, -0.05714852362871101, -3.861809361183077e-8, -0.024784285575151003, 0.016673233360052, 0.023794008418917, -0.018724428489804, 0.024031827226281003, 0.0034686378203330004, 0.035044528543949, -0.027367420494556004, -0.051936376839876, -0.021378703415393, 0.001975089078769, -0.030213266611099004, -0.06126002967357601, 0.023765621706843, 0.058993577957153, 0.0071419184096150005, 0.010507280938327, -0.001866448903456, -0.014099354855716001, 0.021969811990857003, 0.045766983181238, 0.015398153103888002, -0.033037830144166, 0.08491661399602801, 0.0017808212433010001, -0.031219070777297003, -0.024067809805274003, 0.034675806760787, -0.011372609063982, 0.10847664624452501, -0.035486754029989, 0.05302446708083101, 0.105934366583824, 0.02595736272633, -0.011532992124557, -0.010832101106643, -0.048406153917312005, -0.013182268477976001, 0.062870599329471, 0.012077022343873001, -0.031354829668998004, 0.047528047114610006, -0.074589058756828, 0.018139943480491, 0.07038503885269101, -0.030808184295892, 0.039989713579416004, -0.077615767717361, 0.03006031550467, 0.13795638084411602, 0.033134289085865, 0.05689899623394001, -0.019410692155361002, 0.025830438360571, -0.065466709434986, -0.0006889071082690001, 0.013654734008014001, -0.000994002795778, -0.067909821867942, -0.025613453239202003, -0.0066466932184990005, 0.071160696446895, 0.055172245949506, 0.021124523133039003 ]
0704.0043
Nonequilibrium entropy limiters in lattice Boltzmann methods
We construct a system of nonequilibrium entropy limiters for the lattice Boltzmann methods (LBM). These limiters erase spurious oscillations without blurring of shocks, and do not affect smooth solutions. In general, they do the same work for LBM as flux limiters do for finite differences, finite volumes and finite elements methods, but for LBM the main idea behind the construction of nonequilibrium entropy limiter schemes is to transform a field of a scalar quantity - nonequilibrium entropy. There are two families of limiters: (i) based on restriction of nonequilibrium entropy (entropy "trimming") and (ii) based on filtering of nonequilibrium entropy (entropy filtering). The physical properties of LBM provide some additional benefits: the control of entropy production and accurate estimate of introduced artificial dissipation are possible. The constructed limiters are tested on classical numerical examples: 1D athermal shock tubes with an initial density ratio 1:2 and the 2D lid-driven cavity for Reynolds numbers Re between 2000 and 7500 on a coarse 100*100 grid. All limiter constructions are applicable for both entropic and non-entropic quasiequilibria.
[ "cond-mat.stat-mech", "cond-mat.mtrl-sci" ]
[ -0.046433966606855004, 0.022925607860088, 0.033859711140394, 0.012268833816051001, 0.047708429396152004, -0.054095227271318005, 0.018029846251010003, -0.022396571934223, 0.091838754713535, -0.056742571294307, -0.028783202171325004, -0.05224818736314701, 0.038687873631715004, -0.041440825909376006, -0.073469206690788, -0.041475638747215, 0.020253539085388003, 0.08384992927312801, -0.034132760018110005, 0.05190868675708701, 0.030590878799557002, 0.050148632377386, -0.051794286817312005, 0.044544883072376, -0.021043132990598002, -0.06282474100589701, -0.014372350648045, 0.075404450297355, -0.005205670371651001, -0.02378487586975, 0.042365290224552, -0.053305637091398, -0.10235097259283, 0.07403608411550501, 0.016126312315464002, 0.004566521383821001, -0.026445705443620002, 0.057653058320283, -0.12958896160125702, 0.08619208633899601, -0.061277303844690004, 0.05619689822196901, -0.004937955643981, 0.038487289100885, 0.014518233947455002, 0.027060491964221, 0.039864186197519004, -0.059279650449752, -0.017979891970753, -0.017342999577522, -0.015357071533799001, 0.090460658073425, 0.047083217650651, 0.037587027996778, -0.051588118076324005, -0.072438217699527, -0.039029236882925006, -0.008798168972134, -0.059851467609405004, -0.09648123383522, -0.049946267157793, -0.010366363450884, -0.014784298837184, -0.033577967435121, -0.005161916837096, -0.0025664370041340004, 0.038294494152069, 0.065146677196025, 0.04601983353495501, 0.067664042115211, -0.04242292419075901, -0.018448762595653003, -0.035435739904642, 0.016540307551622002, -0.008312466554343001, 0.0061924802139400005, -0.019915327429771, 0.043017879128456005, -0.070830523967742, 0.047948926687240004, 0.002168511273339, -0.05943088605999901, -0.014134045690298, -0.098443008959293, -0.13871914148330602, 0.044712126255035005, -0.067042581737041, 0.09773900359869, 0.08755394816398601, -0.002837403910234, -0.039127688854932, 0.059233978390693005, 0.048872794955968, 0.010498685762286, 0.083232387900352, -0.014332490041851002, 0.011349941603839, 0.07235974818468001, 0.083916589617729, 0.015082420781254002, -0.011720279231667002, -0.09601709246635401, -0.013790612109005002, 0.06765274703502601, 0.058065142482519004, -0.053068231791257005, 0.07326169312000201, 0.029583087190985003, 0.009341934695839, 0.033459927886724, 0.08299268782138801, 0.065027080476284, 0.007804356049746001, 0.004169721156358001, 0.020610056817531003, -0.06826379150152201, -0.010946346446871001, -0.024020038545131003, -0.011535761877894, 0.005049305036664, -0.006233923137187, 0.034899994730949, -0.060045827180147004, 0.024996902793645002, -0.039382014423608, 0.092567726969718, -0.066492572426795, 6.804354192522596e-33, 0.035290800034999, -0.01433225441724, -0.015467013232409002, -0.024375285953283, 0.028695689514279, 0.09607561677694301, 0.0037266670260570002, 0.004772972781211001, -0.016350416466593, 0.06679518520832001, -0.030966911464929, 0.103197485208511, -0.028136828914284002, -0.05485137924551901, 0.045645717531442004, -0.091229014098644, -0.054576214402914006, -0.014997413381934001, 0.014790559187531001, 0.008666096255183001, -0.008967683650553001, -0.039811946451663006, 0.017131611704826, 0.055867187678813005, -0.06904616206884301, -0.049518845975399, -0.006476304959505, -0.049756210297346004, 0.025447247549891003, -0.012435800395905002, -0.10723647475242601, 0.0478694178164, 0.02412480674684, -0.041985411196947, 0.024566687643527003, -0.025051377713680004, -0.06474623084068201, -0.014599397778511, 0.006219275761395001, -0.05993688479065801, -0.021755358204245002, 0.033512506633996006, 0.010518413968384, 0.022005628794431003, -0.024470103904604003, -0.011277307756245001, -0.023150978609919003, 0.08225648850202501, -0.077027045190334, -0.034759297966957, 0.053494341671466, 0.017851486802101, -0.018232651054859002, -0.024025700986385002, 0.075981475412845, -0.068695358932018, 0.002791564445942, 0.001516695483587, -0.00115707644727, 0.033081434667110006, -0.043027419596910005, 0.0050799245946100005, 0.06339695304632101, -0.025342881679534003, 0.0068874913267790005, 0.058361433446407006, -0.022474830970168003, 0.042730212211608005, 0.062301412224769, -0.13934630155563302, -0.031930837780237004, 0.024009421467781, -0.038197353482246, 0.046239040791988005, -0.001398455933667, -0.050894051790237003, 0.064936071634292, -0.05833349004387801, 0.006098391953855, -0.08689534664154, -0.015613097697496001, 0.008455762639641, 0.014483442530035001, 0.058914113789796003, -0.010551868006587, -0.045609649270772004, -0.018059279769659, 0.07420251518487901, -0.09647803008556301, -0.035633277148008, -0.02757278829813, -0.07182953506708101, 0.13359589874744401, -0.005614967085421, -0.010357219725847001, -6.715444207930214e-33, -0.025293158367276, 0.007810053415596, -0.059250116348266005, 0.061421014368534005, -0.012906908057630001, 0.07713709771633101, 0.02196336351335, 0.023505076766014002, 0.051473774015903, -0.15147756040096202, 0.032057117670774, -0.005232431460171, 0.029810335487127002, 0.08351078629493701, -0.0018877678085110002, -0.010528257116675, -0.014882197603583001, -0.035257495939731, -0.040561642497777, -0.029079949483275, -0.017045233398675003, 0.041763905435800004, -0.055364601314067, 0.023356672376394, -0.043849699199199, 0.006407232023775001, -0.04797884076833701, 0.09500201791524801, -0.035581354051828, 0.039050776511430005, 0.020582785829901, 0.017133962363004, 0.01949881017208, -0.04241332039237, 0.023389199748635, -0.028216678649187, 0.0082074617967, 0.065992914140224, 0.081748843193054, -0.043898101896047, -0.015697667375206, -0.026040369644761002, -0.049798656255006006, 0.006214311346411001, 0.015717415139079, 0.086724027991294, 0.050283055752515, -0.042298596352338, 0.09586267173290201, 0.030767785385251004, -0.040634464472532, -0.06327942758798501, -0.020257696509361, 0.100675649940967, 0.00021772400941600002, -0.035117425024509, 0.058783553540706, 0.0092419302091, 0.025273760780692003, -0.063354775309562, -0.031335350126028005, -0.036287862807512006, 0.08736351877450901, 0.005618804134428001, -0.07214187830686501, -0.016002560034394, -0.05281500890851001, 0.015957180410623002, -0.024033728986978004, -0.0070567717775700005, 0.029359707608819, 0.037318304181098, 0.13403485715389202, 0.019316820427775, 0.043859146535396, -0.026116231456398003, 0.11052368581295001, -0.036155316978693, -0.018352217972278, -0.012883508577942002, -0.09418631345033601, 0.10068789869546801, 0.031092820689082003, -0.079554088413715, 0.06796174496412201, -0.08582382649183201, -0.006837901659309, -0.071767121553421, 0.055486910045146005, 0.004321135580539, 0.08166278898715901, -0.075363434851169, 0.069961458444595, 0.0047996290959410005, -0.050018385052680005, -5.191022012240864e-8, 0.047755755484104004, -0.008029184304177001, 0.00011149315105200001, -0.019962375983595, 0.004618918988853, 0.073527164757251, 0.034778270870447006, 0.0033856534864750002, 0.017783297225832002, -0.077439934015274, 0.14372493326663902, 0.033604092895984004, -0.019556075334548003, -0.045140497386455, 0.026660190895199002, 0.012642473913729002, 0.038110174238681, 0.034192256629467004, -0.004808607511222, -0.052702676504850006, -0.025482214987277003, 0.008445787243545, -0.04185501858592, 0.00030178297311000003, 0.049856528639793, -0.011889406479895, -0.08005078881978901, -0.099313162267208, 0.080755040049552, -0.048744101077318004, -0.05302757397294, -0.000993734458461, 0.07168554514646501, 0.017788033932447, -0.043707136064767005, 0.06881084293127, -0.04353204742074, 0.068181112408638, 0.054488874971866004, -0.039735794067382, 0.014040932990610001, -0.10634580254554701, 0.015415313653647001, -0.035994723439216, -0.047597788274288004, -0.005848796572536, -0.042924862354993, 0.029242536053061003, 0.022106979042291003, 0.10224509984254801, 0.010505446232855, 0.062850289046764, 0.06163249537348701, 0.052635665982961, 0.008755590766668, -0.035963121801614005, -0.072939425706863, -0.0019733961671590003, 0.023740442469716003, -0.026593685150146002, -0.053333412855863, -0.013870595954358002, -0.10730373859405501, -0.016032876446843 ]
0704.0044
Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas
We present a theoretical framework for plasma turbulence in astrophysical plasmas (solar wind, interstellar medium, galaxy clusters, accretion disks). The key assumptions are that the turbulence is anisotropic with respect to the mean magnetic field and frequencies are low compared to the ion cyclotron frequency. The energy injected at the outer scale scale has to be converted into heat, which ultimately cannot be done without collisions. A KINETIC CASCADE develops that brings the energy to collisional scales both in space and velocity. Its nature depends on the physics of plasma fluctuations. In each of the physically distinct scale ranges, the kinetic problem is systematically reduced to a more tractable set of equations. In the "inertial range" above the ion gyroscale, the kinetic cascade splits into a cascade of Alfvenic fluctuations, which are governed by the RMHD equations at both the collisional and collisionless scales, and a passive cascade of compressive fluctuations, which obey a linear kinetic equation along the moving field lines associated with the Alfvenic component. In the "dissipation range" between the ion and electron gyroscales, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like Electron RMHD equations and a passive phase-space cascade of ion entropy fluctuations. The latter cascade brings the energy of the inertial-range fluctuations that was damped by collisionless wave-particle interaction at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for these cascades. Astrophysical and space-physical applications are discussed in detail.
[ "astro-ph", "nlin.CD", "physics.plasm-ph", "physics.space-ph" ]
[ -0.004520424641668, 0.009205870330333, 0.054952342063188005, 0.0039025775622570005, -0.032793000340461, -0.0033228625543410004, -0.019133113324642, -0.008992638438940001, 0.07502231001853901, -0.035812582820653, -0.056995987892150005, -0.092166528105735, -0.019254602491855, -0.07356242090463601, 0.029467539861798002, -0.065854512155056, -0.021503349766135, 0.02366142347455, -0.08182016015052701, 0.011124203912913001, -0.039385937154293005, 0.004515109118074, -0.026222094893455002, 0.05645736679434701, 0.10778888314962301, 0.002230026526376, -0.04832024872303001, 0.000848832714837, -0.106571391224861, 0.036583114415407, 0.07716765999794001, -0.001745717483572, -0.11056518554687501, 0.064456574618816, -0.005314255598932001, 0.009049091488122, -0.039969328790903, 0.029419751837849003, -0.031934589147567, 0.009431209415197001, -0.047344494611024, -0.017934529110789, -0.013701712712645002, -0.001140541397035, -0.026929320767521, 0.003417309606447, 0.070178292691707, -0.028472881764173, -0.038406338542699, 0.05804373323917301, -0.05210505798459, 0.011434762738645, -0.006046097725629001, 0.058356318622827, 0.034126449376344, 0.07986656576395, 0.043188944458961, -0.006133751012384001, -0.023253872990608, -0.040734101086854005, -0.039079796522855, -0.07183747738599701, -0.046292141079902004, 0.055250961333513, -0.040997177362442, -0.041237618774175006, 0.026138054206967003, 0.013407632708549002, 0.025846548378467, 0.051135633140802, -0.005732953548431, 0.005484289024025001, -0.019679952412843, -0.023197544738650003, 0.07198230177164, 0.052799832075834004, -0.009212582372128, -0.015504941344261001, 0.064488068222999, 0.014491074718534001, -0.013186770491302001, 0.042247980833053006, -0.037536885589361, 0.018098570406436, -0.052551168948411005, 0.039523739367723, 0.015818402171134, 0.027362879365682, 0.022219138219952, 0.029832264408469002, -0.014879695139825, -0.00019679394608800003, -0.00010162165563, -0.049536302685737006, 0.07052729278802801, 0.036866426467895, 0.04885882884263901, -0.011925310827791, 0.10074660181999201, 0.0056571676395830005, 0.013183556497097002, -0.10040716081857601, 0.025247698649764002, 0.09318108111619901, 0.002831112127751, 0.070229120552539, 0.101705230772495, -0.009742377325892, -0.064915046095848, 0.014562928117811002, -0.021475829184055002, 0.012507037259638, -0.025967208668589002, -0.050141740590333, 0.028629560023546004, 0.067846737802028, 0.070026770234107, 0.035803686827421, -0.08688995987176801, 0.022292392328381, -0.021559007465839, -0.06483769416809, -0.013043735176324001, 0.043326929211616, -0.029940783977508004, 0.030049717053771, -0.015250706113874002, 2.2402497869574232e-33, -0.0034814195241770003, -0.000702113611623, 0.051860515028238005, -0.01915643364191, 0.021603986620903, -0.000337090663379, -0.076626539230346, 0.025610560551285, -0.07722590863704601, 0.0072216712869700005, -0.046815618872642004, 0.069239415228366, 0.022300001233816, 0.003698309883475, -0.06891957670450201, -0.045380767434835004, 0.01631854660809, -0.046895433217287, -0.031248733401298003, -0.091284655034542, 0.025402724742889002, 0.036578122526407006, -0.033125039190053, 0.011963943950831, -0.030298957601189003, 0.092469938099384, 0.044464796781539, 0.022971469908952002, -0.037715669721364004, 0.020890656858682, -0.017623968422412, -0.051790300756692005, -0.056823931634426006, -0.026129800826311, -0.044503346085548005, 0.0007202591514210001, -0.08662015944719301, -0.021358294412493, 0.0006228222046040001, 0.006545356940478001, -0.069515474140644, 0.008728069253265, -0.09831975400447801, 0.018096871674060003, 0.034067317843437, -0.009897776879370001, 0.07116176187992, -0.008787577040493, 0.002756147878244, 0.023246575146913, 0.052949950098991005, 0.030084731057286002, 0.005817172117531, 0.050482913851737005, 0.07756360620260201, -0.018467465415596, 0.05407456308603201, -0.035894028842449, -0.035160642117261005, 0.053462568670511, 0.053761344403028, 0.013112694956362001, 0.030798811465501, -0.002980968914926, -0.063242338597774, 0.06102075427770601, 0.004038356710225, 0.079976454377174, 0.039160862565040006, -0.10257654637098301, 0.047395922243595005, 0.11241633445024402, 0.050170585513114006, -0.013199213892221002, 0.05057578533887801, 0.013114303350448001, 0.05674813687801301, -0.000504621188156, -0.060125283896923, -0.028030926361680003, -0.07520031929016101, -0.041987124830484, 0.00044488994171800004, 0.039624646306037, -0.056807905435562, -0.022345079109072002, -0.093032091856002, 0.021424869075417, -0.058998543769121004, -0.021479498594999, 0.001109182252548, 0.029214061796665, 0.083645783364772, -0.039984449744224, -0.064920969307422, -5.4578816169793144e-33, 0.030445754528045002, 0.005833113100379, -0.012743351981043, -0.011563096195459002, 0.00162542250473, 0.10988613218069, 0.039003554731607, 0.045609313994646, -0.05933052301406801, -0.084498666226863, -0.070169538259506, -0.018504526466131002, -0.09245690703392001, -0.07925774902105301, 0.052168287336826005, -0.128831446170806, 0.007631673477590001, 0.047163944691419005, 0.059481862932443, -0.012815008871257002, 0.066692225635051, -0.024598121643066, 0.011812946759164, -0.016363520175218003, 0.034590572118759, -0.047611821442842005, 0.011079048737883, -0.008205045014619, -0.023098669946193, 0.07946198433637601, 0.019017212092876, -0.0017289295792570001, 0.012219264172017, 0.018706513568758, 0.077951118350028, 0.016387194395065002, -0.016707371920347002, -0.032417211681604004, -0.093471534550189, -0.07876981049776001, -0.07273529469966801, 0.023218385875225, 0.038502726703882, -0.035047098994255, 0.128736406564712, 0.007970223203301001, -0.054241262376308004, 0.048235867172479005, 0.08120600134134201, 0.009919618256390001, 0.023206628859043003, -0.047404378652572, -0.075882852077484, 0.035942610353231, -0.004626048263162001, 0.10938514769077301, 0.063322454690933, 0.030533684417605, 0.045981410890817004, -0.070842675864696, -0.039282567799091006, -0.10210675746202401, 0.024778068065643002, 0.044287797063589006, -0.021188620477914002, -0.096890047192573, 0.002407331950962, 0.055942174047231, -0.048704892396926006, 0.014977214857935002, 0.055589932948350004, -0.026976274326443003, -0.023793676868081003, 0.011254629120230002, -0.046876788139343005, 0.065526694059371, 0.13894055783748602, -0.07169347256422001, 0.005557789467275, 0.019484203308820003, 0.039764624089002006, 0.05430319532752, 0.051074393093585004, -0.061558913439512, 0.016440913081169, -0.057208869606256006, -0.034137994050979004, -0.08924634754657701, 0.009173886850476001, 0.06516900658607401, 0.018040401861071, -0.062770843505859, 0.061937619000673, -0.033358864486217, -0.05647330358624401, -4.759855443126071e-8, 0.08427995443344101, 0.030494613572955003, -0.045427955687046, 0.077838487923145, -0.043364573270082, 0.031656704843044, -0.035372763872146, -0.027689201757311002, 0.032012838870286005, 0.005408991128206001, 0.151856005191802, 0.013684940524399001, 0.048805117607116005, 0.053376685827970005, -0.048326227813959004, -0.02791541814804, -0.009333809837698001, -0.053806282579898, 0.012319494970142002, 0.050820775330066, -0.03969308361411, 0.06919455528259201, -0.072635330259799, 0.013817640952765001, 0.04538744688034, 0.027298480272293, -0.031771246343851, 0.059328101575374007, -0.024757964536547, -0.08333671092987001, -0.085276022553443, -0.044683337211608005, 0.016134427860379, -0.013616099022328002, -0.11536896228790201, 0.0037783381994810003, -0.143922865390777, 0.090398900210857, 0.046426162123680004, -0.042674046009778005, -0.022350680083036003, -0.013706000521779001, 0.06812853366136501, -0.032890241593122004, 0.024080110713839004, 0.071256764233112, -0.082266628742218, -0.062787860631942, -0.055558890104293004, 0.08385653793811701, 0.027855342254042, 0.038343787193298, 0.031703397631645, -0.022672830149531, -0.088951289653778, -0.032379366457462005, -0.088980875909328, 0.0015072290552780002, 0.009075521491467, -0.130961403250694, 0.05348964035511, -0.014886170625686002, -0.09280720353126501, -0.012936964631080001 ]
0704.0045
Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction
This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using a recent development of this theory for perturbed integrable equations. This general approach enables us not only to improve known results on the adiabatic evolution of isolated solitary waves and periodic wave trains in the presence of variable topography and bottom friction, modeled by the Chezy law, but also importantly, to study the effects of these factors on the propagation of undular bores, which are essentially unsteady in the system under consideration. In particular, it is shown that the combined action of variable topography and bottom friction generally imposes certain global restrictions on the undular bore propagation so that the evolution of the leading solitary wave can be substantially different from that of an isolated solitary wave with the same initial amplitude. This non-local effect is due to nonlinear wave interactions within the undular bore and can lead to an additional solitary wave amplitude growth, which cannot be predicted in the framework of the traditional adiabatic approach to the propagation of solitary waves in slowly varying media.
[ "nlin.PS", "nlin.SI" ]
[ -0.095162078738212, 0.006714897230267001, 0.097948223352432, 0.062219511717557005, -0.019338618963956, 0.014366655610501001, -0.06324078887701, 0.033191598951816004, -0.010272339917719002, -0.005940242670476, -0.048403963446617, -0.046346202492713005, -0.032909259200096005, -0.044786602258682, 0.051812082529067, 0.034434929490089, -0.119896546006202, 0.00005953259824309499, 0.029345510527491004, -0.005495811346918, 0.046982329338788, 0.040029376745224006, -0.013720213435590002, 0.012863022275269, 0.060692124068737, -0.022552233189344, -0.011481021530926, 0.08005118370056101, 0.032999515533447, 0.012365289963781001, 0.012371150776743, -0.001252990216016, 0.011805638670921001, -0.0027004289440810004, 0.027739780023694004, -0.04838627576828, -0.04724415764212601, 0.029020074754953003, -0.073968708515167, 0.023164572194218, 0.009631874039769001, -0.008495084010064, -0.04721638187766, 0.068556018173694, 0.026190765202045004, -0.047510690987110006, -0.038265299052000004, 0.0045549664646380005, -0.110346645116806, -0.022600976750254003, 0.050927799195051006, -0.043208710849285, -0.022669401019811002, 0.08506125956773701, 0.023544676601886003, -0.024570988491177, -0.018474493175745, 0.011096325702965001, 0.065491646528244, -0.10215765237808201, 0.06626059114933, 0.053320687264204004, -0.030993897467851004, 0.0009599883342160001, 0.074811697006225, -0.07472556829452501, 0.0049348254688080006, 0.086876802146434, 0.042408779263496, 0.082008302211761, -0.014697968028485001, -0.020137529820203, 0.074610970914363, -0.044840149581432, -0.033113215118646004, -0.059293463826179005, -0.10011617839336301, 0.10073645412921901, -0.07804650068283, 0.022753084078431, -0.082441374659538, -0.040174480527639, -0.010907240211963001, -0.065486505627632, -0.06714821606874401, 0.025860192254185004, 0.063586518168449, -0.017341637983918003, -0.006362603046, -0.062323104590177, -0.103531450033187, -0.000897877034731, -0.10784199088811801, -0.058707449585199, 0.083275191485881, -0.045371178537607006, 0.010795027948915, 0.034064143896102, 0.08186137676239001, 0.037259463220834003, -0.029904251918196, -0.026022141799330004, -0.019683042541146, 0.10630712658166801, 0.05847011879086401, 0.002171837957575, 0.055645715445280006, 0.005961062386631, 0.0036508806515480005, 0.056113738566637004, -0.047459848225116, -0.037080440670251, 0.060119953006505, 0.057186968624591, 0.004723836202174, -0.030331429094076004, -0.03397762030363, 0.034644328057765, -0.098653905093669, -0.006220157723873, -0.012169125489890001, -0.021375155076384003, 0.03542673587799, 0.049711570143699, -0.01123172044754, 0.055278521031141004, 0.032062329351902, -2.4270826754061253e-33, 0.069561958312988, 0.039518881589174, -0.031376507133245, -0.083365969359874, 0.027287557721138, -0.09139405936002701, 0.00626640766859, 0.05382036045193601, -0.077201858162879, 0.137803360819816, -0.059332620352506006, 0.12365323305130001, -0.05204756557941401, 0.034701135009527005, -0.008555022999644, 0.014281151816248, 0.058267835527658005, -0.09116370230913101, -0.013492865487933001, 0.051805891096591006, 0.082997977733612, 0.023771526291966, -0.03800630941987, -0.08759209513664201, -0.09043028205633101, 0.039065577089786, 0.01965731754899, 0.033464666455984005, -0.0021068381611250003, 0.059474818408489005, 0.029841406270861, -0.057191185653209006, -0.052982229739427004, 0.010988365858793, 0.055602703243494006, -0.017298443242907, 0.037488181143999, 0.041847649961709005, -0.034442123025655004, 0.021747097373008003, 0.001857638824731, -0.050292301923036006, 0.044840838760137, -0.030960574746131002, 0.012725399807095, 0.008910950273275, 0.077463917434215, 0.068326048552989, 0.013372803106904, 0.022823642939329, -0.076060108840465, -0.052297469228506005, -0.0048898644745340005, 0.065603643655776, -0.017291696742177003, -0.024812655523419002, 0.003453078912571, -0.040198560804128, -0.09237513691186901, 0.014125880785286002, 0.032651256769895005, 0.01796749420464, 0.024387847632169002, -0.054843325167894, -0.015101800672709002, 0.054553721100091004, -0.026681169867515002, 0.09426447749137801, 0.095086462795734, -0.073834143579006, 0.0028826394118360004, 0.079981349408626, -0.028488162904977, 0.015570857562124, 0.057139053940773, -0.027598695829510002, 0.046288706362247, -0.022700708359479002, -0.017282325774431, 0.040383372455835, 0.016063634306192003, 0.002635823097079, -0.001413819845765, -0.005597681738436, -0.022519679740071002, 0.0233816485852, 0.04952814057469301, -0.012412119656801002, -0.044226471334695004, 0.08480562269687601, -0.15470837056636802, -0.0016700885025780002, 0.08359784632921201, 0.006649189628660001, 0.0436742156744, -1.791683346735545e-33, 0.076000891625881, 0.03967772424221001, -0.051871944218873006, -0.051037933677434005, 0.024889372289180003, 0.11863959580659801, 0.031595434993505, 0.041413497179746, -0.001311853062361, -0.05690524727106001, 0.005315401125699001, 0.013437130488455, 0.033076118677854004, 0.08581902086734701, 0.025988269597291003, -0.049585886299610006, -0.033265504986047, -0.038093045353889, 0.089664317667484, 0.003194764023646, -0.039697006344795005, -0.004043505527079, 0.0049023106694220005, -0.05780252814292901, 0.0010451679117970002, -0.004076144192367, 0.022052651271224, 0.026268672198057, -0.11210401356220201, 0.038440652191638, 0.00034930877154600005, 0.065562061965465, -0.022324727848172, -0.09847681224346101, -0.06323528289794901, 0.09548790007829601, 0.029484622180461002, 0.032985176891088, -0.037268031388521, 0.016859129071235, -0.021936643868684002, -0.030543588101863, 0.140180811285972, -0.081069268286228, 0.039774570614099, 0.041554071009159005, -0.016919028013944, 0.034956395626068004, -0.051383055746555, 0.032573763281106005, -0.021970815956592, -0.046869687736034005, -0.025535019114613002, 0.037618331611156006, -0.042820669710636, 0.050735276192426, 0.012546377256512002, -0.020303925499320002, -0.057045098394155, -0.028097745031118, -0.014439315535128, -0.091280698776245, -0.07117985188961, -0.008702610619366, -0.001342318602837, -0.059349775314331006, -0.09436809271574001, -0.032663978636264, 0.0023770923726260003, -0.040510971099138, -0.083050787448883, -0.08305402100086201, -0.003454779973253, 0.0046612024307250005, 0.028522552922368, 0.020114954560995, -0.059150777757167004, -0.0190543923527, -0.070596359670162, -0.017386766150593, 0.045834384858608, 0.036373704671859006, 0.012634735554456001, -0.09961367398500401, -0.054923370480537005, -0.09654451161623001, -0.00780907087028, -0.08420926332473701, -0.09909593313932401, 0.011545487679541002, 0.037461619824171004, -0.027614172548055003, -0.039761878550052004, -0.06297431141138, -0.016188088804483, -4.756094540425693e-8, 0.032792326062917, -0.037070240825414005, -0.023730803281068, 0.054885670542716, 0.038489539176225, -0.012047716416418, -0.006155375856906, -0.058014884591102, 0.053470693528652004, -0.052776433527469004, 0.008986643515527, -0.013091175816953002, 0.008559083566069001, -0.01583557203412, -0.046833280473947005, -0.022112272679805003, -0.035586565732955, 0.042484868317842005, 0.00008564967720303686, -0.024754922837018002, -0.0108806444332, -0.013091492466628002, -0.044363364577293, 0.010571930557489001, 0.030603015795350002, -0.032875023782253, -0.06017995998263301, -0.09521421790122901, 0.006190226413309001, 0.023992363363504, 0.024741109460592003, 0.090721435844898, 0.020279167219996, 0.079918824136257, -0.08916416764259301, 0.019333738833665, -0.017090298235416003, 0.087711207568645, -0.021084252744913, 0.037647031247615, 0.016881100833415, 0.09802041947841601, 0.02480442635715, -0.04702066630125001, 0.05018213391304, 0.044315047562122005, 0.06181785091757701, -0.011538452468812, 0.03792842850089, 0.012803391553461002, -0.011601158417761001, 0.028803823515772, 0.053730547428131006, 0.040686920285224006, 0.10591857135295801, 0.011580873280763002, -0.044555656611919, -0.044756501913070006, -0.041114617139101, 0.037465371191501, -0.0488121509552, 0.042086627334356, 0.007044646423310001, -0.06905397772789 ]
0704.0046
A limit relation for entropy and channel capacity per unit cost
In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density matrices. The first proof is analytic and uses the quantum law of large numbers. The second one clarifies the relation to channel capacity per unit cost for classical-quantum channels. Both proofs lead to generalization of the conjecture.
[ "quant-ph", "cs.IT", "math.IT" ]
[ -0.030273184180259004, -0.008582827635109001, -0.06782542169094001, 0.038228411227464, -0.007194886449724, 0.072528518736362, 0.09420271962881001, -0.007929099723696001, 0.072199389338493, -0.01002038270235, -0.014436120167374, 0.017456263303756003, 0.062031600624322, 0.042600169777870005, -0.025607192888855, -0.045375190675258005, 0.032680973410606, 0.008706965483725, -0.07913284748792601, 0.065290883183479, 0.014258111827075001, 0.053376693278551005, -0.005727168172597, 0.005988584365695, -0.004067530855536, -0.106391042470932, 0.04488418623805, -0.018487682566046, -0.0046981857158240005, -0.001307064667344, -0.026628393679857, 0.042721476405858, 0.013480978086590002, 0.0009753903723320001, 0.056270141154527005, 0.0069522052071980004, 0.027383660897612003, -0.018570343032479, 0.030125403776764002, 0.11871072649955701, -0.024805998429656, 0.08373166620731301, -0.060413267463445004, 0.12315304577350601, -0.041231613606214, 0.002163165016099, 0.027216250076889003, -0.034274049103260006, -0.034571904689073, -0.100882716476917, -0.023307006806135, 0.086910478770732, 0.042874298989772006, 0.029125792905688, 0.017347104847431002, -0.136187404394149, 0.011934225447475001, 0.027540706098079, -0.077213652431964, 0.015861026942729003, -0.030247040092945, 0.028750395402312, -0.066356211900711, -0.00018420713604400002, 0.11164678633213, -0.010717445984482, 0.0014869163278490001, 0.028465749695897002, -0.043630626052618006, 0.09601386636495501, -0.072641879320144, -0.041877254843711006, -0.019083030521869, 0.010462883859872001, 0.087116882205009, -0.011225176043808, 0.036219466477632, 0.067895695567131, -0.014007296413183, -0.016307534649968, -0.025045048445463004, -0.09868378937244401, -0.06344684958457901, -0.08859719336032801, 0.018056087195873, -0.010925138369202001, -0.022286705672740003, 0.017497481778264, 0.036065768450498005, -0.07033476978540401, -0.10203168541193001, -0.040523547679185, -0.003706426825374, -0.002686342457309, 0.045308884233236, -0.000449608662165, -0.07320691645145401, -0.021934866905212003, 0.08065495640039401, -0.022970896214246, 0.027511620894074003, -0.066189348697662, 0.051644995808601005, 0.010587018914520002, -0.010341003537178001, -0.002481656149029, 0.020308176055550003, 0.043490398675203004, 0.042665373533964004, 0.05756951496005001, 0.11189544945955202, -0.014630638062953002, 0.02545192092657, 0.060667309910058004, -0.019453154876828003, 0.040528316050767, 0.076030068099498, 0.035770300775766005, -0.028444096446037, -0.034050554037094005, -0.012985765002667002, -0.02163372002542, -0.047988846898078, -0.009665724821388002, -0.06541558355093001, 0.069686762988567, 0.0056689674966030005, 9.671570789222379e-34, 0.013875535689294002, -0.049359884113073, -0.022998778149485002, -0.012314265593886, 0.039873138070106, 0.039315287023782, -0.00018770583847, -0.043738588690757, -0.004683215636759001, -0.024008711799979, -0.026136100292205002, 0.09997671842575001, -0.08230393379926601, -0.003878344548866, 0.006732169538736001, 0.01926689967513, -0.075181439518928, 0.034499920904636, 0.059319462627172005, -0.140771314501762, 0.0027522367890920004, -0.039455629885196006, -0.015240864828228002, 0.025773977860808, 0.009385443292558, -0.108354955911636, 0.111606515944004, -0.043678969144821, 0.014528664760291, 0.009577733464539, -0.031040469184517003, 0.053894460201263004, 0.033507205545902, 0.0022560248617080002, -0.036706831306219004, 0.021087728440761, -0.051333840936422, 0.015340164303779002, -0.029059426859021003, -0.056756746023893, -0.023041868582367002, 0.016045017167925002, 0.005875650793313001, -0.053758170455694004, -0.07417415827512701, -0.006871507037431001, 0.034556239843368, -0.041915483772754, -0.054657880216836006, -0.07770067453384401, 0.033418521285057005, -0.039258468896150006, -0.077864930033683, 0.012922171503305001, 0.089276663959026, -0.043286558240652, 0.008031395263969001, 0.078200817108154, 0.033855624496936, 0.08669465035200101, -0.11349049210548401, -0.001545895240269, 0.045454930514097006, -0.022123211994767, 0.013993471860885, -0.0037849624641230002, -0.007223304361104001, 0.0027562216855580002, 0.03335191681981, -0.047139480710029005, 0.005572396796196, -0.016536932438611002, -0.004072830546647001, -0.0026011585723600002, 0.0035311486572020003, -0.06576789915561601, 0.027660759165883002, -0.08711012452840801, -0.05345744639635001, 0.066249892115592, -0.074046730995178, -0.083047963678836, -0.013031183741986, -0.0007274624076670001, -0.031806785613298, -0.042583692818880005, -0.058740738779306, 0.004799596499651, -0.088303588330745, 0.055747758597135, 0.027059610933065, -0.005406819749623, 0.06748069822788201, -0.009319269098341, 0.011768178083002002, -2.5169872384218982e-33, -0.122854679822921, -0.031504269689321004, 0.0019302734872320001, 0.012334823608398, -0.013386370614171, -0.08787999302148801, -0.039282005280256, 0.023372594267129003, -0.036114845424890005, -0.037873759865760005, 0.050406623631715004, 0.047497522085905006, 0.04889542236924101, 0.07467486709356301, -0.052922349423170006, -0.011809706687927001, -0.025587214156985002, 0.068491160869598, 0.051850382238626, -0.037160728126764006, -0.0035808167885980004, -0.032871071249246, 0.05505006760358801, 0.028072161599993, -0.09752112627029401, 0.038232136517763006, 0.012671477161347, 0.10621850937604901, 0.023871041834354, 0.031267452985048, 0.023116780444979, -0.110761329531669, -0.12433897703886002, 0.028444934636354002, -0.04447503760457, -0.021345999091863, 0.054762553423643, 0.09340370446443501, -0.068332321941852, 0.033234499394893, -0.032474666833877, -0.029766445979475004, 0.01735471189022, -0.06925456225872001, 0.06550613045692401, -0.046243470162153, 0.050868943333625, -0.09934108704328501, 0.024505708366632004, 0.000829946482554, 0.051832851022481, 0.045606713742017004, 0.032146025449037004, 0.10197567194700201, -0.099518068134784, 0.043603852391242, 0.024405222386121, 0.07060187309980301, 0.086368061602115, -0.03914200887084, -0.027971593663096, 0.000635078758932, 0.0005555032403200001, 0.030619580298662002, 0.002094866707921, -0.086379915475845, -0.060062654316425004, -0.033955920487642004, 0.06346806883811901, 0.026629529893398, 0.040297981351614005, -0.009515396319329001, 0.0012258536880830001, 0.10277915745973501, 0.007451351732015001, 0.05841429159045201, 0.020929038524627002, 0.0032942628022280002, 0.004063711035996001, 0.028415383771061002, -0.044384777545928004, 0.132116883993148, -0.020281724631786003, -0.018008479848504, 0.043167557567358, -0.020735936239361003, 0.041864246129989006, -0.00540368258953, -0.020564274862408003, -0.014090111479163002, 0.042566329240798007, -0.008120561949908001, 0.035874273627996, -0.029576500877738002, -0.0032942174002520003, -3.558545103032884e-8, 0.080756679177284, -0.060784339904785004, 0.006652974523603, -0.042490586638450005, 0.06484630703926, -0.051810145378112, 0.043618217110633004, 0.10788726806640601, -0.025345794856548, 0.10713487118482501, 0.034842208027839, 0.09460103511810301, -0.007575152441859001, 0.048324029892683, -0.033853448927402004, 0.010136533528566001, -0.125239923596382, -0.040597978979349005, 0.023122258484363, -0.07377249747514701, 0.046970963478088004, -0.025017214938998, 0.006688247900456, 0.075088880956172, -0.058808509260416, 0.0064309732988470005, 0.013114458881318, -0.0038411812856790004, -0.018951971083879002, -0.018652558326721, -0.042982012033462004, 0.017606485635042, 0.022581297904253003, 0.030603801831603, -0.038334127515554005, -0.048734702169895006, -0.037896085530519, -0.007794670760631001, -0.018085278570652, -0.0028499406762420004, 0.047925069928169, -0.12233568727970101, 0.110482521355152, 0.036781884729862005, 0.068901695311069, 0.025288149714469, -0.040096089243888, 0.10727526247501301, 0.011031175963580001, 0.061924569308757005, -0.000132292130729, 0.034480266273021004, 0.041277572512626, -0.050488665699958, -0.007764694280922001, -0.051330007612705, -0.07232728600502, -0.027804821729660003, 0.016974639147520003, 0.033683389425277, -0.027588918805122, 0.044503785669803, -0.026379719376564, 0.001376175903715 ]
0704.0047
Intelligent location of simultaneously active acoustic emission sources: Part I
The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emission on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis of sonic ray paths is avoided. This is a promising method for non-destructive testing of aircraft frame structures by the acoustic emission method.
[ "cs.NE", "cs.AI" ]
[ 0.005710164085030001, -0.019018331542611, 0.000290004827547, -0.039118494838476, 0.103758931159973, -0.044434722512960004, 0.046143427491188, -0.08754672110080701, -0.005357132293283, -0.028186330571770002, 0.0020514971110960002, 0.035137768834829004, -0.028707889840006003, -0.025833074003458002, -0.047364830970764, 0.031281046569347, 0.06693800538778301, 0.033040460199117, -0.0006276468629940001, -0.075204946100711, 0.034409459680318, 0.071993343532085, 0.04618871212005601, 0.056384123861789, 0.071269981563091, -0.018964523449540003, 0.005879436153918001, 0.011015224270522001, -0.034869704395532004, 0.000005041323674959131, 0.15805338323116302, -0.040637198835611, -0.046931385993957006, -0.009417547844350001, 0.002919327002018, -0.10977728664875001, -0.016563789919018003, 0.09501649439334801, 0.034784290939569, 0.030806543305516004, -0.048683226108551005, 0.034332912415266, 0.056598581373691004, -0.11152692884206701, -0.05639978870749401, 0.015597003512084002, -0.030025208368897, -0.08708683401346201, -0.015376309864223002, 0.031045518815517002, -0.055034879595041004, -0.048104412853717006, -0.025933474302291003, -0.022785320878028002, 0.025717012584209, 0.034077245742082006, 0.007913012988865, -0.048153474926948006, 0.014955826103687002, 0.007878332398831001, 0.05317289382219301, -0.001239250064827, 0.037674102932214, -0.043627940118312, 0.046934116631746, 0.030737863853573, 0.015731064602732003, -0.025912351906299, 0.012246589176356001, -0.052052348852157, -0.01590209454298, 0.060999836772680005, 0.019359109923243002, 0.022889271378517, 0.030193956568837003, 0.012905176728963, 0.07517642527818601, 0.025709493085741, 0.028815869241952, 0.026719465851783003, -0.00896293669939, -0.020636754110455003, -0.042367983609437006, -0.0022516360040750003, -0.005855705589056, 0.07253868877887701, -0.021414386108517, 0.09126704931259101, -0.08133155852556201, 0.019375687465071, 0.010769989341497001, -0.051763113588094004, -0.00698592280969, 0.02743361890316, 0.035933047533035, -0.072279140353202, 0.023186177015304003, 0.0075641246512530005, 0.074542239308357, 0.017885848879814002, 0.002444863552227, -0.077162340283393, -0.035391334444284, 0.017605973407626003, -0.057947706431150006, -0.00040391698712400004, -0.033024508506059, -0.005637726746499001, 0.05920358374714801, -0.039389230310916006, -0.013707614503800002, 0.002395036164671, -0.061799727380275005, 0.015338081866502002, -0.029388483613729, 0.010272341780364002, -0.062411990016698005, 0.004743967670947, -0.03689306974411, -0.008599727414548, 0.013867727480828, -0.033662013709545004, 0.070308282971382, 0.098592221736907, 0.057051986455917005, -0.025903549045324003, 0.000509063072968, 2.332550154396966e-33, -0.044732302427291, -0.00129821000155, -0.105236954987049, -0.016043642535805, 0.027054322883486002, 0.005878414027392, -0.014748439192771001, 0.14638409018516502, 0.028191488236188004, 0.054366514086723, -0.030152402818202, 0.029388401657342002, 0.009324972517788, -0.11525630950927701, 0.060165476053953004, 0.033156141638755, 0.051159225404262, 0.008736729621887, -0.143351405858993, -0.030356343835592003, -0.007723058573901001, -0.10196276009082701, 0.012440692633390002, 0.009907717816531, 0.09219960868358601, 0.028271472081542, 0.0055013895034790004, 0.013800739310681001, -0.14657138288021002, 0.038314223289489004, -0.060949884355068006, -0.013264187611639002, 0.059055551886558005, 0.065252877771854, -0.002914693672209, -0.073868162930011, -0.015363520942628002, 0.08298742026090601, -0.027784515172243004, -0.02746970206499, -0.000158731418196, 0.035830795764923005, 0.015073536895215001, 0.020535102114081, 0.027330141514539, -0.009720614179968001, -0.131106704473495, 0.09195344895124401, 0.07642583549022601, 0.017351491376757, -0.032096896320581006, -0.007835851982235001, -0.013527992181479001, 0.011999016627669001, 0.007177795749157, 0.072227321565151, -0.022823331877589, -0.076720781624317, 0.075637109577655, -0.047387678176164, -0.050662506371736006, 0.075475737452507, 0.061602056026458005, -0.024558965116739002, 0.031071582809090004, 0.008433510549366, 0.021307695657014, -0.06564760953187901, 0.10253977775573701, -0.005891967099159, 0.074087969958782, -0.051463097333908005, 0.061599653214216, 0.039433259516954006, -0.045938022434711005, -0.00510352756828, -0.034519631415605004, 0.051813889294862005, 0.033060319721698005, -0.021983314305543, -0.004500067327171, 0.054633069783449006, 0.033677045255899006, -0.063092194497585, -0.025788012892007002, 0.020255206152796003, -0.018474986776709, -0.072934553027153, -0.01754680275917, -0.022533498704433, -0.066787652671337, -0.035003587603569, -0.08269041031599, -0.057745035737752005, -0.0037351157516240002, -1.77603825161007e-33, 0.05075507983565301, 0.052002970129251, -0.009209739975631001, -0.013774624094367001, 0.0023403086233880002, 0.058550540357828, 0.0016016662120810002, -0.00588795915246, -0.060453843325376004, 0.093822784721851, -0.071102701127529, 0.019634179770946003, -0.046732708811759005, 0.0035135108046230002, 0.022043529897928002, 0.030132129788398004, -0.0021348306909200004, -0.07239614427089601, -0.010753740556538001, -0.0026871347799890003, 0.014802043326199001, -0.012108538299798001, 0.010937935672700001, -0.086784563958644, -0.08713057637214601, -0.029768586158752, -0.043893150985240006, 0.010041443631052001, 0.008843963965773001, -0.029466480016708003, -0.12025795876979802, 0.015807962045073003, 0.020662887021899, -0.048809714615345, 0.02123250067234, 0.036156140267848004, 0.10938505828380501, 0.012139855884015002, -0.026105836033821002, -0.06610619276762, -0.008566609583795001, 0.127471894025802, -0.050605706870555, -0.10809847712516701, -0.067175440490245, 0.068752296268939, 0.0029990624170750002, 0.07958930730819701, 0.032825618982315, 0.026784725487232004, 0.04852660372853201, -0.026245769113302002, 0.070752933621406, 0.026612492278218002, 0.034799508750438, 0.056892260909080006, 0.046486649662256005, 0.008406018838286, 0.007740593515336001, 0.024037940427660002, -0.010384374298155, -0.042543407529592, -0.013335063122212, 0.045510854572057, -0.000996484654024, 0.07428540289402001, 0.002131327753886, 0.113925538957118, -0.020187551155686, -0.012093885801732, 0.011567813344299, 0.014888808131217, 0.06507637351751301, 0.011156418360769001, -0.08256018161773601, 0.016108181327581, -0.09176092594861901, -0.095739483833312, -0.018229125067591, -0.024505581706762, -0.026548804715275, -0.081306748092174, -0.057313159108161, 0.08992807567119501, 0.045784574002027005, 0.030903307721018004, 0.011908811517059002, -0.022345803678035, 0.032916169613599, -0.01806734316051, 0.037289671599864, 0.11903295665979301, 0.013289500959217, -0.10677316784858701, 0.027163429185748003, -3.954290761498669e-8, -0.07317885011434501, -0.021454365924, -0.028305614367127002, 0.002145714126527, -0.009165787138044001, -0.045434828847646005, 0.08933757245540601, 0.00924976915121, 0.044503696262836005, -0.104709893465042, -0.010949373245239001, -0.082299679517745, -0.00576559593901, 0.07328706234693501, -0.060193259268999, -0.041377302259206, -0.002764651784673, -0.014813088811933, -0.017588613554835, -0.025566801428794, 0.085632346570491, 0.037066426128149005, 0.06999698281288101, 0.024416783824563002, 0.044950064271688, 0.013619980774819001, -0.011938982643187001, 0.018786281347274003, 0.041701517999172, 0.015398997813463001, -0.085593700408935, 0.015635887160897, -0.024715380743145002, 0.044776648283004004, 0.038882657885551, 0.05083326622843701, -0.034508414566516, -0.034925419837236, -0.07450111210346201, -0.040431018918752004, -0.036004807800054, -0.008625462651252, -0.023344820365309, 0.044025454670190006, 0.09527601301670001, -0.028995731845498002, 0.09584857523441301, -0.17087015509605402, -0.025611175224184, -0.038972415030002004, -0.006580526940524, 0.029665453359484003, -0.008098311722278, -0.010399128310382, 0.020546201616525, 0.020260302349925003, 0.066809117794036, -0.077139012515544, 0.057021297514438005, 0.037550300359725, 0.024326141923666, 0.10610926896333601, -0.053861472755670006, -0.02666619606316 ]
0704.0048
Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets
We report on the analysis of selected single source data sets from the first round of the Mock LISA Data Challenges (MLDC) for white dwarf binaries. We implemented an end-to-end pipeline consisting of a grid-based coherent pre-processing unit for signal detection, and an automatic Markov Chain Monte Carlo post-processing unit for signal evaluation. We demonstrate that signal detection with our coherent approach is secure and accurate, and is increased in accuracy and supplemented with additional information on the signal parameters by our Markov Chain Monte Carlo approach. We also demonstrate that the Markov Chain Monte Carlo routine is additionally able to determine accurately the noise level in the frequency window of interest.
[ "gr-qc", "astro-ph" ]
[ -0.052146770060062006, -0.000924984400626, 0.016023421660065002, 0.030955867841839003, 0.033761784434318, -0.10218540579080501, -0.096191972494125, -0.07967798411846101, -0.08412940800189901, -0.009104671888053001, -0.083716921508312, -0.07618795335292801, 0.031984467059373, -0.13224372267723, 0.019768862053751002, -0.014882002957165002, 0.016089851036667, -0.011454022489488002, 0.049620654433965, -0.025847574695944002, -0.022715361788868002, 0.054379411041736006, -0.030769038945436002, 0.032043877989053005, 0.084606751799583, 0.013039863668382001, 0.013373455964028001, -0.024805141612887, -0.042007867246866004, 0.011008441448211, 0.009611669927835001, 0.07018393278121901, 0.07008064538240401, -0.018103385344147002, 0.058966744691133006, 0.033513560891151005, 0.10404204577207501, -0.033049996942281, -0.052449185401201005, 0.034416876733303, -0.022939834743738, -0.030556872487068003, 0.033568646758794, -0.018237434327602, -0.052484024316072006, 0.015181937254965002, 0.030043574050068002, -0.086826883256435, 0.021066218614578, -0.054432541131973, -0.032454568892717, 0.017674833536148002, 0.011116707697510001, 0.081952109932899, 0.017461402341723, -0.022152153775095003, 0.027563227340579, -0.079690374433994, 0.063617944717407, 0.035821162164211, -0.035613052546978004, -0.060190983116626004, -0.064363695681095, -0.010114330798387, 0.013505441136658, 0.011726202443242, 0.006481620017439, -0.008051727898418001, 0.072191730141639, -0.08272098749876, -0.035046599805355, 0.074024736881256, 0.011016909964382001, -0.011633718386292001, -0.011795337311923, 0.058995779603719004, -0.012695457786321002, -0.06085308268666201, 0.06583524495363201, -0.056929703801870006, -0.030771225690841, 0.010655113495886001, 0.047950148582458, -0.050093822181224004, 0.0016787813510740002, 0.053043436259031004, -0.001315887086093, 0.055812448263168, 0.026480680331587, -0.00016381565365, -0.025460876524448003, -0.022494953125715002, -0.027592161670327003, 0.05632226914167401, -0.037031166255474, -0.015730045735836, 0.11019112169742501, -0.07807103544473601, 0.06452462822198801, 0.11377546191215501, 0.023219477385282003, -0.05510738864541, 0.07990480959415401, 0.0037766962777820005, 0.007269517984241001, -0.042536046355962004, 0.125864952802658, 0.004919022787362001, -0.024937324225902002, -0.036163602024316004, 0.12727104127407002, 0.002894663717597, 0.026625528931617, -0.026703847572207003, 0.007305730134248001, 0.025598853826522, -0.028585903346538002, 0.021818691864609, -0.07104318588972, -0.033637821674346, -0.06814932078123001, -0.026527062058448, 0.039490435272455, 0.08214133232831901, 0.041488640010356, -0.018900061026215, -0.059305310249328, 4.3280287730635784e-34, 0.011764387600123001, 0.010924668982625, 0.023550674319267002, -0.017469950020313003, -0.015776451677083, -0.017046492546796, -0.0125238224864, 0.029538763687014004, -0.020624838769435, 0.036891140043735005, -0.049289770424366004, 0.010426196269690002, -0.053507119417190004, 0.018729437142610002, 0.005103485658764, 0.015601037070155001, -0.052958797663450005, 0.067138589918613, -0.061798054724931, 0.041659947484731, 0.05384185537695801, -0.080675266683101, -0.041491162031888004, -0.066851541399955, 0.053140796720981, 0.027118252590298, -0.004442682024091001, -0.09224370121955801, -0.039257813245058004, 0.046820074319839006, -0.031003566458821002, -0.0011143714655190002, 0.07851631194353101, 0.052288632839918005, -0.06551369279623001, -0.007541168481111001, -0.069400697946548, -0.007653053849935001, -0.14024938642978602, -0.047882527112960004, 0.045661780983209006, -0.007901481352746001, 0.005878255702555, -0.037506405264139, -0.04695251211524001, -0.036897595971822, 0.040691226720809, -0.061805468052625004, 0.015080679208040002, 0.029299603775143002, 0.065362975001335, 0.043969549238681, -0.07770336419343901, 0.010410420596599001, -0.05002420395612701, 0.014627950266003002, 0.06516908109188001, -0.030901933088898003, 0.037254761904478004, 0.17545066773891402, -0.024475507438182, 0.025306619703769, -0.021967636421322, -0.010966817848384, 0.013099424540996002, 0.05159743130207001, -0.029766818508505002, 0.045228350907564004, -0.037895597517490005, 0.099422991275787, -0.037049826234579, -0.012326198630034, 0.024932058528065, -0.074060462415218, 0.07441616058349601, 0.039774823933839, -0.015060661360621001, 0.062527760863304, -0.048407692462205006, 0.025712292641401003, 0.041682459414005, -0.06814312189817401, -0.024607112631201, -0.031167764216661002, -0.041317667812108, 0.007152387406677001, -0.036285832524299004, -0.038578014820814, -0.13270325958728701, -0.09197861701250001, -0.0071504283696410004, -0.0018752627074710001, 0.042323935776948006, 0.02543506026268, -0.042089641094207, -1.9578771257777012e-33, 0.009851234965026, 0.06418341398239101, 0.07053935527801501, 0.029327599331736003, -0.03726004064083, 0.052824452519416004, -0.019396560266613003, -0.020953007042407, 0.013037194497883, -0.016960503533482, -0.011945744976401001, -0.051490481942892005, 0.021218074485659003, 0.0064273751340800005, 0.014128885231912, -0.07217449694871901, -0.041429679840803, -0.022327609360218003, 0.026987982913851002, 0.086318835616111, 0.051491279155015, 0.021833997219800002, -0.0016901619965210002, -0.11981978267431201, -0.010335262864828, -0.020782029256224, 0.017047485336661002, -0.014553635381162002, 0.014039172790944, -0.056213777512311006, -0.070868946611881, 0.034270584583282006, -0.009697224013507, 0.012028908357024, 0.047183509916067005, 0.037504695355892, -0.004491104278713001, 0.026987258344888004, -0.004725000355392001, 0.039427164942026006, 0.020836953073740002, 0.067281581461429, -0.041638072580099, -0.038251247256994005, -0.011017038486897002, -0.0054157772101460005, 0.026085654273629, 0.11582339555025101, 0.069839045405387, -0.074864707887172, 0.034174375236034005, 0.0035444649402050004, -0.023296905681490003, 0.029399972409009004, -0.012567843310534002, 0.040124863386154, -0.080091521143913, 0.088713116943836, 0.072271093726158, -0.007683681324124001, -0.08921369165182101, -0.06817431002855301, -0.020409949123859003, 0.004964825231581, 0.032210778445005, -0.02536485530436, -0.0015453192172570002, -0.043854191899299004, 0.051077302545309004, 0.075972825288772, 0.05051039904356001, 0.0013157970970490002, 0.043360631912946, 0.027216801419854, 0.027914486825466003, -0.007280985359102001, -0.053987897932529005, -0.15401557087898202, -0.036987818777561, 0.057625897228717006, 0.015477312728762, -0.022645434364676, 0.068948850035667, 0.09481788426637601, 0.034182906150817004, 0.11366563290357501, 0.072386614978313, -0.09855239093303601, -0.028041720390319002, -0.024748617783188, -0.046991974115371, 0.09614990651607501, 0.020778700709342002, 0.054498799145221, 0.0022856087889520003, -3.7834059440911e-8, 0.028963195160031003, 0.039265755563974006, -0.030159641057252003, 0.007590692956000001, 0.08136003464460301, 0.015870399773120002, -0.033380035310983006, 0.0005446706782090001, -0.015220568515360001, -0.029638560488820003, 0.113375522196292, -0.05702523142099301, -0.050011795014142005, -0.078127421438694, 0.011873532086610001, -0.008372687734663, -0.034341052174568, -0.046134188771247, -0.00212258961983, 0.009197609499096001, -0.027056692168116, 0.006353043485432, 0.060763239860534, 0.022462381049990002, -0.02096763625741, 0.032888516783714, 0.091238141059875, 0.11862143129110302, 0.051338534802198, -0.027009885758161004, -0.020102895796298002, -0.010928163304924, -0.082259692251682, 0.007041908334940001, 0.035331636667251004, 0.00848582200706, -0.025194216519594, 0.08479762822389601, 0.053962796926498004, 0.047755278646945, -0.067741364240646, 0.024847064167261002, -0.061407223343849, -0.027390088886022002, -0.08340160548686901, 0.135666400194168, 0.015286801382899002, -0.035512100905179006, 0.007159634958952001, 0.034201581031084005, 0.07803706824779501, -0.005134309642016, -0.00763581926003, -0.029199630022048003, -0.044655658304691, 0.07215715199708901, -0.025704119354486, -0.07292553782463, -0.080381587147712, 0.09781794995069501, 0.032998621463775, -0.019877662882208002, -0.039777394384145, -0.052074167877435004 ]
0704.0049
An algorithm for the classification of smooth Fano polytopes
We present an algorithm that produces the classification list of smooth Fano d-polytopes for any given d. The input of the algorithm is a single number, namely the positive integer d. The algorithm has been used to classify smooth Fano d-polytopes for d<=7. There are 7622 isomorphism classes of smooth Fano 6-polytopes and 72256 isomorphism classes of smooth Fano 7-polytopes.
[ "math.CO" ]
[ 0.006842727307230001, -0.0417534224689, 0.027074379846453, -0.0674844160676, -0.009347024373710001, -0.011399705894291, 0.019062286242842, -0.044980388134717005, -0.06355927139520601, 0.020982276648283, -0.048053078353405006, -0.029773700982332, -0.06671773642301501, -0.05062209069728801, -0.051181558519601, -0.026509100571274, 0.035137180238962, 0.075597509741783, -0.008237674832344001, 0.041726198047399, 0.025215733796358, -0.014126948080956, -0.033375013619661005, 0.03413026034832, 0.011249329894781002, -0.044454496353864004, 0.030813582241535003, 0.085634000599384, 0.069105267524719, -0.040867231786251006, -0.072730891406536, 0.061585608869791, -0.021564982831478, 0.029216812923550002, 0.033839188516139006, -0.043637461960315004, -0.003648368874564, 0.081281498074531, -0.054100804030895004, 0.071526125073432, 0.030036929994821004, 0.028435671702027, 0.11568918824195801, -0.037849258631467, 0.045879442244768004, 0.074378155171871, -0.149624973535537, 0.001075666397809, 0.009675147011876, -0.066642060875892, 0.014122759923338002, -0.07904513180255801, -0.085268095135688, 0.013190720230340002, -0.078317418694496, -0.005801148246973, 0.052188433706760004, -0.054889760911464004, 0.065604366362094, -0.011355091817677, 0.05938132479786801, -0.042622581124305, 0.041145984083414, -0.023150553926825003, -0.021205311641097003, 0.0025649708695700004, -0.043100740760564006, 0.041287489235401, 0.025482425466179, 0.000547218718566, -0.01223068870604, 0.049293804913759, -0.040453881025314005, -0.014399319887161002, -0.048872288316488, -0.008859260007739001, -0.0040413825772700005, -0.033025193959474, -0.032981004565954, -0.08626589179039, -0.0036652903072530003, 0.005684756673872001, 0.013853295706212002, 0.023035552352666, -0.034206107258796005, 0.055281419306993006, -0.036129225045442005, 0.034158580005168006, -0.056183245033025006, 0.02712951041758, -0.0032291850075120004, 0.038389582186937006, 0.0037261922843750002, -0.09808741509914301, -0.08688119798898601, 0.022977273911237002, 0.038967370986938005, 0.044881854206323006, 0.08581560850143401, 0.049279645085334, -0.09605550020933101, -0.039853017777204, -0.043448384851217006, -0.041170544922351004, 0.038318432867527, 0.030416136607527, 0.016784222796559, -0.052111208438873007, 0.043613087385892, -0.131890401244163, -0.10715652257204, -0.065105699002742, -0.040306564420461, -0.031109880656003, -0.041461877524852, -0.07286671549081801, -0.0047877081669860004, 0.004926526919007, 0.012562656775116001, 0.007134932558983001, -0.004923643544316, -0.008102651685476001, 0.06394167244434301, 0.040130499750375005, 0.028841603547334, -0.070542074739933, -0.07435005903244, 2.5036439081721264e-33, 0.016985138878226003, 0.015639459714293, 0.05056432262063, -0.000584488501772, -0.015194883570075, -0.009990290738642, 0.050705354660749005, -0.072367958724498, -0.017951879650354, 0.04681189730763401, -0.096847794950008, -0.043118953704833006, -0.022248957306146, 0.059660680592060006, 0.063158765435218, 0.015248013660311002, 0.054183140397071006, -0.032802153378725, -0.11194920539855902, -0.08048845827579401, 0.056080188602209, 0.06851350516080801, -0.006860169582068001, 0.015399440191686, -0.004987614694982, 0.030647817999124003, -0.05596803501248301, 0.0036492773797360003, -0.019824095070362, 0.013550020754337, -0.035191990435123, 0.022512018680572003, 0.031523138284683005, 0.11248821020126301, 0.041283518075942, -0.000337179691996, -0.026937685906887002, -0.014022418297827001, 0.045715808868408, -0.026155522093176002, 0.037586800754070004, -0.039821173995733004, -0.03817019984126, 0.047494687139987, -0.039022505283355005, 0.061769783496856, 0.006049571558833001, 0.005054974462836001, 0.055113520473241, 0.017605755478143, -0.023168737068772, 0.102090641856193, -0.053294494748115005, -0.020010279491543003, -0.08684165775775901, -0.07417999207973401, 0.019103404134511, 0.010403396561741001, 0.04897170141339301, 0.11383540183305701, -0.009135101921856001, 0.057108674198389005, -0.042516753077507005, -0.08394525945186601, -0.059583127498626, 0.00009115556167671458, 0.063640132546424, -0.006396578624844, 0.014392822980880002, -0.022515647113323, -0.013823115266859, 0.0028033463750030004, -0.031958755105733004, -0.05404158681631, 0.03750068321824, 0.0026697430294000003, -0.06842537224292701, -0.098683342337608, -0.087400265038013, -0.051480557769536, -0.044702939689159005, 0.030549436807632002, -0.051041688770055, -0.066246323287487, 0.004470871761441, -0.025583520531654, 0.025696918368339, 0.048921164125204, 0.022981854155659003, 0.013265085406601, -0.10702800005674301, 0.022579932585358002, 0.079727195203304, 0.040672410279512, 0.021629009395837003, -4.59825802658633e-33, -0.059490274637937005, 0.034203417599201, -0.017419386655092, 0.055429350584745005, -0.037033762782812, 0.06501606851816101, -0.090876035392284, -0.0009683122043490001, -0.018085446208715, -0.000746531877666, 0.05580034106969801, 0.044454816728830004, -0.00716429343447, -0.06711409986019101, -0.031271327286958, 0.013012231327593, -0.09847341477870901, -0.040971606969833006, -0.046957932412624005, 0.016406593844294, 0.005176275037229, -0.024384919553995, -0.059785064309835004, 0.008005212992429001, -0.014065341092646, 0.020858582109212, -0.011950899846851002, 0.024358067661523, 0.081238061189651, 0.11303222179412802, -0.010197706520557001, -0.031104750931262002, -0.027468709275126003, 0.08885982632637, -0.021570187062025, -0.059003755450248004, -0.031462684273719004, 0.030642854049801, 0.009041409008204, 0.059920657426118004, -0.02617834880948, 0.017051687464118, 0.045611876994371005, 0.05216044187545701, 0.0012835229281330002, 0.000394414237234, -0.010554190725088002, 0.030056608840823004, 0.023407081142067, 0.0037032600957900004, 0.033568572252988, -0.035865109413862, 0.094823241233825, 0.11055217683315201, 0.06508146226406, 0.106266945600509, -0.070200018584728, 0.06820754706859501, 0.00103484489955, 0.024267993867397003, 0.041776075959205, -0.088150613009929, -0.024921366944909002, 0.068482428789138, 0.03058424219489, -0.006285863462835, 0.030158361420035, -0.026008691638708004, -0.12972764670848802, 0.035423573106527, 0.07607555389404201, 0.033849354833364, -0.037187039852142, 0.027659418061375, -0.052108164876699004, -0.112143032252788, 0.031520191580057005, 0.06634921580553, 0.059951659291982005, 0.050526775419712004, -0.074428163468837, 0.036322735249996005, 0.045601069927215, 0.027471553534269003, 0.026257265359163003, -0.083897955715656, 0.04592533409595401, 0.003209131769835, 0.09082217514514901, -0.015713384374976002, 0.082306616008281, 0.012073781341314, 0.09556654840707701, -0.0006131178233770001, -0.0064861732535060005, -3.702003681382848e-8, 0.032338380813598, -0.173664897680282, -0.0016834589187050002, -0.050940390676259, 0.057204987853765, -0.044681876897811, -0.007710578851401001, 0.06123993173241601, -0.039083950221538, 0.018456416204571002, 0.09559516608715, -0.014104289934039001, -0.035536050796508005, -0.006479322444647001, 0.082219883799552, 0.025316635146737, 0.007247424218803001, 0.103174619376659, 0.029889484867453003, 0.050506934523582, -0.028573237359523003, 0.0007925071404310001, 0.014859563671052001, -0.024112587794661, -0.027572257444262, -0.015428535640239001, -0.021907687187194002, -0.044900011271238, 0.011283183470368, -0.001313476241193, 0.024044960737228, 0.0014712731353930001, -0.011963156051933, -0.08636628836393301, 0.042359042912721, 0.139444604516029, -0.056838557124137004, -0.037321314215660005, -0.034850444644689005, -0.03166177496314, 0.027937464416027003, -0.024310132488608003, 0.004629547242075, -0.038557261228561006, 0.062553450465202, 0.000770091894082, 0.080335110425949, -0.105388559401035, -0.034851517528295003, 0.07759701460599801, -0.039038512855768, 0.029040774330496004, 0.016439050436019002, -0.04769898205995501, -0.090149834752082, 0.059526704251766004, -0.048895392566919, -0.09314557164907401, 0.039765305817127006, -0.035886473953723005, 0.023541906848549003, 0.019152831286191, 0.023034708574414003, 0.017152290791273003 ]
0704.0050
Intelligent location of simultaneously active acoustic emission sources: Part II
Part I describes an intelligent acoustic emission locator, while Part II discusses blind source separation, time delay estimation and location of two continuous acoustic emission sources. Acoustic emission (AE) analysis is used for characterization and location of developing defects in materials. AE sources often generate a mixture of various statistically independent signals. A difficult problem of AE analysis is separation and characterization of signal components when the signals from various sources and the mode of mixing are unknown. Recently, blind source separation (BSS) by independent component analysis (ICA) has been used to solve these problems. The purpose of this paper is to demonstrate the applicability of ICA to locate two independent simultaneously active acoustic emission sources on an aluminum band specimen. The method is promising for non-destructive testing of aircraft frame structures by acoustic emission analysis.
[ "cs.NE", "cs.AI" ]
[ -0.026261948049068003, -0.008479450829327, 0.01855275593698, 0.036582395434379, 0.09756951034069, -0.033727560192346004, 0.045118384063243006, -0.133322075009346, 0.036880034953355005, -0.044659849256277, -0.005056994501501, -0.017138687893748002, 0.024671237915754003, -0.090825401246547, 0.012934119440615, 0.022715786471962002, 0.011410903185606001, 0.022675300016999002, -0.024957980960607, -0.04379724711179701, 0.038236804306507, 0.058987785130739004, -0.0019606102723620004, 0.023073732852935003, 0.09491295367479301, 0.005114211700856, 0.021345734596252, -0.0007027087849560001, -0.002057381905615, 0.024206027388572002, 0.12547527253627702, -0.023904165253043, -0.007439900189638001, -0.033838175237178005, 0.010005483403801, -0.10245247930288301, 0.0019478197209530001, 0.121292755007743, -0.018119651824235, 0.00204541045241, -0.024845514446496002, 0.053606022149324, 0.05138760805130001, -0.11534775793552302, -0.12204269319772701, -0.019891794770956, -0.052696872502565, -0.09548859298229201, -0.007464708760380001, -0.004289770964533, -0.021957956254482002, -0.037706695497035, -0.011265880428254, -0.0032726060599080004, 0.024187121540308002, -0.004540692083537, 0.011712806299328, -0.045634478330612, 0.0040887766517690004, 0.003482785308733, 0.043335810303688, 0.006546129006892, 0.028275338932871003, -0.0509181804955, 0.08363042771816201, 0.088057041168212, 0.048942007124423, -0.012449041008949, 0.011425456963479, -0.037912972271442004, -0.06839215010404501, 0.025302480906248002, 0.017411923035979, -0.009485229849815001, 0.065098084509372, 0.08020626008510501, 0.060455903410911005, 0.0033670244738450003, 0.004122497048228001, -0.025019878521561, -0.0024895560927680003, -0.034572400152683, -0.032934814691543, 0.014915389008820001, 0.022048868238925, 0.043434008955955006, -0.006470518186688001, 0.000550067459698, -0.073198124766349, 0.015007921494543, -0.050349213182926005, 0.0023657751735290003, 0.00418368820101, 0.010885498486459, 0.09059911966323801, -0.046519447118043004, 0.013243424706161001, 0.032646570354700005, 0.10487513989210101, 0.039952442049980004, 0.022429333999753002, -0.064885094761848, -0.053446974605321, 0.045713275671005006, -0.082073912024497, 0.019416347146034, -0.045854467898607004, -0.035071350634098004, 0.025839697569608, -0.0058971950784320005, 0.039980709552764004, -0.028676504269242002, -0.029016254469752003, 0.017614597454667, -0.0045783980749540005, -0.0023939926177260003, -0.028579788282513, 0.011335139162838001, -0.0036209085956210004, -0.05055720731616, -0.0072658839635550004, -0.023777768015861, 0.102324292063713, 0.06111837178468701, 0.09763701260089801, -0.014464159496128, 0.020437311381101, 7.212905427510039e-34, -0.052572894841432, -0.015374139882624002, -0.08861070126295001, -0.011296330019831002, 0.033576127141714006, 0.004284480120986, -0.033667970448732, 0.09038803726434701, 0.034444354474544005, 0.077684924006462, 0.012181323952972, 0.05398104339838, -0.006975802127271001, -0.11336551606655101, 0.031007690355181004, 0.031230887398123002, 0.083853513002395, 0.00929709803313, -0.088763363659381, -0.061423864215612, -0.03963678702712, -0.09575689584016801, 0.025112712755799002, 0.031720597296953, 0.074330694973468, -0.041406951844692, 0.023076951503753003, -0.058664478361606, -0.12266513705253601, 0.010630395263433, -0.03276115655899, 0.033379796892404, 0.029668895527720004, 0.039910238236188, 0.0062991543672970005, -0.055383015424013006, -0.047333423048257, 0.094213970005512, -0.031328205019235, -0.047502696514129, -0.027990251779556004, 0.030573606491088003, 0.035260356962680005, -0.034087255597114, -0.00045910259359500005, -0.013719850219786, -0.164104059338569, 0.10935296118259401, 0.132210358977317, -0.016795650124549002, -0.016265342012047, 0.015435419045388001, 0.037871580570936, 0.004834845662117, 0.003137133084237, 0.07965675741434, -0.018539065495133, -0.034268856048583006, 0.07385987043380701, -0.03125911951065, -0.064092397689819, 0.07920155674219101, 0.021545602008700003, 0.004611151758581, 0.017896460369229, 0.058545645326375004, -0.0019910933915520002, -0.047967638820409005, 0.025611137971282002, -0.038549277931451006, 0.050752215087413004, -0.048600301146507006, 0.048562448471784, 0.05646689608693101, -0.050521325320005, -0.020151177421212002, -0.031920094043016004, 0.045469403266906, 0.048496071249246, 0.001481794053688, -0.025476465001702003, 0.030807605013251003, 0.043934684246778, -0.074898302555084, -0.065906181931495, 0.033813312649726, -0.027593690901994, -0.044726785272359, -0.012234187684953001, -0.059924770146608006, -0.069290898740291, 0.015682892873883, -0.103350758552551, -0.027521653100848004, 0.017745327204465002, -1.411563187497165e-33, 0.050240006297826004, 0.06762426346540401, 0.06572904437780301, -0.077246509492397, 0.04275058209896, 0.019977716729044002, -0.012787168845534, 0.000164003606187, 0.015785692259669002, 0.124766834080219, 0.038169354200363, 0.024958765134215, -0.059835650026798005, -0.035199891775846, -0.013940120115876002, 0.007248533889651, -0.008353739976882001, -0.021470556035637002, 0.031213754788041004, 0.004346198868006, 0.031824167817831005, -0.044653855264186006, 0.05109104886651, -0.07607690989971101, -0.053257822990417, -0.051261834800243, -0.034981824457645, 0.023296894505620003, -0.042111959308385, -0.029812177643179002, -0.11734093725681301, 0.08201647549867601, -0.0019422640325500002, -0.067831553518772, 0.00021571134857300002, 0.000159932271344, 0.036091364920139, 0.017704874277114, -0.012767091393470001, -0.071213006973266, -0.022544050589203002, 0.139223888516426, -0.038040667772293, -0.082778088748455, -0.038985919207334005, 0.053594496101140005, 0.0025537682231510004, 0.100229039788246, -0.013286810368299, -0.014065976254642001, 0.061234079301357006, 0.014400985091924001, 0.040014784783124, 0.017991131171584, 0.047483205795288, 0.086600184440612, 0.069457978010177, 0.021413404494524002, 0.025419315323233, 0.028033502399921, 0.028473012149333003, 0.010211252607405, -0.016529100015759, -0.012255042791366001, 0.02148400992155, 0.062730886042118, 0.022954747080802, 0.104435175657272, 0.00024465797469, 0.004050414077937, 0.054737377911806, 0.058946669101715005, 0.011888322420418, -0.013245519250631001, -0.050745479762554, 0.006512148305773, -0.099341623485088, -0.10192352533340401, -0.016756549477577, -0.022794667631387003, 0.031457904726266, -0.038546614348888, -0.018820995464920002, 0.046241056174039, 0.019575351849198, 0.060813140124082, 0.004256725311279, -0.018281249329447, 0.047553446143865, -0.014105436392128001, -0.009549418464303001, 0.09138467162847501, 0.044170815497636004, -0.043293133378028, -0.013640997931361, -3.473957832511587e-8, -0.042154341936111006, 0.012513355351984001, -0.079623810946941, -0.035453520715236005, -0.030929835513234003, -0.059460163116455, 0.026358921080827002, -0.032851662486791, 0.037754070013761, -0.112020932137966, -0.038157057017087, -0.104707770049571, -0.052747000008821, 0.07929068058729101, -0.06712457537651001, -0.059543188661336004, -0.06735277175903301, 0.024113954976201002, -0.053573578596115, -0.094783999025821, 0.068228662014007, 0.013507829979062, 0.12014593183994202, 0.038303788751363005, 0.05095512792468, 0.015317663550376, 0.033789902925491, 0.009885003790259, 0.012576433829963, 0.006348823662847, -0.094615146517753, 0.017272481694817002, -0.06658387929201101, 0.039434138685464006, 0.053563412278890006, 0.054060909897089005, -0.047979056835174005, -0.038445688784122, -0.103722631931304, -0.028603183105587, -0.086656242609024, -0.020991785451769003, -0.006975650321692, 0.031588245183229, 0.09766508638858701, -0.013533193618059, 0.08235554397106101, -0.093866795301437, -0.021420564502477, -0.0038461468648160004, 0.014032484032213001, -0.021635068580508003, 0.034166682511568, -0.029794963076710004, -0.019011933356523, -0.003152306424453, 0.043314464390277, -0.018904877826571003, 0.083230040967464, 0.0032295801211140005, 0.032948374748229, 0.032440558075904, -0.027118977159261003, -0.05900866538286201 ]
0704.0051
Visualizing Teleportation
A novel way of picturing the processing of quantum information is described, allowing a direct visualization of teleportation of quantum states and providing a simple and intuitive understanding of this fascinating phenomenon. The discussion is aimed at providing physicists a method of explaining teleportation to non-scientists. The basic ideas of quantum physics are first explained in lay terms, after which these ideas are used with a graphical description, out of which teleportation arises naturally.
[ "physics.ed-ph", "quant-ph" ]
[ 0.0022981807123860004, 0.023518901318311, -0.019616881385445, 0.05916718766093201, -0.035899024456739, -0.014545198529958002, 0.055143799632787004, 0.001217258395627, 0.06386407464742601, -0.009467807598412, 0.015881162136793, -0.014430278912186002, -0.06794198602437901, 0.032887816429138, -0.07655981183052, -0.013087680563330002, 0.035001900047063, -0.09396378695964801, -0.085879825055599, -0.056374859064817005, 0.015291215851902, -0.053788591176271, -0.02169425599277, 0.007400946225970001, 0.07993773370981201, 0.00312828598544, 0.047922179102897006, 0.012772654183208, 0.012599729001522002, 0.0038097214419390004, -0.0021177472081030002, 0.07077004015445701, -0.084113292396068, -0.007590399123728, -0.071536272764205, 0.015745868906378, 0.041864037513732, -0.006476007401943, 0.041673872619867006, -0.033445287495851, 0.039764758199453, 0.043770041316747006, -0.042182985693216005, 0.052996393293142006, -0.013367227278649, 0.0061776149086650006, 0.034970052540302006, -0.006585487630218, -0.028162112459540003, -0.10011513531208001, -0.13148182630538902, 0.020496726036071, -0.015564771369099001, 0.014399891719222001, 0.020206885412335, 0.061451494693756006, 0.073466919362545, -0.063467875123023, -0.054652962833642, -0.05365201085805801, -0.035064041614532006, 0.051937699317932004, 0.0024049174971870002, 0.007324751932173, 0.104823999106884, -0.012041673995554001, 0.0061188447289160005, 0.047145653516054, 0.049842372536659005, -0.007072424516081001, -0.022247850894927, 0.030691109597682002, -0.06331578642129801, -0.010256784036755002, 0.040870111435651, -0.013994744047522002, -0.050707984715700004, 0.052960567176342004, -0.0006405476015060001, 0.002760640345513, 0.006025972310453, -0.059839308261871005, -0.060630541294813003, 0.066032670438289, -0.013905321247875002, 0.060964621603488006, -0.061559878289699006, -0.037376910448074, -0.042341444641351006, -0.046188622713088004, -0.05085823684930801, -0.10472662001848201, -0.019586229696869, -0.054629482328891005, 0.026335161179304, -0.00697973370552, 0.032519709318876, -0.074131943285465, 0.052660956978797004, -0.026517661288380002, 0.07356206327676701, -0.032272536307573, 0.069791495800018, 0.033249508589506004, -0.011186880059540001, -0.019168395549058, 0.021675169467926, -0.025198269635438003, 0.072115086019039, -0.018967343494296, -0.009750956669449001, -0.009215249679982001, 0.026622483506798002, 0.001128585077822, -0.047730762511491005, 0.100388832390308, -0.017902297899127003, 0.050986159592866, 0.072674520313739, 0.003108326112851, -0.005405434407293, -0.020881315693259003, -0.047295395284891004, 0.042769584804773005, 0.07297808676958001, 7.264052328537218e-7, -0.015213711187243002, 1.8074125631755022e-33, 0.046911690384149, -0.034823458641767, 0.039507426321506, 0.11228608340024901, 0.086903952062129, -0.013869194313883, -0.07720679044723501, -0.078189738094806, 0.041989050805568, 0.044528428465127, 0.012152082286775001, 0.0012637098552650001, 0.09136418253183301, 0.026883037760853, -0.012565148063004001, -0.05691301822662301, -0.05575336143374401, 0.006436732597649, 0.005380087066441001, -0.016604822129011, -0.037381760776042, 0.073199443519115, -0.06624750792980101, 0.010597081854939001, 0.022220354527235003, 0.052477668970823, -0.005735052283853, -0.012141335755586001, 0.0038073195610190003, -0.00031146875699, -0.030822036787867, 0.12456692010164201, -0.075703330338001, -0.107828579843044, 0.018928980454802003, -0.005494529381394, 0.015667552128434, 0.0027407363522790004, -0.033164799213409, -0.034427274018526, -0.005317923147231, -0.092696383595466, -0.061827592551708006, 0.0006940306047900001, 0.031209276989102003, -0.009023033082485001, 0.051872659474611005, -0.048735916614532006, -0.012162471190094, -0.008609077893197, -0.004867898765951, -0.07597944885492301, -0.0055098016746340005, -0.018045963719487003, 0.08014035969972601, -0.018871512264013002, 0.056458137929439, -0.06791138648986801, -0.030062230303883, -0.006433918606489001, -0.019633149728178003, 0.020728545263409, -0.007629741448909001, 0.046275701373815, -0.024408254772424, -0.033451024442911, -0.10205441713333101, -0.029893077909946, 0.048678372055292005, 0.10978697240352601, -0.125730097293853, 0.118454553186893, 0.08122007548809, -0.06101037189364401, 0.054982934147119, 0.019254207611083003, -0.102519616484642, -0.031923122704029, 0.045813363045454004, -0.007846190594136, 0.09461522847414, -0.14744314551353402, 0.042523115873336, -0.017449744045734003, 0.022288268432021002, -0.031078945845365004, -0.026490967720746002, -0.045527670532464, -0.054210368543863005, -0.041040461510419006, 0.017024675384163003, -0.022019973024725, 0.028153594583272, -0.022732127457857, -0.041527573019266004, -4.9727040378590925e-33, -0.11485288292169502, 0.001313281361944, 0.028395794332027, -0.015749795362353002, -0.011663801036775001, -0.009761824272572, -0.061012580990791, -0.030088502913713, -0.047948077321052, 0.022095352411270003, -0.025921382009983, 0.019066017121076, 0.04611636698246, 0.047811582684516005, -0.00006748043233528733, -0.0038628289476030004, 0.07134471088647801, -0.045236054807901, -0.0044115087948730005, -0.063959196209907, 0.015235266648232002, -0.023673234507441, -0.008282463997602001, -0.074016779661178, 0.056245014071464004, 0.07247734814882201, 0.12425450235605201, -0.019942311570048003, 0.049523841589689005, -0.027883848175406, -0.039127815514802, -0.143221735954284, 0.023108601570129002, 0.006513470318168, -0.045231010764837, 0.083351366221904, 0.09674332290887801, 0.047621771693229, -0.0036570990923790003, -0.061016649007797005, -0.031176947057247002, -0.029280416667461003, 0.064042516052722, -0.053129609674215005, -0.05413610115647301, -0.029332093894481003, -0.055548086762428006, 0.07031233608722601, -0.11373429745435701, 0.023949539288878, 0.0075897215865550005, 0.087193578481674, 0.018898412585258, -0.024277517572045004, -0.061705078929662004, 0.024388374760746002, -0.013370037078857, 0.040187891572713005, 0.14332731068134302, 0.027344111353158004, -0.011496990919113001, -0.061400394886732004, 0.053554393351078006, 0.003797706449404, -0.04890928789973201, -0.080294109880924, -0.035391449928283004, 0.055605143308639006, -0.0034960140474140002, -0.020419318228960003, 0.049612518399953, -0.020291633903980002, -0.049090575426816004, -0.006742208730429001, 0.104526400566101, 0.017934523522853, 0.050447307527065006, 0.019731933251023, -0.021428992971777, 0.011794356629252, 0.033632941544055, -0.026275591924786002, 0.038743119686841, 0.011079035699367001, 0.0250362791121, 0.025295218452811002, -0.049817908555269005, 0.00341903232038, 0.029126903042197002, -0.11475408077239901, -0.019972024485468, -0.004521416034549, -0.057169061154127, 0.026810476556420004, 0.062724716961383, -3.580383989287838e-8, 0.006100711878389, -0.043231200426816004, 0.018821496516466002, -0.015314085409045, 0.059233482927083005, 0.0347381234169, 0.11616592854261301, 0.04405266046524001, -0.10599897056818001, -0.015643430873751002, -0.03053056448698, -0.004642365965992001, -0.08774052560329401, 0.075301654636859, 0.08087305724620801, 0.079429127275943, -0.071385502815246, -0.09862046688795001, 0.019750181585550003, 0.044846542179584004, -0.0031329179182640002, -0.051121145486831006, 0.021609677001833003, 0.048112556338310006, -0.069739907979965, 0.049168109893798, -0.045412179082632, 0.04756893590092601, 0.006349745206534, 0.0037414354737840003, -0.02687201462686, 0.059706348925828004, 0.035500559955835, 0.060037016868591, -0.104133211076259, -0.050324317067861, -0.06492210179567301, -0.010743794031441, -0.011992144398391, -0.008106619119644, -0.02514718286693, 0.059831153601408005, -0.047146201133728007, 0.084740228950977, 0.076024085283279, 0.015456077642738002, 0.060128603130578, -0.011856922879815001, -0.041096869856119, 0.088348634541034, -0.04181994870305, 0.000271190714556, 0.025313569232821003, 0.004499459639191, -0.011789737269282001, 0.010965679772198, -0.021260760724544, -0.042130269110202005, -0.037323918193578005, 0.088839717209339, 0.013197689317166, 0.097491458058357, -0.060063917189836, -0.00023357730242400002 ]
0704.0052
Quantum Field Theory on Curved Backgrounds. II. Spacetime Symmetries
We study space-time symmetries in scalar quantum field theory (including interacting theories) on static space-times. We first consider Euclidean quantum field theory on a static Riemannian manifold, and show that the isometry group is generated by one-parameter subgroups which have either self-adjoint or unitary quantizations. We analytically continue the self-adjoint semigroups to one-parameter unitary groups, and thus construct a unitary representation of the isometry group of the associated Lorentzian manifold. The method is illustrated for the example of hyperbolic space, whose Lorentzian continuation is Anti-de Sitter space.
[ "hep-th" ]
[ -0.073937810957431, -0.005768049042671, 0.015388593077659002, -0.041787587106227, -0.092703975737094, 0.030261293053627004, 0.001230246154591, -0.08539932221174201, 0.025878142565488003, -0.081474937498569, 0.09359333664178801, -0.026698326691985002, -0.158833518624305, 0.028460284695029002, 0.036271680146455, -0.004843023605644, -0.004341232124716, 0.015631766989827, -0.074372224509716, -0.047462962567806, -0.066293127834796, -0.007722641807049, 0.009568489156663001, 0.08460841327905601, 0.004713248927146, -0.034097570925951004, 0.040924880653619, -0.022313758730888002, -0.005122445523738001, 0.031412981450557, 0.013694955967366002, -0.05166904255747701, -0.04762939363718, -0.041203528642654, -0.021780271083116, 0.060885310173034, 0.10403510928153901, 0.036621823906898006, -0.029393937438726002, -0.01763011701405, -0.015165514312684002, -0.061991192400455, -0.038280397653579004, 0.017124701291322, 0.047445308417081, -0.036537412554025005, 0.05958037078380501, 0.006882098037749001, 0.026997020468115, -0.002310482086613, -0.007233636919409, 0.125475049018859, 0.011729868128895002, 0.012116990983486, -0.0005799688515250001, -0.034560050815343, 0.074699431657791, 0.075450770556926, -0.047168515622615, -0.095970831811428, 0.004491410683840001, 0.056308478116989004, -0.055293917655944005, 0.051101084798574004, -0.028795750811696, 0.044337306171655, -0.044033672660589, 0.014095745049417002, 0.006416680756956001, -0.005458063445985001, -0.057172510772943004, -0.032151367515325005, -0.139149069786071, -0.030105788260698003, -0.022725218906998003, 0.080141887068748, 0.032853055745363, 0.011534702032804002, 0.068411283195018, -0.013842433691024001, 0.06855221837759, -0.019396295771002003, -0.016717579215765003, 0.065713301301002, 0.08103471994400001, -0.007209567353129001, 0.006112332921475, -0.020790224894881002, -0.035299848765134, -0.05305048823356601, 0.029018813744187, -0.07713256031274701, -0.00160111754667, -0.056481566280126, 0.040541190654039, 0.00423650117591, -0.02324597351253, 0.06823768466711, 0.017528161406517, -0.024127716198563003, 0.023952780291438002, -0.09615202993154501, -0.032445386052131, 0.098500587046146, 0.063239380717277, -0.003994003869593, -0.069017514586448, -0.001355833839625, -0.017062941566109, -0.031977254897356006, -0.052525255829095, -0.015105137601494002, -0.034141618758440004, -0.007990776561200001, 0.017045773565769, 0.030283780768513003, 0.043223232030868, 0.064538419246673, -0.010335551574826001, -0.023854551836848002, 0.036501206457614004, 0.024370057508349002, -0.014458976686000002, 0.044217944145202005, 0.059104897081851, 0.044157236814498006, 0.007465937174856001, 1.1061258577863712e-33, -0.020032448694109, 0.040174212306737005, 0.01835492067039, -0.018040942028164, 0.032207414507865004, 0.022027859464287, 0.051529705524444004, 0.077824532985687, -0.007523100357502001, -0.011565688997507002, -0.026171047240495002, -0.027165047824382, 0.07317080348730001, -0.076881006360054, -0.06354559212923, -0.002723553683608, -0.031778391450643005, -0.045756649225950005, 0.05827211588621101, -0.08757925033569301, -0.038673605769872006, 0.086620680987834, -0.072904616594314, 0.005606129299849, -0.052625562995672004, 0.023818952962756, 0.041346982121467, 0.053746625781059, -0.12728624045848802, 0.013306889683008001, -0.001267610467039, -0.023125911131501004, -0.023649157956242003, -0.003323244862258, -0.003069262485951, 0.005446607712656, -0.025822401046752003, 0.012960715219378001, -0.018904542550444003, -0.043316438794136006, -0.08747694641351701, 0.013770626857876, 0.005734827369451001, -0.059056933969259005, 0.003544894279912, -0.011134497821331002, 0.062461726367473006, 0.001388061209581, -0.016867011785507, -0.058637924492359, 0.023337678983807, 0.028284123167395002, -0.087894052267074, -0.039783760905265, 0.002280607121065, -0.010526428930461, 0.034164685755968004, -0.010059317573904, -0.10288047790527301, 0.056442189961671003, 0.036034706979990005, 0.059881702065467, -0.004454361740499, -0.06502042710781, -0.073516473174095, -0.10554537922143901, 0.078341253101825, -0.025925757363438003, 0.017308054491877, 0.030971547588706003, -0.044356398284435, 0.074402220547199, -0.039035238325595, 0.062066093087196, 0.008226703852415, 0.0053957072086630005, 0.034427732229232004, -0.013623161241412001, -0.043824039399623003, 0.019298732280731, -0.060894910246133006, -0.08276828378438901, 0.005965717602521001, 0.083673551678657, -0.040896147489547, -0.037635449320077, -0.043533191084861006, -0.010590553283691, 0.039300538599491, -0.040624797344207, -0.065095297992229, -0.015823105350136, -0.033655121922492, 0.04704401269555, -0.06287851929664601, -4.1897674948618465e-33, 0.032785639166831006, -0.052515454590320004, -0.038990285247564004, -0.001314405351877, 0.034429084509611005, 0.018751008436083003, -0.035579107701778, 0.08453023433685301, 0.009978786110877, 0.006855665706098001, -0.017133874818682, 0.022706504911184002, 0.059862248599529, 0.033210609108209, -0.051744308322668006, 0.030321769416332002, 0.033358182758092006, -0.051509246230125004, -0.051547717303037005, 0.039851728826761, 0.06104072183370501, -0.003160770982503, 0.027746845036745002, -0.013869248330593002, -0.00937193352729, 0.008892962709069, 0.04879328608512801, -0.005983481649309, 0.026727641001343002, 0.071463152766227, 0.082962669432163, -0.14019037783145902, -0.019541295245289, -0.046187590807676, -0.055841639637947006, 0.04740421846508901, -0.012180253863334002, 0.07923384755849801, -0.014300419017672001, 0.034325063228607004, -0.040769904851913, 0.025245247408747003, -0.009023794904351, 0.097690142691135, -0.015019606798887001, 0.026173232123255, 0.000002688799213501624, 0.004961951170116, -0.197205170989036, 0.046040643006563006, -0.06740962713956801, 0.029168127104640004, 0.053461387753486, 0.068810895085334, -0.143417969346046, 0.081055670976638, -0.025779388844966004, -0.042850568890571004, -0.009092048741877001, 0.022106932476162, 0.046402420848608, 0.015512173995375002, 0.026665577664971, 0.050062395632267005, 0.054467007517814005, -0.11178591847419701, -0.029508879408240003, -0.028665672987699002, -0.06876934319734501, -0.010834828950464, 0.014485339634120001, -0.056269749999046006, -0.022075921297073003, 0.044184919446706, 0.027746705338358, 0.064291156828403, 0.086487174034118, -0.040995936840772004, 0.08759450912475501, -0.046610537916421, 0.025545252487063002, -0.03099543787539, 0.066262662410736, 0.049035135656595, -0.036932654678821, 0.05370366200804701, -0.041200391948223, 0.074514806270599, 0.04220924526453, -0.002400417812168, 0.022525494918227, 0.012099773623049, 0.026133276522159, 0.144951313734054, 0.052618283778429004, -4.013210386233368e-8, 0.047146823257207, 0.005289509892463001, 0.054995268583297, -0.0009463866008440001, -0.115103177726268, -0.025752391666173, -0.0027378986123940004, 0.057049021124839006, -0.055515542626380004, 0.006153655238449, -0.07523428648710201, 0.04753478989005001, -0.14182451367378202, -0.056796576827764005, -0.09593285620212501, 0.042006365954875, 0.024755204096436, 0.019708102568984, 0.012055918574333, 0.033387847244739005, 0.004350307397544001, -0.030919454991817003, -0.04908440262079201, -0.06340491771697901, -0.027723433449864002, 0.008114549331367, 0.039185743778944, -0.026382911950349003, 0.041543740779161, 0.008049178868532, 0.051751606166362006, 0.044652365148067, 0.003997778054326001, 0.024618562310934, -0.09560895711183501, -0.06834357231855301, -0.09139616042375501, -0.050433028489351, -0.044704426079988, 0.056757062673568004, 0.033231224864721, 0.035223729908466006, -0.005435912404209001, 0.036861356347799, 0.132514789700508, 0.09412293881177901, 0.0024223539512600004, 0.00010082658991400001, 0.047923274338245, 0.13715232908725702, 0.008523534983396001, -0.021249886602163003, -0.001253025722689, -0.033854976296424005, -0.031334247440099, 0.058820843696594, 0.028412336483597003, 0.003926604520529, 0.037725176662206004, -0.016640385612845, -0.011889678426086, 0.0050027170218520005, -0.007174242753535001, 0.017971808090806 ]
0704.0053
A Global Approach to the Theory of Special Finsler Manifolds
The aim of the present paper is to provide a global presentation of the theory of special Finsler manifolds. We introduce and investigate globally (or intrinsically, free from local coordinates) many of the most important and most commonly used special Finsler manifolds: locally Minkowskian, Berwald, Landesberg, general Landesberg, $P$-reducible, $C$-reducible, semi-$C$-reducible, quasi-$C$-reducible, $P^{*}$-Finsler, $C^{h}$-recurrent, $C^{v}$-recurrent, $C^{0}$-recurrent, $S^{v}$-recurrent, $S^{v}$-recurrent of the second order, $C_{2}$-like, $S_{3}$-like, $S_{4}$-like, $P_{2}$-like, $R_{3}$-like, $P$-symmetric, $h$-isotropic, of scalar curvature, of constant curvature, of $p$-scalar curvature, of $s$-$ps$-curvature. The global definitions of these special Finsler manifolds are introduced. Various relationships between the different types of the considered special Finsler manifolds are found. Many local results, known in the literature, are proved globally and several new results are obtained. As a by-product, interesting identities and properties concerning the torsion tensor fields and the curvature tensor fields are deduced. Although our investigation is entirely global, we provide; for comparison reasons, an appendix presenting a local counterpart of our global approach and the local definitions of the special Finsler spaces considered.
[ "math.DG", "gr-qc" ]
[ -0.019034838303923003, -0.084914363920688, 0.022942710667848, -0.042638350278139, 0.048893462866544, 0.08264315873384401, -0.036464694887399, 0.044347308576107004, 0.061418771743774005, -0.07960782945156, 0.048594128340482004, 0.03616265580058, -0.08293378353118801, 0.029437342658638004, -0.054915480315685, -0.08409745246171901, -0.040769733488559, 0.024830864742398002, 0.027457518503069003, -0.017369732260704002, -0.022729242220520002, 0.014647496864199002, 0.045834593474864, 0.062220178544521006, -0.125940918922424, -0.045787535607814005, 0.013323039747774, 0.07201225310564001, 0.08065285533666601, -0.014886316843330001, -0.023181030526757, 0.039337698370218006, -0.080872289836406, -0.046247258782386, -0.000132209461298, 0.05949522182345301, 0.006863097660243, 0.055073391646146004, -0.08777141571044901, 0.07971860468387601, 0.0038444355595850005, 0.026182716712355003, 0.057658936828374, 0.07222972065210301, 0.041343573480844005, -0.025283638387918, -0.030455647036433, -0.005125142168253, -0.09569934010505601, 0.002413161098957, -0.056772354990243, 0.021194105967879, -0.039857521653175, -0.071965977549552, 0.034795396029949, 0.035076491534709, -0.082464940845966, -0.037018943578004004, 0.07609667629003501, -0.138433322310447, 0.09732962399721101, -0.010613505728542002, -0.016385892406105003, -0.050067521631717, -0.027582220733165002, 0.043355427682399, 0.009228857234120001, 0.041058853268623005, 0.013913732022047001, 0.069157384335994, -0.052267815917730005, -0.053677018731832005, -0.021482355892658, 0.013853958807885002, -0.01613668911159, -0.038312584161758, -0.030877083539962002, 0.027706393972039, -0.024346234276890002, 0.036252547055482004, 0.029470644891262002, -0.050094373524188, -0.010607128962874001, -0.026901600882411003, -0.004678516648709, -0.006422314792871001, -0.086229689419269, -0.065466284751892, 0.027759889140725, -0.04938162118196401, 0.015244876034557, -0.12025251984596201, -0.025555174797773, -0.060205213725566004, -0.041441202163696005, -0.050118733197450006, -0.037774428725242004, 0.09659020602703, 0.10610490292310701, 0.028531437739729004, -0.012820449657738, -0.092201776802539, 0.005288913846015, 0.045164365321397004, 0.07113451510667801, 0.059641536325216, -0.019390475004911003, 0.004511373117566, -0.02575471624732, -0.060073945671319004, -0.040414128452539, 0.020626006647944003, -0.032532606273889, -0.084154568612575, -0.009268843568861, -0.024629535153508002, -0.019973447546362003, 0.004752237815409, 0.068079784512519, 0.095554217696189, 0.049386352300643005, 0.022152142599225003, 0.012100274674594002, 0.029570365324616002, 0.041486732661724, -0.045385401695966006, -0.09435761719942001, 1.0674243593244791e-33, 0.013434479944407001, 0.044813312590122, 0.046415969729423, 0.000738071685191, 0.048252753913402, 0.021816015243530003, 0.025133825838565, 0.07789490371942501, 0.013618273660540001, 0.061545845121145006, -0.07880263030529, 0.033942695707082006, 0.011286801658570001, 0.018898190930485, -0.0017253266414620002, -0.035648539662361, 0.076368495821952, 0.019676225259900003, -0.067347131669521, -0.06786119192838601, 0.035521183162927, 0.09171340614557201, 0.026745472103357003, -0.06711381673812801, 0.028936950489878002, -0.039022330194711005, 0.017877450212836002, 0.009465252049267, -0.019874924793839, -0.000382723548682, 0.017546828836202, -0.040424849838018, -0.016414074227213003, 0.035633154213428005, 0.061557210981845, -0.023808892816305, -0.018986968323588, -0.009363948367536, -0.0067648850381370005, 0.024627432227134, 0.005480655934661001, -0.002431554719805, -0.08930151909589701, 0.009073409251868001, -0.06259550154209101, -0.029590528458356004, 0.07362336665391901, 0.082118242979049, 0.015358894132077002, -0.132558614015579, -0.0006049666553730001, 0.030676297843456, -0.140599891543388, -0.026596909388899, 0.008434345014393, 0.002317656064406, -0.04726842790842, 0.029257409274578, -0.019100518897175, 0.012157508172094001, -0.034981690347194005, 0.011554595082998002, -0.009294407442212, -0.09310328960418701, 0.011074830777943, 0.025738019496202, 0.06634909659624101, -0.021787753328680003, 0.075355164706707, -0.020561711862683, -0.05007797107100401, 0.090766087174415, 0.015598093159496002, 0.012768174521625, 0.074307776987552, 0.035886507481336004, 0.007639578077942, -0.05656276643276201, -0.04692269861698101, 0.0037771288771180004, -0.10839201509952501, 0.008871557191014, -0.002207931596785, 0.10748854279518101, -0.036712616682052, -0.008458194322884001, 0.038412343710660005, 0.002668921137228, 0.07744298130273801, -0.035398561507463004, -0.05375163257122, -0.07815589755773501, -0.04690224304795201, -0.08568818867206501, -0.048684809356927004, -3.886052448045999e-33, -0.0021208173129700003, -0.032588861882686004, -0.07983518391847601, 0.024385549128055004, -0.030695673078298003, -0.018420934677124003, -0.029880618676543003, 0.120329000055789, -0.050918385386466, -0.134155839681625, -0.004767919890582, 0.011629443615674001, 0.061673678457736004, -0.007404050324112001, -0.028315560892224003, 0.070577383041381, -0.018643755465745003, -0.019968815147876, -0.017108520492911002, -0.07479657232761301, 0.036588713526725006, 0.004376559518277001, -0.052374850958585004, -0.057819496840238, -0.08858709782361901, 0.034690100699663, -0.0043403254821890004, 0.018178924918174, -0.075328834354877, 0.11157536506652802, -0.007257599849253, -0.064360581338405, -0.008474517613649, 0.012079748325049001, -0.085606567561626, 0.040661498904228, -0.047572452574968005, 0.049183133989572005, -0.046938527375459005, 0.08603163808584201, 0.014521271921694001, 0.01002996135503, 0.07918556779623001, 0.028686869889497, 0.020031664520502, -0.0013956777984270002, -0.025706270709633, 0.042995806783437, -0.04522181674838, -0.045854289084672005, -0.054413478821516, -0.09252356737852001, 0.055747114121913, 0.007550506852567001, -0.046354938298463, 0.086441405117511, -0.014147302135825001, -0.085384346544742, -0.013365400023758, 0.007349574007093001, 0.025152178481221, -0.125175893306732, -0.045105442404747, 0.014355022460222001, 0.10192485153675, -0.041140802204608, -0.028074560686945003, -0.053354009985923004, 0.011238020844757, -0.021316356956958, -0.012831684201955, -0.022863728925585, -0.062320251017808005, 0.057451121509075005, 0.024773800745606003, 0.045962121337652005, 0.024595294147729003, 0.017061090096831003, -0.026522681117057002, 0.00104184448719, -0.007023038342595001, -0.023536959663033003, 0.053741265088319, 0.045997511595487005, 0.047086779028177005, 0.034306284040212, 0.015362791717052002, -0.007302919402718, 0.081246465444564, -0.07352776080369901, 0.033178962767124, -0.009965737350285001, -0.00674845976755, 0.107062838971614, 0.052884228527545006, -4.746267379118762e-8, 0.038041323423385, 0.047958694398403, -0.049116306006908, 0.020739894360303, -0.06758306175470301, -0.023498844355344002, -0.023034079000353, -0.018154742196202, -0.059657096862792004, 0.014564273878932001, -0.0066759232431650006, -0.008230643346905, -0.049378909170627004, -0.073170267045497, 0.028194414451718, 0.077297821640968, 0.015745777636766, 0.080599196255207, -0.037400484085083, -0.050583943724632006, 0.041572004556655, 0.07877875864505701, 0.067587040364742, -0.027295146137475003, -0.039886835962533, -0.014256876893341002, 0.036117330193519, -0.021552542224526003, 0.035524006932973, -0.004563707858324001, 0.017468530684709, 0.016662629321217003, 0.071544244885444, 0.060180783271789, 0.005383786745369001, 0.011330766603350001, -0.131110996007919, 0.022142261266708003, 0.016760539263486002, 0.033633749932050004, 0.014282546937465002, 0.044785548001527, -0.086556501686573, 0.06902027875185, 0.07356070727109901, 0.048499263823032004, -0.00568213686347, -0.022819263860583, -0.030584715306758003, 0.044846251606941, -0.003832093439996, 0.035665944218635004, 0.014893007464706001, 0.09245405346155101, 0.035391639918088004, 0.092042371630668, 0.016801815479993, 0.012119262479245002, -0.021292939782142, -0.080541424453258, -0.06741140037775001, 0.06858210265636401, -0.009742232970893001, 0.0076785413548350005 ]
0704.0054
The Hardy-Lorentz Spaces $H^{p,q}(R^n)$
In this paper we consider the Hardy-Lorentz spaces $H^{p,q}(R^n)$, with $0<p\le 1$, $0<q\le \infty$. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
[ "math.CA", "math.FA" ]
[ -0.029886670410633004, 0.043709408491849004, 0.00010393629781900001, 0.032886654138565, 0.0144654950127, 0.07892998307943301, 0.065664127469062, -0.008166155777871, 0.0009863647865130001, -0.105416700243949, 0.031114421784877003, 0.06358250975608801, -0.007836503908038, -0.00476667098701, -0.007413794286549, -0.042624354362487, -0.058444235473871, 0.020365592092275002, -0.07800782471895201, 0.039239760488271005, 0.000298201921395, -0.000750121951568, 0.094753451645374, 0.031147712841629004, 0.002141361590474, 0.0306181255728, 0.017359064891934003, 0.074441075325012, 0.055947810411453004, 0.030047535896301002, 0.075098231434822, -0.068108581006526, 0.036434650421142, -0.036636661738157, 0.05048561841249401, 0.048583436757326, 0.03742079809308, -0.024058235809206, -0.027033478021621003, -0.041617598384618, -0.037130750715732005, 0.041208397597074, 0.006422109901905001, 0.06464819610118801, 0.009717791341245001, -0.032082937657833, 0.037721056491136, -0.068120039999485, -0.030145894736051, -0.10391599684953601, -0.017513910308480003, 0.126890763640403, 0.060920428484678005, 0.041876070201396005, -0.06822286546230301, 0.0020188204944130003, 0.058425661176443, 0.013545953668653, 0.03397699072957, -0.091657668352127, -0.012663022615015, 0.04469609260559, 0.07448411732912001, 0.037930719554424, -0.034869961440563, -0.017675913870334, -0.021797314286231002, 0.047686636447906, -0.019425347447395002, 0.038423575460910006, -0.11525203287601402, 0.0075588501058510005, -0.09654109925031601, -0.011095093563199002, -0.07829334586858701, 0.020408315584063003, -0.022213758900761, -0.021284695714712, -0.008649085648357, 0.032961994409561005, 0.05686224251985501, -0.13591450452804502, -0.12125859409570601, -0.067604407668113, 0.09534604847431101, 0.007373856846243001, -0.060634739696979, -0.025172486901283, -0.000269257376203, -0.035561516880989005, -0.0035373964346940004, -0.045251410454511004, -0.018665047362446, -0.017384545877575, -0.075413808226585, 0.007296213414520001, -0.038244143128395004, 0.030691890046000002, 0.038180720061063, 0.023206666111946002, -0.041114564985036, -0.103843308985233, 0.005483570042997, 0.017945379018783, 0.012869573198258, 0.018762694671750003, -0.049805998802185, -0.018796157091856003, -0.020220078527927003, 0.030630899593234003, -0.039524402469396, -0.092273212969303, -0.030361846089363, 0.030027730390429, 0.03362376242876, 0.044767942279577005, 0.078535787761211, 0.11543098092079102, 0.036669179797172005, 0.0064915441907940005, 0.036022465676069, -0.024459229782223, -0.030133944004774003, 0.0038213944062590005, 0.06400816142559, 0.004523622337728001, -0.05737635120749401, -2.06227847287499e-33, 0.044785343110561, -0.037598077207803005, -0.06968668103218001, 0.022511970251798002, 0.010213261470198002, -0.011448115110397, 0.003749651834368, 0.018706694245338003, 0.033289164304733006, -0.022646818310022, 0.054580930620431005, 0.003592237830162, 0.060291398316621, -0.06541883200407, -0.055267289280891, 0.030101757496595, -0.004665839020162, 0.055194403976202004, 0.04832546412944701, -0.024904999881982002, -0.000813377148006, 0.079010270535945, 0.023955360054969004, 0.074240170419216, 0.035173155367374004, -0.031107515096664002, 0.063419952988624, -0.046304132789373, -0.039725009351968, 0.007707503158599, -0.045703578740358006, 0.008652886375784001, -0.026340624317526002, -0.052104629576206006, 0.058517031371593003, 0.052976466715335006, -0.07388346642255701, 0.059173319488763004, -0.081274084746837, -0.041128322482109, -0.06287470459938001, -0.069284215569496, -0.030253263190388003, 0.00911761727184, -0.016467571258544002, -0.017844935879111002, 0.08383955061435701, 0.08900539577007201, 0.06764028966426801, 0.003914358559995001, 0.034923173487186, -0.004688320681452, -0.14178006350994102, -0.033021707087755, 0.044113181531429006, -0.026227563619613002, 0.035899929702281, 0.023954352363944, 0.015487089753150001, 0.019994473084807, -0.021217722445726003, -0.0054524224251500004, -0.05953524261713, -0.040286425501108, 0.016595372930169, -0.122070841491222, 0.12013912200927701, -0.05711036548018401, 0.024966418743133, 0.028523357585072004, -0.000323625456076, -0.016924200579524002, 0.015767104923725, 0.051600508391857, 0.005324680823832, 0.050435569137334005, -0.079288125038146, -0.067682288587093, -0.019368518143892, 0.0065302774310110005, 0.026367593556642, -0.013471248559653001, 0.071212098002433, 0.001425386290065, 0.017140612006187002, -0.102095052599906, -0.041730713099241, -0.030656987801194004, 0.032296072691679, -0.08852009475231101, 0.032230392098426, -0.05942621454596501, 0.052693434059619, -0.018356526270508003, -0.066253244876861, -9.470834580627208e-35, -0.017888125032186, -0.010475978255271001, -0.058415766805410003, 0.038500383496284006, -0.06788087636232301, 0.052288856357336, -0.028341088443994, 0.042563941329717005, 0.044846668839454006, 0.004852522164583001, 0.0037083271890870004, -0.0064521469175810005, -0.010079879313707001, 0.009080401621758001, 0.023469502106308, -0.011520423926413, 0.11222333461046201, 0.0038487911224360004, 0.000257100997259, 0.039019312709569, -0.006712689530104001, -0.026373071596026, 0.062781490385532, 0.055168185383081006, -0.087904065847396, 0.010724570602178001, 0.015043158084154, 0.000987659324891, -0.023168394342064, -0.006628163158893001, 0.008230256848037, -0.15172749757766701, -0.05342467874288501, -0.04734715819358801, -0.030876535922288003, -0.044433981180191005, 0.014766739681363002, 0.033153943717479005, -0.043716739863157, 0.10542609542608201, -0.027158774435520002, 0.052491340786218005, 0.031858090311288, 0.078727982938289, -0.080066345632076, -0.05290414765477101, -0.022668894380331, -0.104084201157093, -0.057387039065361, 0.045066766440868, -0.035606797784566005, 0.017975727096199, 0.028670048341155004, -0.0026172897778450003, -0.04536700621247201, 0.017268233001232, 0.007210587617009, 0.024582512676715, 0.091413900256156, 0.014950576238334002, 0.011607204563915001, 0.017248753458261, 0.043151289224624, 0.12448129802942201, 0.025406133383512, -0.026534650474786002, -0.048707533627748004, -0.074087977409362, -0.07455977052450101, -0.027736365795135002, 0.017360314726829, -0.07557450979948001, 0.051593035459518, 0.06530287861824001, -0.003269620705395, -0.013661731034517, 0.13128684461116702, -0.07613180577754901, 0.0019409408560020001, -0.021036898717284, 0.012423688545823002, 0.012951794080436, -0.028849761933088, 0.047246508300304, -0.066948473453521, 0.004383574239909, -0.06485997140407501, 0.045354928821325004, -0.005866247229278001, -0.10372547805309201, 0.045313537120819, 0.026509212329983003, 0.022692531347274003, 0.028172820806503, 0.07592401653528201, -3.548041860312878e-8, 0.006321214605122001, -0.101110488176345, -0.06771146506071, 0.011569939553737, 0.030729593709111002, -0.055597905069589004, -0.036840327084064005, 0.029541349038481, 0.019378371536731002, 0.099727936089038, 0.05180826783180201, 0.023305458948016, -0.06448471546173, -0.056300897151231, 0.003178319893777, -0.020293682813644003, -0.031784303486347004, 0.02365025691688, -0.014616514556109001, -0.043962609022855, 0.033285714685916006, 0.066524520516395, -0.051420811563730004, -0.011255301535129, 0.037129674106836, -0.008500440977513, -0.011636082082986, -0.131465598940849, 0.007683417294174001, 0.023807758465409, 0.0021820294205090003, 0.056899227201938005, 0.095025099813938, 0.048586204648017, -0.042326238006353004, -0.009870287962257, 0.13315200805664001, -0.024598311632871003, -0.08983377367258001, 0.058189362287521, -0.019202727824449, 0.040700513869524, -0.008559379726648001, -0.035267967730760005, 0.075147703289985, 0.050405640155076, -0.051597882062196, 0.07214154303073801, 0.010257980786263, 0.109376348555088, 0.018765483051538003, 0.011960776522755, -0.045621689409017, -0.037603311240673, -0.08105690777301701, -0.039384968578815, 0.027387121692299003, -0.048257678747177006, -0.006174742709845001, -0.051830928772687, 0.004851380828768, 0.0062393033877010005, 0.086439959704875, 0.054971083998680004 ]
0704.0055
Potassium intercalation in graphite: A van der Waals density-functional study
Potassium intercalation in graphite is investigated by first-principles theory. The bonding in the potassium-graphite compound is reasonably well accounted for by traditional semilocal density functional theory (DFT) calculations. However, to investigate the intercalate formation energy from pure potassium atoms and graphite requires use of a description of the graphite interlayer binding and thus a consistent account of the nonlocal dispersive interactions. This is included seamlessly with ordinary DFT by a van der Waals density functional (vdW-DF) approach [Phys. Rev. Lett. 92, 246401 (2004)]. The use of the vdW-DF is found to stabilize the graphite crystal, with crystal parameters in fair agreement with experiments. For graphite and potassium-intercalated graphite structural parameters such as binding separation, layer binding energy, formation energy, and bulk modulus are reported. Also the adsorption and sub-surface potassium absorption energies are reported. The vdW-DF description, compared with the traditional semilocal approach, is found to weakly soften the elastic response.
[ "cond-mat.soft", "cond-mat.mtrl-sci" ]
[ -0.045430414378643, -0.036018889397382, 0.020980671048164, -0.001070765429176, 0.006730260793119, -0.019775437191128002, 0.025880489498376003, 0.006166775710880001, -0.07827523350715601, 0.08109324425458901, -0.020862089470028003, 0.008153746835887, -0.0033939012791960005, 0.057966481894254004, 0.039121173322200005, -0.006694394629448001, 0.024312647059559003, 0.011066890321671002, -0.101257868111133, 0.14950385689735401, 0.041147865355014, -0.07484580576419801, 0.0021925161127, -0.14216016232967302, 0.1348218023777, 0.130484819412231, 0.01180700212717, 0.046404492110013004, 0.06339696049690201, -0.020556606352329, 0.034872584044933, -0.065348856151103, -0.015487061813473, 0.041892550885677005, 0.037433855235576005, 0.0059345671907060004, -0.05922769010066901, 0.0034874274861060005, -0.045765299350023006, 0.032282873988151, -0.09467360377311701, 0.038893405348062, 0.031529646366834, -0.010720375925302, -0.001592677552253, -0.08039659261703401, -0.039676323533058, -0.0031489257235080004, -0.036265041679143004, -0.027779828757047, 0.09939646720886201, -0.026110311970114004, 0.022869149222970002, 0.026978803798556, -0.023095406591892003, 0.041758179664611005, -0.029141493141651, 0.061451431363821, 0.056624766439199004, 0.021454704925417, 0.007692038081586001, 0.007256267592310001, 0.045063640922307004, -0.009317437186837, 0.077939696609973, 0.027617990970611003, -0.010295757092535001, -0.013396754860877, -0.002089999616146, 0.024846615269780003, -0.032120559364557, 0.019845416769385, -0.023680966347455003, 0.005334995687007, 0.080927737057209, -0.002231440972536, 0.019790682941675002, 0.021252192556858, -0.036271162331104, -0.060350887477397, -0.011790961958467001, 0.05874148011207501, -0.015633871778845, -0.06134673580527301, 0.011487135663628, 0.053951755166053, -0.09762091189622801, -0.036408565938472005, -0.05418847501277901, -0.042439270764589004, -0.004887874238193, 0.10259315371513301, -0.06435290724039, -0.005768958013504, 0.020715769380331, 0.056257274001836007, 0.044365905225276, 0.055667791515588004, -0.004677216056734, 0.008596559986472001, 0.017518088221549002, 0.05266382172703701, -0.060823410749435, -0.026165997609496002, -0.031957518309354005, -0.060025185346603005, -0.050879828631877004, 0.059112969785928005, -0.08383370190858801, 0.06071265414357101, -0.033246252685785, 0.060451027005910006, 0.077075272798538, 0.09876954555511401, -0.006170077249407001, 0.036928508430719, 0.011544019915163, -0.01016514096409, 0.04834765195846501, -0.026179660111665, -0.027869638055562, 0.019132023677229, -0.06945884227752601, 0.029772602021694003, -0.020248901098966002, 0.00934094004333, -0.025270666927099002, 1.559029688491791e-33, 0.032332591712474004, -0.012858914211392, -0.039453603327274, -0.027768047526478, -0.039361994713544006, -0.10675933212041801, -0.08766873180866201, -0.038672931492328005, -0.080216161906719, -0.014850195497274002, -0.08410268276929801, 0.081259317696094, 0.05871998518705301, -0.025201046839356003, -0.047286562621593003, 0.065552413463592, 0.061928886920213005, 0.014678509905934, 0.081531874835491, 0.0025072263088070004, 0.055703677237033004, -0.022047962993383, -0.0007068229024290001, 0.160468399524688, -0.020332364365458003, 0.04114680737257, 0.006485988851636, -0.011175917461514001, 0.024104345589876, -0.013501048088073002, -0.044405601918697, 0.015796309337019, -0.0049524884670970005, -0.036264978349208006, -0.068575702607631, -0.01544036809355, -0.053681623190641, 0.031772289425134, -0.022512219846248002, -0.149359136819839, 0.021531952545046, -0.009545574896037001, -0.018254406750202002, 0.067343138158321, -0.016637630760669, -0.010865906253457, 0.102317363023757, -0.014350729063153001, -0.0099384104833, -0.069973200559616, -0.07118032872676801, 0.022672725841403, 0.020527496933937, 0.07221618294715801, -0.0025248071178790004, 0.026598591357469004, 0.11638922244310301, -0.018610099330544, -0.016774063929915, -0.016741966828703003, 0.030854325741529003, -0.016391087323427003, 0.026347802951931003, 0.13797722756862602, 0.0037342926952980003, 0.004331669770181, -0.08012572675943301, 0.0024993116967380003, 0.005209589842706, -0.06377249956130901, -0.007452877238392001, 0.11746258288621901, 0.09669504314661001, -0.040198378264904, 0.006253588013350001, 0.015040775761008, -0.041326213628053006, -0.080142870545387, -0.00100321136415, 0.014755934476852, 0.02313970029354, -0.023048691451549003, -0.00024436716921600004, -0.047949247062206005, -0.06180572137236501, -0.106233038008213, 0.022357318550348, -0.05356719717383301, 0.076126679778099, -0.029753264039754004, -0.024746401235461003, -0.07889650017023, -0.041733723133802005, -0.085329420864582, 0.008759037591516, -2.9830995848687292e-33, 0.09579057246446601, 0.038514364510774, 0.049569446593523005, 0.035345181822776, 0.026027193292975002, 0.045399758964776, -0.008694676682353, -0.005833347328007, 0.038441825658082004, -0.004593573976308001, 0.087028704583644, -0.081191219389438, 0.018495684489607003, -0.071683198213577, -0.00512411026284, 0.05488778650760601, -0.040295723825693006, 0.010099338367581001, 0.038583885878324, -0.045584872364997, 0.012516321614384, -0.015403023920953001, -0.06780877709388701, 0.054456807672977, 0.059324830770492006, -0.041029576212167004, -0.011682177893817002, -0.061738658696413005, -0.05917462334036801, 0.080911062657833, 0.0394853875041, 0.009262654930353, -0.011676133610308, -0.03422662243247, 0.025652302429080003, 0.016181346029043, 0.026880405843257002, -0.074035942554473, -0.002010265598073, 0.002014932921156, -0.021294582635164, 0.015840524807572, -0.067194037139415, -0.028743302449584004, -0.0010370527161280001, 0.072221130132675, 0.029584409669041002, -0.029956346377730002, -0.016689691692590002, -0.053726986050605004, 0.039168689399957005, -0.01497390680015, 0.023669298738241, -0.05023386701941401, -0.002178817754611, 0.07274455577135, 0.038453519344329, 0.078477539122104, -0.029369594529271, -0.014480791054666, 0.043705929070711004, -0.05083847045898401, 0.013792445883154002, -0.060167092829942, -0.089198246598243, -0.059794064611196004, -0.005240705795586001, -0.043174643069505005, 0.084267288446426, 0.029548307880759003, 0.013176800683140002, 0.022417882457375003, 0.098366811871528, 0.040697686374187005, 0.108541883528232, -0.049633622169494004, 0.10087238252162901, 0.007421209476888, -0.038915354758501004, -0.011630858294665002, -0.036612205207347, 0.039210554212331, -0.032004509121179005, 0.037224691361188, 0.013432257808744002, 0.09983199834823601, -0.068090908229351, 0.07882697135210001, -0.046369556337594, -0.008772119879722, 0.008496822789311001, -0.076723299920558, -0.054112307727336, 0.070629335939884, 0.050469610840082, -4.204084547154707e-8, -0.00906026829034, -0.027086837217211, -0.016551200300455, -0.059281714260578, 0.003535419236868, 0.097084306180477, 0.086108811199665, 0.031807713210582005, -0.00445307418704, -0.063581317663192, 0.025592379271984003, -0.055491212755441006, -0.031250406056642005, -0.072840794920921, -0.039295461028814004, -0.058261796832084004, -0.016087997704744002, 0.029852936044335, -0.011977519840002001, 0.05087264254689201, 0.069727137684822, -0.063024275004863, 0.045017685741186, 0.010040940716862, -0.013700908049941, -0.014361375942826, -0.08025462180376, -0.06624265760183301, -0.072101943194866, 0.017805544659495, -0.05464434996247201, 0.022065427154302, 0.046197537332773, 0.025832522660493, -0.006835983600467, 0.087802082300186, 0.004019265528768, 0.01225147396326, -0.05402648448944, 0.043498829007148, 0.052562236785888006, -0.005183272063732001, -0.017472146078944, -0.007843989878892, -0.058604028075933005, 0.01228179782629, -0.06389036774635301, 0.049257576465606, 0.057565405964851005, -0.045356772840023006, -0.044121537357568005, 0.043450869619846004, -0.051279667764902004, -0.043267291039228, -0.008528172969818, 0.05890065059065801, -0.07714480161666801, -0.023044554516673, 0.010895110666751001, -0.038897771388292, 0.045862615108489005, -0.08711668848991301, -0.10828129947185501, -0.048754725605249 ]
0704.0056
Phase diagram of Gaussian-core nematics
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as eleven candidate crystal structures, we determine the melting temperature for various pressure values, also with the help of exact free energy calculations. Among the prominent features of this model are pressure-driven reentrant melting and the stabilization of a columnar phase for intermediate temperatures.
[ "cond-mat.soft", "cond-mat.mtrl-sci" ]
[ -0.021196383982896003, -0.06409528106451, 0.022179687395691, -0.008958880789577, 0.019835775718092002, 0.025304540991783003, 0.059592589735984004, 0.023920638486742002, 0.013408897444605002, -0.041651811450719, 0.031586255878210005, -0.07151535153388901, 0.0058060484007, -0.005182405002415001, 0.019210696220397002, -0.11161403357982601, 0.029250767081975004, -0.056220468133687, -0.024068107828497002, 0.052827287465333, 0.050910875201225, -0.027555804699659, -0.06498800218105301, -0.009043608792126, 0.06207310035824701, 0.040336959064006, 0.09963937103748301, 0.036209981888532, 0.020011676475405003, -0.042795192450284, 0.016139730811119, -0.05797279253602, -0.09376852959394401, 0.061238326132297, 0.07695996761322, -0.048153277486562, 0.059885293245315004, 0.040078274905681006, -0.044181749224662004, 0.038473516702651006, 0.033455401659011, -0.000190487029612, 0.046562861651182, 0.051215473562479005, -0.007182643748819001, -0.017557127401232, 0.054533030837774006, -0.036860566586256, -0.018795371055603003, -0.05639874562621101, -0.045126650482416, 0.008200609125196, -0.018372928723692002, 0.040649734437465, -0.0028680427931240004, 0.023192891851067002, 0.045760687440633004, -0.030630106106400004, 0.016228977590799002, 0.07798951864242501, 0.031686205416917, 0.017093274742364002, 0.02643116749823, -0.006921410094946001, 0.043393075466156006, 0.022686190903186, 0.033006254583597, -0.005607997998595, -0.046759344637393, 0.05560579895973201, 0.0035644727759060004, 0.028508607298135, 0.018285941332578, -0.08268639445304801, -0.015697302296757, -0.008547062054276001, -0.045302633196115, -0.021934162825345, -0.040107771754264006, 0.069635465741157, -0.08063965290784801, -0.052050679922103, 0.0017969604814420002, -0.002720977645367, -0.06250779330730401, -0.052901789546012004, -0.02409428730607, 0.048814654350280005, 0.018167100846767002, -0.036473449319601, -0.0012801199918610002, 0.033867351710796, 0.013204964809119, -0.08803167194128, 0.013891719281673001, 0.018497928977012003, -0.010269341990351, 0.011201086454093, -0.002807433484122, -0.04801231995224901, 0.043676462024450004, -0.0037239135708650004, 0.07244219630956601, 0.020138073712587003, 0.01118104532361, -0.0035340890754010004, 0.074535265564918, 0.007366927340626, -0.027190735563635, 0.088034160435199, -0.025319483131170002, 0.006369795650243, 0.034329179674386, -0.00701988581568, -0.021001044660806, 0.071801908314228, -0.039957039058208, 0.014887207187712002, -0.05689968913793501, 0.011342545039951002, 0.091291137039661, 0.026379475370049, -0.083396479487419, 0.05923220515251101, -0.011319790966808001, 0.051019176840782006, -0.078194253146648, 1.620576919661915e-33, 0.012579908594489, 0.080720327794551, 0.010129687376320001, 0.046546354889869, -0.098966687917709, 0.030584443360567003, -0.07012120634317301, 0.054597094655036, -0.000845247646793, 0.017401423305273, 0.036752458661794, 0.039795193821191004, -0.025547631084918, 0.031675860285758, -0.15159621834754902, -0.00036493423976900004, 0.037684924900531006, -0.0021649356931440003, 0.035757903009653, 0.069001592695713, 0.009484563954174, 0.041526921093463, -0.035307344049215005, -0.012061132118105, -0.10165753215551301, 0.016987882554531, -0.05554686486721001, -0.024266405031085, -0.013053761795163, -0.01993759907782, 0.021800722926855, 0.026604544371366, -0.061127610504627006, 0.13942302763462, 0.023641504347324, -0.056827239692211005, 0.008354425430297, -0.006866432726383, 0.054581973701715004, -0.059740789234638006, -0.04956921190023401, 0.038615968078374, 0.07063093036413101, -0.030205832794308003, -0.004594691563397001, 0.05762534961104301, -0.016492182388901003, -0.030238609760999003, 0.054215203970670006, -0.12473448365926701, 0.11485306173563001, 0.005482786800712, 0.001633367734029, 0.10511723160743701, 0.058891315013170006, 0.022240595892071002, -0.067882508039474, 0.016069443896412003, -0.026815678924322003, -0.06639951467514, 0.040709663182497004, -0.052973572164773004, -0.028080277144908003, -0.12314461916685102, 0.020443784072995002, 0.09745935350656501, -0.05076078325510001, -0.010413786396384002, 0.08202089369297001, -0.010793956927955001, -0.017187239602208002, 0.032004181295633004, 0.056642748415470005, 0.079170428216457, -0.021378984674811002, 0.022767324000597, 0.04772639647126101, -0.086738154292106, 0.010424155741930001, 0.05823846533894501, -0.02349841222167, -0.010156837292015001, -0.050260685384273, -0.09670316427946, -0.06741698086261701, -0.068255603313446, -0.012381476350128, 0.07861967384815201, -0.038403373211622, -0.06676428765058501, -0.026291677728295004, -0.113877311348915, -0.007151950616389, 0.026322418823838, -0.06910780072212201, -2.8330058540000155e-33, -0.011118039488792001, -0.06878642737865401, -0.06052626669406801, 0.044482450932264, 0.055853154510259004, -0.039208360016345006, 0.044018696993589006, 0.034058850258588, 0.05253132805228201, -0.063388407230377, 0.10857335478067301, -0.030025837942957004, 0.05735931918025, 0.031191831454634004, 0.023461617529392003, 0.019184859469532002, 0.005690621677786001, -0.004058445338159001, 0.10815983265638301, -0.09187438338994901, -0.09642454236745801, 0.033751010894775, -0.016948200762271, -0.007991819642484, 0.008480496704578, 0.037291821092367006, -0.057847704738378004, -0.031077133491635003, -0.037345204502344, 0.105957612395286, 0.005162693560123, -0.036876216530799005, -0.038912910968065005, 0.003025067038834, -0.06292629241943301, 0.06835984438657701, -0.045796927064657, -0.002110540866851, -0.011338925920426, -0.06978476792573901, 0.008249653503298001, -0.0051462464034550005, 0.020137701183557, 0.08183123916387501, 0.038821786642074, 0.0021088928915560003, 0.051507014781236, 0.017557552084326, -0.004108429420739, 0.002676140749827, -0.034573350101709005, -0.063010461628437, 0.006946403533220001, -0.04453345760703, -0.0038586035370820003, 0.020878238603472002, -0.052020713686943006, -0.036735873669385, -0.039241883903741004, -0.031907804310321, -0.037927400320768, 0.061963904649019005, -0.010909145697951001, -0.069666303694248, -0.041823264211416, 0.000328500551404, -0.013368243351578001, 0.014451636932790002, 0.0028084903024130003, -0.023177012801170002, 0.043008659034967006, 0.07950360327959001, 0.055014759302139005, 0.037656780332326, 0.06165774166584, -0.045619547367095004, -0.023225815966725002, -0.016919890418648, -0.04752992466092101, -0.05718525126576401, -0.013811749406158001, 0.101374417543411, -0.104026034474372, 0.004329204559326, 0.035814955830574, -0.018041163682937, -0.065405622124671, -0.009432796388864, 0.055541198700666004, -0.037379868328571, -0.016462935134768, -0.012360386550426001, 0.040981899946928003, 0.11669345200061701, 0.07948217540979301, -3.581422447496152e-8, 0.120034590363502, 0.061043534427881005, 0.046039499342441004, -0.057300686836242, 0.001367830438539, 0.022678986191749, -0.044809255748987004, -0.08675286173820401, 0.02100702561438, 0.02151158824563, -0.014170710928738001, -0.017834598198533003, 0.001856580842286, -0.038900639861822, -0.078432202339172, 0.04971315339207601, 0.020049721002578, 0.007546320091933001, 0.007177634164690001, -0.032563872635364005, 0.134049117565155, -0.035024207085371004, -0.008368402719497, 0.038377989083528005, -0.10423387587070401, 0.03833058103919, -0.0019085666863240002, -0.08822638541460001, 0.027521546930074, 0.049786694347858006, -0.118453845381736, -0.012091481126844002, 0.017007267102599, 0.06102598085999401, 0.004643196240067001, 0.038904026150703, -0.036954831331968, 0.037872962653636, -0.010296520777046, -0.05675922334194101, 0.04898414760828, 0.003368964418768, -0.008266902528703001, -0.077512487769126, 0.024017140269279, 0.069010183215141, -0.10637011379003501, -0.017226429656147003, 0.060704465955495, 0.121793426573276, -0.066293217241764, 0.099732771515846, -0.006898760329931, 0.10786123573780002, -0.040646806359291, -0.072100773453712, -0.09627965837717001, 0.077347360551357, 0.053279500454664, 0.001079886453226, -0.007451749406754001, -0.049665439873933, -0.047867894172668006, -0.006548073608428 ]
0704.0057
High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems
We study the interplay of crystal field splitting and Hund coupling in a two-orbital model which captures the essential physics of systems with two electrons or holes in the e_g shell. We use single site dynamical mean field theory with a recently developed impurity solver which is able to access strong couplings and low temperatures. The fillings of the orbitals and the location of phase boundaries are computed as a function of Coulomb repulsion, exchange coupling and crystal field splitting. We find that the Hund coupling can drive the system into a novel Mott insulating phase with vanishing orbital susceptibility. Away from half-filling, the crystal field splitting can induce an orbital selective Mott state.
[ "cond-mat.str-el" ]
[ -0.076202921569347, 0.054404389113187006, 0.037658214569091006, -0.00208246614784, -0.03004758246243, -0.091187201440334, -0.0031527110841120002, 0.030375963076949, -0.003734700381755, -0.019002133980393, -0.005302667617797001, -0.017062623053789, 0.018397813662886002, -0.005707065574824001, 0.10680812597274701, 0.006412372458726, -0.021393505856394, -0.05823753029108, 0.008960298262536, 0.051124792546033006, 0.030647866427898, -0.08061156421899701, -0.027519861236214003, -0.055746320635080004, 0.031296346336603005, -0.021963465958833, 0.06698689609766001, -0.023778939619660003, -0.034439131617546005, -0.061057891696691007, 0.052918404340744005, 0.040790431201457006, -0.046503409743309, 0.00996368471533, -0.047385226935148, 0.034334905445575, 0.084011748433113, 0.019304296001791, 0.0016093346057450002, -0.014346583746373001, 0.020175538957118003, 0.075028151273727, 0.049302350729703, 0.012458906508982001, 0.017756277695298, -0.07382594048976801, 0.08826058357954, -0.041439041495323, -0.0009399796254000001, -0.11946781724691301, 0.050173200666904005, 0.054071325808763004, -0.0057954401709130006, 0.054349575191736006, 0.0027390851173540003, 0.013065856881439, -0.05027262493968, 0.015067122876644001, -0.051993064582347, -0.035240359604358, -0.0660385414958, 0.03601536527276, -0.0021519637666640003, 0.027134865522384, 0.08883774280548001, -0.008188768289983, 0.06336622685194, 0.004931454081088, -0.004846298135817001, 0.003238577395677, -0.007139825262129001, -0.025063624605536003, -0.043749444186687005, -0.132382497191429, 0.05750293657183601, 0.088217839598655, 0.0013471125857900002, 0.04233181476593, 0.07771764695644301, 0.00474832393229, -0.08587168902158701, -0.062703818082809, 0.034005742520093, -0.018444251269102003, 0.037508934736251005, -0.049902379512786005, -0.092850677669048, -0.039124198257923, -0.050537351518869005, -0.073399543762207, -0.0014106903690840002, -0.07211354374885501, -0.055224474519491, 0.048268862068653, 0.045500453561544, 0.026825075969100002, 0.04096683114767, -0.022492108866572002, -0.07263293117284701, 0.04534929618239401, 0.029079277068376003, -0.004611480049788, 0.094769798219203, 0.006259046029299001, -0.025001028552651003, -0.065044358372688, 0.14326985180377902, 0.033553846180438, -0.045228589326143, -0.0032012767624100004, 0.014753127470612, 0.072497300803661, 0.030715703964233003, 0.024633590131998003, -0.06988784670829701, 0.06502966582775101, -0.06513151526451101, 0.050056062638759, 0.076814159750938, 0.015065567567944001, -0.035770002752542, 0.031446944922208, -0.085435882210731, 0.05426147580146701, -0.039933733642101, -0.013453988358378001, -0.027216827496886004, 2.782904448058046e-33, 0.038158155977725004, 0.062883429229259, 0.044301927089691, 0.028268022462725, -0.025608608499169003, -0.021982304751873002, -0.032116003334522004, -0.029541341587901, -0.06694187223911201, 0.009139386937022001, 0.071403756737709, -0.039584025740623, 0.08433827757835301, -0.059708982706069, 0.026698293164372004, -0.088435001671314, -0.051530465483665, -0.053543202579021, 0.073736049234867, 0.065253369510173, 0.015077452175319, 0.05090794712305, -0.035317599773406004, 0.030752925202250002, -0.015030166134238002, 0.005711116362363, -0.017511578276753002, -0.052722822874784005, -0.039132572710514006, 0.044745460152626, 0.03354487195611, 0.06143901124596501, -0.067838050425052, 0.10000550746917701, -0.005525330081582, -0.008483115583658, -0.047060888260602, -0.043887201696634, 0.058199658989906006, -0.11583858728408801, -0.060948926955461, -0.13086232542991602, -0.00856062117964, -0.0033050314523270004, 0.025839196518063, -0.048142060637474005, 0.045893613249063006, -0.029146015644073, 0.045394651591777004, -0.004736266564577, 0.0063874716870480006, -0.023837765678763, -0.060122344642877, 0.058205720037221007, -0.012757377699017, -0.004394442774355, 0.0008920495747580001, -0.021052351221442, 0.040918771177530004, 0.033260725438594, 0.021502871066331003, 0.0018625777447590002, 0.008167925290763, -0.047494333237409, -0.030943196266889003, 0.058736484497785006, -0.054591044783592, -0.09521284699440001, -0.005122447852045, 0.10963302105665201, 0.019561909139156, 0.040511693805456, 0.049254026263952005, -0.056885067373514, 0.03715943172574, 0.001304611214436, 0.10832887142896601, -0.08942796289920801, 0.09385166317224501, 0.052884995937347, 0.035260926932096, -0.05891054123640001, 0.03961019963026, -0.042391847819089, -0.044913310557603, -0.03177722916007, -0.048272706568241, -0.016075979918241, -0.056546177715063005, -0.000901399645954, 0.021419761702418, -0.051381178200244, -0.007340507116168, 0.022994631901383, 0.015159689821302, -4.0133559148461616e-33, -0.0034599401988080003, -0.038229547441005006, 0.095287278294563, -0.055953599512577, -0.038608681410551, 0.025763511657714, -0.019815176725387, -0.017057346180081, 0.06792008131742401, 0.014159232378005001, 0.0034043004270640003, 0.027181478217244003, 0.033107120543718005, -0.058408513665199, 0.005795804783701001, -0.023733921349048, 0.015456567518413001, -0.047821331769227, 0.170224830508232, 0.035152290016412, 0.061907742172479005, 0.008532240055501001, -0.024846583604812, 0.005606807302683, -0.02112434245646, 0.010440325364470001, 0.026053287088871002, -0.033132500946521, 0.039998378604650005, 0.06896740198135301, -0.048244230449199, -0.007213976234197001, -0.033867131918668004, 0.034725867211818, -0.157192975282669, 0.046833500266075, -0.044624831527471, 0.031119702383875004, -0.020797671750187003, -0.01997753418982, -0.025446733459830003, -0.08690096437931001, -0.018141338601708003, 0.03616938367486, 0.08303289860486901, 0.0034188723657280003, -0.0036185828503220003, 0.09107070416212, 0.016731901094317003, 0.003995483741164, -0.039348531514406, 0.001297330600209, -0.001292682718485, -0.043085522949695004, -0.074082478880882, -0.004942720290273, -0.005136510357260001, 0.020734839141368002, -0.001308547449298, -0.128577321767807, 0.007803546730428001, 0.00626135803759, 0.013686866499483, 0.045508738607168, -0.041913565248250004, -0.072348698973655, 0.012580208480358, -0.030128292739391, 0.060508292168378004, 0.012809126637876, -0.113462850451469, 0.020867984741926002, 0.0052210418507450005, -0.064849853515625, 0.10097239166498101, 0.033109545707702005, -0.015722000971436, -0.157898426055908, 0.050324227660894005, -0.027198107913136003, -0.022207366302609003, 0.053304769098758004, -0.044576231390237, -0.05470137298107101, 0.077553004026412, -0.042707003653049004, -0.075639903545379, 0.088001437485218, 0.0053539713844650005, -0.049660246819257, -0.050873257219791, 0.035862650722265, 0.087868444621562, 0.0006763212149960001, 0.014601843431591, -4.853199442322875e-8, 0.09716124087572, 0.00564516056329, 0.045947212725877006, 0.07747446745634001, 0.015822757035493, -0.009847620502114001, -0.026176709681749, -0.06958265602588601, 0.049249090254306, -0.008353351615369, -0.003451101249083, 0.030099436640739004, -0.02823725901544, -0.115833587944507, 0.060971029102802006, 0.012234733439981, 0.015691246837377, -0.032581392675638005, -0.026350131258368003, 0.027565512806177, 0.061720475554466005, -0.051132809370756004, 0.10193501412868501, 0.043535929173231, 0.012241736985743, 0.034717991948127004, -0.026305567473173003, 0.016843000426888, -0.058430619537830006, 0.048337187618017, -0.008534620516002001, -0.041040621697902006, 0.05585028231143901, 0.005200964398682, -0.039783701300621005, 0.00789472926408, 0.044072810560464006, 0.035807788372039004, 0.023529317229986003, -0.0009630231652400001, 0.0010548713617020001, -0.007809004746377001, 0.0951634272933, 0.032702274620532004, -0.01822922937572, 0.088125936686992, -0.057002134621143, 0.060013737529516005, 0.08447829633951101, 0.013835258781909, -0.011448670178651001, 0.027074132114648004, -0.029640195891261004, 0.012659869156777002, -0.097900010645389, -0.030570862814784, -0.034861925989389, 0.01919756270945, 0.10702271014451901, 0.037580076605081, -0.0036522031296040004, -0.050633959472179, -0.069443769752979, -0.016848046332597 ]
0704.0058
Intelligent Life in Cosmology
I shall present three arguments for the proposition that intelligent life is very rare in the universe. First, I shall summarize the consensus opinion of the founders of the Modern Synthesis (Simpson, Dobzhanski, and Mayr) that the evolution of intelligent life is exceedingly improbable. Second, I shall develop the Fermi Paradox: if they existed they'd be here. Third, I shall show that if intelligent life were too common, it would use up all available resources and die out. But I shall show that the quantum mechanical principle of unitarity (actually a form of teleology!) requires intelligent life to survive to the end of time. Finally, I shall argue that, if the universe is indeed accelerating, then survival to the end of time requires that intelligent life, though rare, to have evolved several times in the visible universe. I shall argue that the acceleration is a consequence of the excess of matter over antimatter in the universe. I shall suggest experiments to test these claims.
[ "physics.pop-ph" ]
[ -0.13395635783672302, -0.055920187383890006, 0.040150228887796006, 0.049291905015707, 0.055830992758274, 0.021517880260944002, -0.012027504853904001, -0.029982520267367002, -0.055303286761045005, 0.040560949593782, 0.06675521284341801, -0.066540293395519, -0.06097257882356601, -0.00872457306832, -0.032611913979053005, -0.005108705721795, 0.004759098868817001, -0.112103477120399, -0.006599579006433, -0.004961709026247, -0.045339476317167005, 0.046140663325786, 0.060050014406442004, 0.037669818848371006, -0.08206672966480201, -0.036605160683393, -0.015703488141298003, 0.041070494800806004, -0.005983410403132001, 0.009991051629185, 0.069592833518981, 0.044215876609086005, 0.032392304390668, -0.06536813080310801, 0.022268664091825003, 0.014919783920049001, 0.072046726942062, -0.037056364119052006, 0.09610392153263, -0.004777987487614, -0.009238554164767, -0.093858540058135, -0.08952125161886201, 0.031828865408897004, 0.040293604135513, -0.050334710627794, 0.0034000086598090003, -0.08447478711605001, -0.049837633967399, -0.033455476164817005, -0.166569590568542, 0.019426206126809002, 0.018403569236397, 0.01723307557404, 0.010670346207916001, 0.030680844560265003, -0.000783594616223, -0.04809520021080901, 0.035481892526149, -0.10035787522792801, 0.044971801340579, -0.000778648362029, 0.05196814239025101, -0.024654496461153003, 0.021492453292012003, 0.060093253850936, -0.014903523027896002, 0.004400550853461, 0.04939716309309, 0.06970083713531401, -0.027956010773777, 0.07644392549991601, -0.068131566047668, 0.058060314506292, -0.013218204490840001, -0.031856615096330004, 0.015266543254256, -0.07019013166427601, 0.017121411859989, -0.008177100680768, -0.004359838087111, -0.03611335158348, -0.03948226943612, -0.003791205352172, -0.023322708904743, -0.052810881286859006, -0.087129652500152, 0.07574313133955, -0.005852789152413, -0.005037570837885, 0.029934726655483003, -0.008650876581668, 0.013757328502833002, -0.024916999042034003, 0.10676104575395501, 0.12178912758827201, -0.07142855226993501, -0.054772920906543, 0.022454936057329, -0.008266093209385001, 0.011887980625033, -0.0430379062891, -0.022890718653798003, 0.10012365877628301, 0.023982021957635002, 0.024988930672407, -0.0016183478292070002, -0.005408172961324001, 0.067220196127891, 0.05853741616010601, 0.028021654114127003, -0.031207611784338004, 0.045254878699779004, 0.018291547894477, -0.06396600604057301, -0.043673671782016005, 0.050678323954343005, 0.09261431545019101, -0.014348153024911001, 0.047459337860345, 0.023276759311556, 0.029043374583125003, 0.010533586144447, 0.013669535517692, 0.032547831535339, -0.058777440339326005, -0.011951397173106, 4.174056278179137e-33, -0.010817882604897001, -0.029005249962210003, 0.029713103547692004, -0.017767423763871002, -0.023783899843692002, -0.037004310637712, -0.02640419639647, 0.009412180632352002, 0.041907988488674004, -0.011193150654435002, -0.065089337527751, 0.017616022378206, 0.031058054417371004, 0.024307247251272, -0.043146807700395, 0.018796037882566, -0.087879531085491, 0.025121744722127002, 0.048672311007976005, -0.057847302407026006, 0.012741390615701, 0.013236195780336002, -0.051833387464284, -0.09533840417861901, 0.023229820653796, 0.007450392004102001, 0.06821984052658, -0.032616414129734005, -0.0032059247605500003, -0.027380192652344003, -0.027876099571585003, 0.05714556574821401, -0.035550009459257, 0.031590409576892, -0.031849432736635, 0.034635990858078, -0.028396753594279, 0.018380824476480002, -0.08659646660089401, 0.057164657860994006, -0.016181157901883, 0.104804545640945, 0.01908448152244, -0.061982493847608004, 0.075821474194526, 0.009225879795849, 0.09734882414340901, 0.014981858432292001, -0.017388254404067, 0.012456924654543, -0.00587749062106, -0.036330115050077, -0.042603597044944, 0.030650123953819, -0.019741365686058002, -0.034512244164943, -0.043566673994064005, 0.044612225145101006, 0.01449600700289, 0.029693584889173, -0.10325073450803701, -0.035752780735492005, 0.05161373689770601, 0.067705236375331, -0.02854873239994, 0.012261531315743, -0.042143575847148, -0.010827855207026001, -0.018376968801021, 0.041520088911056005, 0.072219438850879, -0.038958340883255005, 0.00005707429954782129, -0.034190118312835, 0.003129598218947, -0.03444941714406, 0.012612243182957, -0.060480397194623, -0.006223996635526001, -0.06277263909578301, 0.074722327291965, -0.062206670641899005, 0.0015819218242540001, -0.05824364349246001, 0.07578743994235901, -0.024524921551346, 0.004235108848661, -0.041771870106458005, 0.018502155318856, -0.042474772781133006, 0.049855392426252004, 0.015178712084889, 0.042244307696819, -0.007260592188686001, -0.087034299969673, -5.426914320332856e-33, 0.049150165170431005, -0.039355918765068006, 0.00009312872134614737, 0.022887481376528, -0.024715557694435, 0.060645103454589004, -0.077246613800525, 0.001581496908329, -0.063861884176731, -0.033888820558786004, 0.020496627315878, 0.038014952093362, 0.038143463432788, -0.029130458831787002, 0.011867184191942002, -0.0053268363699310005, 0.017316207289695, 0.034953907132148, 0.033273898065090006, -0.028729643672704003, 0.039537288248538006, -0.031788147985935, -0.088376782834529, -0.021363127976655003, 0.078028813004493, 0.09408813714981001, 0.009175900369882, 0.017808167263865003, -0.00136536010541, 0.06547453999519301, -0.042033795267343, -0.086309477686882, 0.005617744289338001, -0.014800400473177001, 0.07880793511867501, 0.071502573788166, 0.052306484431028005, 0.022911038249731, -0.066465511918067, -0.0072750160470600005, -0.038677774369716006, 0.090341344475746, -0.006300607696175, -0.040166899561882005, -0.024325540289282, -0.043901324272155005, -0.005384106189012, 0.034029483795166, -0.076065726578235, 0.068870566785335, 0.040728133171796, -0.026811091229319003, -0.07209718972444501, -0.056683190166950004, -0.026802487671375, 0.028434293344616002, 0.046379189938306004, 0.062969237565994, 0.026112327352166002, 0.06091137230396201, 0.006557187065482001, 0.028672380372881, 0.062910169363021, 0.016850812360644, 0.047745343297719005, -0.031325746327638, 0.008968378417193001, 0.127206906676292, -0.030441725626587004, -0.080506615340709, 0.05723188817501, -0.0065823104232540005, -0.033902913331985, -0.054250489920377, 0.072461865842342, 0.157909005880355, 0.09599450975656501, -0.00048558882554000003, 0.034652546048164, 0.031739443540573, 0.033843856304883, -0.060979895293712005, 0.11537074297666501, -0.007718631532043001, -0.06587509065866401, -0.07876319438219001, -0.061943449079990005, -0.013439233414828002, 0.031831707805395, 0.018576852977275002, -0.055250100791454, -0.048589076846838004, 0.047548357397317005, 0.004928308539092, 0.000278956547845, -5.712004735869414e-8, 0.030457301065325, 0.038582284003496004, 0.040776848793029, 0.071728453040122, 0.0012052205856880002, -0.000559273234102, 0.023759096860885003, -0.035270236432552005, -0.017319120466709, -0.007551946677267001, 0.102157801389694, 0.01858477666974, 0.032545171678066004, 0.155941918492317, 0.024103652685880002, 0.030791731551289003, -0.07061259448528201, -0.079903610050678, -0.047251146286726005, 0.10136491060256901, -0.00250308169052, 0.036085698753595005, -0.009820188395678001, -0.053711239248514, -0.078055649995803, 0.015675742179155003, -0.00500602228567, 0.026185512542724002, -0.031241266056895003, -0.012102121487259001, -0.11609786748886101, -0.044756844639778005, -0.033813286572694, 0.026745179668068, -0.031347684562206005, -0.041521642357110006, -0.06690053641796101, -0.015196580439805001, -0.043815780431032, 0.055434104055166, 0.007856218144297001, 0.020272070541977, -0.09292015433311401, -0.044073931872844, 0.143728479743003, -0.115442380309104, -0.078852854669094, -0.04931154474616, -0.045101162046194, 0.051990043371915005, -0.020745635032653, -0.026750603690743002, -0.020397184416651, -0.082493543624877, 0.05534790456295, -0.008588122203946, -0.059182848781347004, 0.091538749635219, -0.034545432776212005, 0.06968349963426501, 0.125741347670555, -0.066075339913368, 0.008509825915098001, -0.0036713823210440004 ]
0704.0059
The Mass and Radius of the Unseen M-Dwarf Companion in the Single-Lined Eclipsing Binary HAT-TR-205-013
We derive masses and radii for both components in the single-lined eclipsing binary HAT-TR-205-013, which consists of a F7V primary and a late M-dwarf secondary. The system's period is short, $P=2.230736 \pm 0.000010$ days, with an orbit indistinguishable from circular, $e=0.012 \pm 0.021$. We demonstrate generally that the surface gravity of the secondary star in a single-lined binary undergoing total eclipses can be derived from characteristics of the light curve and spectroscopic orbit. This constrains the secondary to a unique line in the mass-radius diagram with $M/R^2$ = constant. For HAT-TR-205-013, we assume the orbit has been tidally circularized, and that the primary's rotation has been synchronized and aligned with the orbital axis. Our observed line broadening, $V_{\rm rot} \sin i_{\rm rot} = 28.9 \pm 1.0$ \kms, gives a primary radius of $R_{\rm A} = 1.28 \pm 0.04$ \rsun. Our light curve analysis leads to the radius of the secondary, $R_{\rm B} = 0.167 \pm 0.006$ \rsun, and the semimajor axis of the orbit, $a = 7.54 \pm 0.30 \rsun = 0.0351 \pm 0.0014$ AU. Our single-lined spectroscopic orbit and the semimajor axis then yield the individual masses, $M_{\rm B} = 0.124 \pm 0.010$ \msun and $M_{\rm A} = 1.04 \pm 0.13$ \msun. Our result for HAT-TR-205-013 B lies above the theoretical mass-radius models from the Lyon group, consistent with results from double-lined eclipsing binaries. The method we describe offers the opportunity to study the very low end of the stellar mass-radius relation.
[ "astro-ph" ]
[ -0.045975044369697, 0.059269919991493, 0.021079787984490003, 0.055216066539287005, 0.023084688931703002, -0.07973761111497801, -0.043733026832342, 0.049271933734416004, 0.012477885931730002, -0.026046453043818002, 0.013765927404165, -0.036978870630264005, -0.018911184743046, -0.11470531672239301, 0.026802496984601003, 0.0038116157520560003, -0.052026163786649, 0.008758683688938, 0.050839710980653006, 0.078045949339866, -0.043725255876779, -0.045743186026811, -0.068504005670547, 0.063346222043037, 0.001420077052898, 0.030898844823241, 0.014469265006482001, 0.0035853108856820004, -0.075572617352008, -0.099829457700252, -0.042587127536535006, 0.061760034412145004, 0.011652663350105001, 0.022483306005597, 0.030808672308921002, -0.000929740490391, 0.025499237701296, -0.035905785858631, -0.028914023190736004, -0.020705046132206, -0.001834463910199, -0.027160620316863, 0.052287518978118, -0.048738874495029005, -0.006583503913134001, -0.07981263101100901, -0.070669591426849, -0.004288057796657, -0.037154540419578004, 0.010274679400026, 0.06222977861762, -0.00002836530984495766, 0.0014159444253890002, 0.041632916778326, 0.040512185543775, 0.030380440875887003, -0.004561211913824001, -0.081987455487251, 0.022414369508624, -0.026184411719441, 0.07762611657381001, 0.012516634538769, -0.07332621514797201, -0.00209646555595, -0.07413465529680201, -0.067852929234504, -0.046823415905237004, -0.07847219705581601, -0.028248552232980003, 0.044507067650556, -0.043465085327625004, 0.048229608684778005, -0.074889473617076, -0.044309347867965004, 0.025819100439548003, 0.010698611848056, 0.039595242589712004, 0.042263992130756003, 0.042174734175205, -0.034452959895133, -0.019213298335671, 0.06829804182052601, -0.008999250829219001, 0.020247554406523, -0.012820425443351002, 0.021002808585762003, -0.042187623679637, 0.020119400694966, 0.009826287627220001, 0.07573878020048101, 0.034688554704189, -0.01569739729166, -0.053056865930557, -0.0030368214938780004, -0.02076051197946, -0.009824515320360001, 0.012391592375934, -0.07607039064168901, 0.07195290923118501, 0.08977621048688801, 0.012703298591077002, -0.019164603203535, 0.0050572459585960005, 0.072444230318069, 0.054289966821670005, 0.06874716281890801, 0.093195050954818, -0.026889640837907004, -0.034203074872493, -0.012491537258028, 0.075390227138996, -0.031372591853141, 0.008281214162707001, -0.061807420104742, 0.021437296643853, 0.08736715465784001, 0.032847102731466, 0.099392250180244, 0.004952145740389001, 0.036538604646921005, -0.010367267765104, 0.043002713471651, 0.024705961346626, 0.100088246166706, 0.013199241831898, 0.018719034269452, -0.024676617234945002, 3.5135197834179405e-34, 0.032886743545532005, 0.024951195344328003, 0.01633028127253, 0.020683106034994, -0.055130615830421004, 0.031973250210285, -0.048633608967065006, 0.114096499979496, -0.030148761346936004, -0.044294163584709, -0.057608593255281004, -0.10042256116867, 0.07799091190099701, -0.017215628176927, -0.025676343590021, -0.036366209387779, 0.09880313277244501, 0.091920338571071, -0.025060588493943003, -0.004180551506578, -0.07315220683813001, -0.010477454401552, -0.052527226507663005, -0.101547881960868, 0.0038495387416330002, 0.06167741864919601, 0.07458812743425301, -0.020313184708356, -0.012425879947841001, 0.020232217386364, 0.037347637116909006, -0.044317033141851, 0.084589526057243, 0.06823494285345001, -0.10694575309753401, -0.008536309003829, -0.01787512935698, -0.029128421097993, -0.058952815830707, 0.025359131395816, 0.035631157457828, 0.05658686161041201, 0.000631509115919, -0.022034168243408002, -0.043447062373161004, 0.010403959080576002, 0.11191007494926401, -0.003609744133427, 0.06267838180065101, 0.07845218479633301, 0.042632360011339, 0.075391910970211, -0.047521032392978, -0.06151147931814101, -0.018677579239010002, 0.070674747228622, 0.00198782980442, -0.053041525185108004, -0.058233670890331005, 0.064848475158214, 0.066743627190589, 0.028704995289444, 0.0036138086579740004, -0.041954450309276005, 0.007490363437682001, 0.094991154968738, -0.049234144389629, -0.042090099304914, -0.05499079078435801, 0.015700805932283003, -0.099869735538959, -0.01018219999969, 0.10350947827100701, -0.016607636585831, 0.07120280712842901, -0.004613561090081, 0.070808753371238, -0.027522636577486003, 0.03975935280323, 0.023269580677151003, -0.072073780000209, -0.009478706866502, 0.030339650809764, -0.153732687234878, -0.10317756980657501, -0.043173320591449, -0.011759407818317, -0.015207898803055002, -0.018952161073684002, -0.004530956037342, 0.07415347546339, -0.015042132697999, -0.072154611349105, 0.025563947856426003, -0.056259453296661, -2.3689559491259014e-33, -0.027652740478515, 0.02767240256071, -0.017443519085645003, 0.002358661498874, 0.01680183596909, 0.05282213166356001, -0.06302260607481, 0.015313155017793002, -0.13656225800514202, -0.063760541379451, 0.036240648478269, 0.038141470402479005, -0.06070257723331401, -0.017304074019193, 0.10692493617534601, -0.013967392966151002, -0.058320231735706, 0.0819031894207, -0.005089634098112, 0.043668482452631004, 0.097958266735076, -0.001165516092441, 0.017946029081940002, -0.06883913278579701, 0.00696893967688, -0.014617138542234, 0.082572802901268, -0.021475246176123, -0.021607359871268002, 0.030285099521279002, -0.005054408684372001, -0.06772181391716, -0.043543469160795004, 0.058666672557592, -0.004010023083537, 0.034293174743652004, -0.094964653253555, -0.033832121640443004, -0.031080096960067003, 0.043473839759826, -0.045633148401975, 0.045554310083389005, 0.022651828825473, -0.051761489361524006, 0.008004273287951, -0.016065070405602, 0.07219611108303, 0.14418664574623102, 0.07419842481613101, -0.015039328485727001, -0.076540753245353, -0.032000616192817, -0.018836243078112002, 0.09533871710300401, -0.034458335489034, 0.033173143863677, -0.044339843094348005, 0.079091109335422, -0.008022939786314, -0.043736528605222, 0.01238617952913, -0.051023375242948005, 0.018525835126638003, -0.055084656924009004, 0.023260790854692, -0.08868096768856, 0.037609703838825004, -0.043435335159301, -0.044667996466159, 0.045924894511699, 0.009108590893447, -0.032901406288146, -0.03197444602847, -0.015298499725759002, 0.08483861386775901, 0.026793159544467003, 0.090251140296459, -0.132718622684478, -0.009460033848881002, -0.027510583400726003, -0.08869080990552901, 0.002532912651076, 0.065721377730369, 0.0031586149707430004, 0.017896423116326002, 0.004781227558851, -0.03736301138997, -0.005336867645382001, -0.012393542565405001, 0.06955105811357401, -0.030474994331598, 0.061331287026405, -0.021081129088997, 0.012971783056855, 0.029306745156645, -5.419231996484086e-8, 0.039078239351511, 0.008937722072005001, -0.035425901412963, 0.044937726110219005, 0.024968961253762002, -0.001898674876429, 0.001697406289167, -0.018392218276858, -0.06025818735361001, 0.0010308638447890002, -0.013730276376008, 0.010335186496376, -0.035248987376689, -0.031279914081096004, 0.006805396638810001, 0.017727209255099, -0.05584838241338701, -0.049009434878826, -0.061174511909484, 0.100778348743915, 0.012370618991553001, 0.014808852225542, 0.01779044419527, -0.06776662915945, -0.027276882901787, -0.0023123971186570003, 0.002335359808057, 0.146649360656738, -0.019898124039173, -0.028291106224060003, 0.045284550637006, 0.044872496277093006, -0.064939901232719, -0.046996146440505, -0.062064118683338006, -0.031321667134761005, -0.09714652597904201, 0.09111898392438801, 0.079728588461875, 0.11573181301355301, 0.066465198993682, 0.020953169092535, 0.012915287166833002, 0.019505916163325, -0.00009791701450012626, 0.08420824259519501, -0.010789155028760001, -0.061677180230617, -0.084644891321659, 0.000042601008317433304, -0.009524586610496, -0.013676888309419, -0.011155638843774001, 0.007400540634989, -0.047001603990793006, -0.0026186483446500003, -0.045379631221294, 0.035284858196973, -0.029320497065782002, 0.06976437568664501, 0.012674941681325, -0.065924204885959, -0.031542904675006, -0.032894738018512004 ]
0704.0060
Coulomb excitation of unstable nuclei at intermediate energies
We investigate the Coulomb excitation of low-lying states of unstable nuclei in intermediate energy collisions ($E_{lab}\sim10-500$ MeV/nucleon). It is shown that the cross sections for the $E1$ and $E2$ transitions are larger at lower energies, much less than 10 MeV/nucleon. Retardation effects and Coulomb distortion are found to be both relevant for energies as low as 10 MeV/nucleon and as high as 500 MeV/nucleon. Implications for studies at radioactive beam facilities are discussed.
[ "nucl-th" ]
[ 0.038173973560333, 0.017658626660704002, -0.024049587547779003, -0.006167754996567, 0.005727082956582001, -0.05170127376914, -0.007744867820292001, 0.088162094354629, -0.046548776328563, -0.0049046617932610006, 0.015375826507806, -0.017014682292938, -0.038382835686206006, -0.029744273051619002, 0.034529972821474006, -0.032720547169446, 0.039630044251680006, 0.012763821519911001, -0.066027410328388, 0.050008248537778, -0.057026807218790006, -0.00012783431157, 0.012054901570081001, -0.010692342184484002, 0.008697533048689001, -0.039440967142581, -0.0075380303896960005, -0.052575755864381006, 0.031285624951124004, -0.061042983084917006, 0.09062997996807001, -0.050390291959047005, -0.018128789961338, 0.024908496066927, 0.09664158523082701, 0.024225307628512, 0.07602223008871001, -0.06103239208459801, -0.016974056139588002, -0.022402387112379, -0.035932626575231004, 0.12480124086141502, 0.01981865055859, 0.04876120015978801, -0.025209497660398, 0.023826176300644, 0.022807808592915, -0.08015420287847501, -0.057955361902713005, -0.021070202812552, 0.062285766005516004, -0.030786026269197003, 0.02644102089107, 0.022425837814807, 0.026966406032443, -0.005366522353142, 0.010162940248847, -0.010716244578361001, 0.032147623598575, 0.015055741183459, 0.014864631928503002, -0.029327809810638, -0.011224337853491001, -0.032954867929220005, 0.047899324446916004, -0.011824221350252, 0.11930919438600501, -0.0036497539840630003, -0.043424382805824, 0.070676259696483, 0.051545254886150006, -0.060858901590108004, -0.11028961092233601, -0.066082954406738, -0.053514737635850004, -0.004638305399566001, -0.030452534556388, -0.039637830108404, 0.049699395895004, 0.064471058547496, -0.065260060131549, -0.06450081616640001, -0.07088254392147, -0.167128771543502, -0.03551272675395, 0.011991275474429, -0.021250814199447, 0.02035354822874, 0.035418018698692, 0.044820092618465, 0.009149382822215, -0.013931670226156, 0.074462860822677, 0.0035427403636270004, 0.008524702861905, 0.059406142681837006, 0.085808031260967, -0.04737143591046301, 0.076145134866237, -0.027139890938997, 0.08307871222496001, 0.051644317805767004, -0.010976186953485002, 0.066970698535442, 0.007161297835409, 0.003366872668266, 0.122549168765544, 0.072745934128761, -0.062030471861362006, 0.077130027115345, 0.027557510882616, -0.045006562024354005, -0.003000851022079, -0.036327335983514, -0.032277982681989004, 0.025624914094805003, 0.050947766751050005, 0.07585507631301801, -0.0008927410235620001, -0.06431353092193601, 0.022287933155894002, -0.002081549027934, -0.011245246976613001, 0.015496150590479001, -0.029517615213990003, -0.06137033179402301, -0.057438906282186, 4.8348042241702376e-33, -0.027336945757269002, -0.022877646610140003, -0.072856776416301, 0.043293770402669005, -0.053101260215044, 0.002962286351248, -0.038515999913215006, -0.040891923010349, -0.053732655942440005, -0.062758609652519, -0.029103139415383002, -0.011276650242507002, 0.156522378325462, -0.049236074090003, -0.103375479578971, -0.044158846139907004, -0.006064015440642, 0.015128036960959, -0.001732680015265, 0.030967136844992003, -0.001004480291157, 0.016414210200309, 0.034859813749790004, 0.02250044606626, -0.002762511139735, 0.050529986619949, -0.05582671239972101, -0.001866853563115, -0.027046009898185, -0.015245091170072, 0.014757702127099, 0.066824063658714, 0.035368517041206006, 0.044443100690841, -0.029835337772965, 0.033162780106067005, -0.062020931392908006, -0.010346423834562002, 0.043531768023967, -0.035842351615428, 0.021478636190295, -0.032977763563394005, -0.031603712588548, 0.017447849735617003, 0.095350682735443, -0.06277232617139801, 0.07332208007574001, -0.027590870857238003, -0.045765094459056, -0.051663365215063005, -0.0042446753941470005, 0.047948975116014, -0.072502061724662, 0.023754425346851002, 0.10509213060140601, 0.019107071682810003, 0.11620754748582801, 0.018953436985611003, 0.038038719445466, 0.020492766052484002, 0.028924442827701003, 0.013047585263848001, 0.027602965012192, -0.020047916099429002, 0.008248172700405001, 0.035891667008399006, -0.113588400185108, -0.08062122762203201, 0.05966325104236601, 0.043744757771492004, 0.027345666661858004, -0.008671819232404001, 0.07098838686943, -0.087485209107398, 0.07268159836530601, 0.053264517337083005, -0.06276230514049501, -0.045721296221017005, -0.03154818713665, 0.037224449217319, -0.00128484214656, -0.05206229537725401, -0.038196127861738004, -0.021840799599885, 0.029820503666996002, -0.020673742517828, -0.066344417631626, 0.025843802839517004, -0.04710910469293501, 0.032104901969432005, 0.08056829869747101, -0.036009959876537004, 0.07192033529281601, -0.059860523790121, -0.023830503225326, -5.470200797775932e-33, 0.00010729939094700001, 0.04916326701641, 0.012716303579509002, 0.047073394060134006, -0.025946794077754003, 0.037817806005477, 0.006947455462068, -0.055545546114444004, -0.038747895509004, -0.015990681946277, 0.015360359102487002, -0.042015232145786, -0.10249445587396601, -0.014994334429502001, 0.007934965193271, -0.004558335989713, 0.09864198416471401, 0.07808415591716701, 0.12433376163244202, -0.011873734183609002, 0.07676533609628601, -0.028388142585754002, 0.010064727626740001, -0.017765028402209, 0.061196431517601006, 0.008509312756359001, 0.009234526194632001, -0.11723715066909701, 0.041881978511810004, -0.076967976987361, -0.10110417008399901, 0.011496379040181, 0.017369043081998003, 0.026089929044246, 0.022975206375122, -0.021041946485638, -0.005240352358669, -0.05075054988265, 0.005286292638629, -0.048796918243169, 0.024216236546635003, 0.12437301129102701, 0.007612310349941, 0.01361409574747, -0.017897989600896003, -0.016862042248249002, -0.083227172493934, 0.080039985477924, -0.014520864002406, 0.018031632527709, -0.029379319399595004, -0.025237485766410002, -0.033015709370374, 0.021525291725993, 0.002724702004343, 0.022289941087365, 0.004980079829692, 0.083192855119705, 0.038857530802488, -0.048337489366531004, -0.065247155725955, -0.012379391118884002, 0.026463693007826004, 0.02378530986607, 0.010150795802474001, 0.032786130905151, -0.044199079275131004, 0.018829502165317, -0.029008129611611002, -0.01370664127171, -0.050426572561264, -0.022434223443269, 0.06668941676616601, -0.06591922044754, -0.043540209531784, -0.041174933314323, 0.053918767720460004, -0.12237600237131101, 0.08665053546428601, -0.079090669751167, -0.12873576581478102, 0.08187139779329301, -0.06256736814975701, -0.001396142644807, 0.039476867765188, -0.050213366746902, -0.09735565632581701, -0.025467192754149003, -0.02052485011518, -0.07211282849311801, 0.005007928702980001, -0.046593479812145004, 0.063584081828594, -0.026574278250336, 0.083345502614974, -4.255716135048715e-8, 0.07074612379074001, -0.03299393877387, -0.04542265459895101, 0.013892268761992002, 0.17265510559082, 0.065377578139305, -0.065240710973739, -0.0006310480530370001, 0.041551832109689005, 0.05799326300621001, 0.059270892292261006, -0.043383609503507004, 0.044202625751495, -0.028184676542878002, 0.015546490438282, 0.030158368870615, -0.033049549907445006, -0.06934380531311, -0.001301678013987, -0.00006500830932054669, -0.012711755931377001, 0.016549436375498, 0.04464412108063601, 0.075703993439674, -0.09691309928894001, 0.090520523488521, 0.032720997929573004, 0.039889473468065005, -0.052033573389053005, -0.131209626793861, -0.012722433544695001, 0.026693986728787002, 0.022140124812722, -0.020172609016299, -0.017097158357501002, 0.00729895569384, 0.030767044052481003, 0.048732202500104, -0.019286271184682003, 0.045336976647377, -0.041624598205089, -0.025037832558155, 0.015338756144046001, 0.031817641109228, -0.026783464476466002, 0.049104422330856004, -0.059866413474082, 0.0025295463856300003, -0.043939344584941004, 0.008575762622058001, -0.035587407648563, 0.035662412643432, -0.04260826855897901, -0.048335291445255, -0.07070792466402001, -0.05516502633690801, -0.021658325567841002, -0.017277644947171003, -0.008495571091771001, 0.06934879720211, 0.11372520029544801, -0.036694049835205, 0.009703045710921001, -0.045280918478965 ]
0704.0061
Intersection Bodies and Generalized Cosine Transforms
Intersection bodies represent a remarkable class of geometric objects associated with sections of star bodies and invoking Radon transforms, generalized cosine transforms, and the relevant Fourier analysis. The main focus of this article is interrelation between generalized cosine transforms of different kinds in the context of their application to investigation of a certain family of intersection bodies, which we call $\lam$-intersection bodies. The latter include $k$-intersection bodies (in the sense of A. Koldobsky) and unit balls of finite-dimensional subspaces of $L_p$-spaces. In particular, we show that restrictions onto lower dimensional subspaces of the spherical Radon transforms and the generalized cosine transforms preserve their integral-geometric structure. We apply this result to the study of sections of $\lam$-intersection bodies. New characterizations of this class of bodies are obtained and examples are given. We also review some known facts and give them new proofs.
[ "math.FA" ]
[ -0.004937740042805, 0.07925982773303901, 0.035293690860271, -0.055272966623306004, 0.026721466332674002, -0.015339032746851002, 0.05466185510158501, 0.0073215239681300006, 0.041646502912044005, -0.0070978244766590004, 0.029367111623287003, 0.018822144716978, -0.053394179791212006, -0.037878733128309, -0.027016904205083, -0.11702206730842502, -0.067144237458705, 0.038389932364225006, -0.046123821288347, 0.086686231195926, -0.013044611550867, 0.011332452297210001, 0.031791012734174, 0.001265152241103, 0.005618314724415, -0.006547455675899001, 0.018373630940914, -0.0191844496876, 0.036078140139579, -0.003966257441788, 0.029973842203617002, -0.053003259003162, -0.037549436092376, 0.0066531011834740006, -0.018725605681538002, -0.025836724787950002, 0.052092682570219005, 0.007913463748991, 0.045178711414337006, 0.042142812162637, 0.007758766412734001, 0.020731793716549003, 0.052286021411418006, 0.001257058582268, 0.038936503231525005, 0.038756165653467005, -0.064010307192802, -0.052988272160291006, -0.089257970452308, -0.098271697759628, -0.018097642809152003, -0.013082932680845, -0.070930793881416, 0.039639752358198006, -0.042422052472829, 0.017606757581233, -0.0300874710083, -0.028793951496481004, 0.11920116841793, -0.013236074708402, 0.029082683846354002, -0.05904320627450901, 0.014442309737205, 0.012062470428645, -0.08253209292888601, -0.047080907970666004, 0.015782969072461, -0.0013540106592690002, -0.07069758325815201, 0.031704816967248, -0.10262473672628401, 0.06305775046348501, -0.069469764828681, -0.007647471968084, -0.007300578523427001, -0.011349732987582, -0.041566383093595005, -0.0011579616693770001, -0.009083622135221, 0.015358132310211001, 0.032822549343109006, -0.018489867448806003, -0.047853633761405, -0.005278982687741, -0.01590765826404, 0.06697161495685501, -0.134261965751647, -0.00017852179007600002, -0.044879123568534005, -0.033010803163051, -0.018734289333224, -0.103480204939842, 0.054352875798940006, 0.002082376275211, -0.058673445135354, -0.05948240309953601, -0.011358896270394, 0.047177437692880006, 0.11447416990995402, 0.031651999801397004, -0.02265078574419, -0.07089458405971501, 0.025515101850032, 0.070451498031616, 0.000445968122221, 0.020813431590795, 0.019557293504476003, -0.036033667623996006, 0.002047312911599, -0.032227657735347005, 0.056470125913619, -0.032168451696634, -0.061451323330402007, -0.079479157924652, -0.056463818997144005, 0.011350732296705001, 0.10115297883749001, 0.066781803965568, 0.04564616829156801, -0.045660242438316005, 0.078217439353466, 0.028226695954799003, 0.030094159767031003, 0.053008642047643, 0.029688859358429003, 0.009488506242632, -0.012924739159643001, 8.760527769846566e-34, -0.006554055027663001, 0.063442423939704, -0.013099155388772, 0.059380866587162004, -0.028256190940737003, -0.018926098942756, -0.051819842308759, 0.039133206009864, 0.10057047009468001, -0.008809194900095001, -0.022361880168318003, 0.051053009927272006, 0.048720661550760005, -0.027726838365197, 0.075220867991447, 0.054473485797643, 0.063934579491615, 0.024210978299379002, -0.011884430423378, -0.028034979477524, -0.026831565424799003, 0.07444215565919801, -0.012586000375449002, 0.049047619104385, 0.001274858834221, 0.10665315389633101, -0.06063064932823101, -0.07134224474430001, -0.042037233710289, 0.004304350353777, -0.011623352766036, 0.07177126407623201, 0.086757533252239, 0.076263301074504, 0.049164924770593005, 0.041856177151203, -0.092985250055789, -0.032247696071863, -0.094983763992786, -0.026428665965795003, 0.051968410611152004, -0.052294921129941004, -0.044580202549695004, -0.007195209618657001, -0.020538916811347, -0.021611958742141002, 0.046799637377262004, 0.070159450173377, 0.032220389693975005, 0.021281402558088, 0.016793360933661003, 0.106562748551368, -0.139984175562858, -0.018961343914270002, 0.013607763685286002, 0.031956598162651, -0.072585895657539, -0.019772892817854, 0.0049973810091610005, 0.036603711545467, 0.035046532750129006, -0.007468809839338001, -0.0034653374459590004, 0.002851212164387, -0.031525760889053005, -0.015247879549860002, 0.05951152741909001, -0.053297769278287006, 0.047083452343940006, 0.019353155046701, -0.08129771053791, 0.006980882957577, -0.039114993065595, 0.062359273433685004, 0.028306528925895, 0.036518860608339004, -0.011935254558920002, 0.033453334122896, -0.10715494304895401, 0.033553607761859006, 0.021296463906764002, -0.000532188394572, 0.04219126701354901, -0.131959199905395, 0.011285644955933, -0.051940307021141004, 0.035279709845781, -0.047208644449710006, 0.036070469766855004, -0.11351533234119401, -0.046465255320072, 0.004984445404261, -0.036213133484125005, 0.0015710043953730002, -0.013149002566933, -2.9097911653766434e-33, 0.040406834334135, -0.039475545287132006, -0.065553367137908, -0.013187860138714001, -0.039641078561544, -0.0029767309315500002, 0.06250907480716701, 0.006005018949508001, -0.10800706595182401, -0.071553692221641, -0.032812342047691005, 0.011268306523561, -0.023491170257329, -0.026604441925883, 0.047028593719005, -0.021095663309097002, 0.018983544781804, -0.09367270022630601, -0.058687649667263, -0.055694844573736, -0.015860525891184002, 0.05440080538392, 0.082893297076225, -0.05371006578207001, -0.09766746312379801, 0.025335988029837, -0.033595651388168, -0.037731446325778004, -0.006800102069973, 0.043287269771099, -0.025767549872398002, -0.09340719133615401, -0.000930169015191, 0.042619865387678, -0.086430601775646, -0.039333142340183, 0.005023381672799, 0.040689546614885004, 0.006292243953794001, -0.012025515548884001, -0.0012455261312420002, -0.015535747632384002, 0.08383459597826001, 0.080779582262039, -0.043892502784729004, -0.06532714515924401, 0.029838794842362, 0.011553611606359001, -0.07470963150262801, -0.016623841598629, -0.078071974217891, -0.018901001662015002, 0.064312577247619, -0.046509388834238004, -0.012938970699906, 0.054317172616720005, -0.016488512977957, -0.065817736089229, 0.094739690423011, -0.046236213296651, 0.007516174577176, -0.040715459734201, 0.005296431947499, 0.132801786065101, 0.09289393573999401, 0.011059169657528001, 0.021110458299517, -0.08642413467168801, -0.07469640672206801, 0.078315004706382, 0.010444657877087002, -0.060208901762962, 0.008993775583803001, -0.013365237973630002, -0.026898210868239004, 0.026860807090997002, 0.05921260267496101, -0.005054554436355, -0.017253907397389003, 0.017412353307008, -0.07299713045358601, -0.023768639191985002, 0.033157773315906004, 0.077168494462966, 0.007172038778662001, 0.010624125599861001, -0.083015285432338, -0.019908796995878, -0.022332658991217003, -0.05112908035516701, -0.004695653449743, 0.030831973999738003, 0.025758739560842, 0.082004837691783, 0.10804680734872801, -3.635659240330824e-8, 0.014610661193728001, -0.082819744944572, -0.10309223085641801, 0.026818752288818002, 0.020828332751989, -0.011127956211566, -0.045166671276092, 0.011253198608756001, -0.09661045670509301, 0.038221396505832006, -0.041064713150262, 0.043637946248054005, -0.034147150814533005, 0.0060108411125830005, -0.056159380823373004, 0.030936475843191, -0.11607757210731501, 0.022234851494431003, 0.026881182566285, 0.06757502257823901, -0.07286879420280401, 0.019304173067212, 0.063028819859027, 0.026328573003411, -0.060780499130487005, -0.027766007930040002, -0.019380092620849002, 0.002149432199075, 0.007183823268860001, -0.023135770112276, -0.007345421239733, 0.041999369859695004, 0.11956682801246601, 0.049438275396823, -0.017019681632518, -0.070574261248111, 0.056045982986688, -0.00485994387418, -0.043332859873771, 0.07204072922468101, 0.057412613183259006, 0.111584700644016, 0.063218884170055, 0.028913279995322002, 0.09613124281167901, 0.098805390298366, 0.07054773718118601, 0.047739531844854, 0.0071435351856050005, 0.11495320498943301, -0.023897880688309003, 0.010285062715411, -0.035592708736658006, 0.005102975759655, -0.08103152364492401, 0.015476406551897002, 0.072204805910587, 0.010074688121676001, 0.035308167338371, 0.0020721978507930003, -0.039866864681243, 0.025792716071009, 0.006595871411263001, 0.010285698808729002 ]
0704.0062
On-line Viterbi Algorithm and Its Relationship to Random Walks
In this paper, we introduce the on-line Viterbi algorithm for decoding hidden Markov models (HMMs) in much smaller than linear space. Our analysis on two-state HMMs suggests that the expected maximum memory used to decode sequence of length $n$ with $m$-state HMM can be as low as $\Theta(m\log n)$, without a significant slow-down compared to the classical Viterbi algorithm. Classical Viterbi algorithm requires $O(mn)$ space, which is impractical for analysis of long DNA sequences (such as complete human genome chromosomes) and for continuous data streams. We also experimentally demonstrate the performance of the on-line Viterbi algorithm on a simple HMM for gene finding on both simulated and real DNA sequences.
[ "cs.DS" ]
[ -0.155462503433227, -0.004592815879732, -0.07257363945245701, -0.041492465883493, 0.017817966639995002, -0.004917480517178, -0.080275043845176, -0.035180810838937, 0.041247181594371005, -0.033686395734548, 0.006449713371694, 0.022514408454298, -0.0015202100621530001, -0.061953499913215006, -0.02276193909347, -0.011288307607173, -0.051887147128582, 0.05212818458676301, 0.013504128903150002, -0.07352984696626601, -0.006435560528188, 0.09828505665063801, 0.032592654228210005, -0.018060598522424, 0.006528719794005, 0.045145649462938, 0.005730086937546001, 0.033604394644498, 0.004966743756085, -0.008744147606194, 0.09575803577899901, 0.030533431097865004, 0.071591034531593, -0.052413329482078004, 0.046395517885684, 0.020456140860915, -0.052631344646215, 0.005393143743276, -0.039522100239992, 0.007305787410587, 0.053133264183998004, 0.100885845720767, 0.012061752378940001, 0.077764213085174, 0.012879005633294001, 0.040043506771326, 0.021577337756752003, -0.071920521557331, 0.032334823161363005, 0.0046489522792390004, -0.10498406738042801, 0.083444781601428, -0.0014225116465240001, 0.167326241731643, -0.061775464564561004, -0.020783152431249, 0.026260927319526003, -0.040052641183137005, -0.071664832532405, 0.038710869848728006, -0.014651681296527, -0.043342649936676005, 0.010464207269251001, -0.059674229472875005, -0.018916299566626, -0.0039131180383260005, -0.0025029457174240003, 0.031465124338865, 0.047412924468517005, 0.025990806519985, -0.047979161143302, 0.06336400657892201, -0.06468518823385201, 0.09063077718019401, -0.103370860219001, 0.033066496253013, -0.040508102625608, 0.023881819099187, 0.011747813783586001, -0.013831598684191001, -0.08936673402786201, -0.12415219098329501, 0.122071281075477, 0.021609993651509, -0.016660062596201, -0.02271426282823, 0.031688645482063, 0.002571125049144, 0.044812489300966006, -0.016435807570815, -0.038764841854572005, -0.052457533776760004, 0.098378255963325, -0.009635657072067, -0.033647246658802005, 0.05745800957083701, 0.022128360345959, -0.0030887518078080004, 0.033314418047666, 0.052755139768123, -0.031040497124195, 0.003575024893507, 0.08646130561828601, -0.028306743130087002, -0.036697853356599, 0.046319682151079004, 0.013686556369066, -0.004684317391365001, 0.043980605900287004, 0.013351039029657001, 0.014054976403713, 0.053908560425043, 0.036497086286544, 0.07416549324989301, 0.035143282264471006, -0.014120610430836001, 0.016022484749555, 0.0014667931245630002, 0.022849151864647, 0.09790353477001101, -0.001191933173686, 0.001254195347428, 0.047665938735008004, 0.020729754120111, 0.008545561693608001, -0.012102531269192002, 0.028306419029831, 1.1831428701198051e-33, -0.042101502418518004, -0.013409452512860002, 0.1168128028512, 0.0033611755352460004, -0.042774658650159, 0.04936703667044601, 0.031401064246892, -0.008873864077031, -0.09622773528099, 0.031484436243772, -0.025830533355474004, -0.07142125815153101, 0.050712976604700005, 0.042367421090602, 0.000858586397953, -0.010744103230535, -0.036947950720787, -0.040923748165369006, -0.05961016938090301, -0.067312002182006, 0.07990419864654501, -0.036215126514434, 0.0035739797167470004, -0.028733698651194003, 0.042439058423042006, -0.023346025496721, 0.0023673903197050004, -0.154609709978103, -0.013434266671538, 0.034946922212839, -0.09597825258970201, 0.029583899304270002, -0.033948935568332006, 0.018558885902166002, 0.051076233386993006, 0.033307630568742, -0.04097481817007, -0.05698516219854301, -0.032918721437454, -0.048415809869766006, -0.001655200496315, -0.0324039272964, 0.047444630414247006, -0.09779471904039301, -0.11579447984695401, -0.07669392973184501, 0.011506740003824002, -0.019999504089355, -0.034841977059841, 0.03322223201394, 0.013303230516612, 0.003770775627344, -0.081481903791427, -0.003955234307795001, 0.007172616198658, -0.004040230996906, 0.06755146384239101, 0.084271386265754, 0.006942094303667001, 0.123588122427463, -0.008549629710614001, -0.009230799973011001, 0.068079069256782, 0.039051610976457006, 0.042243257164955, -0.054555159062147, -0.070043936371803, 0.00971093494445, 0.024448681622743003, 0.021602429449558, 0.046150550246238, 0.003123802132904, 0.08859643340110701, -0.08336057513952201, 0.027516160160303, -0.028161186724901, -0.0003625866957, -0.090342685580253, -0.053395837545394, 0.026375614106655003, -0.00502867763862, -0.04573475569486601, -0.008881605230271001, -0.06139564886689101, -0.003076078603044, -0.140749797224998, 0.028242142871022002, -0.049796432256698005, -0.125513151288032, 0.005877738818526001, 0.046096671372652005, -0.01444140356034, -0.014891623519361002, -0.034499846398830004, 0.002623167354613, -2.8493101443169132e-33, -0.062699005007743, 0.039133828133344005, 0.07200488448143001, 0.043301753699779004, 0.007627928163856001, -0.091774992644786, 0.010693946853280002, 0.04713093861937501, -0.040781013667583, -0.04718782007694201, -0.066407173871994, -0.013127787038683001, -0.0023032885510470003, 0.019564988091588003, 0.06644632667303, 0.0029693774413310004, 0.10837562382221201, 0.048975158482789, 0.041044913232326, 0.040076434612274, 0.014818632043898002, 0.026493199169635002, -0.10660453885793601, -0.030634080991148, 0.011858588084578, -0.014305832795798001, 0.041780859231948006, 0.071042045950889, -0.039480376988649, 0.009333265013992, -0.06511318683624201, 0.038770969957113, -0.09857077896595001, 0.060444492846727, -0.068351097404956, 0.016944825649261003, -0.0051176468841730004, 0.085220217704772, 0.050946611911058, 0.031147014349699003, 0.0017825876129790002, 0.066343709826469, -0.063700586557388, -0.089785449206829, -0.010048692114651, 0.002075059805065, -0.150350853800773, 0.15252013504505102, -0.01955422013998, -0.038848917931318006, 0.056143023073673005, 0.079661518335342, -0.046487193554639004, 0.027733895927667004, -0.026715910062193003, 0.0033363124821330003, -0.11059506237506801, 0.050514243543148006, -0.052155315876007004, -0.0006782818818460001, 0.013261432759463001, -0.027893837541341, -0.042258393019437006, 0.005316364113241, 0.020850224420428002, 0.012653111480176001, 0.035754084587097, -0.014964262023568, -0.000880147505085, -0.030812643468379003, 0.057215321809053005, 0.006285958457738001, 0.016580164432525, 0.06865781545639, 0.049552373588085, 0.020153814926743, -0.010466680862009001, -0.024143289774656, -0.044998716562986006, -0.020038072019815, -0.017489796504378003, -0.049619924277067004, -0.021241446956992, 0.0012264348333700002, 0.046827875077724006, 0.036462690681219004, -0.018753146752715, -0.074973605573177, 0.010604966431856001, -0.056946113705635, -0.039820551872253, 0.038601167500019004, -0.036539297550916006, 0.060645565390586006, -0.012835948728024, -4.138847842227733e-8, 0.0014098456595090002, -0.0854082852602, 0.037501368671655, 0.007557582110166001, 0.138278409838676, 0.036813702434301, -0.031081259250640002, 0.062267694622278005, 0.053238049149513, -0.029579553753137002, 0.100275471806526, -0.038187649101018004, -0.031968642026185004, 0.044100172817707006, 0.05571986734867, 0.045520551502704, 0.006147336680442, -0.058931086212396004, 0.0054080607369540006, 0.065660677850246, -0.020154658704996, 0.023306908085942, -0.059028670191764006, 0.09253590553998901, 0.017958749085664, 0.017179278656840002, 0.042552292346954006, 0.015647826716303, 0.039233412593603, -0.037063114345073006, 0.08658923953771501, 0.046596158295869, -0.052658066153526, 0.041579917073249005, -0.055179867893457, -0.005145389586687, 0.040238332003355005, 0.00300027965568, -0.040227737277746006, -0.009497655555605, 0.067237176001071, -0.0019488637335590001, -0.063489682972431, -0.009826466441154001, 0.026338240131735004, 0.007148003205657001, 0.023765582591295003, -0.08464683592319401, -0.013999200426042002, -0.08068446069955801, 0.006025359034538, -0.012530575506389, 0.010009546764194, -0.003722682362422, 0.024021774530410003, 0.052241887897253, 0.015738127753138, -0.053375042974948, -0.015931088477373002, 0.038253638893365, -0.016965745016932002, -0.009971576742827, -0.015765918418765002, -0.036071334034204004 ]
0704.0063
Experimental efforts in search of 76Ge Neutrinoless Double Beta Decay
Neutrinoless double beta decay is one of the most sensitive approaches in non-accelerator particle physics to take us into a regime of physics beyond the standard model. This article is a brief review of the experiments in search of neutrinoless double beta decay from 76Ge. Following a brief introduction of the process of double beta decay from 76Ge, the results of the very first experiments IGEX and Heidelberg-Moscow which give indications of the existence of possible neutrinoless double beta decay mode has been reviewed. Then ongoing efforts to substantiate the early findings are presented and the Majorana experiment as a future experimental approach which will allow a very detailed study of the neutrinoless decay mode is discussed.
[ "hep-ph" ]
[ -0.080900259315967, 0.008403680287301001, 0.011510534211993, 0.097937405109405, -0.051110494881868, -0.10731206089258101, -0.115656957030296, 0.048660505563020005, -0.05609183758497201, 0.017812371253967, -0.020808910951018, 0.005329306237399, -0.099879086017608, -0.013502242974936001, 0.025956830009818, -0.004228183533996, 0.032845105975866005, -0.011197312735021002, -0.010377084836363001, 0.013386437669396001, -0.067411929368972, -0.051440265029668, -0.011356046423316, -0.025177381932735002, 0.048924911767244006, -0.05546324327588, -0.038652379065752, -0.07411405444145201, 0.043348718434572005, -0.05182560533285101, 0.072771124541759, 0.018508179113268002, 0.015084400773048002, 0.057711970061063, 0.000996266840957, -0.060222174972295005, 0.011270865797996, -0.051897604018449006, -0.005789519753307, -0.026436612010002, 0.015634924173355002, 0.015226441435515001, -0.008386579342186, 0.044873934239149, 0.050122771412134004, 0.0059536984190340005, -0.036489538848400005, -0.047495838254690004, 0.029476709663867003, -0.039400152862071006, -0.019151302054524002, -0.06179792806506101, -0.0037627783603960004, 0.08374166488647401, 0.001537389471195, -0.00224871863611, -0.028079751878976003, -0.11004515737295101, 0.007881160825490001, 0.08053483814001, 0.025431901216506, 0.01667383313179, -0.0204250048846, -0.0031739049591120003, 0.044061955064535, -0.009110539220273, -0.035044908523559, -0.027105536311864003, 0.063785545527935, -0.026284867897629002, -0.0012967657530680002, -0.035321861505508, -0.0735345184803, -0.049235239624977, -0.00022354625980300003, -0.066419631242752, -0.06359429657459201, 0.020208628848195003, 0.028415493667125, -0.035128764808177004, 0.006098015233874, -0.12150755524635301, 0.061697673052549, -0.05697451531887, 0.0010236679809160001, 0.070108167827129, 0.030298380181193, 0.055558532476425004, -0.03684227541089, -0.022858923301100002, 0.045505441725254, 0.023108949884772002, -0.032751504331827004, 0.008799506351351, 0.048074807971715004, 0.031834300607442, -0.0008375055040230001, -0.012286239303648002, -0.006357496138662, 0.018881076946854, 0.050985205918550006, 0.046811990439891, 0.023440578952431002, 0.045312229543924006, 0.006663574371486, 0.023169660940766, 0.05788406729698101, 0.019318081438541003, 0.000650726666208, 0.06580239534378, 0.05783924087882, 0.022521588951349, 0.113780841231346, 0.014245918951928001, 0.030034825205802, -0.013251282274723001, 0.010792620480060001, 0.14787665009498502, -0.051063328981399, -0.024586547166109002, 0.058847103267908006, -0.015222738496959001, 0.004612751305103, -0.010147050954401, 0.007937950082123, 0.075207754969596, -0.016615606844425, 7.020113976564119e-33, 0.017634969204664, -0.0012488951906560002, -0.014851589687168001, -0.004456007387489001, -0.062488671392202, 0.027869468554854, -0.072240993380546, -0.019327888265252002, -0.045950520783662005, 0.019202597439289003, -0.016303431242704003, -0.038890849798917, -0.017817439511418003, 0.010151218622922, -0.05702105537056901, -0.009457460604608, 0.033854495733976, 0.03885955736041, 0.114684604108333, 0.014774260111153, 0.009288496337831001, 0.061468377709388004, -0.06767737120389901, -0.032963581383228004, 0.08006508648395501, 0.082882829010486, -0.054881948977708005, 0.012854935601353002, -0.10602925717830601, -0.003534663235768, -0.051496185362339006, 0.050259571522474004, -0.048711672425270004, 0.11895039677619901, -0.086333505809307, -0.029037678614258003, -0.10227141529321601, -0.011806836351752, -0.075966566801071, 0.018766706809401002, -0.023648342117667, 0.033823020756244, -0.061277635395526005, -0.10004267096519401, -0.022926291450858, -0.022117568179965002, 0.07107909023761701, 0.025757806375622003, 0.094757609069347, -0.034831911325454004, -0.029118964448571004, 0.04839310050010601, -0.09091475605964601, 0.035913534462451005, 0.061088513582944, 0.09402587264776201, 0.048512697219848, -0.012559660710394, 0.07976330071687601, -0.0058081597089760005, -0.014553510583937002, 0.048873513936996, 0.010674850083887001, -0.004133006557822, -0.022033212706446002, 0.064339995384216, -0.097317419946193, -0.046380043029785004, -0.079028412699699, 0.05148296803236, -0.013950947672128, 0.040869694203138004, 0.060306109488010004, -0.08204274624586101, 0.030075084418058003, -0.06120042502880001, 0.025121303275227002, -0.033650789409875, 0.009244143031537, -0.062244024127721, 0.056432105600833005, -0.082012869417667, 0.031201392412185003, 0.010594718158245002, 0.0040261000394820005, 0.04771510511636701, -0.0032631147187200003, -0.023662779480218003, 0.0017645671032360001, -0.048981275409460005, 0.02237095311284, 0.001536713214591, -0.057083323597908006, -0.027559069916605002, 0.037864767014980004, -6.457080100511075e-33, 0.012432565912604, -0.00783559679985, -0.05022095516324, 0.08576283603906601, 0.023921355605125, 0.017582407221198002, -0.044884715229272, -0.07188207656145, 0.013965572230517, -0.053826745599508, 0.07702722400426801, 0.053220476955175004, -0.055193621665239, -0.071517951786518, 0.041299570351839, -0.03731120750308, 0.055017605423927, 0.032708596438169, 0.0009197316830970001, 0.007227449212223001, 0.005085444543510001, 0.02742981351912, -0.066099248826503, -0.020855510607361002, 0.059151664376258004, 0.034564938396215, 0.076165951788425, -0.066049061715602, 0.034128099679946004, -0.051044225692749, -0.040876198559999, 0.059411182999610006, 0.027329798787832003, -0.042508967220783005, 0.00279798428528, -0.008028920739889001, 0.005165257025510001, 0.08557832986116401, 0.008988142944872001, -0.067753739655017, 0.017799733206629, 0.151683196425437, 0.033057954162359, -0.012113205157220001, 0.089181378483772, 0.0022297450341280003, 0.029623771086335002, 0.055823955684900006, -0.002378606237471, -0.056255400180816005, 0.01260289363563, -0.048747178167104006, -0.057131398469209005, 0.028440661728382003, -0.00040051649557400003, 0.031335648149251, -0.012149738147854, 0.017292628064751, 0.042150691151618, -0.08074609935283601, -0.0036272455472490003, -0.10339288413524601, 0.029656592756509004, -0.030190618708729, 0.002102154539898, 0.032912768423557004, 0.005645927041769001, 0.17398908734321503, -0.009238781407475001, -0.008775033056735, 0.054246794432401005, 0.014420953579246, -0.015739744529128002, 0.008090624585747, -0.010439037345349001, 0.004859023727476, 0.00003031758024008013, -0.05187365040183001, 0.05475826561450901, -0.018788585439324, -0.074994094669818, 0.05115909129381101, -0.012533064931631002, -0.032446112483739, 0.081942364573478, -0.06566184014081901, -0.083970449864864, 0.067147605121135, 0.022289106622338, -0.057123057544231005, -0.022160746157169002, 0.017773553729057, -0.013718658126890002, 0.025628544390201003, 0.10626337677240301, -4.164591516087057e-8, 0.09256231039762401, -0.073551379144191, -0.042002726346254, 0.058414962142705, 0.058005128055810005, -0.0020374611485740003, -0.021625934168696, -0.00046454952098400005, -0.084661938250064, -0.009658657945692001, -0.038339037448167, 0.034546535462141, -0.032130401581525005, -0.037177562713623005, 0.024637758731842003, 0.063414007425308, -0.03915612027049, -0.058174412697553, -0.034713685512542, -0.019386537373065, 0.070428378880023, 0.0033364703413090004, 0.037950228899717005, -0.006713757291436, -0.10555278509855201, 0.031090388074517004, 0.035231038928031005, 0.022793641313910002, -0.02203843742609, -0.10303886979818301, -0.035639077425003, 0.017343310639262, 0.010399801656603001, -0.046237375587224, 0.02837162092328, 0.010567316785454, 0.09201101958751601, 0.025147149339318, 0.13966587185859602, -0.009023999795317001, -0.059011343866586005, -0.037715639919042004, 0.009991989471018, 0.06237718090415, -0.056116476655006006, 0.018499415367841002, 0.022607719525694, -0.087720237672328, -0.014355540275573002, 0.061955746263265006, 0.064686365425586, 0.06668829917907701, -0.027605300769209, -0.007956899702548, -0.008565153926610001, 0.134165421128273, -0.060930866748094004, 0.06539372354745801, -0.048956930637359, -0.028681799769401002, 0.12431076914072, -0.13028267025947501, -0.039761703461408004, -0.011622893624007001 ]
0704.0064
Nilpotent symmetry invariance in the superfield formulation: the (non-)Abelian 1-form gauge theories
We capture the off-shell as well as the on-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry invariance of the Lagrangian densities of the four (3 + 1)-dimensional (4D) (non-)Abelian 1-form gauge theories within the framework of the superfield formalism. In particular, we provide the geometrical interpretations for (i) the above nilpotent symmetry invariance, and (ii) the above Lagrangian densities, in the language of the specific quantities defined in the domain of the above superfield formalism. Some of the subtle points, connected with the 4D (non-)Abelian 1-form gauge theories, are clarified within the framework of the above superfield formalism where the 4D ordinary gauge theories are considered on the (4, 2)-dimensional supermanifold parametrized by the four spacetime coordinates x^\mu (with \mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta. One of the key results of our present investigation is a great deal of simplification in the geometrical understanding of the nilpotent (anti-)BRST symmetry invariance.
[ "hep-th" ]
[ -0.037777930498123, -0.043409503996372, 0.038529369980096005, -0.000594365177676, -0.0036988377105440003, 0.040241293609142005, 0.037259776145219005, -0.017604393884539, 0.037017989903688, -0.07352348417043601, 0.020106082782149003, -0.035700995475053, -0.062264792621135004, 0.023448346182703, -0.006201680283993, -0.010504898615181, -0.011444230563938, 0.000841596163809, -0.11005681008100501, 0.074066087603569, 0.06241312623023901, -0.049577612429857004, 0.018013663589954, 0.076417952775955, 0.012130160816013001, -0.084157675504684, 0.009773494675755001, -0.006814348511397001, -0.020651375874876, -0.033369343727827, -0.044141523540019004, 0.015658987686038, -0.025638513267040003, -0.015538771636784, 0.034558638930320004, 0.017371119931340002, 0.113100178539752, -0.012346636503934002, -0.004279076587408, -0.009150617755949001, 0.029627759009599002, 0.012445483356714, -0.021516345441341, 0.067240163683891, -0.028659438714385, 0.050253219902515, 0.029306521639227003, 0.009128427132964, -0.033340279012918, -0.034337285906076, 0.015033313073217001, 0.05471209809184, 0.0028211013413960003, 0.01514577306807, -0.0018089719815170002, -0.008894629776477, -0.09069562703371001, -0.054475530982017004, 0.10757339000701902, -0.006555491127073001, 0.027101485058665, 0.028451148420572003, 0.021109452471137, 0.013013556599617001, 0.07937479764223, 0.016306791454553, -0.019667532294988, -0.018632864579558, -0.044900991022586004, -0.005934363231062, 0.007741718553006, 0.026346089318394002, -0.096161179244518, -0.056270901113748, -0.004586759023368, 0.06483711302280401, 0.05723311752080901, -0.026616306975483003, -0.025634391233325, -0.021650627255439002, 0.036121942102909005, 0.07894867658615101, 0.069725938141345, -0.020174294710159, 0.050284702330827005, 0.004810109268873, -0.011977156624197, -0.019682776182889, -0.012842031195759001, -0.064715556800365, 0.07303417474031401, -0.018002098426222, -0.11660521477460802, 0.052908670157194006, 0.026807429268956, 0.018463078886270003, -0.035793345421552006, 0.048596717417240004, 0.0007779597654, 0.06407355517148901, 0.07217829674482301, -0.045711480081081, 0.003320705378428, 0.093948565423488, 0.08696023374795901, -0.011659680865705001, 0.003562216646969, 0.006637719925493, -0.040019109845161, 0.00011578937119300001, 0.061472218483686, -0.10674060136079701, -0.023303579539060003, -0.045347940176725006, -0.061147108674049, 0.11492928117513601, -0.043122492730617, 0.10551506280899, -0.015684286132454, -0.021163552999496002, -0.019142054021358, 0.083426363766193, 0.019094780087471, -0.015707433223724, 0.031210802495479, 0.056202091276645, -0.114562183618545, 3.971828270825502e-33, 0.071570321917533, 0.09599213302135401, 0.017853442579507002, 0.007240527775138001, 0.004418378230184, 0.0062086633406570006, -0.007698847912251, 0.061219159513711006, 0.046388044953346, 0.043348506093025006, -0.001517425174824, 0.001177965081296, 0.025085249915719, -0.10575814545154501, -0.054205659776926006, -0.009483908303081, -0.074453510344028, -0.040518105030059, 0.06596639752388, -0.027649950236082, 0.039866473525762, 0.07789552211761401, -0.07788541167974401, 0.058946847915649005, -0.078874371945858, -0.020529681816697003, 0.002700343495234, -0.015878813341259002, -0.06008946150541301, 0.041573625057935, -0.000317635742248, -0.06606089323759, -0.054540168493986005, 0.006244961172342, -0.0572115406394, -0.101595051586627, -0.026283973827958003, -0.055278293788433006, -0.026223218068480002, -0.069031685590744, -0.06474557518959001, 0.028873333707451, 0.009875336661934, -0.090819805860519, -0.054962053894996005, -0.038836076855659006, 0.13910846412181802, 0.034320749342441004, 0.021410400047898, -0.042262502014636, 0.004600278101861001, 0.045376643538475, 0.033551421016454, -0.044883381575345, -0.020840652287006, 0.04225835949182501, -0.024893682450056003, -0.018505115061998003, 0.026500364765524004, -0.045164715498685004, 0.09313689172267901, 0.053535323590040006, 0.007854509167373, -0.048665765672922, -0.042168881744146, -0.045694325119256, 0.022420434281229, -0.08837666362524, 0.10325181484222401, -0.035701360553503, -0.10057590156793501, 0.039062429219484, -0.036402989178895, -0.007204035762697, 0.022381674498319, -0.01341928821057, 0.031462498009204004, -0.06593051552772501, 0.031369458884, 0.057053539901971005, -0.053619999438524, 0.087257370352745, -0.012340782210230002, 0.025652062147855002, -0.025741014629602002, -0.043028030544519, 0.021226435899734, -0.054282028228044, 0.04912369698286, -0.09495168179273601, -0.024465622380375, -0.075134195387363, -0.086658366024494, -0.13820344209671, -0.018759138882160003, -4.442491066106962e-33, -0.010838609188795001, -0.054994743317365, -0.04749332740902901, 0.022383697330951, -0.026694342494010002, -0.034185599535703, -0.000015113213521544823, 0.041744250804185, 0.004505240358412, -0.052196394652128004, 0.064624734222888, 0.058340862393379, -0.019046381115913003, -0.038276489824056, 0.07358141988515801, -0.004975006449967, -0.004580804612487, -0.068056240677833, -0.014328160323202001, -0.031650189310312, 0.051012016832828, -0.002172379521653, -0.082612335681915, 0.002649948699399, -0.015993792563676, 0.008205384016036, 0.047224879264831, -0.046120651066303, 0.11242584884166701, 0.067720524966716, 0.048042766749858, 0.005726040340960001, -0.010817770846188, 0.11365197598934101, -0.07751967757940201, -0.059098556637763006, 0.010035845451056001, 0.071554899215698, -0.059485625475645, 0.090243175625801, -0.039789985865354004, 0.026704486459493002, 0.10508634150028201, 0.057136580348014006, 0.004944686312228001, 0.054361246526241004, 0.08234243839979101, 0.051720581948757005, -0.020529329776763, -0.001210649381391, -0.037613645195961005, 0.013907613232731, -0.062688596546649, 0.021009000018239, -0.06358866393566101, -0.012707751244306, -0.0008465909049840001, -0.11085162311792301, -0.09125873446464501, -0.004338323604315001, 0.048635199666023005, -0.024109272286295003, 0.055836331099271004, -0.006919797975569001, 0.020006585866212002, 0.017760399729013002, -0.076771706342697, -0.093072600662708, 0.014847566373646, 0.015070744790136, -0.0035350800026200005, -0.096496127545833, -0.034828443080186004, -0.06465794891119, 0.026391122490167004, 0.040591534227132006, 0.07510496675968101, -0.047925412654876, 0.035637605935335, -0.060008522123098006, -0.001506470725871, 0.032713495194911, 0.018907045945525003, 0.030611122027039004, 0.10449456423521, -0.020313389599323002, 0.018588447943329003, 0.10125352442264501, 0.036262225359678005, -0.026513310149312002, -0.04119701310992201, -0.011633476242423, 0.043879691511392004, 0.104106090962886, -0.049076471477746006, -5.194906549377265e-8, 0.0045215217396610006, 0.032017160207033005, 0.0018873141380020002, -0.0029196981340640004, -0.039837624877691005, 0.03050316683948, -0.046072211116552006, 0.008144196122884001, 0.010434471070766001, 0.025496447458863, -0.01111879106611, 0.020429145544767, -0.13028456270694702, -0.09272808581590601, 0.013627399690449002, 0.056144654750823, -0.023052401840686, -0.025314956903457003, -0.028216712176799, 0.027523688971996002, 0.037414290010929004, 0.045000810176134005, -0.08627575635910001, -0.071899399161338, 0.012759299017488, 0.01900446973741, 0.011994888074696002, -0.050502892583608, 0.078833147883415, 0.021451141685247, 0.047438349574804, 0.035676695406436004, 0.052591245621442004, -0.104003861546516, -0.06089747324585901, -0.028092583641409003, -0.053437009453773006, 0.009323084726929, 0.026282753795385003, 0.053572718054056, 0.08627023547887801, -0.0030999190639700003, 0.0022435805294660003, 0.039120867848396, 0.042758148163557004, 0.025381240993738, -0.032250080257654, -0.014925135299563002, -0.032286163419485, 0.14357790350914001, -0.09532494097948001, 0.027655974030494003, -0.024582486599683002, 0.09672661870718001, -0.02631358616054, 0.043567694723606006, 0.022228855639696003, -0.013674165122210001, -0.007616659626364, -0.003692432073876, -0.012007903307676001, 0.027545982971787, -0.012972178868949, 0.041945420205593005 ]
0704.0065
Littlewood-Richardson polynomials
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood-Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier result of B. Sagan and the author. The new rule provides a formula for these polynomials which is manifestly positive in the sense of W. Graham. We apply this formula for the calculation of the product of equivariant Schubert classes on Grassmannians which implies a stability property of the structure coefficients. The first manifestly positive formula for such an expansion was given by A. Knutson and T. Tao by using combinatorics of puzzles while the stability property was not apparent from that formula. We also use the Littlewood-Richardson polynomials to describe the multiplication rule in the algebra of the Casimir elements for the general linear Lie algebra in the basis of the quantum immanants constructed by A. Okounkov and G. Olshanski.
[ "math.AG", "math.CO" ]
[ -0.113044671714305, 0.040596984326839, -0.031599894165992, 0.017376087605953, -0.075772240757942, 0.06557787954807201, 0.037115305662155006, -0.052203148603439005, -0.004548247437924, -0.027811186388134002, 0.007178010884672001, 0.007768779061734001, -0.05657855421304701, -0.052156537771224004, -0.069165952503681, 0.12194765359163201, -0.060079351067543, 0.049815829843282006, -0.05789079517126, 0.045225117355585, -0.030389681458473, 0.0031222926918410003, -0.012914000079035001, 0.018295073881745002, 0.056888092309236006, -0.00236488925293, -0.041295364499092005, 0.073444664478302, 0.064787425100803, 0.044346235692501006, 0.002599071012809, 0.09014102816581701, 0.028295114636421002, -0.021795159205794, -0.012172813527286, -0.026184016838669003, 0.046010714024305004, 0.029060041531920003, 0.026039477437734004, 0.046656519174575, 0.026660531759262, 0.013180554844439, -0.077682852745056, 0.006898244377225001, -0.125733122229576, -0.031970925629138, 0.084797896444797, 0.027550961822271004, -0.071913301944732, -0.052556384354829004, 0.051501791924238004, 0.129726633429527, -0.049378633499145, 0.00296755391173, -0.003629454178735, -0.095333710312843, -0.015823055058717003, 0.002092757029458, -0.047310493886470004, -0.016707424074411, 0.006371141877025001, -0.031554572284221004, -0.043796073645353005, 0.011230473406612, -0.010797049850225001, -0.009967692196369001, -0.006928482558578, -0.067520514130592, -0.013985713012516, 0.037757944315671005, -0.039536368101835, -0.026501309126615, -0.09525373578071501, -0.011067354120314002, -0.007056289352476001, 0.02750689163804, 0.034538213163614, -0.032267566770315004, -0.001012734603136, 0.036276035010814, -0.036607127636671004, 0.048123911023139, 0.017202749848365003, -0.046264171600341006, 0.028458923101425, -0.023583762347698004, -0.054710935801267006, 0.06159505620598701, 0.06793716549873301, -0.00323634291999, -0.012341950088739001, -0.11158450692892001, -0.02132430486381, 0.022445904091000002, -0.045070733875036004, 0.023467451333999002, -0.021322852000594, -0.0011251174146300002, 0.037085425108671, 0.067788928747177, -0.0019293583463870002, -0.040285903960466, 0.019525663927197002, -0.064380943775177, 0.020598294213414, 0.06259720772504801, -0.04901747778058001, 0.02810008265078, -0.025865610688924002, -0.08057656884193401, -0.019160985946655003, -0.049689892679452, -0.007961730472743001, 0.029844967648386, -0.07383219152688901, 0.012319297529757, -0.052909217774868005, 0.08626116812229101, 0.087639212608337, 0.016916284337639, 0.101449415087699, 0.07052931189537001, 0.012155250646173002, 0.06016470864415101, 0.022487491369247003, 0.034702371805906004, -0.09367848932743, 2.896177930603663e-34, 0.060670793056488, 0.016756011173129002, 0.009431046433746001, 0.039677876979112, 0.018703775480389002, -0.030555382370948004, 0.094849571585655, 0.001156203565187, 0.022350300103425, 0.024188861250877002, -0.044508557766675005, 0.03097428753972, 0.062775254249572, -0.074685476720333, 0.041839502751827004, 0.053028251975774, -0.026700997725129003, -0.063146963715553, 0.069728896021842, -0.052625134587287, 0.036585658788681, 0.067246034741401, 0.002375537296757, 0.018164386972784, 0.010861037299036001, -0.004938653670251, 0.095022648572921, 0.026855167001485002, -0.047989480197429005, 0.029531046748161004, 0.043707873672246, -0.034182965755462, -0.012043458409607001, -0.026543207466602003, 0.042514178901910005, 0.033273581415414005, -0.075424194335937, 0.000019954304661951024, 0.040477093309164006, -0.06287857145071, -0.0008878829539750001, 0.038968537002801, 0.035997748374938, -0.06136947125196401, -0.057207755744457, -0.019702618941664002, 0.062140591442584006, 0.074654519557952, 0.068765096366405, 0.01323907636106, -0.006896571721881001, 0.010236253030598, 0.011146123521029, 0.07962595671415301, -0.035487476736307005, 0.034553118050098, 0.030386667698621004, 0.092436648905277, -0.023597754538059002, 0.019723270088434, -0.094857484102249, -0.002893896540626, -0.035035640001297004, -0.097260750830173, -0.020996240898966, 0.020547198131680003, -0.020916970446705003, -0.043029818683862006, -0.03828066214919, -0.006959412712603001, -0.037111200392246003, 0.041813112795352006, -0.010427832603454, -0.033013656735420005, 0.06128330156207001, -0.033406000584363, -0.00286286463961, -0.06807793676853101, -0.10140126198530101, -0.016864662989974, -0.024783356115221002, 0.082756340503692, -0.026548964902758, -0.045234333723783, -0.11969253420829701, -0.18105182051658603, -0.060410499572753004, 0.007712440099567001, -0.009808005765080001, -0.031398631632328006, -0.022409092634916, -0.043220065534114005, 0.006169963628053001, 0.017360568046569002, 0.0020860498771070003, -1.897077802888287e-33, -0.010430688038468, -0.10504642874002401, 0.004508228972554, -0.008931435644626, -0.029325744137167, 0.029573220759630002, 0.021900014951825003, 0.052512183785438, -0.031156564131379003, -0.029904689639806, -0.011784053407609001, 0.09110234677791501, -0.016313722357153, 0.070259436964988, 0.040328178554773005, -0.020839132368564002, -0.0011503366986280001, 0.07766520977020201, 0.034879039973020005, -0.061071984469890005, 0.000054729691328248016, 0.140474170446395, -0.069866187870502, -0.057609532028436, -0.009407858364284, -0.041604455560445, 0.041819475591182, -0.0014784970553590002, 0.022094823420047, 0.070548921823501, 0.07162549346685401, -0.15386769175529402, -0.067235641181468, 0.06324817985296201, 0.041651226580142, -0.035631220787763006, 0.05285832285881, -0.009079289622604, -0.087213940918445, 0.051521565765142004, 0.014025142416357002, -0.033115230500698, 0.134749442338943, 0.026320056989789002, 0.051833033561706, 0.003953802399337, -0.027975907549262, 0.022594705224037, -0.088227599859237, 0.056686609983444006, -0.042963828891515, -0.018861087039113003, -0.012887334451079, 0.05790780484676301, -0.009311220608651001, 0.050985369831323006, 0.041306830942630005, -0.016394896432757003, 0.010276365093886, -0.0217508058995, -0.072626329958438, 0.027533104643225004, 0.031901590526103, 0.012624400667846002, 0.043878525495529, -0.049585606902837004, -0.075151950120925, -0.059363398700952, 0.050586186349391, 0.005783563945442, -0.055131111294031004, -0.10993682593107201, -0.001255403272807, 0.012470378540456, -0.012189564295113002, 0.015713449567556, 0.026717094704508, -0.006035855505615, 0.00263637676835, -0.058788582682609, -0.036643773317337, -0.072527050971984, 0.039384607225656, 0.066061444580554, 0.047047566622495006, -0.0021594413556150003, 0.09248429536819401, 0.048118960112333006, 0.049655791372060006, -0.038477960973978, 0.060435965657234005, 0.022541135549545, 0.06794990599155401, 0.079629592597484, 0.062985368072986, -4.35652260932784e-8, -0.034673266112804, -0.06031624600291201, -0.098509974777698, 0.053810190409421005, 0.05765083432197501, -0.037612032145261, 0.051644716411828, 0.012735893018543, -0.066954150795936, 0.04492431879043501, 0.046484392136335005, 0.021931486204266, 0.000104978782474, -0.064279623329639, -0.034545071423053006, 0.012675951234996001, -0.098232515156269, -0.016863640397787, -0.032709665596485, -0.008741845376789, 0.029186723753809003, -0.031525921076536005, -0.032217558473348, 0.07228065282106401, -0.047646578401327, -0.06799916923046101, 0.015238785184919001, -0.055894263088703, -0.0008059804094950001, 0.10653357207775101, 0.05499910935759501, 0.063244521617889, 0.058530244976282, 0.051536459475755005, -0.05423028394579801, 0.024463096633553002, -0.06842742860317201, 0.000237620130064, 0.054676912724971, 0.089686185121536, -0.037199828773736, 0.026054700836539, 0.012484723702073002, -0.011987519450485, 0.103690303862094, -0.016390135511755, -0.00048488640459200006, -0.02192391641438, -0.018532510846853003, 0.07391932606697, -0.016641471534967003, 0.050987131893634005, -0.05747395008802401, 0.005570846144109001, -0.063716582953929, -0.025687331333756003, -0.028863063082098003, -0.041222471743822, 0.092862911522388, -0.033761318773031006, -0.089829176664352, 0.016160590574145, 0.025488981977105002, 0.026207247748970004 ]
0704.0066
Lagrangian quantum field theory in momentum picture. IV. Commutation relations for free fields
Possible (algebraic) commutation relations in the Lagrangian quantum theory of free (scalar, spinor and vector) fields are considered from mathematical view-point. As sources of these relations are employed the Heisenberg equations/relations for the dynamical variables and a specific condition for uniqueness of the operators of the dynamical variables (with respect to some class of Lagrangians). The paracommutation relations or some their generalizations are pointed as the most general ones that entail the validity of all Heisenberg equations. The simultaneous fulfillment of the Heisenberg equations and the uniqueness requirement turn to be impossible. This problem is solved via a redefinition of the dynamical variables, similar to the normal ordering procedure and containing it as a special case. That implies corresponding changes in the admissible commutation relations. The introduction of the concept of the vacuum makes narrow the class of the possible commutation relations; in particular, the mentioned redefinition of the dynamical variables is reduced to normal ordering. As a last restriction on that class is imposed the requirement for existing of an effective procedure for calculating vacuum mean values. The standard bilinear commutation relations are pointed as the only known ones that satisfy all of the mentioned conditions and do not contradict to the existing data.
[ "hep-th" ]
[ -0.076347313821315, 0.0060344985686240004, 0.029345162212848, 0.015212658792734, -0.127262413501739, 0.12211139500141101, -0.028859885409474, -0.033419579267501005, 0.057004366070032, -0.104450151324272, 0.075134143233299, 0.050395492464303006, -0.079346634447574, -0.024426918476819003, 0.044606231153011, 0.007500071544200001, -0.058433789759874004, 0.067387878894805, -0.14929220080375602, 0.010806581936776001, 0.052046857774257, -0.009336952120065, -0.074730552732944, 0.024197999387979, 0.013450473546981001, -0.053314577788114006, 0.08318065851926801, 0.020082445815205, 0.036955628544092005, -0.00031731344643, 0.024375012144446002, 0.009514120407402, -0.047832071781158, 0.023537410423159003, -0.009621165692806001, 0.00108363747131, 0.015528530813753001, -0.056249719113111, 0.032071352005004, -0.014027845114469, 0.012156338430941, 0.007285886909812, -0.054661870002746006, 0.009330411441624002, 0.002527933567762, 0.018835023045539002, 0.09131936728954301, 0.032704066485166, -0.028131138533353, -0.047179233282804, -0.037606202065944005, 0.096476346254348, -0.034631729125976, 0.029764123260974003, 0.0024645933881400003, -0.013576422818005002, -0.023272747173905, -0.027431769296526003, -0.009322984144091, -0.038424059748649, -0.079447545111179, 0.07012841850519101, 0.004825932905077, 0.021417571231722003, 0.067642152309417, -0.011051279492676001, -0.005533681716769, -0.022537693381309003, 0.021245108917355003, 0.07294996082782701, -0.042373187839984006, 0.021821085363626, -0.08075276017189001, 0.040592674165964, -0.060426119714975, 0.043689962476491005, 0.017817301675677, 0.05226604640483801, -0.04480705410242, 0.038662768900394, 0.053822398185729, -0.067240215837955, -0.040029719471931006, -0.001877319184131, 0.040448337793350005, -0.031946849077939, -0.15211896598339, 0.000909286958631, 0.053335972130298004, -0.023306289687752002, -0.015680996701121, -0.12731599807739202, -0.031580489128828, -0.024637976661324, 0.12472751736640901, 0.020656676962971, 0.06641823053359901, 0.001765390275977, -0.007802753709256, -0.03225502371788, 0.049832217395305, -0.067347295582294, 0.057076919823884006, 0.09431916475296001, 0.07451911270618401, 0.052031707018613, 0.0037796213291580003, -0.09730442613363201, -0.088463097810745, -0.046417314559221004, 0.019432434812188003, -0.059711337089538005, -0.00022602792887400002, -0.128541335463523, -0.108682051301002, 0.05703106150031, -0.014893375337123002, 0.06303101032972301, 0.011426325887441, -0.059324230998754, 0.056448142975568, -0.026801653206348003, 0.027013704180717003, 0.043461721390485, 0.04064163565635601, -0.061675716191530006, -0.073074325919151, 5.144851144775185e-33, 0.022081902250647, 0.059351235628128, 0.039445035159587, 0.056700024753808004, -0.014008679427206001, 0.058783415704965, 0.036940097808837, 0.009140729904174002, 0.040763162076473, -0.030465621501207, -0.023020165041089002, 0.032790731638669, 0.054443337023258, -0.06837999820709201, 0.004230135586112, 0.001033334759995, -0.002230016747489, -0.045803152024745004, 0.095989182591438, -0.025339961051940002, 0.08147303014993601, 0.065924063324928, -0.09388361126184401, 0.080242879688739, -0.041077096015214004, -0.065991409122943, 0.060629479587078004, -0.034787543118, -0.15698459744453402, -0.015985740348696, -0.0018583647906780002, 0.050183501094579, -0.017268482595682002, 0.061779424548149005, 0.012764970771968, 0.015789832919836003, -0.094209820032119, -0.025501424446702003, 0.003977241460233, -0.056143566966056005, 0.030880391597747, -0.013912014663219001, -0.04944456368684701, -0.037518039345741, -0.019253935664892002, -0.012265703640878001, 0.017340594902634, 0.044157102704048004, 0.06038266792893401, -0.032960887998342, 0.004384465515613, 0.024877220392227003, -0.032287318259477005, -0.06979072093963601, 0.029126094654202003, -0.024335365742444003, -0.011553280986845, 0.04936496168375001, -0.07111611962318401, 0.010811516083776, 0.0038662289734920003, 0.07591301202774, 0.042002797126770006, 0.036253992468118, 0.008283311501145, -0.020721981301903003, 0.031952630728483006, -0.071531392633914, 0.02070927247405, 0.000641713035292, -0.038178224116563006, 0.026648769155144, -0.063871435821056, -0.033902563154697, 0.059119760990142003, -0.034594342112541004, -0.006474651396274, -0.05817431584000501, -0.03935981914401, -0.049815170466899004, -0.038642741739749006, 0.0042557027190920005, -0.002904636552557, 0.11256136000156401, -0.027897091582417002, -0.022067522630095003, -0.056554019451141004, 0.038818482309579, 0.022826038300991003, -0.11258886009454701, 0.017310529947280003, -0.007829211652278, -0.021592173725366003, 0.030660053715109003, 0.042064223438501004, -6.902404380376592e-33, -0.019394157454371, -0.10324340313673001, -0.009599774144589, 0.073304891586303, -0.019820503890514003, 0.026993781328201003, 0.016206385567784, -0.010141709819436, -0.018013896420598002, -0.064542844891548, -0.091724686324596, 0.09012161195278101, -0.0045308847911650005, -0.011959995143115002, 0.031202310696244004, 0.090275093913078, -0.041292313486337, -0.033177688717842005, -0.066520869731903, 0.008013249374926, 0.021285286173224, 0.11726454645395201, 0.011017829179763001, -0.04508289694786, -0.06589313596487001, -0.001338011585175, 0.037810459733009005, 0.010515277273952002, 0.034334197640419, 0.08502478897571501, 0.054805979132652005, -0.07294470071792601, -0.048969782888889, -0.006354653742164, -0.074217222630977, 0.027341220527887, 0.016142651438713, 0.069646194577217, 0.039834082126617, 0.08337379246950101, -0.042292810976505, 0.00021899078274100002, 0.05539079383015601, -0.0011767892865460002, 0.055131830275058004, -0.031098179519176, 0.09210222959518401, -0.07787038385868, -0.009845023974776, 0.036300200968980005, 0.008990136906504001, 0.039456192404031004, -0.044830679893493, 0.027029179036617, -0.073795586824417, 0.057224515825510004, 0.005772013682872001, -0.08616829663515001, 0.047707218676805004, -0.0072131785564120005, 0.035644184798002, 0.009284123778343001, 0.056025296449661005, 0.060267429798841005, -0.013647561892867002, -0.023117199540138002, -0.035807423293590004, -0.045504637062549, 0.057664241641759005, -0.051541958004236006, -0.015210502780973, -0.09375638514757101, -0.016754126176238, 0.027012106031179, 0.019005388021469, 0.031438548117876004, 0.08189265429973601, 0.022206749767065003, 0.034923445433378004, -0.060886230319738006, 0.018251897767186002, -0.042195141315460004, 0.031087951734662004, 0.009895656257867001, -0.032930415123701005, -0.039666391909122, -0.02567022293806, 0.013615611009299, 0.080322876572608, -0.07255837321281401, 0.046167027205228, 0.011549235321581001, 0.007103834301233, 0.069142758846282, 0.014935926534235, -5.606516495504365e-8, 0.018486564978957003, -0.026947569102048003, -0.021060133352875002, 0.076477959752082, 0.040964227169752, -0.05163297802209801, 0.00489943055436, 0.004521311726421001, 0.016814082860946003, 0.026587450876832, -0.023131411522626003, 0.007744112983345001, -0.084676437079906, -0.077837422490119, -0.007495136000216, 0.019632061943411, -0.038939107209444004, -0.025294259190559002, -0.057955183088779005, 0.036637961864471005, 0.040733005851507006, -0.033154107630252005, -0.035568229854106, 0.01105504669249, -0.00019070639973500002, -0.027561213821172003, 0.049476534128189004, -0.058639034628868006, 0.104127347469329, 0.0883070230484, -0.00646071974188, 0.02480768226087, 0.041934993118047006, -0.014082437381148002, -0.10468748211860601, -0.014767462387681, -0.08519160002470001, -0.009154461324214, 0.017491560429334002, 0.06833560764789501, -0.015265228226780002, 0.046286895871162005, 0.038036558777093006, 0.07137963920831601, 0.027332633733749, 0.040667377412319, -0.038560416549444004, -0.071397893130779, 0.018798345699906002, 0.09878059476613901, -0.065346732735633, 0.063446298241615, -0.026746481657028, 0.005207613110542001, -0.048466347157955, 0.09037090092897401, 0.043006688356399, 0.070434100925922, 0.03764583542943, -0.077886767685413, -0.018669305369257, 0.043178718537092, -0.0341084189713, 0.009504174813628 ]
0704.0067
Order of Epitaxial Self-Assembled Quantum Dots: Linear Analysis
Epitaxial self-assembled quantum dots (SAQDs) are of interest for nanostructured optoelectronic and electronic devices such as lasers, photodetectors and nanoscale logic. Spatial order and size order of SAQDs are important to the development of usable devices. It is likely that these two types of order are strongly linked; thus, a study of spatial order will also have strong implications for size order. Here a study of spatial order is undertaken using a linear analysis of a commonly used model of SAQD formation based on surface diffusion. Analytic formulas for film-height correlation functions are found that characterize quantum dot spatial order and corresponding correlation lengths that quantify order. Initial atomic-scale random fluctuations result in relatively small correlation lengths (about two dots) when the effect of a wetting potential is negligible; however, the correlation lengths diverge when SAQDs are allowed to form at a near-critical film height. The present work reinforces previous findings about anisotropy and SAQD order and presents as explicit and transparent mechanism for ordering with corresponding analytic equations. In addition, SAQD formation is by its nature a stochastic process, and various mathematical aspects regarding statistical analysis of SAQD formation and order are presented.
[ "cond-mat.mtrl-sci" ]
[ -0.032416954636573, -0.059342194348573005, 0.033025786280632005, 0.069152064621448, -0.011628008447587001, 0.00022895919391800003, -0.007100159302353, -0.018613837659358, 0.05488343536853701, 0.042421381920576005, 0.003973862621933001, 0.050280224531888004, 0.050425857305526005, 0.055144660174846004, 0.039848256856203, -0.017202839255332, -0.09252694249153101, -0.045396026223897004, 0.016814971342682002, -0.020949155092239, 0.051030341535806004, -0.06680267304182, -0.035250708460807, -0.021494925022125, 0.027093946933746, 0.06447048485279, 0.080375887453556, -0.009870575740933, -0.003441407810896, -0.018557546660304, 0.04860324040055201, 0.004707814659923, -0.029983736574649002, 0.002587323775514, 0.039611645042896, -0.028545236214995003, 0.027344578877091002, -0.004683216568082, -0.009786342270672, -0.092184543609619, 0.0033431963529430004, 0.043148208409547, 0.004646447021514, 0.010791142471134002, 0.08928240090608501, -0.009659529663622001, 0.04379742965102101, 0.001558528630994, -0.106633499264717, -0.09546987712383201, 0.008202932775020001, 0.064630955457687, -0.055260863155126, 0.016438307240605, -0.007673800457268001, 0.100747868418693, 0.024097613990306, 0.009627545252442, -0.011961230076849001, 0.038410425186157005, -0.00027702926308800004, -0.02830346301198, 0.011999354697763, -0.037632867693901, 0.09501114487648, -0.016706360504031, -0.024120157584547, -0.027865882962942002, -0.07495056092739101, 0.12353481352329201, -0.022593941539525, 0.030726006254553004, -0.046135853976011006, 0.028988691046833003, 0.041756309568881, 0.018971318379044002, -0.036233056336641, 0.069447144865989, -0.041474301367998005, -0.07758384197950301, -0.009253708645701, 0.056241903454065004, 0.09942252933979001, 0.048151765018701005, -0.028923084959387002, 0.058312367647886006, 0.0016510795103380001, -0.005107205361127001, -0.021031685173511002, -0.0034866491332650002, -0.0016603284748270002, 0.0010239892872050001, -0.133266121149063, -0.045725371688604, 0.082621052861213, -0.039140820503234, 0.052528601139783006, -0.045778032392263, 0.027571279555559002, -0.037307791411876005, 0.134008631110191, -0.11319012939929901, -0.06354294717311801, 0.024826066568493003, 0.031828142702579006, 0.030461061745882003, -0.019134538248181003, -0.018421618267893, -0.030588716268539002, 0.077298231422901, -0.006012332160025001, 0.031730860471725006, -0.010635308921337001, 0.032086063176393, -0.050027918070554005, 0.041046112775802, -0.070337735116481, 0.07025852799415501, 0.020354548469185, -0.09537211060523901, -0.043648447841405, 0.0028495613951230003, -0.097397446632385, -0.0007834103889760001, -0.06022870540618801, 0.047251895070075, 0.032242644578218, 3.2522416897879614e-33, 0.014573308639228, -0.024428348988294, 0.008008820004761, -0.013642595149576001, -0.01204389706254, -0.0014042229158800002, 0.067495509982109, -0.00821657013148, -0.107396490871906, -0.05558050796389501, 0.023351609706878003, 0.043403565883636, -0.002707758918404, -0.0030125130433580004, 0.030554257333278004, -0.003433893434703, 0.011040921323001001, 0.017729274928569003, -0.069924801588058, -0.06999596208333901, -0.015620668418705002, -0.059769853949546, -0.07431771606206801, 0.088744021952152, -0.030141983181238, -0.065527841448783, -0.054620537906885, -0.018403349444270002, -0.069338604807853, 0.003993644379079, -0.034769106656312006, 0.054046738892793, -0.015704084187746003, -0.07699938863515801, 0.08572890609502701, -0.021077031269669002, 0.00016747025074400002, 0.015973376110196003, 0.011896398849785002, -0.060852602124214006, 0.0030151265673330004, -0.0045360927470020004, 0.017085196450352003, 0.023694833740592003, -0.065530523657798, 0.029574014246463002, -0.009634946472942, -0.0050541348755350005, -0.001151908654719, -0.018156204372644, -0.061425197869539004, -0.043826315551996, 0.026969583705067003, -0.018920766189694002, 0.05181460827589, -0.014165386557579, 0.018153708428144, -0.08562383800745, -0.01729661412537, -0.055194362998008006, 0.021393748000264, 0.024752778932452, -0.004256714601069, 0.04484402760863301, -0.008761577308177, 0.040309179574251, 0.021492097526788, -0.004302880726754, 0.041951879858970004, 0.016042135655879003, 0.05427760630846001, 0.12868030369281702, 0.054134964942932004, -0.016678074374794002, 0.033029053360223, -0.011399217881262, -0.007588655687868001, -0.049044277518987, 0.083588615059852, 0.012187135405838, -0.027932805940508003, -0.005155383143573, -0.030756158754229, -0.10566585510969101, -0.08382279425859401, -0.09171763062477101, -0.055581465363502, -0.009655406698584001, -0.052360992878675, -0.043475095182657006, 0.09634990245103801, -0.125011593103408, 0.139399200677871, 0.016938649117946, -0.10531478375196401, -5.534524950678881e-33, 0.035154245793819004, -0.007836951874196, 0.08756119012832601, -0.035609371960163005, -0.006664016749709001, -0.035843625664711005, 0.010131943970918001, 0.033707067370414005, 0.0751813352108, -0.030150827020406, -0.051572918891906, 0.05903399363160101, 0.022392170503735, 0.014190602116286002, 0.011319598183035, 0.038121029734611005, -0.016560580581426003, -0.088273473083972, 0.12500576674938202, 0.008050423115491001, 0.025775894522666, -0.02887281961739, 0.08947686105966501, -0.024209439754486, -0.005154305137693001, -0.030637115240097, 0.09001827239990201, -0.013903752900660002, -0.068243436515331, 0.012771362438797002, -0.010760412551462002, -0.031360734254121, 0.006712596397846, 0.054422006011009, -0.053987484425306, -0.082828365266323, 0.007789476774632001, -0.08606147766113201, -0.043048616498708, -0.078825868666172, -0.021570248529314003, 0.004919226281344001, -0.050785135477781004, -0.059785954654216, 0.082924492657184, -0.024182338267564003, -0.024196047335863002, 0.058277878910303005, -0.033877234905958, -0.004116164054721001, -0.109307266771793, 0.095836490392684, -0.004012120421975, 0.026722136884927004, -0.03732818737626, -0.006263636052608001, -0.05431176349520601, 0.08490035682916601, 0.034208908677101, -0.024793352931737, 0.025874702259898002, -0.035507805645465004, 0.050024293363094004, -0.017538867890834, -0.042318910360336005, 0.004268696065992001, 0.017645142972469, 0.03415673226118, 0.046754997223615, -0.10204350203275601, -0.012535504996776001, -0.0565628670156, 0.058161579072475, -0.010148749686777, -0.029261887073516003, -0.07589145004749201, 0.077739275991916, 0.008808324113488001, -0.002826153999194, 0.015622276812791, -0.010726266540586001, 0.146811783313751, -0.037640951573848, 0.04580096155405, -0.056983456015586006, -0.010467484593391, 0.009985731914639001, 0.010522736236453, 0.011815740726888001, 0.086024440824985, 0.018013358116149, 0.010052806697785, 0.12190748751163401, -0.0066416515037410005, 0.051751192659139, -4.86727245174734e-8, 0.032410386949777, -0.08868769556283901, 0.073394775390625, -0.019739558920264, 0.05346646532416301, 0.017028030008077, 0.10017019510269101, 0.087184496223926, 0.06657088547945, -0.026547038927674002, -0.040714126080274006, -0.044056590646505, -0.070766068994998, -0.042154900729656004, 0.018679788336157, 0.050339352339506004, 0.010044854134321001, -0.08792045712471001, -0.028590891510248004, -0.027060247957706, -0.07552042603492701, 0.000535703089553, 0.10094119608402201, 0.047904320061206006, -0.065772004425525, 0.013810962438583001, -0.010892557911574001, -0.08819519728422101, 0.004802434239536001, 0.037951342761516, -0.07790691405534701, 0.014447092078626001, 0.077945001423358, 0.090365894138813, -0.013736370950937, -0.072582900524139, -0.015377237461507001, 0.022287368774414, 0.057164531201124004, -0.039030186831951, -0.047064952552318004, 0.017723591998219, 0.11462551355361901, 0.011104555800557001, 0.08768293261528001, 0.041412651538848, 0.007610820699483001, -0.050156146287918, -0.007125986739993001, -0.02811967395246, -0.070091970264911, -0.017076397314667, -0.021871095523238, 0.0033266008831560005, -0.011339571326971, 0.023885283619165, -0.07873266935348501, 0.060894727706909006, 0.016542399302124002, 0.027793655171990003, 0.032911427319049, 0.013983394950628001, -0.017697572708129, 0.021517315879464 ]
0704.0068
A Note About the {Ki(z)} Functions
In the article [Petojevic 2006], A. Petojevi\' c verified useful properties of the $K_{i}(z)$ functions which generalize Kurepa's [Kurepa 1971] left factorial function. In this note, we present simplified proofs of two of these results and we answer the open question stated in [Petojevic 2006]. Finally, we discuss the differential transcendency of the $K_{i}(z)$ functions.
[ "math.NT", "math.CV" ]
[ -0.116706766188144, 0.03311464190483, 0.00365337380208, 0.07184375077486001, -0.03817655518651, 0.05413922667503301, 0.08911769092082901, -0.025074737146496003, 0.011329911649227, 0.024194125086069003, 0.030570622533559, 0.003604078898206, 0.006629428826272, -0.011561369523406001, -0.0015966804930940002, -0.020055338740348, -0.075403220951557, 0.055215269327163, -0.040725316852331, 0.049124497920274006, -0.056975547224283, -0.00006806210149079561, 0.026457108557224003, -0.05896775797009401, -0.04766372218728, -0.009136432781815002, -0.001963410992175, -0.043038565665483, 0.09232161939144101, -0.057846453040838006, -0.037948623299598, 0.073476463556289, 0.012197494506835, -0.01233859732747, -0.006696881260722, 0.019095756113529, -0.008377828635275001, -0.06000692769885001, 0.00029828728293, -0.002503868425264, 0.071704715490341, 0.043736446648836004, 0.001986900344491, 0.018920397385954, 0.01075882371515, 0.012160039506852, 0.030809773132205003, 0.032607931643724004, -0.07211342453956601, 0.015404721722006002, 0.031457934528589006, 0.054106261581182, 0.005987479817122001, 0.043821889907121006, 0.045241922140121, -0.05807841196656201, -0.045176189392805, -0.07018321752548201, 0.029443638399243, 0.077925160527229, 0.033428531140089, 0.004107476212084, 0.009405101649463002, 0.0075267893262200005, 0.011107224971055001, -0.071209326386451, 0.026932418346405, -0.049564976245164004, -0.024975020438432003, 0.056026931852102, -0.026450140401721, -0.002075609518215, -0.050018515437841006, -0.014938976615667001, -0.014417704194784001, 0.049584969878196, -0.012974772602319001, -0.012713256292045, -0.10783945024013501, -0.040041789412498, 0.040858354419469, -0.031263478100299, 0.024924313649535002, -0.08297459036111801, 0.038091987371444, 0.032228872179985005, -0.04729251563549, -0.030059065669775002, 0.020526841282844002, 0.04691888019442501, 0.005981495603919001, 0.004081240389496, 0.057519070804119006, -0.029953399673104, -0.08432336151599801, -0.091598495841026, -0.06701779365539501, 0.058940764516592005, 0.020005181431770002, 0.05490468069911, -0.070851624011993, 0.031914673745632005, 0.058258309960365004, -0.017740052193403, 0.012632112950086, 0.013238729909062, -0.031269654631614005, -0.015575547702610002, -0.051214352250099, 0.09961815178394301, -0.06745926290750501, -0.042774677276611, 0.032147880643606006, 0.012842544354498001, 0.057100310921669006, -0.050917770713567005, 0.049167055636644, 0.017693616449832, 0.054141946136951, 0.009487803094089, 0.11339393258094702, -0.022192250937223, -0.039598308503627, 0.003538758959621, -0.016558773815631003, 0.030800063163042003, 0.028600608929991004, 1.377257050675764e-34, 0.06554354727268201, 0.043419234454631, 0.05954499170184101, -0.12685066461563102, 0.048167057335376004, -0.103895246982574, -0.086921244859695, -0.003887719241902, -0.046466168016195006, 0.038030840456485006, -0.07717356085777201, 0.178665548563003, 0.030925896018743, -0.053972382098436, -0.00020524185674700003, -0.021038070321083003, 0.038491327315568, -0.021621173247694, 0.119057282805442, -0.013017602264881, 0.13164816796779602, 0.020059324800968, 0.040373124182224, -0.013695186935365, 0.009444765746593, 0.018014019355177, 0.113379344344139, -0.027110427618026, -0.034043375402688, -0.016003997996449002, -0.066948950290679, 0.011161285452544, -0.018358347937464003, -0.020438158884644002, -0.015440127812325, -0.0008229739614760001, -0.07484883069992, -0.02348762564361, -0.008823787793517, 0.026065316051244004, -0.006481970194727, -0.073205091059207, -0.042774867266416, 0.044985014945268006, -0.015832541510462, -0.022207919508218002, 0.09829302877187701, 0.0060661025345320006, 0.055482476949691, -0.04097744077444, -0.08705248683691001, -0.043841037899255, -0.078043803572654, -0.023977635428309003, -0.049024920910596, 0.036177039146423, 0.055365726351737005, -0.006920394022017001, 0.016278080642223, 0.007895089685916, -0.09817694872617701, -0.043135289102792004, -0.03992373868823, -0.011589470319449001, -0.09759880602359701, -0.09025541692972101, -0.041875440627336, -0.036147005856037, 0.015373473055660001, -0.062144991010427, -0.031765211373567005, 0.092895776033401, -0.013767710886895, -0.033769294619560006, 0.043431442230939005, 0.055330414324998, -0.132743701338768, -0.063727982342243, -0.068247638642787, 0.030760642141103002, -0.07044888287782601, 0.029421478509902003, -0.026726707816123, 0.021278770640492002, 0.07314205914735701, -0.033820156008005, -0.071604587137699, -0.009879144839942, -0.005445323884487, -0.045777339488267, -0.032350674271583, -0.0038581981789320005, 0.014144117012619, -0.084440290927886, -0.000407591782277, -1.737674707774038e-33, -0.034721292555332, -0.06736632436513901, -0.036559108644723004, 0.09629177302122101, 0.013019508682191, -0.007949918508529, -0.034768775105476005, 0.11011339724063801, -0.020610949024558, 0.023826474323868002, 0.041457425802946, 0.075909577310085, 0.05349055305123301, -0.012091041542589002, 0.047868885099887, 0.005968343466520001, -0.015004336833953, 0.050957668572664004, 0.0035570038016880003, -0.08990665525197901, -0.011984326876699002, 0.053327865898609, -0.05687591433525, 0.017096636816859002, -0.089571379125118, 0.038553450256586005, -0.007628800813108001, 0.033668778836727004, -0.007424891926348, 0.117414906620979, 0.050859868526458005, -0.07245054095983501, -0.037743829190731, -0.029462514445185002, 0.077488958835601, -0.017082758247852003, 0.060022439807653004, 0.041446104645729, -0.080023646354675, 0.05930761620402301, -0.025915924459695, 0.061104066669940005, 0.128248035907745, -0.004567568190395, 0.033270083367824, -0.017349172383546, 0.030485862866044003, -0.0006067958893250001, -0.028215086087584003, -0.00809531379491, -0.001725853653624, 0.030021306127309, -0.027845758944749003, -0.040504425764083, -0.06189170852303501, 0.067494392395019, 0.028814747929573004, 0.028123747557401, 0.052405755966901, -0.039258383214473, 0.046545881778001, -0.012099801562726002, 0.07325179874897, -0.014353974722325, 0.009883882477879, -0.072601228952407, 0.06742633879184701, -0.033968009054660006, 0.014374221675097, 0.001057940186001, -0.031667318195104, -0.000969162036199, 0.003948521800339, 0.041551642119884005, -0.06306986510753601, -0.004745763260871, 0.017481010407209, 0.00809209048748, 0.025035481899976002, 0.034865241497755, 0.035575684159994, -0.040915571153163, -0.028234910219907, -0.007069292012602001, -0.022318253293633003, -0.05397831648588101, 0.047655090689659, -0.025555152446031, 0.059069693088531, -0.08564519882202101, -0.012732140719890001, -0.001462296815589, -0.025318272411823002, 0.033329438418149004, -0.026428159326314003, -4.247982232641334e-8, 0.020647577941417, -0.052868150174617004, -0.0931953266263, -0.028344051912426, 0.10691425204277001, -0.11445286870002701, -0.049198910593986005, -0.035493798553943, -0.04741756618022901, -0.028210848569869003, 0.13602466881275102, 0.081159003078937, 0.045830089598894, -0.040169086307287, 0.082003101706504, 0.06988265365362101, -0.009010542184114, 0.025275578722357, 0.005678394343703001, -0.00455332128331, 0.06925910711288401, 0.046820413321256006, 0.012988943606615, -0.068969301879405, 0.015269779600203, -0.009800720028579001, -0.10766822844743701, -0.064003676176071, -0.05365544930100401, 0.022132748737931, 0.068651720881462, 0.0066981269046660005, 0.036516286432743, 0.095431432127952, 0.04063121601939201, 0.031574845314025005, 0.06668313592672301, -0.024721821770071, -0.018874641507864002, 0.056234836578369, 0.012029350735247002, -0.07144590467214501, -0.044692821800708, 0.038481183350086004, -0.042306248098611006, 0.018959859386086002, 0.018105575814843, 0.032881777733564, -0.07255358994007101, 0.06499529629945701, -0.075601384043693, 0.057702425867319, -0.07658155262470201, -0.010263619944453, 0.045400742441415, 0.016693294048309, 0.019507445394992003, -0.098547413945198, 0.005380813498049, -0.007017913740128, 0.009282369166612, 0.10578121989965401, 0.065877698361873, 0.039356891065835 ]
0704.0069
Dynamical Objects for Cohomologically Expanding Maps
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomological long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient "marching orders" to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
[ "math.DS" ]
[ -0.05559454858303001, 0.021667251363396003, 0.10652577877044601, -0.030790826305747, 0.0678131878376, 0.035075783729553, 0.027039675042033, -0.053601242601871005, 0.005295932758599, -0.060372132807970005, 0.07371945679187701, -0.07095019519329, -0.076573334634304, -0.019389849156141, 0.011091066524386, 0.004906449932605, -0.030508954077959, 0.06345868855714701, 0.0021435027010730003, 0.012701710686087001, 0.017579259350895, 0.041124254465103004, 0.035649001598358, 0.10385550558567001, -0.022376861423254003, -0.10255085676908401, -0.072234086692333, 0.05713428184390001, 0.043141260743141, -0.051332723349332005, 0.046771526336669006, 0.005549794994294001, -0.072717040777206, 0.0017670344095670001, -0.027142081409692, 0.046988654881715004, 0.015335775911808002, 0.016640730202198, -0.01643855497241, 0.08676920086145401, 0.011969767510890001, 0.052374504506587004, 0.059457208961248, -0.0014685872010880001, -0.058141469955444, 0.019504450261592, 0.033855792135, -0.016626769676804, -0.08211613446474, -0.010326644405722, -0.019320547580718002, 0.022205578163266, -0.043277170509099, -0.014017549343407001, -0.031265873461961004, -0.031837563961744, -0.020766375586390003, 0.001033599837683, 0.033984482288360006, 0.004286976531147, 0.021655675023794, -0.003158188657835, 0.059332888573408, -0.07112377136945701, -0.052721459418535004, 0.022766614332795, 0.005851071327924001, 0.039130367338657004, 0.0050634997896850005, 0.052606854587793, -0.015014773234724001, 0.0017134491354220001, -0.06384050846099801, -0.021185778081417, 0.009672417305409001, -0.0018512525130060002, -0.11540213227272, -0.019171310588717003, 0.015194333158433002, -0.06819135695695801, -0.010260893963277002, 0.042978681623935006, -0.018823148682713002, -0.079654961824417, 0.009771070443093001, -0.00213117012754, -0.004788875579833001, -0.072173044085502, -0.044721383601427, -0.064486064016819, 0.067008472979068, -0.13603189587593, -0.043598283082246, 0.055131383240222, 0.052927743643522006, -0.09336342662572801, 0.011571621522307, 0.011992922052741, 0.067491620779037, 0.036981221288442, -0.017122510820627, -0.038056693971157005, -0.05932896211743301, 0.15124946832656802, 0.11523863673210101, -0.014082618989050001, -0.03132040426135, 0.022076401859521002, -0.024147234857082003, -0.002913870848715, 0.017359860241413002, -0.09750055521726601, -0.059541493654251, -0.08915400505065901, -0.019998503848910002, 0.02503409422934, 0.022930493578314, 0.050555337220430006, -0.040394734591245006, -0.004316439386457, 0.073538638651371, -0.013880874030292001, 0.00003853102316497825, 0.006835396401584001, 0.022908398881554003, -0.019251881167292, -0.008732899092137, 3.924570091844584e-33, 0.042707350105047004, 0.08397684991359701, 0.0029202201403670004, 0.084797963500022, -0.015143666416406002, -0.06699732691049501, 0.03692365065217, 0.028726501390337004, 0.041572954505681006, 0.026783745735883, -0.018880497664213, 0.130132481455802, 0.007941818796098, 0.075985886156558, 0.045036550611257005, -0.070349894464015, 0.032481029629707, 0.0017724644858390002, -0.009545817039906, -0.039033431559801005, 0.052882060408592, 0.12363275140523901, 0.005856258794665, -0.09534920752048401, 0.011856971308588002, -0.017639644443988002, 0.010039359331130001, 0.06640017777681301, -0.08266006410121901, 0.008755161426961, 0.044640328735113005, -0.07153360545635201, 0.04578730836510601, 0.018940169364213, -0.0051329522393640005, -0.009919855743646, -0.011089120991528001, -0.031807042658329, -0.020947905257344003, -0.067108139395713, 0.013638810254633002, -0.012563385069370001, -0.05177616328001, -0.031117897480726003, -0.053398989140987, -0.033045735210180005, 0.054747372865676006, 0.055056203156709005, -0.039186287671327, -0.050154417753219, 0.041606258600950005, 0.026018457487225, -0.086089231073856, -0.043841797858476, -0.07857183367013901, -0.030734410509467004, -0.004783601500093, -0.023847987875342, 0.083417899906635, 0.085648231208324, -0.037702754139900006, -0.012028930708765002, 0.012027466669678001, 0.023629590868949002, -0.059351246803998, -0.00016083761875, 0.116229154169559, -0.042780857533216005, 0.027707075700163, -0.00471107289195, -0.040701191872358, 0.043960273265838005, -0.062015585601329005, -0.032513935118913005, 0.023167219012975002, 0.05109249800443601, 0.043400038033723005, -0.053759332746267006, -0.030606502667069, -0.004252697806805, -0.053826563060283, -0.089011311531066, 0.012858727946877, -0.006880903616547001, 0.026211690157651003, -0.009915444999933, 0.03910618647933, -0.027719780802726003, 0.031568549573421, -0.050191517919301, -0.010684700682759, 0.0036302085500210003, 0.056876339018344005, -0.046532705426216, 0.022726044058799, -5.6592805334736355e-33, 0.11194543540477701, -0.018287878483533002, -0.059323541820049, 0.030458820983767003, -0.02188691869378, 0.033429227769374, 0.029351020231842002, 0.158504828810691, -0.11222268640995, -0.057262685149908, -0.106537491083145, 0.079291485249996, 0.05404141545295701, 0.014310941100120001, 0.018827587366104, -0.021489329636096, -0.029738349840044004, -0.030841672793030003, -0.022885838523507, 0.055927734822034, -0.017843760550022, 0.05240561813116001, -0.043828964233398, -0.042180247604846004, 0.013649922795593001, 0.07552170008420901, -0.10831708461046201, 0.049487348645925, 0.009359650313854, 0.005407818127423, -0.034449521452188006, -0.11533641070127401, -0.00102190405596, 0.029059832915663, -0.022124206647276, -0.005718100816011, -0.020071042701601, 0.042673211544752, -0.032766874879598, 0.112342335283756, -0.048867441713809, -0.022503267973661003, 0.023313170298933, 0.081375047564506, -0.021593989804387002, -0.11798512935638401, -0.012440668419003001, 0.072586290538311, 0.015039751306176002, 0.07344171404838501, -0.029765492305159003, -0.000006887023118906654, -0.021969825029373002, -0.011111770756542001, -0.041416045278310006, 0.12243167310953101, -0.052066601812839, -0.046298414468765, -0.057127743959426006, 0.018196228891611002, 0.014348090626299001, -0.03337650373578, 0.021294346079230003, 0.000444351520854, 0.07305888086557301, -0.045343600213527006, -0.09317540377378401, -0.18680092692375103, 0.027010172605514002, 0.069114193320274, 0.006398007273674001, -0.008351199328899, -0.082409583032131, -0.10713355243206, 0.0038267415948210004, -0.018763672560453002, 0.024294190108776002, 0.020762355998158, 0.0036427401937540005, -0.040635727345943, -0.08167421817779501, -0.04287577420473, 0.029493046924471, 0.00197383435443, -0.025211418047547, -0.026376197114586, -0.005890072789043001, -0.013475199230015, -0.002653029048815, -0.027270948514342003, 0.07408608496189101, -0.048706475645303005, -0.011701624840497001, 0.076900698244571, -0.02252734452486, -4.891984772825708e-8, -0.012501108460128, -0.002668546279892, 0.054642822593450005, 0.015816722065210002, 0.024084756150841, -0.038097791373729005, 0.079322136938571, -0.00173483765684, 0.004936430603265001, -0.004015548154711, 0.061402622610330006, 0.05561240762472101, -0.007447242271155001, -0.0036434968933460004, -0.046832073479890005, -0.008397568948566001, -0.07335081696510301, 0.086707331240177, -0.066606283187866, 0.046541947871446006, -0.075554095208644, 0.024049419909715, -0.033964525908231, 0.033135432749986, -0.06493705511093101, -0.035174749791622, 0.042936194688081006, 0.018555086106061002, 0.013846197165548002, 0.055099211633205004, 0.006174260750412001, 0.043608497828245, 0.037907622754573, 0.08267050981521601, -0.040603961795568, 0.024593111127614004, -0.109616234898567, 0.025064285844564, -0.059104897081851, 0.02610576339066, 0.019689522683620002, 0.036623567342758005, -0.005403907038271, 0.021671904250979, 0.07208214700222, 0.0183617901057, -0.022822944447398002, -0.047136217355728004, 0.00525631988421, 0.121723063290119, 0.007295324932783001, -0.013110667467117, -0.039885129779577005, 0.084220491349697, 0.012096199207007, 0.08311082422733301, -0.010091505013406001, 0.011072429828345, 0.018635898828506, 0.019034750759601003, -0.050934411585330006, -0.045120790600776006, 0.074897289276123, -0.008635872974991 ]
0704.0070
Coincidence of the oscillations in the dipole transition and in the persistent current of narrow quantum rings with two electrons
The fractional Aharonov-Bohm oscillation (FABO) of narrow quantum rings with two electrons has been studied and has been explained in an analytical way, the evolution of the period and amplitudes against the magnetic field can be exactly described. Furthermore, the dipole transition of the ground state was found to have essentially two frequencies, their difference appears as an oscillation matching the oscillation of the persistent current exactly. A number of equalities relating the observables and dynamical parameters have been found.
[ "cond-mat.mes-hall" ]
[ -0.029840031638741004, -0.011334564536809, -0.08470928668975801, 0.04416586458683, -0.029596932232379, -0.028096055611968002, -0.021732984110713, 0.023484773933887003, 0.07439983636140801, -0.11620756238698901, -0.014398016035556, -0.052236638963222004, -0.032671522349119006, -0.077447704970836, 0.021856006234884002, 0.053652919828891005, -0.025678152218461002, -0.09084334224462501, 0.05194456502795201, 0.046557594090700004, -0.007663246244192, 0.020114492624998002, 0.024123143404722002, -0.027486342936754, 0.058148216456174004, 0.034112278372049006, 0.038374666124582006, 0.040822237730026, 0.037347983568906, -0.04156944155693, 0.06834247708320601, 0.088891379535198, -0.084982715547084, -0.0114650381729, -0.025082720443606002, 0.049005407840013004, 0.0035671300720420004, 0.061071865260601, 0.043218567967414, -0.010166869498789, 0.042235843837261006, 0.09214404970407401, 0.008115333504974, -0.012118619866669001, 0.014418345876038002, 0.058854863047599, 0.060845356434583005, 0.040089081972837004, -0.025572832673788, -0.052414949983358, 0.122092433273792, 0.026410112157464003, -0.010359294712543, 0.034431651234626, 0.015502097085118, 0.0010164489503940001, -0.011575051583349, -0.020805656909942002, -0.022311234846711003, -0.010433480143547, -0.026127424091100002, 0.05333638936281201, -0.023085113614797002, -0.007401631213724001, 0.030062237754464004, 0.009191370569169001, -0.037615407258272004, -0.0672502592206, 0.051199704408645005, -0.032849263399839006, -0.00423049647361, 0.009373983368277002, 0.0030433065257960005, -0.104828499257564, 0.028671700507402004, -0.019858071580529, -0.053119547665119005, 0.043230548501014, 0.069350361824035, -0.043830301612615, -0.08402496576309201, -0.14947398006916002, -0.006656786426901, -0.06407598406076401, -0.026886438950896003, 0.087320126593112, 0.051158975809812005, -0.08684604614973, -0.092683836817741, -0.075773037970066, 0.056152913719415005, -0.04839342832565301, -0.009981929324567, -0.062299765646457006, 0.07100223749876, -0.052313104271888004, 0.106518670916557, 0.049394894391298, -0.026075914502143003, 0.026938876137137004, 0.12204481661319701, -0.025816213339567, 0.028455320745706003, 0.068823404610157, 0.009701530449092001, 0.006491568405181, 0.076064996421337, 0.054264087229967006, -0.01153287757188, 0.023486463353037, -0.029101530089974, -0.06220332533121101, -0.008732447400689, -0.08106974512338601, 0.018363557755947002, -0.026714887470006003, -0.00035310088424000003, 0.08031293004751201, -0.057012457400560004, -0.025033261626958, -0.022995775565505003, 0.043564043939113006, -0.055574450641870006, 0.016546893864870002, 0.008452890440821, -0.007676437497138, -0.031315557658672, 3.2361190500824644e-33, 0.06591044366359701, -0.049903228878974006, 0.034703008830547, 0.004156427923589, -0.028457960113883, -0.013828289695084001, 0.00005492757918545977, -0.038608532398939, 0.040771067142486, 0.031894735991954005, -0.004426577594131001, 0.08754771202802601, 0.077786862850189, -0.13086295127868602, 0.040690567344427005, -0.059254474937915004, -0.073936782777309, -0.09808122366666701, 0.102044060826301, -0.015029639936983, 0.028006812557578004, 0.059087663888931004, -0.007116744760423001, 0.067800939083099, -0.033073905855417, -0.062326643615961005, 0.08473625034093801, 0.07342328131198801, -0.053266402333974006, 0.022621402516961, 0.034706581383943, 0.07215053588151901, -0.085704706609249, -0.024249834939837, 0.019576145336031, -0.044804651290178, 0.031317919492721, 0.065150797367095, 0.019943086430430003, -0.05553020536899501, 0.030771065503358, -0.11317755281925201, 0.014754348434507, 0.005089242942631, 0.106883533298969, -0.049767665565013004, 0.07636798173189101, 0.059890940785408006, 0.081365965306758, 0.022121747955679002, 0.0026541682891540004, -0.10681724548339801, 0.02125409245491, 0.04936063289642301, 0.055762890726327, -0.012488230131566, 0.008157845586538, 0.026865532621741003, -0.029299566522240004, -0.020480623468756003, 0.0025979049969460004, 0.019501082599163, 0.01930458471179, 0.019708529114723, -0.066212587058544, 0.005416191648691, -0.023938564583659002, -0.017964597791433, -0.067995592951774, 0.12061628699302601, 0.078330144286155, 0.084814198315143, -0.007035962305963, 0.007087477017194001, 0.017068305984139002, -0.022553332149982, -0.017811281606554, -0.012916116975247001, 0.002769467420876, 0.015984155237674002, 0.07127708196640001, -0.125712424516677, 0.05667684972286201, 0.034160926938056, -0.031420424580574, -0.001650300342589, 0.039031140506267006, -0.054225292056798005, -0.017245361581444, 0.09678753465414001, -0.010658004321157, -0.007795399986207, 0.099540971219539, 0.017675679177045, 0.012738323770463002, -4.020003335400061e-33, -0.008945512585341, -0.047589108347892005, 0.001214086427353, -0.0033178094308820003, 0.016531446948647003, -0.004298724234104, -0.010724044404923002, 0.07798851281404401, -0.022346595302224003, -0.041798587888479004, 0.020765654742717, 0.06305892765522, -0.035642348229885004, -0.043414745479822006, -0.06570270657539301, -0.087274208664894, -0.0033201859332620005, 0.037043821066617, 0.16662618517875602, 0.08000437915325101, -0.009478951804339001, -0.021503431722521, 0.0017569392221040002, -0.08579158782958901, -0.03484533727169, 0.029979448765516004, 0.033693943172693, 0.019196735695004002, -0.057793453335762, 0.026517990976572002, -0.012521371245384001, -0.012167253531515002, -0.019145367667078, 0.039909850805997, -0.09614466875791501, -0.037745043635368, -0.019188622012734, -0.037744879722595, 0.055195305496454, -0.035033978521823, -0.12121268361806802, -0.028605150058865002, 0.059473861008882, -0.044645745307207, 0.10702244937419801, 0.018801057711243, -0.015261953696608, 0.08992180973291301, -0.12419693171977901, -0.072004154324531, -0.007475897669792001, 0.000658783712424, -0.008016921579837001, -0.009604792110621001, -0.082864135503768, 0.06929172575473701, -0.006812877021729001, -0.010204583406448, 0.060208164155483, -0.004116807132959001, -0.014886097051203001, -0.034682240337133005, 0.017646934837102002, -0.05174152553081501, 0.044675268232822, 0.0017812399892130001, 0.008339720778167001, 0.007329194340854, 0.011754341423511, 0.021048611029982, 0.023692125454545, -0.04755610227584801, -0.05232897773385001, 0.019554490223526, 0.00001159087969426764, -0.025992631912231, 0.051293399184942, -0.024659713730216002, 0.051021821796894004, -0.03358855843544, -0.009940956719219001, 0.009739846922457001, -0.049497198313474, -0.066205069422721, -0.107875354588031, -0.0026948556769630003, -0.052407279610633004, -0.012985792942345002, 0.009020282886922, 0.043778520077466, -0.037267167121171, 0.019044760614633, -0.0026329848915330003, -0.024136893451213, 0.10191460698843001, -4.547519338871098e-8, 0.11156753450632001, 0.082256279885768, -0.04113196581602, 0.015857525169849, 0.07945080846548, 0.028805814683437004, 0.0020455087069420003, -0.10480953007936401, 0.023542311042547, -0.033864960074424, 0.011534500867128001, 0.065031945705413, -0.021469205617904, -0.11257246881723401, 0.046395566314458, 0.025939084589481003, 0.027867855504155003, -0.06135576218366601, -0.0041435230523340005, -0.04643227905035, 0.065160922706127, 0.021263489499688003, 0.06957721710205, -0.035897236317396004, -0.040863085538148006, -0.008516340516507001, -0.032797910273075, 0.015368254855275001, -0.042169962078332006, 0.05071033537387801, -0.011442752555012, -0.008181830868124, 0.044500641524791, -0.008968964219093, -0.033996853977441004, -0.010707851499319, -0.083383329212665, -0.010943646542727, 0.022656004875898, 0.06846107542514801, 0.006409895606338, -0.013145538046956002, 0.017643876373767003, 0.014507477171719001, -0.075839512050151, 0.006519313901662001, 0.002337532816454, -0.020166646689176, 0.061549916863441, 0.008681559935212, -0.034500248730182, 0.026267305016517, -0.010600828565657, -0.00782567076385, -0.096992753446102, -0.018931886181235, -0.06059647351503301, 0.0011444200063120001, -0.07078076899051601, -0.004356673453003001, -0.060305222868919005, 0.014999407343566001, -0.031232994049787, 0.040637969970703 ]
0704.0071
Pairwise comparisons of typological profiles (of languages)
No abstract given; compares pairs of languages from World Atlas of Language Structures.
[ "physics.soc-ph" ]
[ 0.027259390801191004, 0.013689729385077001, 0.016068853437900002, -0.04934500157833, -0.07338785380125, 0.017922475934028, -0.034582369029521005, 0.018510125577449, 0.024812873452901, -0.021423643454909002, 0.012759370729327, -0.11699682474136301, 0.034820809960365004, 0.090959347784519, 0.024877373129129, -0.046570904552936006, -0.073588259518146, 0.047110643237829, 0.009149279445409001, -0.064764529466629, 0.018519999459385, 0.019235096871852, 0.046669207513332006, -0.014712722972035, 0.06336037069559, 0.01744426600635, -0.051617871969938, -0.0023641774896530003, 0.016683593392372003, -0.0055414699018, -0.069695763289928, 0.10007829964160901, 0.030572907999157004, -0.007029581349343001, 0.06819613277912101, -0.005890070926398001, 0.001701532048173, -0.030404955148696, 0.013249968178570002, 0.029518898576498004, -0.12588731944561002, 0.041911277920007005, 0.025386415421962003, -0.031667958945035005, -0.009453391656279, 0.100337855517864, -0.050779327750205, 0.07022713124752, -0.169348776340484, 0.021150322631001, -0.12287426739931101, -0.013835996389389002, -0.01004584878683, -0.037907846271991, -0.0017168554477390002, 0.003242086851969, 0.033162903040647, 0.028430633246898002, -0.017449961975216, -0.044919598847627, -0.018283508718013, -0.058311346918344005, -0.058495730161666, 0.078653685748577, 0.013825387693941002, 0.057794004678726, -0.004685015883296, -0.011381787247955001, -0.035880520939826, 0.07158111035823801, -0.045103881508111, 0.001765399007126, 0.051245354115962004, 0.089978881180286, -0.0023491596803060003, 0.001966146053746, 0.005839782301336, -0.052489761263132005, -0.06827942281961401, -0.11665503680706, -0.02284125983715, 0.050386495888233004, -0.018840633332729003, -0.044870443642139005, 0.032873086631298, -0.020392416045069, 0.027863748371601, -0.015608291141688001, 0.015038106590509002, -0.010423811152577001, 0.03142999112606, -0.047427233308553, 0.05219910293817501, 0.00018645035743200002, -0.0034772867802530002, 0.06724797934293701, 0.007981491275131, 0.028669012710452003, 0.062870234251022, 0.039725702255964, 0.03940961509943, -0.080948583781719, 0.050762731581926006, 0.008073434233665001, 0.005992429796606, -0.06049311906099301, -0.07481323927640901, -0.109378710389137, 0.048472926020622004, -0.08802741765975901, -0.054697107523679005, -0.010165716521441001, 0.054228845983743, 0.019830625504255, -0.046024352312088006, -0.030414836481213, 0.021378183737397003, -0.006443945225328001, 0.07941418141126601, -0.058478724211454, 0.021032107993960002, -0.034986928105354004, 0.141412019729614, -0.018220579251646, 0.025190353393554, 0.017198050394654, 0.016125973314046003, -2.264475256159931e-33, 0.14679399132728502, -0.017820192500948, -0.049369163811206006, 0.036852195858955, 0.06153767555952001, -0.040988553315401, 0.016395119950175, -0.078036792576313, -0.014067940413951001, -0.053361643105745, -0.026696452870965, 0.150404527783393, -0.051044233143329, 0.04588121548295, -0.017723552882671002, 0.09951090067625001, 0.058828745037317005, 0.030940901488065, -0.074892751872539, 0.02623358182609, 0.044760335236787005, 0.096408411860466, 0.035420510917901, -0.025509046390652, -0.003197630634531, -0.013752659782767001, 0.016839461401104, -0.07929553836584001, -0.064078301191329, 0.021925047039985, -0.022713018581271, -0.037945669144392, -0.041281379759311, 0.036041159182786005, 0.032729566097259, -0.036969650536775006, -0.019986640661954002, -0.035629257559776, 0.005079534836113, -0.06697168201208101, 0.016543073579669002, 0.03323920816183, 0.036566026508808004, 0.017692696303129002, 0.064778313040733, -0.034172125160694004, -0.013587690889835, 0.018924636766314, -0.027912186458706002, -0.088817819952964, 0.03388475254178, -0.033408213406801, -0.019697347655892, 0.018958395346999002, 0.045792020857334005, 0.05236747488379401, -0.003929469268769001, 0.09378968179225901, 0.006579219829291, 0.11689483374357201, 0.015978369861841, 0.030303047969937002, 0.06682737171649901, -0.09623137116432101, 0.08174563199281601, -0.008723915554583002, -0.10354027152061401, -0.004225505515933, 0.08920856565237001, 0.015766715630888002, 0.024909006431698, -0.0052717984654, -0.040674138814210004, 0.10452210158109601, 0.027172112837433003, 0.001566140446811, 0.051383897662162004, -0.132242754101753, -0.017348326742649002, 0.022740755230188002, -0.090145118534564, -0.035771250724792, -0.017274256795644, -0.06846453994512501, -0.09107057005167, -0.044247198849916, 0.08531817048788001, -0.065659135580062, 0.046801578253507004, -0.032764215022325, -0.05247654020786201, -0.0030636696610590003, 0.007367685437202001, -0.07023237645626, 0.056773349642753004, -1.104970475409208e-33, -0.049093510955572, 0.020213676616549003, 0.018025683239102003, 0.045150253921747006, -0.09630623459815901, -0.056551367044448006, 0.018034523352980003, 0.018920555710792, 0.006473264191299, 0.015019082464277002, 0.04871508479118301, -0.072011321783065, 0.10569696128368301, -0.050122208893299006, 0.043004203587770004, -0.061026573181152004, 0.046612899750471004, 0.008746837265789, 0.002278210129588, 0.073599055409431, 0.018819240853190002, 0.004578688647598, -0.131608366966247, 0.0008567410404790001, -0.07327264547348, 0.020479224622249003, -0.066196717321872, -0.030499789863824, -0.097569450736045, 0.04826650395989401, 0.023312849923968003, -0.004350417293608, -0.056416537612676, 0.005076355300843, 0.0067560332827270005, 0.010082415305078, -0.031600601971149, -0.035931199789047005, -0.037163134664297, -0.008333397097885, 0.016102189198136, 0.021630391478538003, 0.042340617626905004, -0.050663396716117005, 0.046098683029413, 0.001943490002304, -0.09386434406042, -0.026563566178083003, -0.044622309505939005, -0.066372603178024, 0.082207717001438, 0.046450801193714, 0.018036175519227, -0.06841015815734801, 0.019304111599922003, -0.08874978870153401, -0.021910699084401002, -0.084454171359539, -0.044363707304, 0.045378528535366, -0.02108721062541, 0.016040537506341, 0.015354198403656, 0.053364649415016, 0.008167011663317, -0.014547453261911002, -0.058814786374568, 0.030589547008275004, 0.039754685014486, -0.049067478626966005, -0.022809635847806, -0.004325196146965, -0.024545192718505002, -0.007789577823132001, -0.004102104809135, -0.008486179634928, -0.004063204862177001, -0.018216883763670002, 0.019147083163261, -0.059313762933015005, 0.03356285393238, 0.013156966306269, 0.010708825662732001, 0.006642668507993, -0.038195796310901, 0.10095240175724, -0.006158187519758, 0.020951254293322, 0.06938084959983801, 0.06122016534209201, 0.041337139904499005, -0.033043690025806004, -0.037429157644510005, 0.022606400772929, 0.009405747056007, -2.75143481331952e-8, -0.0163104981184, 0.01662404090166, 0.019241362810134003, 0.039346031844615006, -0.070917531847953, -0.020590411499142, 0.00594765227288, 0.0037886702921240004, -0.05694287642836501, 0.022170817479491, -0.026607874780893003, 0.121433183550834, -0.048307634890079006, -0.004061340820044001, -0.020583873614668003, -0.005808556452393, 0.013696347363293001, 0.031046289950609002, -0.004878342617303, 0.049889218062162004, 0.038213867694139, 0.041771315038204006, -0.054354514926671, 0.021230487152934, -0.069836609065532, 0.004841196350753, -0.047510255128145, -0.008297878317534, 0.070578143000602, -0.073800727725028, 0.054995689541101005, 0.006992463488131001, -0.016935529187321, -0.052735663950443004, 0.05275240540504401, 0.006888073403388001, -0.081204444169998, -0.002313653705641, -0.047927852720022, 0.034112215042114, 0.147095784544944, -0.014314443804323002, -0.082535497844219, 0.045545116066932005, 0.136319190263748, -0.020875399932265, -0.031223645433783004, -0.048259858042001, 0.006669325288385, -0.039069391787052, -0.0049848086200650005, 0.049762088805437005, -0.002070822520181, -0.000203457428142, -0.032707672566175, 0.009610214270651, -0.08519896864891001, 0.034108389168977, 0.023990660905838002, -0.006513136904686001, 0.067961484193801, -0.017502296715974003, 0.083754353225231, -0.038470353931188 ]
0704.0072
The decomposition method and Maple procedure for finding first integrals of nonlinear PDEs of any order with any number of independent variables
In present paper we propose seemingly new method for finding solutions of some types of nonlinear PDEs in closed form. The method is based on decomposition of nonlinear operators on sequence of operators of lower orders. It is shown that decomposition process can be done by iterative procedure(s), each step of which is reduced to solution of some auxiliary PDEs system(s) for one dependent variable. Moreover, we find on this way the explicit expression of the first-order PDE(s) for first integral of decomposable initial PDE. Remarkably that this first-order PDE is linear if initial PDE is linear in its highest derivatives. The developed method is implemented in Maple procedure, which can really solve many of different order PDEs with different number of independent variables. Examples of PDEs with calculated their general solutions demonstrate a potential of the method for automatic solving of nonlinear PDEs.
[ "math-ph", "math.MP" ]
[ -0.073387831449508, -0.005730140022933001, 0.066877447068691, -0.005820758175104, -0.044256072491407006, -0.07250740379095001, -0.050644911825656, -0.034269861876964, 0.016120318323373, 0.049010407179594005, 0.053358640521764006, 0.089593358337879, -0.057457748800516004, 0.009268923662602001, 0.004609337076544, 0.004894291982054, -0.095136366784572, 0.025747170671820002, -0.036558076739311, 0.01191615872085, -0.013645792379975001, 0.044823303818702004, -0.132467091083526, -0.010499064810574001, 0.103062599897384, 0.0038119046948850003, 0.07030355930328301, 0.019734488800168003, 0.004580370150506, 0.012107242830097, 0.11101026087999301, -0.075337022542953, -0.008326671086251, -0.0022854241542510003, -0.046486966311931006, 0.035662710666656, -0.06878313422203, -0.078283861279487, -0.08327697962522501, -0.040121715515851, -0.026742689311504003, 0.067803844809532, -0.017310058698058, -0.022713851183652, 0.059009652584791, -0.038273982703685004, -0.031540725380182, -0.032323811203241, 0.019359957426786003, -0.029141383245587002, 0.018900120630860003, 0.010848296806216, -0.015299957245588, -0.0059626079164440005, 0.121806263923645, -0.08065522462129501, 0.007809347007423001, -0.007222164887934, -0.006125069223344001, 0.046709984540939005, -0.007510491646826001, 0.048163119703531, -0.050475988537073004, -0.02708070538938, 0.029309619218111004, -0.007379401940852, 0.050883404910564006, -0.012361071072518002, 0.029801908880472003, 0.07864326983690201, -0.061387911438941005, -0.042030546814203006, -0.09083455801010101, 0.024108199402689, -0.065779604017734, 0.046755261719226004, 0.057042449712753004, -0.010245811194181002, -0.06377106159925401, 0.022454466670751003, 0.008641778491437001, 0.061575382947921004, -0.002384085208177, -0.06917964667081801, -0.015201790258288002, 0.010746961459517, -0.037719644606113004, 0.016670329496264, 0.032044786959886, -0.00039094308158300005, -0.038042511790990004, -0.042264483869075005, 0.021361274644732, -0.056101277470588004, -0.023016681894659, 0.017131406813859003, 0.10887023061513901, 0.053791027516126, 0.038635317236185004, 0.04867068305611601, 0.001788202207535, -0.062497872859239, 0.06721052527427601, 0.020171290263533002, -0.028617214411497, -0.007957261987030001, -0.025967124849557002, 0.017997564747929, -0.034895397722721, 0.016842383891344, -0.059426844120025, -0.044864062219858, 0.011472910642623001, 0.028278164565563, 0.013016599230468, 0.021451197564601003, 0.036468029022216006, -0.048220470547676, 0.053439859300851, -0.041409354656934, 0.074196174740791, -0.012970739044249, -0.026369795203208, 0.06613582372665401, -0.0020972611382600002, 0.050647694617509, 0.033351514488458, 3.366002359640696e-33, -0.056190993636846, -0.022101987153291, 0.044513519853353, 0.04594840109348201, -0.025420550256967003, -0.03944569081068, 0.084506519138813, -0.013857228681445, -0.015020499005913, 0.153445810079574, -0.021433094516396002, 0.022981837391853003, -0.042088508605957003, 0.042337924242019, -0.053390648216009, -0.027754444628953, 0.076769299805164, 0.06955733895301801, 0.014828075654804, -0.000141118915053, 0.033750139176845, 0.035321660339832, 0.07270587980747201, -0.037060413509607, 0.07890879362821501, -0.03819565102458, 0.003836369607597, -0.031694509088993, -0.019271353259682003, -0.010155841708183, 0.01088276412338, -0.025539660826325004, -0.161187559366226, 0.014208819717168001, 0.057028070092201004, -0.020289683714509, 0.018623217940330002, 0.007234689779579, -0.022319538518786, 0.034379303455352006, -0.0018627394456410002, -0.00259937858209, -0.012076994404196, 0.033809412270784, -0.025433680042624, -0.029795728623867004, -0.082385264337062, 0.05938771739602001, 0.06480317562818501, 0.026681680232286002, -0.080580234527587, -0.004237103741616, -0.005990399979054001, -0.025433972477912, -0.022458022460341003, 0.025242485105991003, -0.017037294805049, -0.06096995249390601, 0.006452927365899, -0.007197487633675, -0.023431247100234, 0.006349307019263, -0.025468107312917, -0.052584335207939, -0.030236667022109004, -0.046514715999364006, 0.012371657416224001, 0.032414738088846005, -0.013589832931756002, -0.11411011219024601, -0.055935226380825, 0.024864694103598, 0.008720227517187, -0.10155005007982201, 0.094821773469448, -0.05997882783412901, 0.055442340672016005, -0.07154922187328301, 0.029566682875156004, -0.13190159201622, -0.062716253101825, 0.101365163922309, 0.06381484121084201, 0.100623667240142, -0.00324179790914, -0.023134758695960003, -0.036104019731283, 0.044496223330497006, -0.09310234338045101, -0.08319903910160001, -0.15017446875572202, 0.016561461612582002, 0.077533684670925, 0.024249119684100002, 0.040921419858932, -7.13666277208021e-33, -0.038556367158889, -0.052867781370878004, 0.023401858285069, -0.041922342032194006, -0.035668030381202004, -0.032608907669782, 0.009126530960202, -0.039647869765758, 0.019101595506072003, -0.008448835462331, -0.053346492350101006, -0.0037990638520560005, -0.067782677710056, 0.032280310988426, 0.104794152081012, 0.007732530124485001, -0.095454350113868, 0.006607132498174, -0.024952571839094002, 0.041573595255613, -0.040111239999532006, 0.075538910925388, 0.042049195617437, 0.005843858700245, 0.010905420407652001, -0.038671378046274005, -0.009908895008265, 0.07828886061906801, 0.005716863088309001, 0.006795068737119001, 0.028838323429226, 0.017539668828248003, 0.042195651680231004, 0.041733622550964, -0.029764514416456004, 0.055904414504766006, 0.023784082382917, 0.030323693528771, 0.045628078281879, 0.056262772530317, 0.055031031370162006, 0.008727314881980001, 0.055251821875572, -0.01440555602312, -0.026413414627313003, -0.031624436378479004, 0.004755236208438001, 0.040359053760766005, -0.021381024271249, 0.03594309836626, 0.051168728619813, 0.020601700991392, -0.07841119915246901, 0.037664908915758, -0.026731558144092, -0.017505293712019, 0.023659717291593003, 0.037070240825414005, 0.037052735686302005, -0.070186294615268, 0.010655452497303, -0.016500703990459, 0.136175736784935, 0.036996684968471, 0.0047134086489670005, -0.015801372006535003, -0.097770906984806, 0.024126727133989, -0.043017338961362006, -0.080964021384716, 0.048555478453636, -0.013046465814113001, -0.006521113216876001, 0.032129205763339004, 0.100011900067329, -0.12249881029129, -0.006910783704370001, -0.06002462655305801, -0.037858925759792, -0.037098202854394004, 0.050187278538942004, -0.0038930950686330004, 0.032179325819015, -0.037063889205455, -0.048306357115507, -0.020085811614990002, 0.084964029490947, -0.040582727640867004, -0.046575412154197006, -0.050657186657190004, -0.06590557098388601, 0.08283516764640801, 0.054844390600919, 0.09886110574007001, -0.027052715420722, -4.567476352690391e-8, -0.023354271426796, -0.06611745804548201, -0.090275108814239, -0.008784037083387, 0.01581329666078, -0.047727860510349, -0.031745076179504, 0.049177914857864005, 0.056313551962375, -0.100260235369205, 0.027914894744753, 0.014455338940024001, 0.018523287028074, -0.046985831111669006, -0.044453933835029005, 0.002780723385512, -0.046523217111825006, -0.053589146584272, -0.062315084040164004, -0.041150968521833, 0.021977905184030002, 0.039512343704700005, -0.06898684054613101, -0.076241791248321, 0.126129239797592, -0.07609605044126501, -0.083003230392932, -0.016710299998521, -0.0008053041528910001, 0.094141855835914, -0.036703277379274, 0.11554039269685701, -0.057298623025417, 0.043561965227127006, 0.081495426595211, 0.061341453343629004, 0.11594984680414201, 0.029934659600257003, -0.047121256589889006, -0.056187268346548004, -0.05702261999249401, 0.037945207208395004, -0.031214030459523003, -0.004790457896888, 0.0029630926437670003, -0.027593191713094004, 0.039853896945714, -0.024385293945670003, 0.048804089426994005, 0.05905948951840401, -0.061914533376693004, 0.017057009041309003, -0.016560068354010003, -0.038746796548366005, 0.020535102114081, -0.056316256523132005, -0.048644453287124, -0.030204836279153, 0.052535042166709005, -0.025783529505133, 0.021114343777298, 0.053105339407920005, 0.074365116655826, 0.024824358522892002 ]
0704.0073
A transcendental approach to Koll\'ar's injectivity theorem
We treat Koll\'ar's injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Koll\'ar type cohomology injectivity theorems. Our main theorem is formulated for a compact K\"ahler manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete K\"ahler metric. We need neither covering tricks, desingularizations, nor Leray's spectral sequence.
[ "math.AG" ]
[ -0.128986716270446, 0.10405504703521701, 0.016159554943442, -0.001555328606627, -0.046793937683105004, 0.10101360082626301, 0.059853862971067005, -0.011400465853512001, 0.022492017596960002, -0.050757844001054, 0.040550027042627, -0.040408160537481, -0.028412666171789003, -0.005095543805509001, 0.034650109708309, -0.064517885446548, -0.05927364900708101, -0.023633891716599003, 0.042863566428422005, 0.012278992682695, -0.031334247440099, 0.070145934820175, 0.020047297701239003, 0.071864925324916, -0.041103530675172, -0.080246329307556, 0.050150711089372, 0.045145642012357004, 0.022537169978022003, -0.023442802950739, -0.010393584147095, 0.029005512595176003, -0.030292987823486002, -0.003925703931599, -0.059823561459779004, 0.039417881518602, 0.024842258542776, 0.009161632508039001, 0.052507299929857004, 0.029925094917416004, 0.031446024775505, 0.042523853480815006, -0.017844317480921003, -0.001948529039509, -0.06727784872055001, -0.024315929040312, -0.084135517477989, -0.064996443688869, -0.07879586517810801, 0.031116878613829002, -0.09928584098815901, 0.01077417563647, 0.06332308799028301, -0.014757065102458002, 0.0008304071379820001, -0.016164379194378003, -0.034004528075456, -0.008051427081227, 0.11836705356836301, -0.006260170601308001, 0.03301640227437, -0.060076840221881006, -0.007355696056038001, 0.004271214362233, -0.077495522797107, -0.010602767579257, 0.041848864406347004, -0.055759727954864, -0.025651575997471, 0.0028513341676440003, 0.014714433811604002, -0.045350961387157, -0.051834743469953, -0.0014767076354470002, -0.040032781660556, -0.051887650042772, -0.10734681040048501, -0.03881299868226, -0.06069092079997, 0.024666657671332002, 0.07420989125967001, 0.03353201597929, -0.069026455283164, -0.030827362090349003, 0.033982668071985, -0.022475248202681, -0.021735027432441, -0.06674102693796101, -0.031509600579738, -0.023499319329857, 0.088578231632709, -0.05458331480622201, -0.028321212157607002, 0.008150286041200001, -0.085798680782318, -0.042509131133556005, -0.057387992739677006, 0.08664609491825101, 0.007913200184702, 0.06326303631067201, 0.04870416596531801, -0.061244353652000004, -0.06682800501585001, 0.06958676129579501, 0.042803961783647, -0.023751955479383, 0.024871541187167, -0.078875459730625, -0.08972081542015001, 0.0007531286682930001, 0.05735502392053601, -0.14062063395977, 0.0004916293546550001, -0.07785283029079401, 0.001746846013702, 0.004446374718099001, 0.06850653141736901, 0.040487743914127, -0.006197089795023001, 0.025574501603841, 0.046821836382150005, -0.021983506157994003, 0.047581285238265006, 0.022260492667555, 0.07393940538167901, -0.035076562315225004, 0.021290881559252, 1.737583423290857e-33, 0.035890653729438005, 0.08918394893407801, 0.030159084126353004, 0.042711023241281, -0.032831609249114005, -0.047126114368438006, -0.010729469358921, 0.14059963822364802, 0.048232194036245006, -0.043582517653703, -0.025720056146383, 0.100662775337696, 0.014789383858442001, 0.041960336267948005, 0.015082600526511001, -0.026208290830254003, 0.021796097978949002, 0.042713917791843005, -0.045088503509759, -0.006328145042061001, 0.10985397547483401, 0.039135534316301006, 0.022298833355307003, -0.027109181508421003, 0.017049636691808, 0.030344316735863002, 0.025113940238952002, -0.026932204142212, -0.053090039640665006, 0.015472170896828001, 0.098109118640422, -0.055018898099660006, 0.033752676099538005, 0.037986364215612, -0.025795783847570003, 0.031347494572401005, -0.117859184741973, 0.033235784620046005, -0.05446590855717601, -0.005201152525842001, -0.037199199199676, 0.010090931318700001, -0.07563130557537001, 0.041231267154216, -0.027381306514143004, 0.088668689131736, -0.0025435902643940003, 0.04765797778964, 0.011881384067237, -0.069890081882476, -0.026776731014251, 0.029179843142628004, -0.138559311628341, 0.027494594454765, -0.031329672783613004, 0.07202402502298301, -0.035064164549112, -0.029292318969964003, 0.057731412351131, 0.039538286626338, -0.04107182472944201, -0.04374086856842, -0.040974523872137, -0.004645401611924001, -0.08390574902296001, -0.064668163657188, 0.059441361576318005, -0.041519552469253006, -0.009867042303085001, -0.021586997434496002, -0.040271580219268, 0.035084642469882, -0.042572949081659005, 0.031042158603668, 0.016074437648057, 0.029100932180881, -0.042462535202503, -0.037426766008138004, -0.035252701491117006, 0.073023967444896, -0.041080210357904004, -0.052426800131797006, 0.02709319256246, 0.032894719392061005, 0.001011970685794, -0.080794811248779, 0.025478985160589003, 0.030778201296925004, 0.034272592514753, -0.047244220972061005, -0.074144214391708, 0.051433458924293005, -0.06801722198724701, -0.058599937707185, 0.053145449608564, -3.6977000494778674e-33, 0.123573549091815, -0.034501701593399, 0.042232770472764004, 0.010993207804858001, -0.042626783251762, 0.068631589412689, 0.075231648981571, 0.15956823527812902, -0.093499138951301, -0.0023133754730220004, 0.025220734998583003, 0.055278643965721005, 0.061494506895542006, -0.026707910001277, -0.025012575089931002, -0.027350123971700002, -0.050425846129655005, 0.035008553415536, -0.085861548781394, 0.0025291137862950004, -0.018027508631348003, -0.009582759812474001, -0.002746586687862, -0.05940750241279601, -0.044624950736761, 0.06582102924585301, -0.016741923987865, 0.0176015291363, 0.009952299296855, 0.12710596621036502, 0.013872579671442, -0.095793239772319, -0.052561029791831006, -0.042234636843204006, -0.023624360561370003, 0.06025488302111601, 0.027789192274212, 0.068422108888626, -0.148760542273521, 0.09308462589979101, -0.009776568971574001, 0.012567543424665002, 0.071212030947208, 0.05911062285304, -0.042296189814805006, -0.049917556345462, -0.002004732377827, 0.033567007631063, 0.012710586190223002, 0.025986243039369004, -0.00871121045202, 0.017705991864204, 0.033709947019815, 0.056208334863185, -0.0058815097436300005, -0.027692589908838, -0.038404945284128, -0.033608581870794005, -0.038361884653568004, -0.038461212068796005, -0.015786956995725, -0.04407649487257, 0.071718677878379, -0.009953859262168002, 0.037429548799991004, -0.047142229974269007, 0.019879076629877, -0.055987391620874, -0.037164654582738, 0.018408721312880003, -0.055141828954219006, -0.044584307819604006, -0.009998130612075001, -0.035563588142395006, 0.017032472416758003, 0.036153346300125004, 0.037101406604051, 0.016570964828133, -0.005670016165822, -0.017400993034243, 0.019648727029561, -0.043069556355476005, -0.018272943794727003, 0.035320661962032006, 0.052580334246158, -0.020539345219731, 0.050284449011087, -0.137265339493751, 0.039562460035085005, -0.010052417404949, -0.053389500826597006, -0.004620676394551, 0.0031504929065700005, 0.06703089177608401, 0.035043116658926, -3.971929984913913e-8, 0.04550290107727, -0.057040080428123, 0.015837172046303, -0.035909488797187, 0.030088622123003003, -0.06811263412237101, -0.025347607210278, 0.016276821494102003, -0.028060182929039, -0.00960224866867, 0.022424658760428002, 0.11533632874488801, 0.001250924076884, 0.077738232910633, -0.027398012578487, 0.012039914727210001, -0.053071159869432005, 0.050345573574304005, 0.002086227526888, 0.011878296732902001, -0.058434937149286006, -0.018907390534877, 0.015858186408877, -0.057330306619405004, -0.024670084938406, 0.048577893525362, -0.021305007860064, -0.017713502049446002, -0.012425576336681001, 0.020024247467517003, 0.041264664381742006, 0.015122931450605, 0.040245823562145004, 0.08249841630458801, -0.007050500717014001, -0.001299349823966, -0.055456236004829004, -0.024677993729710003, -0.09006854146718901, 0.045600339770317, -0.045810993760824, 0.032835207879543, -0.049163874238729005, 0.004213336855173, 0.053503010421991, 0.026814367622137004, -0.0037874267436560005, 0.06415262073278401, -0.026996472850441003, 0.20906637609004902, -0.044315811246633, -0.038978740572929, -0.014975608326494002, 0.004505028482526, 0.006993154995143001, 0.023956302553415004, 0.034282974898815, -0.067651517689228, -0.019992906600236, 0.039223607629537006, 0.030672922730445, -0.012954549863934002, 0.100842840969562, -0.022684104740619 ]
0704.0074
Injective Morita contexts (revisited)
This paper is an exposition of the so-called injective Morita contexts (in which the connecting bimodule morphisms are injective) and Morita $\alpha$contexts (in which the connecting bimodules enjoy some local projectivity in the sense of Zimmermann-Huisgen). Motivated by situations in which only one trace ideal is in action, or the compatibility between the bimodule morphisms is not needed, we introduce the notions of Morita semi-contexts and Morita data, and investigate them. Injective Morita data will be used (with the help of static and adstatic modules) to establish equivalences between some intersecting subcategories related to subcategories of modules that are localized or colocalized by trace ideals of a Morita datum. We end up with applications of Morita $\alpha$-contexts to $\ast$-modules and injective right wide Morita contexts.
[ "math.RA" ]
[ -0.019858039915561003, -0.0067458171397440005, -0.027153901755809003, 0.006641489919275, 0.023991905152797, -0.05065553635358801, 0.112486258149147, -0.013364968821406002, -0.013561469502747002, -0.07413768023252401, 0.04517051205039, -0.061222027987241, -0.002412647940218, -0.0017810643184930002, 0.04978978633880601, 0.06302772462368, 0.031919378787279004, 0.089060194790363, -0.056881908327341, 0.059297826141119, 0.058562658727169, 0.040658835321664005, -0.007602332159876, 0.010842272080481, -0.024920245632529002, -0.002463608514517, 0.006262401584535, -0.018063481897115003, 0.037762086838483006, 0.000193088853848, -0.06670321524143201, 0.137047216296195, -0.022355984896421002, 0.049544908106327, -0.031422149389982, 0.056699130684137004, -0.004461906384676, 0.019098939374089, -0.036025166511535006, -0.06147157773375501, 0.06315939873456901, 0.11286024749279001, 0.014279025606811001, -0.050838500261306006, -0.067750766873359, -0.08238124102354001, -0.0029086058493700004, -0.028418032452464003, -0.09852218627929601, -0.011921806260943002, -0.06037971749901701, -0.013568608090281, -0.059789013117551006, 0.04598631709814, -0.012722327373921, -0.019938005134463, 0.08133478462696, -0.110582023859024, 0.0018653690349310001, 0.014698275364935, -0.062277041375637006, 0.037867974489927, -0.026178987696766003, -0.05604552850127201, 0.009793640114367001, 0.009923313744366, 0.027582401409745, 0.04281386360526, 0.001547159627079, -0.02222091704607, -0.026802385225892, -0.011289736256003002, -0.140493154525756, 0.11872557550668701, -0.037602365016937006, 0.012346439063549, 0.03896590322256, 0.004024529829621, 0.00039705974631900004, -0.061451181769371005, 0.043993920087814005, 0.056398462504148004, 0.028302375227212004, 0.005898320581763, 0.06961379200220101, 0.017119390890002, -0.036494400352239005, 0.007909592241048001, 0.03362738341093, 0.022696306928992, -0.017511915415525003, -0.03024386242032, 0.027654573321342003, 0.089145518839359, 0.04816645756363801, -0.099077247083187, 0.08031374216079701, 0.051548786461353004, 0.027182295918464, 0.089626178145408, 0.029742773622274003, 0.05938633531332001, -0.115971222519874, 0.018795803189277, -0.04812791198492, -0.041785519570112006, -0.029914118349552002, -0.076859854161739, -0.053319741040468, -0.038055229932069, -0.020574335008859003, -0.08209603279829, 0.030672421678900004, -0.07689926773309701, -0.059787619858980005, -0.051402766257524005, 0.019850142300128, 0.022407690063118, 0.035269062966108, 0.004516054876148001, 0.011059888638556, 0.023413632065057, 0.049306247383356004, 0.031217539682984, 0.029327414929866003, -0.059709437191486005, -0.16575151681900002, 3.3999139022939805e-33, 0.07826276868581701, -0.004515982232987, 0.009107839316129001, 0.10470754653215401, -0.020728288218379003, -0.046612724661827004, 0.002510283607989, -0.0008521612617180001, 0.035001140087842005, -0.05985969305038401, 0.054750427603721, 0.11982912570238101, -0.027383798733353, -0.00537661043927, 0.077069967985153, -0.016811849549412002, 0.042670603841543, 0.00189373246394, 0.0064870561473070005, 0.011632724665105001, -0.028782427310943003, 0.07471828162670101, -0.03948051854968, -0.032253045588731, 0.09940761327743501, 0.019595818594098, -0.049115411937236, -0.027928104624152003, -0.043951515108346, 0.056478571146726005, -0.005474341567605, 0.052733570337295005, 0.042161595076322, 0.09045724570751101, 0.06660269200801801, -0.030265931040048002, -0.034678060561418006, -0.079274803400039, -0.11820095777511501, -0.01991419494152, 0.045293848961591006, 0.06766103953123001, -0.028350958600640002, 0.0265100505203, 0.022986177355051002, -0.038886737078428005, -0.017753871157765, 0.110594242811203, 0.034629177302122005, -0.027128402143716004, 0.017149768769741003, 0.0637673959136, -0.012048783712089001, -0.07278968393802601, -0.020294584333896002, 0.00789638236165, -0.006218235008418001, 0.010783901438117001, 0.071327492594718, 0.10314710438251401, -0.076348647475242, 0.0070801982656120005, -0.053651228547096, 0.050289142876863, -0.035319693386554, 0.07848785817623101, -0.041855972260236005, -0.036028645932674006, 0.082865573465824, 0.047425299882888, -0.044809624552726, 0.029739698395133, -0.056197114288806006, 0.06118946522474201, -0.038308043032884, 0.022313226014375003, -0.08471409976482301, -0.071029536426067, -0.082117602229118, -0.02632338553667, 0.010464344173669001, 0.020746801048517, -0.025800995528697003, -0.026097550988197, -0.014008278958499001, -0.058954901993274, 0.03952183574438, -0.070595011115074, -0.058463566005229006, -0.111952647566795, -0.033821899443864004, 0.08390256762504501, -0.052234791219234, -0.087360724806785, 0.011954592540860001, -4.7368028928001995e-33, 0.005639859009534001, -0.08078151941299401, -0.11261938512325201, 0.045605305582284004, -0.032717309892177006, -0.064748212695121, 0.034824792295694004, -0.007554666139185001, -0.005567900370806, 0.048254337161779, -0.051970083266496006, 0.015011886134743002, 0.032972190529108006, -0.015789711847901, 0.093990564346313, -0.049944996833801006, 0.002674864837899, -0.031811609864234, 0.014723437838256002, 0.010579550638794, 0.042553361505270004, 0.07186271250247901, -0.025862282142043003, -0.018073232844471, -0.011014094576239001, -0.010456213727593, -0.11400394886732101, 0.047062646597623006, 0.0031180602964010003, -0.023940065875649, 0.013114730827510001, -0.037509832531213004, -0.005643678363412, -0.037725936621427, -0.036750677973032005, 0.03907960280776, 0.07247415184974601, -0.035462379455566004, -0.039254121482372006, 0.02015364728868, -0.023767802864313, 0.018320342525839, -0.033919807523489005, 0.040042635053396, -0.050913874059915, -0.10052473098039601, -0.05021979287266701, 0.025761010125279003, 0.044554062187671, -0.07975158095359801, 0.03227474540472, -0.07668901979923201, 0.084613434970378, -0.057260453701019, 0.046175997704267, -0.040970955044031004, 0.036888848990201, -0.061250980943441, 0.045549023896455, 0.030288703739643003, 0.0515101775527, -0.055227011442184004, -0.017902987077832, 0.023992739617824003, 0.026684528216719003, -0.041403196752071006, 0.057809006422758005, -0.08876713365316301, -0.002197355031967, -0.053795635700225004, -0.027753077447414003, -0.013073431327939, -0.047961890697479005, -0.044411662966012004, -0.009357012808322001, 0.041245646774768004, 0.027799516916275004, 0.030091047286987003, 0.062825500965118, -0.015780214220285003, -0.06707430630922301, -0.082504138350486, 0.034955836832523006, 0.014790435321629, 0.069269955158233, -0.07102625072002401, -0.071327053010463, 0.050736103206872, 0.030581422150135002, 0.020074704661965002, 0.013483298942446001, -0.031159969046711002, 0.015726279467344, 0.047313638031482, -0.035508144646883004, -4.18975218963169e-8, -0.025200041010975, -0.026939075440168003, -0.074215911328792, 0.086474247276782, 0.022905956953763, -0.029506720602512002, 0.0036509344354270002, 0.021998271346092002, -0.008922727778553, 0.044786699116230004, 0.037948805838823006, 0.08999962359666801, -0.040829919278621, -0.003744276473298, 0.05380266532301901, -0.020175028592348, 0.014776420779526001, 0.041835043579339, -0.04848562926054, 0.06168154254555701, 0.055209320038557004, 0.061644326895475006, -0.062624216079711, -0.004665020853281, -0.018917499110102, -0.076873302459716, 0.013364261016249001, 0.073738984763622, 0.050821892917156004, 0.045241657644510005, -0.018886618316173002, -0.018060905858874002, 0.027068555355072, -0.019529849290847, -0.061315573751926006, 0.030288765206933, -0.059460997581481004, -0.046996839344501, -0.029428971931338, 0.030753767117857003, 0.09565535932779301, -0.05708209425210901, -0.079204887151718, 0.025276083499193, 0.13757699728012002, 0.015065209940075002, -0.004797837231308001, 0.009081058204174, -0.060852274298667006, 0.053916487842798004, -0.04967825114727, 0.028920615091919004, -0.008355606347322, 0.045419562608003006, -0.004801510833203001, -0.000121190489153, 0.007245574612170001, 0.015284627676010002, -0.004520279355347, 0.032875038683414, -0.028143789619207, 0.053932551294565007, 0.059436131268739006, -0.0026854458265000002 ]
0704.0075
Strong decays of charmed baryons
There has been important experimental progress in the sector of heavy baryons in the past several years. We study the strong decays of the S-wave, P-wave, D-wave and radially excited charmed baryons using the $^3P_0$ model. After comparing the calculated decay pattern and total width with the available data, we discuss the possible internal structure and quantum numbers of those charmed baryons observed recently.
[ "hep-ph", "hep-ex", "nucl-ex" ]
[ -0.056373652070760005, -0.08752999454736701, 0.046428345143795006, 0.023340750485658, -0.022785762324929, -0.05978810787200901, -0.038959193974733006, 0.050234366208314, -0.030148647725582, 0.049905575811862, -0.043305788189172, 0.08633886277675601, -0.08896857500076201, -0.09353610128164201, 0.12351434677839201, -0.005494676530361, 0.008344010449945, -0.07679901272058401, -0.059513587504625, 0.051241118460893006, -0.015917552635073003, -0.081410095095634, -0.006294454913586001, 0.040268216282129, 0.000531257712282, -0.017141975462436003, 0.06290102005004801, -0.043029893189668, 0.08080168068408901, 0.00007851071859477088, 0.06081322580575901, -0.009564289823174001, 0.07325863838195801, 0.012091378681361, 0.024429891258478, -0.023986568674445003, 0.04084325954318, 0.014069405384361001, 0.017003847286105, -0.011245048604905002, 0.043143238872289005, 0.082104071974754, 0.006105854175984001, 0.017101118341088, 0.021634228527545003, 0.024238197132945002, -0.07273776829242701, -0.015305238775908002, -0.038609378039836, -0.048073682934045, 0.09476754814386301, 0.0353041626513, -0.034612879157066005, 0.08289976418018301, -0.027733577415347002, -0.060745295137166005, -0.0065505192615090005, -0.048947330564260004, 0.042500369250774, 0.011227739974856, 0.035995122045278, 0.057896837592124, 0.028048301115632, -0.07902471721172301, 0.047023117542266006, 0.003024081233888, 0.008292239159345, 0.007131176069378, 0.062440071254968005, 0.034007720649242006, 0.029089849442243004, -0.047149270772933, -0.107677690684795, 0.007193570490926, -0.037876438349485, -0.027338504791259002, 0.041810452938079, -0.103118501603603, -0.027396772056818, -0.06378355622291501, -0.05603233352303501, -0.08844832330942101, -0.029139207676053002, -0.04768130555748901, -0.06868924200534801, 0.058534536510705004, -0.052234567701816004, 0.005793115124106, -0.027964111417531003, 0.052925676107406006, 0.010793457739055, 0.010151162743568, -0.029587529599666002, -0.035288475453853003, -0.047669425606727, 0.07858531177043901, 0.06911242008209201, 0.006076791323721, 0.02706198580563, 0.015314292162656002, 0.021967275068163, 0.036513101309537, 0.052624870091676004, -0.000859681633301, 0.030690811574459003, -0.008420323021709001, 0.007803692482411001, 0.036629546433687, 0.036904696375131, 0.016742894425988, 0.002981193363666, -0.034649163484573, -0.013492511585354002, -0.036014653742313, -0.043388206511735, -0.07025434076786001, 0.013758840970695001, 0.12230620533227901, -0.027056518942117, -0.013506989926099002, 0.110750555992126, 0.049875970929861006, -0.06651800125837301, 0.034283071756362006, -0.049109291285276004, -0.015504356473684, -0.043465491384267, -2.343986933828749e-34, 0.071398176252841, -0.047991041094064005, -0.036726702004671, 0.033247705549001, -0.050445802509784005, 0.025583252310752, 0.057615064084529, -0.004403175320476, -0.06767212599515901, 0.019781341776251002, -0.068214602768421, -0.040192380547523006, 0.030780835077166002, -0.10291131585836401, -0.013380004093050001, 0.040347132831811, -0.045938279479742, -0.046768430620431005, 0.043677520006895, 0.01818006299436, 0.046275753527879, 0.017664348706603, -0.021748112514615003, -0.005172101780772, 0.07915987074375101, 0.023577265441417, 0.000527180323842, 0.027527872473001, -0.081310585141181, 0.016395531594753, 0.05926756188273401, 0.057774342596530005, -0.013945386745035001, 0.064871922135353, 0.020207004621624003, -0.052989304065704006, -0.035662975162267005, 0.005352043546736, -0.008460338227450001, -0.067480228841304, 0.010734588839113001, -0.050845976918935006, -0.008670561946928002, 0.04676039889454801, -0.009511441923677, -0.00109597237315, 0.060230843722820004, -0.036633364856243, 0.030088964849710003, -0.038171052932739, 0.05397452041506701, -0.014535419642925, -0.040458247065544004, 0.071384295821189, -0.005897807423025, -0.041172198951244, 0.128034114837646, -0.024972209706902, 0.028072960674762, 0.00013969007704800002, 0.066259205341339, 0.060307662934064005, 0.08890716731548301, -0.017187995836138, 0.018534058704972, 0.032096948474645004, -0.085670143365859, -0.014064607210457, 0.041529722511768, -0.012676266022026001, 0.016857469454407, 0.011497016064822, -0.039691299200057005, -0.07224391400814001, 0.022210186347365, -0.06957947462797101, 0.005529228132218, -0.022097207605838002, 0.054819907993078, 0.073181509971618, -0.054934658110141005, -0.061891857534646, -0.041791539639234, 0.057821813970804006, 0.03452631086111, 0.017932267859578, -0.026572110131382002, -0.09570676833391101, -0.045298688113689006, -0.04697022214531801, -0.054424934089183, -0.026883663609623003, 0.070361070334911, 0.025083905085921003, -0.076159305870532, -2.107624453154906e-33, -0.06161724776029501, 0.07268840819597201, 0.004706304520368, 0.05293882265686901, -0.023661291226744003, 0.03606217727065, -0.079970553517341, 0.12156686186790401, -0.01716960594058, 0.041448157280683004, 0.077085949480533, -0.010135935619473001, -0.024435497820377003, -0.01675795763731, 0.036658134311437, -0.0211041867733, 0.10237998515367501, 0.044741436839103005, -0.050631396472454, 0.002278757514432, -0.01977745629847, -0.035945054143667006, -0.048156354576349, 0.000434345740359, -0.027005296200513004, 0.018702046945691, 0.028509078547358003, -0.08116409182548501, 0.064993619918823, -0.035664603114128, 0.014286236837506001, 0.037146966904401, -0.0073543274775140005, 0.046084541827440005, -0.045796640217304, -0.020831182599067, 0.07261700183153101, 0.029386408627033, -0.065565317869186, -0.066336907446384, 0.09841305762529301, 0.13762538135051702, 0.053743932396173005, 0.049764603376388, 0.030026407912373, -0.026193505153059002, 0.035521335899829004, 0.073701985180377, -0.0520492605865, -0.018647653982043003, 0.025756100192666, -0.063498966395854, 0.028292184695601002, 0.11631010472774501, 0.031096857041120002, 0.017830559983849, 0.020381955429911003, 0.065681055188179, 0.049742572009563, -0.093988075852394, -0.11297261714935301, -0.09116851538419701, 0.037965890020132, 0.056801404803991005, -0.017660232260823, 0.0076725417748090005, 0.016372844576835, 0.013242469169199002, -0.027817800641059, -0.106613099575042, 0.033223684877157, -0.015747228637337, -0.0015720551600670002, 0.019130086526274, -0.026379913091659, 0.024799866601824, 0.017553105950355002, -0.068260751664638, 0.056475136429071, 0.016243705525994002, -0.054024629294872006, 0.040431890636682004, -0.037336692214012, -0.027562486007809, 0.0038864661473780003, -0.10720215737819601, -0.018496645614504002, 0.06095225736498801, -0.07414320111274701, 0.007200031075626, -0.008485299535095001, -0.018222628161311, -0.0043316334486000006, -0.030450748279690004, 0.09300497174263, -3.4358198064410323e-8, 0.08693635463714601, -0.025823272764682003, -0.05902619287371601, 0.003012098139151, 0.10090783238410901, 0.080265313386917, -0.007395820692181001, 0.033886529505252005, -0.046464331448078, 0.054057080298662005, 0.054618503898382006, -0.021943254396319, -0.063365243375301, -0.077963069081306, 0.042433857917785006, 0.036143202334642, -0.007935735397040001, 0.00396738667041, -0.020082347095012002, 0.005813844967633, -0.043289769440889005, -0.015544591471552, 0.062421519309282004, -0.037387572228908005, -0.06878430396318401, 0.024989636614918, -0.094245567917823, -0.075135335326194, -0.084400855004787, -0.026250189170241002, 0.044434711337089004, -0.0016654265346000001, 0.05197022855281801, 0.021476516500115003, 0.05548372864723201, -0.029686868190765003, -0.032858911901712, -0.055029544979333, 0.069851197302341, 0.08638595044612801, -0.045082952827215, -0.032284837216138, -0.040062826126813, 0.042610727250576005, -0.008929858915507, -0.054570686072111005, 0.007466930430382001, -0.036481719464063006, -0.106844417750835, 0.06949834525585101, -0.011482352390885001, -0.0220493003726, -0.044295582920312, -0.136383712291717, -0.066047891974449, 0.013269798830151001, -0.024093393236398003, -0.02437362447381, -0.090012855827808, 0.031216962262988004, 0.09276971966028201, -0.04678068682551301, -0.028314802795648002, 0.094026267528533 ]
0704.0076
CP violation in beauty decays
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.
[ "hep-ph", "hep-ex" ]
[ -0.035322468727827, -0.0012409474002190001, 0.083792120218276, 0.08831483125686601, 0.0054441750980910005, -0.030726350843906004, 0.004203731659799001, -0.005359538830816001, 0.0032711327075950003, -0.030012873932719, 0.14129528403282102, -0.07777064293622901, -0.046438504010438, -0.032781116664409006, 0.044979866594076004, -0.09527739882469101, 0.076851494610309, -0.005533224903047001, -0.070659160614013, 0.084105014801025, 0.013342487625777001, -0.063809499144554, -0.076820746064186, 0.06056956946849801, 0.006947452202439, -0.062903702259063, -0.023905413225293003, -0.059041373431682004, 0.082051239907741, -0.095425993204116, -0.025426933541893, 0.020160507410764, 0.06158844381570801, -0.02786911278963, 0.055030196905136004, 0.07057999819517101, 0.046633847057819006, -0.07883080840110701, 0.030811868607997003, -0.008671404793858, -0.041804008185863, 0.008855222724378001, -0.064670518040657, 0.030311997979879, 0.032042764127254, -0.011027490720152001, -0.008757068775594, -0.012439776211977002, -0.135506048798561, -0.0327974781394, -0.021607983857393, -0.022209605202078, -0.036758292466402005, -0.038462370634078, 0.037015404552221, -0.068494923412799, 0.009982103481888, 0.023363273590803, 0.025989975780248004, 0.066921524703502, -0.022175004705786, -0.010514372959733, -0.027973134070634002, 0.006823922973126, 0.07495515793561901, -0.035893924534320006, 0.008976429700851002, -0.05465993657708101, 0.011889996938407001, 0.031865086406469005, -0.01001042779535, -0.024386191740632, -0.09630667418241501, 0.010313723236322, 0.027977289631962002, 0.095813289284706, -0.015710856765508003, -0.08912057429552, 0.0019208029843860001, -0.074399784207344, 0.034529920667409, -0.074492216110229, -0.06095313653349801, -0.056221932172775005, 0.069714911282062, -0.025120224803686003, 0.004705670755356, -0.05372324585914601, 0.055494453758001, 0.042872514575719, 0.10833436250686601, 0.0025601314846420004, -0.036889437586069, -0.011303571984171002, -0.008672130294144001, 0.03270823508501, -0.020034847781062, 0.034393049776554004, 0.038323834538459, 0.062127657234668, -0.0038640347775070003, 0.051578048616647006, -0.033381558954715, -0.01017927750945, 0.057943593710660005, 0.014829530380666001, 0.073227182030677, -0.027170117944478003, 0.007765608374029001, 0.013145264238119, 0.034840479493141, -0.040110491216182, 0.000022130936486064453, -0.11179540306329701, 0.0005561820580620001, -0.03106876835227, -0.026983372867107003, 0.010685945861041001, 0.012493046000599, -0.047682810574769, 0.019773187115788002, -0.069678246974945, 0.018783029168844, 0.031358998268842, -0.037676785141229005, 0.039222087711095005, -0.018448501825332, 3.015757618917205e-34, -0.04487004131078701, 0.007054592482745, -0.045186750590801, -0.016467878594994, 0.023168265819549002, -0.005005496088415, 0.002252078149467, -0.01646189391613, -0.06385231763124401, 0.020892094820737003, 0.032413966953754, -0.040592107921838004, -0.08154928684234601, -0.011850787326693, 0.012319622561335002, -0.01535905059427, 0.014772493392229, 0.07427543401718101, 0.0018905377946790002, 0.01638532988727, 0.108449310064315, -0.016093662008643, -0.016850616782903, -0.020771514624357, -0.029499340802431002, 0.063529275357723, -0.020635982975363003, -0.031032750383019003, -0.07577801495790401, 0.030446533113718, -0.014075317420065, 0.027817821130156004, 0.045260950922966, 0.060662146657705, 0.011574033647775001, 0.026130113750696002, 0.023088006302714, -0.016526475548744, 0.0330026820302, -0.013091263361275002, -0.051350176334381006, 0.031509544700384, -0.031067600473761003, 0.006210314575582, -0.051656320691108, 0.008929304778575, 0.066625259816646, 0.025737797841429003, -0.017235182225704002, -0.075604386627674, 0.009283007122576, 0.014518675394356001, -0.027944926172494004, 0.10649190098047201, -0.023275064304471002, 0.06279728561639701, 0.054619971662759004, -0.056110795587301004, 0.039209082722663005, 0.056696854531764006, 0.04493124783039, 0.10977432131767201, 0.012442493811249001, -0.063224308192729, -0.025372358039021003, 0.09253252297639801, -0.080245919525623, -0.07482577115297301, 0.026003522798419002, -0.0017909228336060001, 0.009917427785694, 0.029772819951176, -0.10906961560249301, -0.041629090905189, 0.048847693949937, -0.06360650807619, 0.017885938286781002, 0.017899915575981, 0.057492248713970004, -0.04087744653224901, -0.027065940201282, 0.022907149046659, 0.018164968118071, 0.0023358601611100003, -0.08323401212692201, -0.07090763747692101, 0.003876134054735, -0.010240274481475001, -0.044645208865404004, -0.019859308376908, 0.056491874158382006, -0.026162661612033, 0.11991601437330202, 0.008182791993021, -0.011933997273445001, -1.2397448516573181e-33, -0.075572542846202, -0.023629935458302, -0.008816899731755, 0.050329312682151, -0.10464491695165601, -0.031099501997232003, -0.097783051431179, -0.021061724051833, -0.040087811648845006, -0.051798410713672007, 0.064238011837005, 0.013322245329618001, -0.048356227576732004, -0.0010108209680760002, 0.024420961737632002, 0.004182907752692, 0.023283140733838, -0.046473357826471, -0.06429922580718901, 0.019950928166508, -0.003239559242501, 0.005951684899628, -0.018788937479257, 0.018418662250041, -0.067671678960323, 0.113300897181034, 0.051469083875417, 0.030827345326542, 0.121581263840198, -0.013187834993004001, -0.022484280169010003, 0.01416687015444, -0.012138329446315, 0.051736403256654004, 0.025452204048633003, -0.026572830975055, -0.027350522577762004, 0.082450695335865, -0.023830322548747, 0.06810005754232401, 0.049229484051465, 0.016790200024843, -0.06117561832070301, 0.05966273322701401, 0.007499067112803, -0.026989925652742, 0.065563596785068, 0.025798983871936004, 0.043608330190181004, -0.043865364044904, 0.064143687486648, -0.031541939824819, -0.05515133962035101, 0.126554682850837, -0.136367499828338, 0.105354622006416, -0.031560409814119, 0.020609332248568, -0.014860526658594001, 0.002931034890934, -0.085801519453525, -0.011120521463453001, 0.027152139693498, 0.01726253144443, 0.022044338285923, 0.031771056354045, 0.0014031681930640001, -0.015285601839423001, 0.008918286301195, -0.078665316104888, 0.049824893474578004, 0.016229415312409002, -0.065065860748291, -0.044455200433731, -0.012548014521598, -0.039463903754949, 0.004711810499429, 0.0018786730943240002, 0.09866477549076001, 0.042917642742395005, -0.031862270087003, 0.074391692876815, 0.023039843887090003, 0.018670104444026, 0.025096567347645003, -0.058610308915376004, -0.042260091751813, 0.004015860147774, -0.048808999359607, 0.012468804605305, -0.046299383044242005, -0.010984944179654002, -0.0025785844773050003, 0.021929357200860002, 0.023764511570334, -2.954624633844105e-8, -0.020337019115686, -0.038794625550508, 0.014555471949279001, 0.030884394422173004, 0.101494394242763, -0.046323545277118, -0.061787549406290006, -0.06572280079126301, -0.024973953142762, 0.07290486991405401, 0.010918742977082, 0.11858161538839301, -0.041339412331581005, -0.06107345223426801, -0.006910505238920001, -0.050374276936054, 0.009146576747298001, 0.049470469355583004, -0.069211065769195, -0.043469827622175, -0.106562815606594, 0.016167350113391002, 0.056823685765266, -0.06723488122224801, -0.061658307909965, 0.019981076940894002, 0.022534623742103, 0.08280256390571501, 0.055619522929191006, 0.019336115568876003, 0.118335232138633, 0.069957621395587, 0.029029093682765003, 0.047239642590284, 0.065505869686603, 0.032568432390689, -0.068550676107406, -0.004324211739003, -0.05570307374000501, 0.06829575449228201, -0.060041006654500004, -0.019148096442222002, -0.008759203366935, 0.030622286722064, 0.024841148406267003, 0.002429123036563, 0.004120169207453, -0.054195616394281006, 0.00351556809619, 0.14427894353866502, -0.026233196258544002, 0.047575391829013006, -0.09677520394325201, 0.044355481863021004, -0.050832647830247005, -0.076243355870246, 0.004278970882296, 0.033314932137727, -0.059916526079177, 0.017896024510264, 0.16094858944416002, -0.10478142648935301, 0.077549189329147, -0.031207285821437003 ]
0704.0077
Universal Forces and the Dark Energy Problem
The Dark Energy problem is forcing us to re-examine our models and our understanding of relativity and space-time. Here a novel idea of Fundamental Forces is introduced. This allows us to perceive the General Theory of Relativity and Einstein's Equation from a new pesrpective. In addition to providing us with an improved understanding of space and time, it will be shown how it leads to a resolution of the Dark Energy problem.
[ "physics.gen-ph" ]
[ -0.080069467425346, 0.012452988885343, 0.032463524490594, 0.122043184936046, -0.030086174607276004, 0.069419108331203, -0.009251167066395, 0.009383588097989, 0.079637914896011, -0.035883963108062, 0.06457333266735, -0.02088227123022, -0.09976078569889, -0.0049136360175900005, -0.075901232659816, -0.089294038712978, 0.073336191475391, 0.013831015676259, -0.08358871936798001, -0.004392432980239, -0.014161327853798, 0.006433825939893001, -0.01495945174247, 0.016553711146116, -0.066663198173046, 0.026868848130106003, 0.041998542845249, -0.023150067776441, -0.034059099853038004, -0.049585055559873005, 0.021752685308456, -0.035639155656099, -0.019014848396182, 0.019867505878210002, 0.030324190855026002, 0.08813416212797101, 0.001977695384994, -0.014349903911352001, 0.010306100361049, -0.000911242444999, 0.008732279762625, -0.018266916275024, 0.018261265009641002, 0.0751953125, 0.034734454005956004, 0.022609496489167002, 0.04678688943386, -0.0063380664214490005, 0.04709296673536301, 0.020328694954514, 0.037474811077117004, -0.025776227936148, -0.025616046041250003, 0.0017880912637330002, 0.11431168764829601, -0.008021394722163, 0.042812727391719006, -0.053417108952999004, -0.015997195616364, -0.07273007184267001, 0.064401388168334, 0.009779104031622, -0.031824618577957, 0.028259309008717003, 0.090185955166816, 0.030726315453648, -0.029911229386925003, 0.028871491551399002, -0.032004687935113005, 0.040245216339826, -0.027020810171961004, 0.103678591549396, -0.027469117194414003, -0.109993934631347, 0.021874792873859003, 0.017692111432552, 0.029141657054424, 0.08712744712829501, 0.057212375104427005, 0.008834164589643001, 0.06462553888559301, -0.017921885475516, -0.088538348674774, 0.036469560116529, 0.007174294441938, -0.003579584648832, 0.021174030378460003, 0.034893084317445006, 0.031177174299955004, 0.001513821189291, -0.000210561309359, -0.056884985417127006, -0.003909629303961, -0.032663814723491, 0.051180846989154004, -0.0006941082538100001, -0.013888020999729002, -0.026872619986534, -0.041581064462661, 0.021148025989532002, -0.002951841568574, -0.033218514174222, -0.026003802195191, 0.091039098799228, 0.016653750091791, 0.034385293722152, -0.01110172085464, -0.054968725889921, 0.016617756336927, -0.001771331881172, 0.037208203226327, -0.037362933158874005, -0.045874450355768, 0.0029470419976860003, -0.036677129566669006, -0.044537223875522, 0.10109970718622201, -0.016898898407816002, -0.028674764558672003, 0.0075159720145160005, -0.063391134142875, 0.042041532695293, -0.032314293086528, -0.0011852664174510001, -0.008359801955521001, -0.0059721884317690006, -0.00660127447918, -3.087785254662123e-33, -0.021911406889557002, -0.038723360747098, 0.022668248042464003, -0.0018628295511000001, 0.036427129060029005, -0.030837815254926, -0.05350876227021201, 0.09279745817184401, -0.011723741888999, 0.011175740510225001, -0.058301385492086, 0.029570415616035003, 0.053427480161190005, 0.042579572647809004, -0.081527724862098, 0.066602431237697, 0.015623850747942002, 0.058474194258451004, 0.116683915257453, -0.042534280568361005, -0.021026782691478, 0.08763030171394301, -0.014675855636596001, -0.117165230214595, -0.064632758498191, 0.0093385996297, -0.020764673128724, 0.050311092287302, 0.016542695462703, -0.045927658677101, -0.12702830135822202, 0.050733853131532, 0.016449434682726, 0.045945618301630006, -0.080268703401088, 0.04512944445014, 0.018938224762678, -0.014590185135602, -0.021477323025465, -0.037705451250076, -0.047705128788948004, 0.041624698787927, -0.089736483991146, -0.082639761269092, 0.054020076990127, 0.044621422886848006, 0.13189361989498102, -0.085663385689258, -0.06652251631021501, 0.07968637347221301, 0.00906638521701, -0.043020825833082005, -0.082961298525333, -0.061946414411067005, 0.060124594718217, -0.030595168471336004, -0.071477368474006, 0.046161901205778004, -0.041433360427618006, -0.014409217983484001, 0.07834628969430901, -0.0038995794020590005, 0.071448616683483, -0.0028548457194110003, 0.036652222275733004, -0.010853168554604001, -0.037210807204246, 0.021977433934807, -0.06661063432693401, 0.011108382605016, -0.105845980346202, -0.05579916015267301, 0.029149269685149002, 0.016110494732856, 0.034547097980976, 0.039394564926624, 0.026849163696169003, -0.000963213737122, 0.026930594816803002, 0.041989989578723005, -0.039988059550523, -0.074300162494182, 0.011292600072920001, -0.050793897360563, -0.07867859303951201, 0.010764250531792, -0.005639216396957, 0.025039568543434, 0.037038821727037, -0.071666672825813, -0.046721179038286, -0.0030732091981910004, 0.023338686674833003, -0.007161011919379, 0.011544250883162, -7.4109789806884795e-34, -0.015181090682744001, 0.0018976430874310002, -0.12205719947814901, 0.021297400817275002, 0.060814116150140006, -0.012956288643181001, -0.11401879787445, -0.074461832642555, -0.055961389094591, 0.06587225943803701, 0.059354361146688, -0.085575364530086, -0.022749362513422, -0.0029395315796130004, 0.023777596652507, 0.004919987171888, 0.0033475332893430003, 0.008802795782685, -0.08006612956523801, -0.007142334245145001, 0.029664756730198003, 0.056271079927682, 0.015980632975697, -0.056262493133544006, -0.004001888446509, 0.009000661782920001, 0.06945027410984, -0.010929493233561, -0.06691687554121001, 0.10682062059640801, -0.03147454559803, -0.048831790685653007, -0.04833932220935801, 0.033115796744823005, -0.10637459903955401, 0.07986572384834201, -0.012511447072029001, 0.046104874461889, 0.015105300582945002, -0.009947565384209, 0.006480998825281001, 0.10466501861810601, 0.010969950817525002, -0.006701818201690001, -0.051157046109437006, -0.063466772437095, 0.026938760653138, 0.08015040308237001, -0.053606148809194, -0.013866017572581001, 0.001997454790398, -0.09047856181859901, 0.00638459296897, -0.05670095235109301, -0.105571657419204, 0.06557889282703401, 0.06895802170038201, -0.036580741405487005, 0.041162360459566005, 0.09874652326107, 0.006700203754007, -0.006032878067344, 0.027769507840275, -0.010262646712362001, -0.039169810712337, -0.0007952487212600001, -0.10737507790327001, 0.070183150470256, -0.010149736888706, 0.013165943324565001, 0.033230230212211005, -0.006357867270708001, -0.035452671349048004, 0.11113949865102701, 0.015573718585073, 0.07323582470417, 0.13779030740261, -0.009283865801990001, 0.030466439202427004, -0.028762364760041, 0.040601439774036005, 0.026448994874954, 0.11099362373352001, 0.011671723797917002, -0.04932714253664, -0.060175545513629004, -0.022585351020097, 0.038405407220125004, 0.06488574296236001, 0.00118759763427, -0.09714522212743701, 0.013735228218138001, 0.036756169050931, 0.043499898165464006, -0.025469241663813, -3.599443942903235e-8, -0.057882901281118004, 0.07045172899961401, -0.006029483862221001, 0.022858820855617003, -0.030159343034029003, 0.0196079518646, -0.002006927505135, -0.014216434210538, -0.036198612302541004, 0.020364012569189002, 0.019962372258305, 0.018219728022813002, -0.042695719748735005, 0.028331637382507, -0.054793171584606004, 0.11690729111433001, -0.025063036009669002, -0.08493949472904201, -0.029609331861138004, 0.018381921574473003, 0.019520673900842, 0.037797067314386, 0.044267959892749, -0.041999034583568004, 0.10827264934778201, 0.042963374406099, 0.004837697837501, 0.014780982397496001, -0.0033217044547200003, 0.0027097063139080004, -0.012332030571997001, -0.004302084911614001, -0.08543997257947901, -0.053825609385967005, -0.067937545478343, -0.012070298194885, -0.028920114040374003, 0.002093286719173, -0.021172780543565, 0.033420890569686, -0.013248041272163, 0.113735787570476, -0.098939001560211, -0.030427915975451, -0.044304486364126004, 0.086715698242187, -0.04755506291985501, -0.07059692591428701, -0.095161743462085, 0.143062993884086, -0.026524962857365, 0.052569616585969, -0.032447263598442, 0.035652019083499, 0.031190799549221004, -0.022135682404041002, -0.054385859519243004, 0.027290550991892003, -0.08118938654661101, -0.039938174188137006, 0.036184690892696006, -0.025701774284243, 0.009895554743707001, 0.047438792884349004 ]
0704.0078
Linear perturbations of matched spacetimes: the gauge problem and background symmetries
We present a critical review about the study of linear perturbations of matched spacetimes including gauge problems. We analyse the freedom introduced in the perturbed matching by the presence of background symmetries and revisit the particular case of spherically symmetry in n-dimensions. This analysis includes settings with boundary layers such as brane world models and shell cosmologies.
[ "gr-qc" ]
[ -0.023170297965407, -0.01631698384881, 0.10100668668746901, -0.027196632698178003, -0.039005406200885, 0.041893702000379, -0.014934473671019001, -0.006225771736353001, 0.031269889324903, -0.11675054579973201, -0.006711701862514001, -0.017878772690892, -0.062583170831203, 0.00617809779942, 0.016483670100569, -0.026078827679157, 0.023336077108979003, 0.030897246673703003, -0.08495903015136701, 0.016182078048586002, -0.10527662187814701, 0.012296414002776, -0.081294938921928, 0.052976191043853, 0.004872622899711, -0.071480765938758, 0.07384815812110901, -0.011368643492460001, -0.040712635964155, 0.0017461971146980001, 0.022899989038705, -0.048730868846178006, -0.083031989634037, -0.038736637681722, -0.06772309541702201, 0.022717257961630002, 0.030998166650533003, -0.017154457047581003, 0.043189208954572005, -0.04376283288002, 0.027723278850317, -0.036450423300266, -0.0018818188691510002, 0.059996642172336, -0.010270293802022, 0.009831917472183, 0.016383606940507, -0.0029619550332420004, -0.034147974103689, -0.07023399323225, 0.017510198056697002, -0.039640806615352006, -0.072544358670711, -0.051627691835165, -0.014024115167558, 0.023819947615265003, -0.038882602006196004, -0.009352369233965001, 0.039057187736034005, -0.052629984915256, 0.030002465471625002, -0.019189901649951, -0.023769231513142003, -0.007554077543318001, 0.07605032622814101, -0.026193771511316, 0.037221066653728006, 0.041038453578948, 0.024317609146237002, 0.038520861417055005, -0.048317924141883004, 0.049155980348587, -0.045551940798759, -0.072022713720798, 0.054189804941415, 0.073335133492946, -0.012633295729756001, -0.067702420055866, 0.09424705058336201, -0.045579899102449, -0.039732191711664006, 0.048029694706201005, -0.09861297160387, -0.033473551273345004, -0.009396375156939, -0.073943234980106, -0.07157798856496801, -0.011479488573968001, -0.006859372369945001, -0.065032258629798, 0.036942079663276006, -0.040663838386535006, -0.032912675291299, -0.015567289665341, 0.018755877390503002, -0.011615251190960001, -0.050734255462884, 0.11765533685684201, 0.09358090907335201, 0.030373666435480003, 0.05803345143795, -0.088363625109195, 0.065511047840118, 0.18885597586631703, 0.084075540304183, 0.029461197555065002, -0.034710392355918, -0.008527521044015001, 0.027382357046008002, -0.10643404722213701, 0.020778026431798, -0.10350703448057101, 0.011257823556661, -0.006909902673214001, -0.039741996675729, -0.019209755584597, 0.057363886386156006, 0.085833080112934, 0.0041840923950070006, 0.037405338138341, -0.027613807469606, 0.030489861965179003, -0.022125225514173, -0.05286546051502201, -0.06535929441452, 0.082173623144626, 0.000742083298973, 2.2254227624317232e-33, 0.07216516882181101, 0.044168129563331, -0.007358761038631, 0.011680205352604, 0.040175523608922, 0.028353743255138, -0.012044812552630001, 0.045036122202873, -0.002410153858363, 0.065416201949119, -0.085454747080802, -0.004380436614155, 0.013279412873089001, -0.07145519554615, -0.105322681367397, 0.024790277704596003, 0.06544607877731301, 0.031349040567874, 0.013121026568114001, 0.021153939887881, 0.001250894623808, 0.011317757889628001, -0.03686049580574, -0.017638618126511, -0.025046991184353003, -0.020392414182424, 0.043765626847743, -0.013219841755926002, -0.072610363364219, -0.015255795791745002, 0.024206575006246, 0.044729385524988, 0.028100732713937003, -0.028023762628436002, 0.063428737223148, -0.045210290700197005, 0.025800611823797, 0.034912172704935004, 0.014852930791676001, -0.12537339329719502, -0.031625930219888, 0.038917616009712004, 0.001345958327874, 0.001429898664355, 0.033188957720994006, -0.019029730930924003, 0.019849289208650003, 0.049135666340589, -0.007827322930097, 0.054258748888969005, 0.046639133244752, 0.030953101813793002, -0.12086115032434401, 0.054668854922056004, -0.031937234103679005, -0.040038224309682006, -0.060329142957925005, 0.027098458260297, 0.011412367224693002, 0.080649532377719, 0.061341486871242, 0.014105650596320001, 0.019655959680676002, -0.073044210672378, 0.015347408130764002, -0.009695106185972, 0.073536969721317, -0.079549603164196, 0.0031646843999620002, 0.011591857299208001, -0.07862593233585301, 0.029290407896041003, -0.08349891752004601, 0.027512136846780003, 0.036087237298488, -0.127357184886932, 0.06492561101913401, 0.019307987764477, -0.030092889443039002, -0.01797953993082, -0.09227098524570401, 0.064720787107944, 0.000991708249785, -0.027470499277114, -0.072650805115699, -0.010047976858913002, -0.064169138669967, -0.065815858542919, 0.051981192082166006, -0.083589322865009, -0.042674828320741, -0.026041593402624002, -0.027555225417017003, -0.025731462985277002, 0.010754019021987, -3.6982598786624466e-33, 0.033817436546087, -0.089462831616401, -0.007600883021950001, 0.0014073669444760002, 0.044370535761117005, 0.017285337671637, 0.04495450109243301, 0.05974888801574701, -0.077160947024822, -0.021592257544398002, 0.010906839743256002, 0.040747750550508006, 0.014575660228729002, -0.028042959049344004, -0.011994645930826001, 0.061242997646331, 0.038760278373956, -0.024512225762009003, -0.030955692753195003, -0.028612896800041, 0.009093412198126, -0.074320927262306, -0.044367708265781, 0.053960587829351, -0.000797894666902, -0.051929920911788004, 0.004542459268122001, -0.08235659450292501, 0.040735550224781, 0.06439287960529301, 0.09627296030521301, -0.009022012352943, 0.003149708267301, 0.047404345124959, -0.06659989058971401, -0.010976400226354, 0.060480948537588, 0.099182046949863, -0.062558114528656, 0.033001128584146, -0.004693894181400001, 0.076311565935611, -0.006477234885096, 0.086932696402072, -0.041130848228931004, -0.001994726946577, 0.023517034947872002, -0.024614546447992002, -0.097808815538883, 0.008477570489048, 0.018108239397406002, -0.055545557290315004, 0.052245989441871005, -0.078095443546772, -0.089065514504909, 0.091216214001178, -0.02034905552864, 0.014896480366587, 0.050565123558044, 0.0016949492273850002, 0.000884818786289, -0.016017599031329002, 0.102641642093658, -0.013550991192460001, 0.048952318727970005, 0.019590765237808002, -0.037620138376951, -0.027809113264083002, 0.015719538554549002, 0.049571007490158005, -0.012643271125853001, -0.054075974971055006, -0.09900944679975501, -0.033200111240148, 0.021886628121137, 0.058558162301778, 0.097489431500434, -0.0920971930027, 0.042764313519001, 0.059397403150796, 0.012341538444161, -0.00543921906501, 0.099317237734794, 0.087989777326583, 0.053381759673357, 0.03584685921669, 0.06676949560642201, 0.061281479895114004, -0.056213125586509004, -0.019638307392597, -0.037321880459785, -0.007975654676556001, 0.038806311786174004, -0.002476099645718, 0.010733501054346001, -4.025666200391242e-8, -0.009958648122847, 0.018422046676278, -0.030782565474510002, 0.097201474010944, -0.100751936435699, 0.068352751433849, -0.024532839655876004, -0.008309294469654002, -0.025493104010820004, 0.072911374270915, -0.046448502689599006, -0.038966812193393006, -0.12945438921451502, -0.014213230460882001, -0.078749135136604, 0.069666668772697, -0.032328426837921004, 0.055517509579658, -0.023905871435999003, 0.086021743714809, -0.049283325672149006, 0.146429568529129, -0.009873886592686001, -0.01385145727545, 0.007904870435595, 0.010958702303469, 0.048157770186662, 0.054726779460906004, 0.028493674471974, -0.003675289219245, 0.048736337572336, -0.012202135287225, 0.037959292531013, -0.089327566325664, -0.003474387340247, -0.007542536593973001, -0.01235119625926, -0.012930701486766002, -0.034368533641099, -0.012988381087779001, 0.053523954004049, 0.088988147675991, 0.028519632294774003, 0.033599972724914, 0.129998356103897, 0.041480615735054, 0.004183526150882, -0.027970807626843, -0.057235945016145005, 0.058157917112112004, 0.038351818919181005, 0.028491470962762003, -0.035232607275247005, -0.000622211315203, -0.010780743323266001, 0.011622813530266, 0.014898254536092, -0.02868858911097, 0.038233764469623004, 0.016481693834066002, -0.012755805626511001, -0.0577790774405, -0.021155033260583003, -0.013742263428866001 ]
0704.0079
Operator algebras associated with unitary commutation relations
We define nonselfadjoint operator algebras with generators $L_{e_1},..., L_{e_n}, L_{f_1},...,L_{f_m}$ subject to the unitary commutation relations of the form \[ L_{e_i}L_{f_j} = \sum_{k,l} u_{i,j,k,l} L_{f_l}L_{e_k}\] where $u= (u_{i,j,k,l})$ is an $nm \times nm$ unitary matrix. These algebras, which generalise the analytic Toeplitz algebras of rank 2 graphs with a single vertex, are classified up to isometric isomorphism in terms of the matrix $u$.
[ "math.OA" ]
[ -0.0468560308218, -0.040014691650867004, -0.078158482909202, 0.024448025971651, -0.088941611349582, 0.058458235114812004, -0.014221632853150002, -0.055999901145696, -0.036267127841711, -0.054174203425645, 0.075035452842712, -0.040591955184936, -0.01221106108278, 0.00037364262971, -0.033954035490751, 0.009183530695736, -0.028543271124362002, 0.011902377009391, -0.040472380816936, 0.007827360183, -0.015452873893082001, -0.017314836382865, -0.0009465112234460001, -0.06853702664375301, 0.037515617907047, -0.07584663480520201, 0.008101687766611, 0.002601603977382, 0.081154093146324, 0.009255684912204, -0.037971008569002006, 0.004094350617378, 0.0028977140318600003, -0.004886079113930001, -0.057464513927698004, -0.052301108837127006, 0.035412043333053006, 0.014363465830683, 0.0016644058050580002, 0.017800133675336, 0.028275681659579003, 0.071502894163131, 0.020638741552829, 0.020587569102644, -0.038132589310407, -0.040965393185615005, -0.016143459826707, -0.003947339020669001, -0.099469833076, 0.049900215119123, -0.045630503445863, 0.11381127685308401, -0.000148504099342, -0.011733569204807, 0.003969240467995, -0.13604889810085202, 0.038383711129426006, 0.024865671992301, 0.037518672645092004, 0.016867205500602, 0.0070450841449200005, -0.01079000160098, -0.036962628364562, 0.0066011347807940005, -0.020883779972791002, -0.008979712612926, -0.006954765412956001, -0.013754301704466001, -0.056500662118196, 0.034381557255983006, -0.04737282171845401, -0.11942711472511201, -0.07215474545955601, 0.026914848014712, -0.018896549940109003, 0.056235000491142, 0.05775313824415201, 0.034462846815586, -0.013187794014811, 0.006640357896685001, -0.033464692533016004, 0.021324025467038002, -0.006701134145259, -0.053741663694381006, 0.011456676758825, 0.002008214127272, -0.061686038970947, 0.035272352397441004, -0.007293181028217001, -0.026350459083914, -0.032002415508031005, -0.025435959920287, -0.022600837051868, 0.059726007282733, 0.000925906293559, 0.025758441537618002, -0.032167188823223, 0.10981510579586001, -0.06725238263607, 0.039289250969886, -0.009095380082726002, -0.045600786805152005, -0.038593664765357, -0.023549454286694003, -0.035523135215044, 0.12200649082660601, 0.023935083299875003, -0.006314473226666, -0.04865075647830901, -0.076482877135276, 0.009321334771811001, 0.0037576667964450004, -0.023174853995442002, -0.016010124236345, -0.071226581931114, -0.046337939798831, 0.044065706431865005, -0.058095492422580004, 0.20279790461063302, 0.000310875067953, 0.10928429663181301, 0.030070077627897002, 0.027713237330317, 0.062393035739660006, 0.09051068127155301, -0.056807894259691, -0.07639664411544801, 1.7151898885657082e-33, 0.080741442739963, 0.076126091182231, -0.017773304134607003, -0.008251759223639, 0.045618571341037, -0.025690808892250002, -0.009716034866869, -0.03548190370202, 0.07955626398324901, -0.005344407632946, 0.004047012422233, 0.158725351095199, 0.00445417035371, -0.0058664339594540005, -0.06161500141024501, 0.054549884051084005, 0.06712210178375201, 0.026084087789058002, 0.08596219122409801, -0.11955925077199901, 0.08950199931859901, 0.10997335612773801, -0.010663948021829002, 0.079053699970245, 0.056608002632856, 0.0018609323306, 0.05115370452404001, -0.009602601639926, -0.012446301989257, 0.024911265820264, -0.033974647521972004, -0.011848964728415, 0.022707605734467003, 0.0017626779153940002, -0.005015290342271, 0.014060358516871001, -0.052326954901218005, 0.010380753315985002, 0.011638629250228, -0.10768001526594101, 0.028975129127502, -0.009985176846385, -0.031028384342789, 0.022214138880372002, -0.045055344700813, -0.054243493825197005, -0.067844599485397, 0.031199129298329003, 0.048176031559705006, -0.049363922327756, 0.016622494906187002, -0.032189588993787, -0.05911758914589801, -0.015950040891766, -0.016408845782279, 0.050345614552497, 0.025446265935897, 0.07772599905729201, 0.037019681185483, 0.027092387899756, -0.150167897343635, 0.03662159666419, -0.002782231662422, 0.020479002967476, -0.063700452446937, -0.09572774171829201, -0.033282458782196, 0.0013522850349540001, 0.06006742268800701, -0.0012554232962420002, -0.037339050322771, 0.056347530335187, 0.063850112259387, -0.012716646306216, 0.05831928551197001, -0.065775074064731, -0.0013021883787580001, -0.071464225649833, -0.094875954091548, -0.053737487643957006, -0.064331665635108, 0.049398120492696006, -0.08351359516382201, -0.056882787495851, -0.03284591063857, -0.088378481566905, -0.072240658104419, 0.020112643018364, 0.026012958958745003, -0.015425729565322002, 0.024654775857925002, -0.023426508530974003, -0.041334860026836, 0.034694734960794005, 0.030170131474733002, -5.0168677279614705e-33, 0.001278121955692, -0.060631338506937006, 0.015306661836802002, -0.042993336915969, 0.005582205485552, -0.059073507785797, 0.077824689447879, 0.014340249821543001, -0.087292999029159, -0.014424880035221, -0.0013137595960870001, 0.019895115867257, -0.020209314301609, 0.023511193692684, 0.044170271605253004, -0.08627650141716, 0.065339438617229, -0.038091368973255005, 0.022871097549796, -0.071149677038192, 0.01016157399863, 0.09278254210948901, -0.007005060557276001, 0.023008069023489, -0.06411585956811901, 0.023188909515738, -0.010670321993529, 0.061095375567674005, -0.0077776513062410004, 0.082630045711994, 0.053389709442853005, -0.11796462535858102, -0.007928159087896, 0.015057389624416, -0.011523042805492, 0.03760839253664, -0.022196244448423, 0.057797424495220004, 0.01548459008336, 0.06065229326486501, -0.039354972541332, -0.025893762707710002, 0.031315699219703, 0.05854035541415201, 0.019053187221288, 0.01658621802926, 0.027729058638215003, -0.08144731074571601, -0.16149929165840102, -0.005826414562761, 0.046707428991794, -0.0011034278431900002, -0.05069872364401801, -0.024833170697093003, -0.08350278437137601, 0.020520308986306003, 0.00903904531151, 0.011641252785921001, 0.010804586112499001, 0.049266707152128004, 0.006925285328179, -0.04703262075781801, 0.066232420504093, 0.054678041487932004, 0.05737130716443001, -0.033295810222625004, -0.018796768039464, -0.011683181859552002, 0.049018040299415006, 0.09548620134592001, 0.01297936681658, -0.040753152221441005, -0.05000702291727, -0.018619669601321002, 0.09062580764293601, -0.018448662012815, 0.044984549283981004, 0.036566089838743, -0.045514222234487006, -0.05735670775175, -0.036648899316787005, -0.055040340870618, -0.015420081093907, 0.080121763050556, 0.0023401554208240002, -0.048697687685489, 0.013759970664978001, 0.06890980154275801, 0.075154051184654, -0.005582514684647001, 0.039714131504297, -0.07004391402006101, -0.012379575520753002, -0.0012145341606810002, 0.08664370328187901, -4.940094910921289e-8, -0.073147431015968, 0.029438853263854002, -0.022235823795199002, 0.016497386619448003, 0.0015513421967620002, -0.135421752929687, -0.027622055262327003, 0.067393414676189, -0.0036970826331520004, 0.021873081102967002, 0.07568619400262801, 0.019059769809246, -0.07017350941896401, -0.076523378491401, 0.03981227427721, -0.022831859067082003, -0.043841727077960004, 0.008516987785696001, 0.036911454051733, 0.001085957279428, -0.017123430967330003, -0.020152498036623, -0.064029566943645, 0.05783112347126, -0.084607474505901, -0.030667690560221002, -0.056215524673461005, -0.053515423089265005, 0.038172084838151, 0.117798149585723, -0.031665638089179, 0.018966550007462002, 0.061151787638664, 0.023638768121600002, -0.063035160303115, -0.012727017514407002, 0.017491618171334003, -0.07278275489807101, -0.020920615643262003, 0.015344028361141002, 0.035096526145935, 0.021502809599041002, 0.006972671486437001, 0.023611553013324002, 0.007012671791017001, 0.024123290553689003, 0.009490745142102, 0.068306930363178, 0.09938396513462001, 0.048272334039211, -0.045876149088144004, -0.018294878304004003, -0.07217175513505901, -0.035227589309215004, -0.07239130884408901, -0.001383929979056, -0.008240822702646, 0.025637032464146003, 0.111242078244686, -0.022031454369425003, 0.04418333992362, -0.015475557185709001, 0.001627657446078, 0.061652138829231005 ]
0704.0080
Shaping the Globular Cluster Mass Function by Stellar-Dynamical Evaporation
We show that the globular cluster mass function (GCMF) in the Milky Way depends on cluster half-mass density (rho_h) in the sense that the turnover mass M_TO increases with rho_h while the width of the GCMF decreases. We argue that this is the expected signature of the slow erosion of a mass function that initially rose towards low masses, predominantly through cluster evaporation driven by internal two-body relaxation. We find excellent agreement between the observed GCMF -- including its dependence on internal density rho_h, central concentration c, and Galactocentric distance r_gc -- and a simple model in which the relaxation-driven mass-loss rates of clusters are approximated by -dM/dt = mu_ev ~ rho_h^{1/2}. In particular, we recover the well-known insensitivity of M_TO to r_gc. This feature does not derive from a literal ``universality'' of the GCMF turnover mass, but rather from a significant variation of M_TO with rho_h -- the expected outcome of relaxation-driven cluster disruption -- plus significant scatter in rho_h as a function of r_gc. Our conclusions are the same if the evaporation rates are assumed to depend instead on the mean volume or surface densities of clusters inside their tidal radii, as mu_ev ~ rho_t^{1/2} or mu_ev ~ Sigma_t^{3/4} -- alternative prescriptions that are physically motivated but involve cluster properties (rho_t and Sigma_t) that are not as well defined or as readily observable as rho_h. In all cases, the normalization of mu_ev required to fit the GCMF implies cluster lifetimes that are within the range of standard values (although falling towards the low end of this range). Our analysis does not depend on any assumptions or information about velocity anisotropy in the globular cluster system.
[ "astro-ph" ]
[ -0.006248803809285001, -0.079695604741573, 0.072599425911903, 0.137893348932266, 0.032130632549524, -0.04611034318804701, 0.025928691029548003, 0.028948090970516004, 0.025483829900622004, -0.017107341438531, -0.010491771623492002, -0.07260137051343901, 0.028908573091030003, -0.029035903513431, 0.044141378253698, -0.09531731158494901, 0.028462246060371003, 0.010580437257885001, -0.030274251475930002, 0.08383644372224801, -0.004637713544070001, 0.043412808328866, -0.06805749982595401, 0.094554439187049, 0.034436240792274, -0.024553336203098002, -0.005329584237188, -0.012038948945701, -0.040941428393125, -0.067813143134117, 0.015779880806803002, 0.049146164208650006, 0.050134703516960005, 0.031350482255220004, 0.038468774408102, 0.072135806083679, -0.033632233738899, -0.05731720477342601, -0.031088909134268, -0.04767083004117, -0.029408410191535003, 0.030512327328324002, 0.028190754354, 0.008082073181867001, 0.019100826233625003, 0.021482834592461003, -0.048604827374219006, 0.028196413069963, -0.066495411098003, 0.006743295118212001, 0.108216315507888, 0.014248094521462001, -0.08924564719200101, 0.077264793217182, 0.028652682900428002, 0.029969569295644004, -0.012129044160246, -0.08577860891819, 0.017478626221418003, -0.005871275439858, 0.049347855150699005, 0.002365164924412, -0.006598882842808001, -0.017962347716093, -0.033235773444175006, -0.014038083143532, 0.075265303254127, 0.017145792022347003, -0.005946900229901001, 0.047850105911493, 0.007895522750914001, 0.055694118142127005, -0.036632865667343, -0.060249090194702, -0.004257661756128001, -0.005852435715496001, 0.036314811557531, 0.0069561065174630005, 0.052352029830217, 0.019808797165751003, -0.001453601522371, 0.08510395884513801, 0.040428433567285, -0.069734312593936, -0.073569051921367, -0.077098049223423, 0.011701119132339, -0.006343720480799, 0.0038524372503160004, -0.062494203448295, 0.040291484445333, 0.060247842222452004, -0.15241400897502902, -0.043448455631732004, 0.0036543544847510005, 0.007505754474550001, -0.014140926301479001, -0.05115295574069, 0.115351438522338, 0.012725404463708002, -0.056630503386259, -0.0016723456792530002, 0.049657449126243, 0.051596753299236006, -0.0005883011035620001, 0.021346449851989, 0.046218700706958, 0.043931744992733, 0.08520177751779501, 0.09411972761154101, 0.036115996539592, 0.03899273648858, -0.033982802182435004, 0.030170047655701002, -0.09392076730728101, 0.025713177397847002, 0.087522312998771, 0.045053262263536, -0.09324071556329701, -0.026832865551114003, -0.036780405789613, 0.001382302609272, -0.038479734212160006, -0.028519865125417, -0.008629505522549001, 0.025225821882486003, -0.048291847109794006, 1.112339539291917e-34, 0.05344045534729901, -0.134727537631988, 0.021520562469959002, 0.042390380054712004, -0.022686930373311, -0.017766542732715003, -0.078737400472164, 0.039146624505519, 0.007901393808424001, -0.074228756129741, -0.065039858222007, -0.017071263864636, -0.019612271338701002, 0.013838174752891001, -0.049010716378688, 0.016348434612154, 0.054745998233556005, 0.043094553053379, 0.0012871319195250001, -0.08699531108140901, -0.05613933131098701, 0.051936347037553, 0.00055481569143, -0.078147061169147, -0.030617821961641003, 0.09293755888938901, 0.032072190195322, -0.098710469901561, 0.010390127077698002, 0.021693844348192003, -0.017890898510813002, -0.00680894171819, -0.024283414706587, 0.001241504680365, 0.02420805953443, 0.054531890898942004, -0.066216774284839, -0.042522270232439006, 0.020843537524342003, -0.07839636504650101, -0.019949166104197003, 0.033150218427181, -0.013792159967124, -0.047967541962862, -0.014072856865823002, 0.030215047299861002, 0.12083295732736501, -0.070627316832542, 0.011740037240087, 0.010933983139693002, 0.08421890437602901, -0.014764828607439, -0.05968789756298001, 0.094299241900444, -0.033304993063211004, 0.040121279656887006, 0.0035488074645400004, 0.002175400499254, -0.029952056705951004, 0.043165545910596, 0.046010453253984, 0.041234884411096004, 0.031263038516044, 0.016013909131288, 0.067177705466747, 0.07702653855085301, -0.048239104449748, 0.073662333190441, -0.002980907913297, -0.044383205473423004, 0.006780159659683001, -0.005061980336904, 0.07179930061101901, 0.021840812638401003, -0.014115979894995, 0.011983498930931001, 0.10247745364904401, -0.044917151331901, -0.032661154866218005, -0.04801520705223, -0.012056931853294001, -0.037403516471385005, -0.042275883257389006, -0.030104488134384003, -0.067741267383098, -0.052131887525320005, 0.057689763605594004, -0.018079129979014, -0.058331500738859, 0.008917994797229, 0.030997419729828002, -0.019848888739943, 0.055410716682672, -0.026805529370903, -0.071811340749263, -4.1294370840158164e-33, 0.065697781741619, -0.013910051435232001, -0.020960828289389003, 0.036836873739957005, 0.038818072527647005, 0.025205267593264, 0.00210417760536, 0.067808620631694, -0.094977192580699, -0.059994220733642, 0.013703343458473, 0.045243311673402, -0.079393498599529, -0.08547078073024701, 0.033890511840581006, -0.024540090933442, 0.001100823981687, 0.045363232493400005, -0.023361215367913003, 0.011874116025865002, 0.036672979593276006, -0.06454575061798, 0.06676080822944601, -0.05163628980517301, -0.016994768753647003, -0.035826545208692, -0.043766535818576, 0.004558619577437, -0.034564558416604, 0.07254803180694501, -0.054525457322597004, 0.06191167607903401, -0.043400101363658, 0.021481458097696002, -0.006850138306617, 0.008143811486661, -0.026969021186232, 0.024393389001488002, -0.11291131377220101, -0.001313198939897, -0.019510634243488003, 0.06649262458086, -0.018493568524718, -0.017889423295855002, 0.11958628892898501, -0.011313235387206001, 0.035500463098287, -0.009838584810495, -0.02109725959599, 0.020249875262379, -0.047873795032501006, -0.09713932126760401, -0.036375116556882005, 0.058614429086446006, -0.060770399868488006, 0.07621244341135, 0.021691156551241, 0.008547309786081, -0.048662606626749004, -0.028866440057754003, -0.006153519731014001, -0.086313754320144, 0.00975926965475, -0.049088645726442004, -0.050272606313228003, -0.109239295125007, 0.032613985240459005, -0.043017074465751, -0.021800629794597, 0.045196749269962005, -0.028614310547709004, -0.042519927024841, 0.018039403483271002, 0.020934030413627, 0.02307441458106, 0.06549356877803801, 0.017970833927392002, -0.14162839949131, -0.006375910248607001, -0.016712497919797002, 0.007625166326761, 0.080897852778434, 0.009590253233909002, -0.004536416381597, 0.042095005512237, -0.058172341436147, -0.037512566894292006, -0.005819757003337001, -0.020672503858804002, 0.081772185862064, -0.095783792436122, -0.07953555881977001, 0.096704229712486, -0.032018706202507005, -0.042279466986656, -4.695945321486761e-8, 0.043348111212253, 0.034754458814859, 0.041625406593084, 0.024519737809896, 0.028219910338521004, 0.015950987115502, -0.027292270213365003, 0.064635165035724, 0.008177822455763, 0.032772306352853005, 0.049715448170900005, -0.023298056796193, -0.014087143354117001, -0.049590978771448004, -0.033197369426488, 0.035180270671844004, -0.020389279350638, -0.08310744911432201, -0.028091503307223, 0.059954117983579004, -0.028525406494736002, -0.023240843787789, -0.056688334792852006, 0.005109475459903001, 0.065504431724548, -0.06111856922507201, 0.018310720100998, 0.11275386810302701, -0.12352313846349701, -0.071221657097339, 0.043028727173805, 0.055040176957845, 0.017700280994176, 0.075285509228706, -0.09044938534498201, 0.008737931028008001, 0.022067170590162003, 0.091176092624664, 0.037935215979814, 0.039209675043821, 0.029392819851636002, 0.049943115562200005, 0.023551296442747, -0.033669047057628, -0.026223203167319003, 0.08278290182352001, -0.031967066228389004, 0.0046523525379590005, -0.015594055876135, 0.07281672954559301, 0.004381155129522, -0.034500699490308005, -0.14201502501964502, 0.029631212353706003, -0.039553698152303, -0.072304829955101, -0.13454370200634, 0.064380973577499, 0.044667076319456, 0.0007636562804690001, 0.013351378962397001, -0.069067522883415, -0.047365948557853005, -0.047564815729856005 ]
0704.0081
Quantum Deformations of Relativistic Symmetries
We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types. A part of twists corresponding to the r-matrices of Zakrzewski classification are given in explicit form.
[ "math.QA", "hep-th", "math-ph", "math.MP", "math.RT" ]
[ -0.11696462333202301, -0.002466667210683, -0.08372783660888601, 0.006442693062126001, -0.12331196665763801, 0.001343492651358, 0.015197065658867002, -0.015705099329352, 0.032768487930297005, -0.12336660176515502, 0.049526765942573006, 0.0015720857772970002, -0.12658767402172, 0.057656768709421005, 0.014241798780858001, -0.013102087192237, -0.055142592638731, 0.104778863489627, -0.04067232832312501, 0.039244722574949, -0.037249077111482, -0.029180219396948003, 0.026642801240086, 0.039663214236497005, 0.06211052834987601, 0.005380639806389, 0.06884609162807401, 0.051130026578903004, -0.04362104833126, -0.006956845056265, -0.005136402789503, 0.017856059595942, -0.142434999346733, -0.016047276556491002, 0.021800439804792, -0.009625733830034, 0.10251031070947601, 0.053489796817302, -0.006638119462877, -0.016877619549632, 0.007077774032950001, 0.057655043900012005, -0.05777811259031201, 0.069272831082344, 0.018583912402391, 0.008772710338234001, 0.04808131977915701, 0.01222631894052, -0.074962824583053, -0.005098891910165, -0.022221269086003, 0.065493166446685, -0.014081115834414001, 0.022062944248318003, -0.011380767449736, -0.09162558615207601, 0.0017774919979270001, -0.005674721207469, -0.014072927646338001, -0.054712634533643, 0.046258069574832, -0.038920328021049, 0.026868596673011003, 0.028885431587696003, -0.09354313462972601, 0.016679365187883002, -0.031823515892028004, -0.042635589838027003, -0.012893020175397, -0.026098672300577, -0.071278601884841, 0.02049758285284, -0.058142285794019005, -0.015730554237961002, -0.024754934012889, -0.039472628384828005, 0.057616632431745, 0.010789789259433, 0.02962353080511, 0.012675181031227, 0.044254630804061, -0.042431965470314005, -0.042667891830205, 0.027883227914571002, -0.009456706233322001, 0.016197521239519, -0.007709689438343, 0.019820511341094003, -0.039115194231271, -0.030305067077279, 0.08666417002677901, -0.041456092149019005, 0.029386626556515003, -0.054882708936929, 0.024932051077485, 0.045928139239549005, -0.068411737680435, 0.004607981070876, 0.018518812954425, 0.023044047877192, 0.048513885587453, -0.064120791852474, 0.047263380140066, 0.100396119058132, 0.055846381932497004, 0.009628312662243, -0.08250338584184601, -0.005063087679445, -0.054298188537359, -0.05981321632862, -0.029734211042523002, -0.017614001408219, 0.012185650877654, -0.11282044649124101, -0.017323208972811, 0.038665160536766004, 0.012767986394464002, 0.127422645688056, 0.042733043432235, 0.08356452733278201, -0.009375219233334, 0.049983233213424, 0.038812845945358006, 0.016609258949756, 0.09547563642263401, -0.000766955432482, -0.139675989747047, 1.9140458801714152e-33, 0.052399106323719004, 0.09152536094188601, 0.013553686439990002, 0.007198262959718001, -0.037616249173879006, -0.054653119295835, 0.016616147011518, -0.023616714403033003, 0.047049112617969006, -0.016839189454913, -0.019336316734552002, 0.004177312366664, 0.061084017157554, -0.11735399812459901, -0.140876099467277, 0.057801984250545, -0.017935544252395002, -0.028888719156384003, -0.005747014656662001, -0.06735378503799401, 0.000903031730558, 0.11418511718511501, -0.063954055309295, 0.054462827742099006, -0.07456848025321901, 0.040250621736049, 0.099670253694057, 0.006248439196497001, -0.055552467703819004, -0.016032610088586002, 0.06913665682077401, 0.014304729178547, -0.053412746638059005, 0.002386933425441, -0.024468578398227, 0.029068293049931002, -0.074067510664463, -0.010274521075189, 0.032211720943450005, -0.042358778417110006, -0.024792402982711, -0.079541981220245, -0.052618689835071, 0.011440656147897, 0.0062695425003760005, 0.064964525401592, 0.078557416796684, 0.061820946633815, 0.035277821123600006, -0.030764767900109003, 0.043422263115644004, -0.014313502237200001, -0.062949113547801, 0.001720905886031, -0.033702038228511005, 0.042387623339891004, 0.07403541356325101, 0.029794547706842003, 0.021077113226056002, -0.05514387413859301, 0.024556379765272, -0.003926606848835001, -0.018254814669489, -0.09405382722616101, -0.044281132519245, -0.10359296202659601, 0.039212837815284, -0.052405573427677, -0.034087188541889, 0.134468540549278, -0.036933194845914, 0.022866666316986, 0.011867565102875, 0.043572209775447006, 0.01198586076498, 0.014318041503429002, -0.013474185019731001, -0.015138727612793001, -0.012619691900908002, 0.012778418138623002, -0.042036369442939, 0.064956560730934, 0.0005487519083540001, 0.016829509288072, -0.041436441242694, -0.0053456188179550005, -0.060533843934535, -0.016344744712114, 0.08534626662731101, 0.041479624807834, -0.00009107416553888471, -0.015824479982256, -0.070683762431144, -0.044434163719415005, -0.019526746124029, -3.624827848592532e-33, -0.04104407131671901, -0.06345587223768201, -0.12155426293611502, 0.027543002739548003, 0.051512971520423, -0.05394277721643401, -0.056965705007314, 0.11851254105567902, -0.009175087325274, -0.03011623583734, 0.069551967084407, -0.025655137374997004, -0.06389432400465, 0.025459798052906, 0.068624034523963, -0.004341037478297, 0.019181745126843, 0.006849776022136001, 0.009343810379505001, -0.041380848735570006, -0.055902395397424004, 0.047700356692075, 0.00001135352977144066, -0.02622490376234, -0.063101924955844, 0.0061163851059970005, 0.07131852954626, -0.019310614094138003, 0.077678263187408, 0.04298185929656, 0.009205702692270001, -0.14379128813743502, -0.027806827798485003, 0.108073331415653, -0.026948137208819, -0.016566995531320003, -0.035059321671724, 0.066476859152317, -0.042175807058811, 0.017196187749505, -0.10007523745298301, 0.054106481373310006, 0.022778302431106002, 0.098711788654327, 0.024605806916952, -0.008664845488965001, 0.03450508788228, 0.001179260783828, -0.06278321892023, -0.004954109434038001, -0.037885129451751, 0.05889389291405601, 0.035579722374677006, -0.021072130650281, -0.031653862446546, 0.108472600579261, 0.0017945518484330002, -0.113986849784851, 0.037214711308479004, 0.082007586956024, -0.054784905165433, -0.055344033986330005, 0.046540513634681, 0.051971022039651, 0.005183631554245001, -0.053212340921163004, -0.001278526731766, -0.069179736077785, -0.005088741891086, -0.008102779276669001, 0.06826580315828301, -0.019635910168290003, -0.029182616621255004, 0.0034771661739790003, 0.07730805128812701, 0.0012415229575700002, 0.008277783170342001, 0.05898406356573101, 0.034887067973613003, -0.089743167161941, 0.017670154571533002, -0.004167829640209, 0.016581296920776003, 0.109661296010017, -0.04564805701375001, 0.031641840934753, 0.009790083393454, 0.037926647812128005, 0.10882233083248101, -0.044996198266744, 0.031153293326497, -0.011755592189729, 0.038983806967735006, 0.09910655021667401, 0.056853577494621006, -3.1818576218256573e-8, 0.0012760204263030002, -0.019346412271261, -0.015409688465297002, 0.004520167596638001, 0.019492086023092003, -0.005168398842215, -0.034341484308242, 0.058259211480617, -0.047284305095672004, 0.018519653007388, -0.018128490075469, 0.011807847768068001, -0.07515307515859601, -0.010048177093267, -0.047518383711576004, 0.04822988808155, -0.052278395742177006, 0.031095430254936003, 0.01132414676249, 0.062088061124086005, -0.005432897713035001, 0.007713439408689001, -0.013191100209951002, 0.042010672390460004, -0.013465271331369, 0.032664064317941, -0.006218126043677, -0.010586260817945, 0.041453178972005005, 0.040881741791963, 0.010227118618786, -0.023680964484810003, 0.03376992791891, -0.024216901510953, -0.09206503629684401, -0.050996311008930005, -0.032190859317779, -0.09520170092582701, -0.015501831658184001, 0.078217603266239, 0.024507919326424002, -0.014888343401253001, 0.059265788644552, 0.048674646764993, 0.043353218585252006, 0.009190087206661, -0.056076291948556005, -0.069454900920391, -0.005586261395365001, 0.071864627301692, 0.017483809962868, 0.048794236034154004, -0.093053549528121, -0.0006752758054060001, -0.078054971992969, 0.040354676544666006, 0.025514619424939003, -0.005407700780779, -0.005333938170224001, -0.01070178952068, -0.020491184666752, 0.020594380795955002, 0.022016985341906003, 0.029985671862959 ]
0704.0082
Matter-Wave Bright Solitons with a Finite Background in Spinor Bose-Einstein Condensates
We investigate dynamical properties of bright solitons with a finite background in the F=1 spinor Bose-Einstein condensate (BEC), based on an integrable spinor model which is equivalent to the matrix nonlinear Schr\"{o}dinger equation with a self-focusing nonlineality. We apply the inverse scattering method formulated for nonvanishing boundary conditions. The resulting soliton solutions can be regarded as a generalization of those under vanishing boundary conditions. One-soliton solutions are derived in an explicit manner. According to the behaviors at the infinity, they are classified into two kinds, domain-wall (DW) type and phase-shift (PS) type. The DW-type implies the ferromagnetic state with nonzero total spin and the PS-type implies the polar state, where the total spin amounts to zero. We also discuss two-soliton collisions. In particular, the spin-mixing phenomenon is confirmed in a collision involving the DW-type. The results are consistent with those of the previous studies for bright solitons under vanishing boundary conditions and dark solitons. As a result, we establish the robustness and the usefulness of the multiple matter-wave solitons in the spinor BECs.
[ "cond-mat.other", "cond-mat.stat-mech" ]
[ -0.06753410398960101, -0.07443493604660001, -0.029181014746427, 0.068503491580486, -0.034664206206798005, 0.029302479699254, -0.008615256287157001, -0.009657111018896, 0.02501798979938, -0.019339691847562002, -0.030970113351941, 0.018251225352287, -0.07710728794336301, -0.0022634472697970003, 0.038206256926059, 0.018221067264676, 0.026446590200066, -0.125262856483459, -0.088339276611804, 0.028172530233860002, 0.04439840093255, -0.066089540719985, 0.002125852275639, -0.007003084290772001, -0.066096827387809, -0.037248704582452004, 0.14726206660270602, -0.052895151078701005, -0.031202988699078, 0.032906949520111, 0.059612888842821, 0.073621198534965, -0.016656963154673, 0.03516785800457, -0.009753186255693, -0.01503106765449, 0.042501337826251005, 0.061843544244766006, 0.012526538223028, -0.11979054659605001, 0.066630132496356, 0.05663058906793501, -0.050925675779581, 0.007189019117504001, 0.056939091533422005, -0.056501585990190006, 0.034916862845420005, 0.048107132315635, 0.07161623239517201, -0.068428367376327, 0.014004213735461, 0.076377712190151, -0.057744354009628004, 0.001164929708465, 0.053493533283472006, 0.06419005990028301, 0.009352277964353001, -0.026391116902232004, 0.0012557931477200001, -0.047615636140108004, -0.014130007475614001, 0.004985076375305, 0.049842089414596, -0.098698683083057, 0.10034125298261601, -0.004069449845701001, -0.036585997790098, 0.082632943987846, 0.0037761256098740002, 0.05221365392208, 0.007852710783481001, -0.024007450789213004, 0.031007282435894002, -0.007807624991983001, 0.067559905350208, -0.034931033849716006, 0.032936014235019004, 0.039396703243255005, -0.017295533791184002, 0.10714077949523901, -0.06935688853263801, -0.10426751524209901, -0.029112622141838, 0.025158727541565003, -0.009858733043074, -0.0029412491712710004, -0.06734614074230101, -0.039166063070297005, -0.023523747920989, -0.018604630604386, -0.071816220879554, -0.140927895903587, 0.029378993436694003, -0.10372631251811901, 0.14051981270313202, -0.034558657556772, -0.026568843051791004, 0.056642286479473, 0.053499966859817005, -0.000681108271237, 0.014663808047771001, -0.09337478876113801, 0.039734084159135, -0.019815996289253002, -0.031186578795313002, 0.014270892366766002, 0.069253049790859, 0.070601001381874, -0.055152188986539, 0.028730075806379003, 0.100097991526126, -0.051642745733261004, 0.071716509759426, -0.001272192574106, -0.05682963132858201, -0.020364999771118, 0.018087238073349002, 0.030251927673816, 0.015432013198733002, 0.020449234172701003, 0.049718298017978, 0.08047260344028401, 0.030856881290674, 0.036455303430557, -0.064094915986061, -0.015697846189141003, -0.02539936825633, 1.3246976447202522e-33, 0.10133031755685801, -0.00030811852775500004, -0.009535986930131002, 0.009829884395003001, 0.009663861244916, -0.038031443953514, 0.11642877757549201, -0.038808818906545, -0.023298110812902003, 0.035527989268302, -0.004447509534657001, 0.073139078915119, 0.055793821811676005, -0.052821196615695, -0.03000440262258, -0.017445264384150002, -0.009932617656886, 0.01585117727518, -0.024097550660371003, 0.014766253530979, 0.0012611333513630001, 0.10203605890274, -0.020874535664916, 0.016978256404399, 0.038197655230760005, -0.023594448342919003, -0.018443595618009002, -0.045129213482141, 0.031339880079030005, -0.004282319918274, 0.043529164046049, 0.01196791883558, -0.065949507057666, 0.065326713025569, 0.054895281791687005, 0.007421234156936, -0.04713038355112, 0.063713617622852, 0.014636803418397001, -0.065028697252273, -0.052373751997947006, -0.050054077059030005, -0.040553163737058, 0.038540165871381, 0.019691301509737, -0.054329928010702, 0.037072595208883, 0.001668034004978, -0.038671981543302, 0.049579892307519004, 0.039147693663835005, -0.07938361167907701, -0.085981801152229, -0.00644050585106, 0.007071002386510001, -0.06460545957088401, 0.118170224130153, 0.012133630923926001, 0.011359315365552, 0.032436162233352, 0.026073755696415003, -0.03618898615241, 0.007973069325089, -0.013903145678341002, 0.025934103876352, -0.022096460685133, -0.039359237998723005, -0.012650804594159001, 0.003016009926795, -0.047036610543727, 0.028650999069213003, 0.08863394707441301, -0.010811522603034002, 0.057350769639015, 0.054259855300188, -0.032665152102708005, 0.072500981390476, 0.043776784092187, -0.007319130003452001, -0.040851134806871005, 0.045200590044260004, -0.030477382242679003, -0.050469428300857, 0.096576534211635, -0.10318274796009001, 0.086754895746707, -0.065303422510623, -0.08129449188709201, -0.07999089360237101, -0.05789307877421301, -0.075522631406784, 0.043071839958429003, 0.008562371134757, -0.051523447036743004, -0.049073975533246, -3.847285011697865e-33, 0.017218343913555003, -0.0060662985779340005, -0.08849105983972501, 0.023384153842926, -0.030721895396709, 0.07369069010019301, 0.06090858578681901, 0.04450954869389501, 0.020903786644339003, -0.07935170829296101, 0.0319704413414, -0.004469669423997001, 0.017455318942666, 0.05486050620675, -0.07532367855310401, 0.039788521826267007, 0.033516973257064, 0.010463860817253002, -0.037152700126171, 0.0040705986320970005, -0.09830371290445301, 0.057960364967584006, 0.06641681492328601, -0.019320957362651003, -0.077973768115043, 0.04359854757785701, 0.07142271101474701, 0.05293154716491601, -0.004682482685893, 0.11039332300424501, 0.048267677426338, 0.009236742742359002, -0.002077239099889, -0.020293481647968, -0.091970592737197, 0.06391405314207001, -0.008754869922995, -0.12252842634916301, -0.050862662494182004, -0.003962848801165, -0.027860097587108, 0.022561140358448, 0.08711016923189101, 0.01717491261661, -0.044514715671539, -0.026946833357214, -0.0043127941899, 0.043533734977245005, -0.020276522263884003, -0.012422134168446002, -0.0076607908122240005, -0.053288463503122004, 0.036173064261674, 0.029016513377428003, -0.089255429804325, -0.014346990734338, 0.017432225868105, 0.007924293167889, -0.009081823751330001, 0.026684667915105, 0.020683640614151, -0.044431634247303, 0.07820638269186, -0.049979001283645005, -0.009195186197757001, -0.088276095688343, -0.071283183991909, -0.023928888142108, 0.043153744190931, -0.051884926855564006, 0.016492903232574, -0.092194885015487, 0.039377808570861005, -0.017702210694551003, 0.034763202071189006, 0.022788859903812003, 0.067327305674552, -0.0062081147916610005, 0.025300575420260003, -0.006403521634638001, -0.076473146677017, 0.025535155087709004, -0.019159223884344, -0.0075057223439210004, 0.054679967463016003, -0.015177518129348002, 0.007920873351395, -0.019572699442505, 0.012941369786858002, 0.038723237812519004, -0.0076299719512460005, -0.003203193424269, 0.030288536101579003, -0.060012184083461005, 0.025063956156373003, -5.322775820104652e-8, 0.070212922990322, -0.011141537688672001, -0.04607532545924101, 0.054338060319423, -0.007670490071177, 0.018849035724997, -0.021915378049016002, -0.08508619666099501, -0.006977954413741, 0.062208209186792006, -0.06058659031987101, -0.008673273026943, -0.131762936711311, -0.10208108276128701, -0.000129393461975, -0.016083180904388, 0.032311204820871, 0.023376306518912003, -0.022055711597204, -0.021679000928997, -0.009373622015118, -0.012494038790464, -0.05628428980708101, -0.05776747688651, 0.004256905056536, 0.019983382895588, -0.058419693261384006, -0.133166164159774, -0.029908953234553004, 0.023652682080864, 0.025677947327494004, 0.027370572090148003, 0.043364644050598006, 0.045230235904455005, -0.080565936863422, -0.059249430894851005, 0.009852644987404001, 0.054181922227144005, -0.026968644931912002, 0.043205164372920005, -0.015897657722234, 0.130009487271308, -0.034432064741849004, 0.007886715233325, -0.024446012452244002, -0.004315380938351, -0.019375603646039, 0.07142584025859801, 0.013074138201773002, 0.07397469878196701, -0.06691782921552601, 0.05966043844819, 0.0010839310707520002, -0.000241483503486, -0.021077670156955, 0.016675053164362002, -0.034815393388271006, 0.049776505678892004, 0.05365754663944201, 0.061985660344362, 0.063858956098556, 0.023900227621197003, -0.092139802873134, 0.038222845643758004 ]
0704.0083
Why there is something rather than nothing (out of everything)?
The path integral over Euclidean geometries for the recently suggested density matrix of the Universe is shown to describe a microcanonical ensemble in quantum cosmology. This ensemble corresponds to a uniform (weight one) distribution in phase space of true physical variables, but in terms of the observable spacetime geometry it is peaked about complex saddle-points of the {\em Lorentzian} path integral. They are represented by the recently obtained cosmological instantons limited to a bounded range of the cosmological constant. Inflationary cosmologies generated by these instantons at late stages of expansion undergo acceleration whose low-energy scale can be attained within the concept of dynamically evolving extra dimensions. Thus, together with the bounded range of the early cosmological constant, this cosmological ensemble suggests the mechanism of constraining the landscape of string vacua and, simultaneously, a possible solution to the dark energy problem in the form of the quasi-equilibrium decay of the microcanonical state of the Universe.
[ "hep-th" ]
[ -0.106060653924942, -0.047025911509990005, -0.012249364517629, 0.09705369174480401, -0.048810236155986, 0.010345106013119, -0.072596058249473, 0.035318575799465006, 0.088133923709392, -0.06140068545937501, 0.04538919404149001, -0.059354394674301, -0.08855243027210201, 0.020569764077663002, -0.033039636909961, -0.041156630963087006, 0.043391853570938006, 0.007311176043003, -0.094364114105701, 0.043020945042371, -0.034010615199804, 0.062851570546627, -0.065975725650787, 0.050804045051336004, 0.014210379682481001, -0.040026873350143, -0.007108280435204, 0.020856011658906, 0.007693460211157001, -0.013199361041188, 0.064145818352699, 0.018893737345933, -0.042830165475606, -0.060130640864372004, 0.07666543126106201, 0.053639251738786003, 0.07506188750267001, -0.011909916996955, 0.068260245025157, -0.030408911406993002, 0.064865827560424, -0.005508678965270001, 0.027995469048619003, 0.080213256180286, 0.030863789841532003, -0.069849818944931, 0.016638185828924002, -0.042005728930234, -0.039780575782060006, -0.054308321326971006, 0.028096700087189, 0.003909014165401, -0.009239794686436001, 0.047311302274465006, -0.022756213322281, -0.005295165348798, -0.03632353618741, 0.023235324770212003, -0.005676459986716001, -0.097872287034988, -0.011809100396931001, -0.028649864718317004, 0.051358621567487, -0.05411773175001101, 0.041853025555610004, -0.044328786432743, 0.014632290229201001, 0.036187324672937005, -0.008534387685358, 0.039635073393583006, -0.07938116043806001, 0.043891761451959006, -0.057067055255174005, 0.045610200613737, 0.061345800757408, 0.043190173804759, 0.029063399881124004, 0.029364943504333003, 0.086144059896469, 0.059095595031976006, 0.056452382355928005, 0.054289098829030005, -0.061958052217960004, 0.038992319256067005, 0.010149965062737, 0.010138397105038001, -0.035995960235595, 0.027550434693694004, 0.029262172058224, -0.009451908059418, 0.018101509660482, -0.015597708523273001, -0.038739282637834, -0.08613276481628401, 0.038717631250619, 0.013257234357297, -0.009338051080703002, -0.005804089829325, 0.09995719045400601, 0.0036016453523180004, 0.017242599278688, -0.13703310489654502, 0.053459420800209004, 0.09999717026948901, 0.083838574588298, -0.026641450822353002, -0.015427859500050002, 0.015098736621439, 0.054640550166368006, 0.024972150102257003, 0.013305615633726, -0.09631174802780101, 0.034113235771656, -0.094550274312496, -0.036108549684286, -0.004998045973479, 0.007903666235506, 0.11092524230480101, -0.07117059826850801, 0.054977022111415, -0.056065693497657006, 0.008378741331398001, -0.020036043599247003, 0.006413079332560001, -0.005973123013973, 0.027181668207049002, -0.042646963149309006, 3.4269866392193724e-33, 0.025639683008193002, -0.024435034021735, 0.022983977571129, 0.051237352192401005, 0.085444957017898, 0.011380983516573, 0.032377369701862, 0.014444136060774002, 0.078502215445041, -0.042796652764081004, -0.013350983150303001, 0.09238538891077001, 0.013868409208953, 0.037012543529272, -0.02008244022727, 0.023760488256812002, -0.022864772006869, 0.00424987077713, 0.062142234295606, -0.039932735264301, 0.034463871270418, 0.051272273063659, 0.045473087579011, -0.08617445826530401, -0.047248318791389, -0.032542224973440004, 0.068537153303623, 0.00098491855897, -0.120859585702419, 0.010310309007763, -0.11104696244001301, -0.026139140129089, -0.0015197081957010001, -0.01971311494708, 0.002523949136957, -0.000532978505361, 0.011051870882511, -0.03252962604165, -0.055833317339420006, -0.092685617506504, -0.014433986507356, 0.035454843193292, -0.037450697273015005, -0.064377725124359, -0.041629076004028, 0.048951514065265, 0.11076920479536001, -0.014887068420648, -0.08368685096502301, -0.013295831158757002, 0.065754123032093, -0.039825215935707, -0.048562053591012004, 0.012394637800753, 0.007084244396537, -0.049252826720476005, -0.060546230524778005, -0.033236540853977, -0.010160023346543002, 0.009002224542200002, 0.0044271484948690005, -0.00008440233068540694, 0.000598702637944, 0.07804460078477801, 0.0034306349698450004, -0.050906930118799, 0.02142721414566, -0.006780026480555001, 0.038619529455900005, 0.055352430790662, -0.003353105392307, 0.021321846172213003, -0.035042949020862, -0.020384009927511, 0.030654847621917003, 0.0021232173312450003, 0.001982025103643, -0.068255901336669, -0.005692551843822001, 0.010621777735650002, -0.05933100357651701, -0.064751304686069, 0.028083188459277004, -0.028595143929123, 0.0008255952852770001, -0.05862184241414001, -0.034641381353139, 0.02023721113801, 0.004924650304019, -0.15979507565498302, -0.07607111334800701, -0.017286691814661, 0.084486477077007, -0.009163286536931001, -0.028735788539052003, -6.426049253701275e-33, 0.076583489775657, -0.104379683732986, -0.040768720209598, -0.02536416426301, 0.017690842971205, 0.072982296347618, -0.10283319652080501, -0.004695393145084, -0.036241415888071005, -0.10575935244560201, -0.017124004662036, 0.047350082546472, 0.010323831811547, -0.014491092413663002, 0.10006199777126301, 0.015930043533444002, -0.011668537743389001, 0.03251664713025, 0.024042690172791002, -0.05156813561916301, 0.056125018745660005, -0.08049864321947, -0.048982381820678, -0.016794668510556002, -0.009845688939094, -0.025567106902599, 0.024255998432636, -0.025854671373963002, -0.054298099130392005, 0.180347025394439, -0.029574889689683, -0.075835824012756, -0.019449377432465, 0.012337377294898, -0.08214366436004601, 0.041482709348201, 0.0252579562366, 0.032139606773853004, -0.038376569747924, -0.013601558282971, -0.013641121797263001, 0.020196611061692002, 0.0011882220860570001, 0.007845304906368, -0.053458590060472, 0.018103508278727, 0.010979596525430001, 0.06621214747428801, -0.002864970592781, 0.059953115880489, 0.080016754567623, -0.025872388854622, 0.026310471817851, 0.11539255827665301, -0.115090049803256, 0.09745996445417401, -0.029384465888142003, -0.005289923865348, 0.054216969758272004, 0.032680541276931, -0.044606909155845004, 0.0020667111966750002, 0.017457609996199, -0.04671443998813601, 0.038982849568128, -0.020424604415893003, -0.041793320327997006, -0.047464780509471005, -0.061285059899091006, -0.060160942375659006, 0.045813273638486, -0.04654560983181, -0.088638603687286, 0.016183003783226003, -0.006567627191543001, 0.06920428574085201, 0.127884715795516, -0.039574164897203, 0.061284285038709, -0.042033143341541006, -0.012691299431025002, -0.005486277863383001, 0.084283590316772, -0.022585814818739003, 0.062784932553768, 0.023611782118678003, -0.041259244084358, 0.0233074426651, 0.040099587291479, 0.027996223419904, -0.006822592578828001, 0.0048125237226480004, -0.007791079115122001, 0.08982518315315201, -0.020637322217226, -5.7152696797402314e-8, -0.014235359616577, 0.02622222341597, -0.09595124423503801, 0.059099067002534006, -0.013508330099284002, 0.027771890163421003, -0.05795047059655101, 0.06579606980085301, 0.073601454496383, 0.10526466369628901, 0.113197907805442, -0.048807308077812, -0.05464746430516201, 0.025729551911354002, -0.02257083915174, 0.025427229702472003, -0.047060381621122006, 0.013934409245848002, -0.053635768592357004, 0.008854599669575, 0.0034304859582330004, 0.043162755668163, -0.06195605918765001, -0.13239255547523401, -0.02008881047368, -0.058323387056589, -0.017331475391983, 0.045802325010299, 0.010884198360145, 0.016297586262226, -0.006188475061208, 0.049412745982408, -0.034587658941745, 0.014085169881582002, -0.112809464335441, 0.034835156053304006, -0.032476723194122, -0.06831686198711301, -0.037403959780931, 0.017084887251257, 0.027702506631612, 0.059585768729448006, -0.005571162328124, -0.026223832741379002, 0.040989208966493, -0.007039157673716, -0.044758569449186006, -0.0057573057711120005, -0.033395893871784, 0.12250762432813601, -0.039134666323661006, 0.046598523855209004, -0.019711624830961002, -0.024030491709709, 0.008034392260015, 0.006701691076159, -0.051486209034919, 0.033101245760917004, -0.034708116203546004, 0.050011929124593006, 0.07895642518997101, -0.07978964596986701, 0.014050925150513002, 0.007134534884244001 ]
0704.0084
Formation of density singularities in ideal hydrodynamics of freely cooling inelastic gases: a family of exact solutions
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $\sim (t_c-t)^{-2}$. The velocity gradient blows up as $\sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an "ordinary" shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.
[ "cond-mat.soft", "nlin.PS", "physics.flu-dyn" ]
[ -0.044718008488416006, -0.06719250231981201, 0.054459795355796, 0.070408426225185, 0.059177365154027, -0.017586201429367003, 0.024114822968840002, 0.037396434694528004, 0.069484218955039, -0.030483879148960003, -0.031428840011358004, -0.050474233925342005, -0.026117736473679, -0.004012337420135, 0.051565896719694006, -0.028851728886365002, 0.0020119901746510002, 0.021908540278673002, -0.07294823974370901, -0.010397683829069, -0.026239715516567, 0.019968006759881002, 0.009854143485426, 0.097269110381603, 0.05179908499121601, -0.012792295776307002, 0.07849475741386401, -0.000793783168774, -0.034389898180961005, 0.045735210180282, 0.034026637673377005, -0.039692211896181, -0.081590808928012, 0.040577467530965, 0.074719004333019, 0.028390917927026003, -0.017568707466125003, 0.087688036262989, -0.043813385069370006, -0.00520148454234, -0.044563297182321, -0.012461247853934002, 0.027427498251199, 0.021895343437790003, -0.003341517411172, -0.003047022037208, 0.01907437108457, 0.02412673830986, -0.023352401331067002, -0.05327363312244401, 0.008669132366776001, -0.018623117357492003, -0.036360438913106, 0.07585368305444701, -0.009884001687169, -0.012509155087172001, 0.004138269927352001, -0.07383880764245901, 0.029226088896393002, 0.0014004814438520002, -0.055204112082719005, 0.044339485466480005, 0.019803170114755003, -0.016571206972002, 0.002999631687998, -0.036050155758857005, 0.064777217805385, 0.08718118816614101, 0.011148666962981, 0.10420434921979901, -0.030888048931956003, 0.06567919254302901, -0.016995664685964, 0.039203848689794006, -0.025139933452010002, 0.045257505029439, 0.011817697435617001, -0.008899671956896001, -0.018677590414881002, 0.000849213276524, 0.022165179252624, -0.033519554883241, -0.005298162344843, -0.13467164337635001, -0.12219256907701401, -0.014673518016934001, 0.0020247818902130003, 0.016083136200904, 0.108427494764328, -0.08890812098979901, -0.083713375031948, 0.07345492392778301, -0.027489863336086003, -0.011115605942904, 0.07986219227313901, -0.04048713296651801, 0.066253334283828, -0.041075237095355, 0.112064905464649, 0.009328956715762001, -0.063426531851291, -0.08117346465587601, 0.07331437617540301, 0.039844889193773006, 0.05328474566340401, 0.012312094680964001, 0.004975677467882, 0.013174939900636002, 0.045831948518753, 0.088269636034965, 0.056951142847537, -0.039696171879768004, 0.026601921766996002, -0.012787406332790002, -0.079492256045341, 0.009009160101413, -0.007680984213948001, 0.028263254091143, -0.040813505649566005, -0.061285279691219004, -0.029319021850824002, -0.01407064218074, -0.09860479086637401, 0.062040049582719005, 0.001131108263507, 0.029877636581659, -0.025997716933488003, 2.061813417922446e-33, 0.047712288796901, -0.029454868286848002, -0.05904265865683501, 0.09840646386146501, -0.010070092976093, 0.009034510701894, -0.024300232529640003, 0.0036483928561210003, 0.01223914604634, 0.060610588639974004, -0.062836237251758, 0.002739942166954, -0.001251329435035, 0.05092534050345401, -0.090036213397979, -0.043788202106952, 0.045253157615661004, 0.017539396882057003, -0.038011353462934, -0.031431216746568, -0.01179910544306, 0.034757200628519, -0.040280122309923005, -0.023429566994309002, -0.09687719494104301, 0.038910459727048, -0.0010713634546840002, -0.07888847589492701, 0.042190302163362, 0.016743779182434002, -0.053960908204317, -0.010216131806373001, -0.037887383252382, 0.052192926406860005, 0.038815088570117, 0.086157590150833, -0.06630060821771601, -0.022053964436054, -0.013988044112920001, 0.005289871245622, -0.07276018708944301, -0.019088586792349, -0.079875208437442, -0.034787781536579, -0.022254763171076, -0.004660435020923, 0.08785533159971201, -0.024476854130625003, -0.003357202978804, -0.072115093469619, -0.022982914000749, 0.013849650509655, -0.014588745310902, 0.014968419447541001, 0.010703557170927, -0.067696593701839, 0.055295817553997005, -0.07629439979791601, 0.030891912057995, -0.022136790677905003, 0.04686478525400101, 0.03962618112564, -0.050640866160392005, -0.062350988388061, 0.0035775541327890004, -0.024049425497651003, -0.009821289218962, 0.06067970395088101, 0.152311772108078, -0.016533456742763002, 0.046808417886495, 0.094073854386806, 0.048671580851078006, -0.034545116126537004, 0.04608392342925, -0.020920006558299002, 0.152164638042449, 0.022995738312602, -0.032903522253036, 0.018539488315582, 0.002097429009154, -0.09676128625869701, -0.011548752896487002, -0.025165382772684004, -0.026554137468338002, -0.039512928575277, -0.021683052182197002, 0.03862676769495, -0.06889424473047201, -0.06477019190788201, -0.10119944810867301, -0.05215524509549101, 0.093392446637153, -0.034040667116642005, -0.004555961117148, -5.176754428798488e-33, 0.04463917016983, -0.005474403500556, -0.083970144391059, 0.08039367198944, 0.016690708696842003, 0.046410851180553006, -0.017872070893645002, 0.017424758523702, -0.04558981582522301, -0.12397951632738101, -0.063359297811985, -0.028671782463788, -0.021830040961503, -0.031896561384201, 0.09950464218854901, -0.042209632694721, 0.038288176059722005, -0.038325041532516, -0.025515865534543002, -0.009226201102137, -0.040208660066127, -0.062761150300502, 0.0033099695574490004, -0.053712032735347005, -0.00007707095937803388, -0.041395768523216005, -0.031906127929687, -0.008010501042008001, -0.023761779069900003, 0.08485102653503401, -0.043323118239641, -0.00018610642291600003, -0.064494624733924, 0.002486059907823, -0.0244308616966, 0.045111976563930005, 0.017092648893594003, 0.06840206682682, 0.031133538112044, -0.023081371560692003, 0.023734673857688002, -0.048705585300922005, 0.017655504867434002, 0.11657849699258802, 0.023609381169080002, 0.016352759674191, 0.04017649590969, -0.041780106723308, 0.038080390542745, 0.027790101245045003, 0.000763395277317, -0.067129902541637, 0.024808194488286, 0.041977539658546004, -0.009073036722838, 0.034136783331632004, 0.023898407816886003, -0.06764507293701101, -0.057374242693185, -0.08906426280736901, -0.030605295673012, -0.07974568009376501, -0.006128664128482001, 0.042970400303602004, -0.064166717231273, -0.07197510451078401, -0.14087489247322002, -0.014106230810284, 0.007953355088829, -0.007559419609606001, -0.05179855599999401, -0.014269757084548002, 0.027835113927721002, -0.046644125133752004, -0.048852764070034006, 0.016306454315781, 0.08468843251466701, -0.044799912720918, 0.011653896421194, -0.05547367408871601, 0.009025531820952, 0.11164304614067001, 0.015490636229515001, -0.056029144674539004, 0.144870266318321, -0.048863288015127, -0.08571599423885301, -0.055573109537363004, 0.019972162321209002, 0.007083357777446, 0.005114699713885, -0.034755118191242, 0.11646788567304601, -0.002592170843854, 0.028681125491857, -5.5806339105402e-8, 0.023928621783852, 0.026676164939999, -0.035884335637092, 0.022062169387936002, 0.07319922745227801, 0.081077590584754, -0.090317822992801, 0.059107106178998, 0.016871847212314002, -0.00054651935352, 0.04323024675250001, -0.011933962814509001, 0.007856423035264001, -0.026990836486220002, -0.008275292813777, 0.018997509032487002, -0.052196826785802, -0.014803944155573002, -0.004847630858421, 0.018189843744039, -0.025785723701119003, 0.016027951613068, -0.040892783552408, 0.033174928277730005, -0.025607550516724004, 0.064808584749698, 0.018889997154474, -0.08731088042259201, -0.007707568816840001, -0.05312155559659001, -0.094897389411926, 0.019656552001833003, -0.021648317575454, -0.002712661167606, 0.031824979931116, 0.020878853276371002, 0.034720420837402004, 0.135086104273796, -0.020351128652691, -0.04440448060631701, 0.038294505327939, 0.035099674016237, 0.012818582355976, -0.017752461135387, 0.048225868493318, 0.084074810147285, -0.09440582245588301, 0.006105705164372001, -0.037055131047964006, 0.10744963586330401, -0.05617611110210401, 0.056563381105661004, 0.004856929183006, 0.084997899830341, 0.037888061255216, -0.07322461903095201, -0.10773484408855401, -0.009405490010976, 0.047945249825716005, 0.017032492905855002, -0.015472145751118, 0.103985853493213, -0.0017213202081620001, -0.026784626767039 ]
0704.0085
A Universality in PP-Waves
We discuss a universality property of any covariant field theory in space-time expanded around pp-wave backgrounds. According to this property the space-time lagrangian density evaluated on a restricted set of field configurations, called universal sector, turns out to be same around all the pp-waves, even off-shell, with same transverse space and same profiles for the background scalars. In this paper we restrict our discussion to tensorial fields only. In the context of bosonic string theory we consider on-shell pp-waves and argue that universality requires the existence of a universal sector of world-sheet operators whose correlation functions are insensitive to the pp-wave nature of the metric and the background gauge flux. Such results can also be reproduced using the world-sheet conformal field theory. We also study such pp-waves in non-polynomial closed string field theory (CSFT). In particular, we argue that for an off-shell pp-wave ansatz with flat transverse space and dilaton independent of transverse coordinates the field redefinition relating the low energy effective field theory and CSFT with all the massive modes integrated out is at most quadratic in fields. Because of this simplification it is expected that the off-shell pp-waves can be identified on the two sides. Furthermore, given the massless pp-wave field configurations, an iterative method for computing the higher massive modes using the CSFT equations of motion has been discussed. All our bosonic string theory analyses can be generalised to the common Neveu-Schwarz sector of superstrings.
[ "hep-th" ]
[ -0.067637331783771, -0.043948668986558005, -0.00767681049183, -0.016154509037733, -0.044030599296092, 0.045666303485631006, 0.045535139739513, 0.024999275803565, -0.009126121178269001, -0.054700132459402, 0.027515610679984003, 0.067137606441974, -0.095128431916236, -0.018029209226369, 0.11743730306625301, 0.000314787757815, 0.032188139855861005, -0.05348673835396701, -0.06553658843040401, -0.032043829560279, -0.045163724571466, -0.002590806456282, 0.000130924760014, -0.012988340109586001, -0.008369523100554001, -0.010516653768718002, 0.073988735675811, 0.036162327975034006, 0.019947009161114002, 0.10027081519365301, -0.063534155488014, 0.013674922287464001, 0.02114918269217, -0.023650407791137, 0.007065447513014001, 0.10797056555747901, 0.019024845212697, -0.018268862739205003, 0.005015186499804001, 0.040266677737236, 0.09984941035509101, -0.002261716173961, -0.010114884003996, 0.081963993608951, 0.042254548519849, -0.057712431997060006, 0.005700316745787, 0.005233690608292, -0.067783899605274, -0.039141908288002, 0.105595909059047, 0.015692446380853, -0.035835236310958, 0.030719496309757004, -0.027389323338866, 0.017697749659419, 0.049595985561609005, 0.048810645937919006, 0.03259789198637, -0.10544392466545101, -0.11886675655841801, 0.028684018179774003, -0.052069485187530004, -0.023256015032529002, 0.054638225585222, -0.001659685745835, 0.017941685393452003, 0.056802719831466, -0.007214972283691, -0.0017667739884920002, -0.041179340332746006, 0.058410964906215, -0.043694619089365005, -0.007856723852455, -0.042233943939208006, 0.011636938899755, 0.0036452948115760003, -0.008003378286957, 0.008305796422064, 0.000561366323381, 0.029654778540134003, 0.026013152673840002, -0.034394230693578005, -0.046578906476497005, -0.013631296344101, 0.051002267748117, -0.06110766157507801, 0.03280459716916, -0.037167891860008004, -0.027637775987386003, 0.011048668064177002, -0.100899308919906, 0.00007586691936012357, 0.037499748170375005, 0.016795815899968, 0.007919877767562, -0.06072407960891701, -0.030420843511819003, 0.050872221589088, 0.021243629977107003, 0.059690807014703, -0.093135699629783, 0.059123165905475006, 0.10615444928407601, -0.03178546205163, 0.043040867894887, -0.029858399182558, 0.062677189707756, -0.011296365410089, -0.013075578026473002, -0.006310845259577, 0.001483107451349, 0.022083925083279003, -0.06749493628740301, -0.09161759912967601, 0.026822138577699002, -0.019233345985412, 0.053981192409992, 0.021879155188798002, -0.034688271582126, 0.024243310093879002, 0.028306817635893003, -0.040897022932767, 0.06989618390798501, -0.014544644393026001, 0.038299173116683, -0.020053092390298, -2.93861465420079e-34, 0.067653633654117, 0.10153245925903301, 0.08233134448528201, 0.007216991391032001, 0.051171254366636006, 0.098613388836383, -0.015244930051267001, 0.07601311802864001, 0.045556839555501, 0.070761822164058, -0.058150865137577, 0.11741196364164301, -0.010643295943737, -0.05378459021449, 0.031470596790313, -0.007926818914711, 0.034020483493804, -0.0024711810983710004, 0.054163929075002004, 0.044989924877882004, 0.039865411818027004, 0.076184056699275, -0.031501721590757, 0.014687437564134001, -0.008647738024592, 0.025150394067168003, 0.038769997656345, -0.015189044177532002, -0.10393776744604101, 0.03817069530487, -0.065119549632072, -0.066451303660869, 0.010036665014922001, 0.041127718985080004, -0.012629622593522, -0.082992173731327, -0.06453815102577201, -0.048166673630476005, -0.069361090660095, -0.070857264101505, -0.045553106814622005, -0.054811853915452007, 0.013289001770317001, 0.008833845146, -0.028992371633648, -0.129843011498451, 0.13909040391445102, 0.030464351177215004, 0.014080762863159001, -0.046658460050821006, 0.106044016778469, -0.013865581713616001, -0.11550392955541601, 0.0028000546153630003, -0.016723427921533, -0.009125583805143, -0.084332518279552, 0.005260162521153001, 0.023184331133961, -0.008879363536834, 0.12005548179149601, 0.031475465744733006, 0.044391624629497, -0.007814752869307, -0.056874647736549, -0.002624905202537, 0.007784417830407, -0.08021584898233401, 0.049524720758199005, 0.030122151598334004, -0.038267366588115005, 0.065245755016803, -0.08379678428173, 0.010765318758785001, 0.09808325022459001, -0.001602106029167, 0.07323988527059501, 0.052983243018388006, 0.012366226874291002, 0.012417909689247001, -0.131127178668975, -0.013241687789559002, 0.0026926617138080004, 0.01531383767724, -0.065996050834655, 0.032376445829868004, 0.013567789457738, -0.008827284909784001, -0.0066186841577290005, -0.12329097837209702, -0.11364088952541301, -0.018459692597389003, 0.018147772178053002, -0.04708515480160701, -0.020584136247634003, -2.092590064078881e-33, 0.013534097000956001, -0.047121807932853005, -0.057899966835975, -0.029614748433232002, 0.038901858031749004, -0.016751866787672, 0.047395776957273004, 0.033267661929130006, 0.007477445527911001, -0.002276867395266, 0.0066432701423760005, 0.046559035778045, 0.045570105314254004, -0.029788658022880003, 0.015884382650256, 0.027948565781116003, 0.0044878632761530006, 0.056073814630508007, -0.080177627503871, -0.045247796922922, 0.082740068435668, -0.056909412145614006, 0.011127021163702, 0.004925614222884, -0.05691997334361001, -0.045644626021385006, -0.032277669757604, -0.08419736474752401, 0.02128080651164, 0.109531253576278, 0.003240694291889, 0.0028724167495960003, -0.0048294984735540005, 0.027680754661560003, -0.08547867834568, 0.007533132564276001, 0.0319549664855, 0.10489773005247101, -0.06384909152984601, 0.07637179642915701, -0.031976342201232, -0.0036561086308210004, 0.039378825575113005, 0.040925942361354, -0.07390853762626601, 0.038219586014747, 0.017346818000078, -0.018210718408226002, -0.079050607979297, -0.0016211309703060002, -0.031589061021804005, -0.006881559733301, 0.085732735693454, -0.012530815787613002, -0.09831381589174201, 0.037084188312292, -0.012200499884784001, -0.080338515341281, -0.047691266983747004, -0.021213825792074002, 0.033350583165884004, -0.037732921540737006, 0.027382178232073003, 0.07757069915533, 0.06396467238664601, -0.007222155109047001, -0.019792037084698, -0.045074366033077004, -0.007218745537102, -0.041504342108964004, -0.054703556001186, -0.08203036338090801, -0.140755429863929, 0.031284876167774, -0.038732234388589006, 0.092121057212352, 0.057697538286447005, -0.050977759063243006, 0.026171877980232003, 0.06556025147438001, 0.08488714694976801, 0.021655106917023003, 0.021332018077373, 0.050552226603031006, 0.028122000396251002, -0.038972757756710004, -0.021420262753963002, 0.031672794371843005, 0.028655294328927, 0.010025105439126, -0.001241766614839, -0.02534719929099, 0.035826936364173, 0.062446553260087, 0.041861217468976, -4.705808009930479e-8, -0.052733294665813, 0.040793143212795, -0.030417278409004003, 0.041581641882658005, -0.050375029444694006, -0.086960427463054, -0.030108923092484002, -0.06198919564485501, 0.017014218494296, 0.004646420013159, -0.059268217533826, -0.05459127575159001, -0.10234216600656501, -0.091415375471115, -0.03344877064228, 0.039625119417905, -0.023654345422983003, -0.041621740907430003, -0.014233873225748001, 0.033499088138341, 0.038629259914159005, 0.021879058331251002, -0.06694768369197801, -0.017604898661375, -0.0035677019041030003, -0.044292114675045006, 0.006552651990205001, -0.012164218351244, 0.07810844480991301, 0.083351023495197, 0.007660409435629001, -0.03516799211502, -0.037314429879188, -0.018716007471084, -0.067269675433635, -0.021479139104485002, 0.038736555725336005, -0.050607502460479, -0.026103248819708002, 0.059390552341938005, 0.047493137419223, 0.042171176522970005, 0.034180816262960004, 0.008546697907149, 0.023089839145541, 0.018762717023491002, 0.039920888841152004, 0.00197097659111, -0.005289961118251, 0.171831890940666, -0.004410532303154, 0.08762434124946501, -0.046559967100620006, -0.006270856596529001, -0.007756374776363001, 0.021025793626904002, -0.007249452173709, -0.038917899131774, -0.05512948334217001, -0.07582988590002, -0.036118663847446005, 0.023784106597304, 0.026693725958466002, -0.018336931243538003 ]
0704.0086
Clustering in a stochastic model of one-dimensional gas
We give a quantitative analysis of clustering in a stochastic model of one-dimensional gas. At time zero, the gas consists of $n$ identical particles that are randomly distributed on the real line and have zero initial speeds. Particles begin to move under the forces of mutual attraction. When particles collide, they stick together forming a new particle, called cluster, whose mass and speed are defined by the laws of conservation. We are interested in the asymptotic behavior of $K_n(t)$ as $n\to \infty$, where $K_n(t)$ denotes the number of clusters at time $t$ in the system with $n$ initial particles. Our main result is a functional limit theorem for $K_n(t)$. Its proof is based on the discovered localization property of the aggregation process, which states that the behavior of each particle is essentially defined by the motion of neighbor particles.
[ "math.PR" ]
[ -0.053940735757350006, -0.078224800527095, 0.023255707696080003, 0.103995084762573, 0.054245248436927004, 0.074038796126842, 0.06551896780729201, -0.003461420768871, 0.111168898642063, -0.07816354930400801, 0.019097760319709, 0.034505747258663004, 0.0022571722511200002, -0.040296014398336, -0.040947847068309, -0.04277067631483, 0.062981367111206, -0.05574607476592001, -0.028838966041803003, -0.035739570856094, -0.061871189624071, 0.016037240624427, 0.107643745839595, 0.064401105046272, -0.016217015683650002, -0.016643604263663, 0.027730131521821, -0.005562399514019, -0.014334851875901002, -0.011011371389031, 0.030377382412552, -0.011637822724878, 0.014097443781793001, 0.058457095175981, 0.071248769760131, -0.0014206711202850001, 0.009163369424641, 0.03272170946002, -0.043899178504943, 0.038568072021007004, -0.040349438786506, 0.007837644778192, -0.056140702217817, -0.002033326542004, 0.06086278706789001, -0.041792839765548005, -0.012070680037140001, -0.000552411889657, -0.043982330709695004, -0.023471700027585002, 0.0020888536237180003, 0.039920136332511, -0.068928748369216, 0.040043018758296, 0.04473201930522901, -0.061536572873592, -0.027688601985573002, -0.027058761566877, 0.059466734528541, -0.071446143090724, 0.081167675554752, 0.016595864668488003, 0.026350665837526002, 0.005890585947781001, 0.007414298597723, -0.010519809089601, 0.076245255768299, 0.089095272123813, 0.063495345413684, 0.018332300707697, 0.015118369832634001, 0.047754269093275, -0.04543824866414, 0.093080610036849, 0.028683988377451, -0.009179182350635001, -0.067253030836582, -0.005045839119702001, -0.015902873128652, 0.014837903901934001, -0.04066278040409, 0.0057597965933380004, -0.017317160964012, -0.146883681416511, -0.080041229724884, -0.001414129626937, -0.035316910594701004, -0.009842001833021, 0.12252565473318101, -0.125152364373207, -0.11514981836080501, 0.094637647271156, -0.019818991422653, -0.034232836216688003, 0.012843067757785001, -0.057242717593908005, -0.029285080730915004, 0.005991867277771, 0.116002060472965, 0.027805134654045, -0.01679990440607, -0.009359128773212001, 0.047736205160617, 0.031537860631942, 0.040678311139345, 0.015722123906016003, 0.010987220332026001, -0.020019909366965002, 0.053433079272508004, 0.058936495333909, 0.083960331976413, -0.039514821022748, -0.029238125309348002, 0.09158609807491301, -0.08270093053579301, -0.041829004883766, 0.06757119297981201, -0.013515926897525002, 0.004181172698736, -0.013603145256638001, 0.059782311320304, -0.033549763262271, -0.15143908560276, 0.026370035484433, 0.07071565091609901, 0.046094134449958, 0.013463660143315001, 1.684950617815041e-35, 0.027555236592888003, -0.097568377852439, 0.05502662807703, -0.050835747271776005, 0.011038209311664, -0.09434282779693601, -0.041263666003942004, -0.053507413715124005, -0.023609537631273003, -0.018592761829495, -0.02846186235547, 0.012835244648158, 0.06269739568233401, -0.054997719824314006, -0.020162817090749, -0.0480895973742, 0.025251332670450002, 0.04891328513622201, 0.048928000032901, -0.09523644298315001, 0.05513485521078101, 0.015671078115701002, -0.012357154861092, 0.018515896052122, -0.10899364948272701, -0.019067090004682003, -0.013364689424633001, -0.104039601981639, -0.000424779544118, 0.029735939577221003, -0.020057542249560002, 0.043591991066932005, -0.020653475075960003, 0.072611756622791, -0.043371144682168, 0.0317263007164, -0.07457235455513, -0.038721531629562, 0.007134267129004001, -0.046333126723766, -0.044704750180244, 0.001961406785994, -0.029177566990256, -0.075901374220848, -0.045975763350725, 0.021028401330113, 0.04770227521657901, -0.02181613817811, -0.047164671123027004, -0.043859343975782006, -0.007602249272167001, -0.028277561068534, 0.024035520851612, 0.071461118757724, 0.029727892950177002, 0.034193303436040004, 0.08619903773069301, -0.012900864705443, 0.020479898899793, 0.035907175391912, -0.052015118300914, -0.054347533732652005, -0.030441302806138004, -0.002700223587453, 0.06569514423608701, -0.069263108074665, 0.014147381298244001, 0.087510533630847, 0.09313181042671201, -0.045290648937225, 0.031925804913043004, 0.082555934786796, -0.018879145383834003, -0.022236129269003, -0.057588722556829, -0.017941145226359003, 0.043305534869432005, -0.0059789572842410005, -0.12284990400075901, 0.05250706523656801, -0.055375158786773, -0.149993762373924, -0.10702253878116601, -0.046576511114835004, -0.041824150830507, -0.043650522828102, 0.015490413643419002, -0.044223979115486006, -0.04482627660036, 0.005525018088519001, -0.0053363572806110005, -0.01048924960196, 0.025056617334485002, 0.006049272138625001, 0.010271131061017002, -2.463991912324998e-33, 0.021514039486646, -0.033602867275476005, 0.017912657931447, 0.05684794485569, 0.019416587427258002, 0.042788211256265, -0.09965387731790501, 0.07127423584461201, -0.030889632180333002, -0.070671312510967, -0.035449031740427, 0.039615165442228005, 0.05692184343934, 0.028188697993755, -0.000450347142759, -0.014996555633842001, 0.101337745785713, 0.09126819670200301, 0.052297979593276006, -0.017337607219815, -0.05516416206955901, -0.049838941544294, 0.0006497204885810001, 0.0022849678061900003, -0.032972265034914, -0.017197776585817, -0.0025583351962260004, -0.014354219660162001, -0.063875578343868, 0.062531784176826, 0.013065535575151001, -0.06169818714261, -0.059853184968233004, 0.019368190318346003, -0.01255265250802, 0.027199365198612, 0.06936447322368601, 0.029784364625811, 0.035254511982202, -0.027168303728103003, 0.0062776338309040005, -0.009802180342376001, -0.022078970447182003, 0.006668630056083, 0.10364515334367701, -0.05799312144517801, 0.07666652649641001, -0.03751840442419, -0.039775758981704004, -0.026961842551827, 0.010171628557145, 0.069559253752231, 0.027941012755036004, 0.028692480176687, -0.001054842607118, 0.111501730978488, 0.077961303293704, -0.011036774143576001, -0.010239805094897001, -0.06769882142543701, 0.008301411755383, -0.110221400856971, 0.010540546849370001, 0.071300372481346, -0.029970955103635004, -0.12800838053226402, -0.05029922351241101, -0.029941946268081002, 0.056505281478166004, 0.028948487713932002, -0.025603625923395, 0.044850200414657, 0.036735985428094, 0.056198962032794, -0.035761725157499, -0.077852077782154, 0.11332044005393901, -0.01849459670484, -0.04804387316107701, -0.039019998162984, -0.08106241375207901, 0.022897671908140002, -0.006700121331959001, -0.06790589541196801, 0.037541430443525, -0.06738432496786101, 0.025874964892864002, -0.007413453888148001, 0.039358127862215, 0.014465956017374002, -0.010633514262735, -0.027364689856767002, 0.023029107600450002, -0.014766735956072, -0.09536677598953201, -4.1047059085030924e-8, 0.060421224683523005, -0.011176887899637, -0.020573655143380002, 0.039536446332931005, 0.13512504100799502, 0.048550926148891005, -0.022525059059262, 0.063072599470615, -0.04654536768794, 0.005834201816469001, 0.085875034332275, 0.004179079551249, 0.005073776934295, 0.035161588340997, -0.01223555393517, 0.034988179802894, -0.077999681234359, -0.016746781766414, -0.0024061594158410003, 0.00046120659681000005, -0.017665022984147002, -0.007871846668422, 0.006988186389207, 0.030205605551600002, -0.021869091317057002, 0.033389996737241, 0.024798598140478002, -0.051215145736932005, -0.027971260249614, -0.010115371085703, -0.065418556332588, 0.042398020625114004, 0.005828680936247, 0.044197835028171005, 0.027196787297725, -0.036389790475368, -0.017474062740802, 0.12626838684082, 0.010229501873254, -0.028943033888936, 0.036306861788034, 0.018151069059967002, 0.027708414942026003, -0.0033251238055520002, 0.018261406570672, 0.10526255518198001, -0.061948519200086004, 0.024776389822363003, 0.017741054296493003, 0.00351103185676, -0.038110375404357, 0.000600199215114, -0.054833386093378005, 0.012927184812724, 0.015699537470936, 0.036063287407159, -0.046622943133115005, -0.048690032213926, 0.110172927379608, -0.014714695513248001, -0.051703765988349006, 0.029726650565862003, -0.025587240234017, 0.0019153424073010002 ]
0704.0087
Approximate solutions to the Dirichlet problem for harmonic maps between hyperbolic spaces
Our main result in this paper is the following: Given $H^m, H^n$ hyperbolic spaces of dimensional $m$ and $n$ corresponding, and given a Holder function $f=(s^1,...,f^{n-1}):\partial H^m\to \partial H^n$ between geometric boundaries of $H^m$ and $H^n$. Then for each $\epsilon >0$ there exists a harmonic map $u:H^m\to H^n$ which is continuous up to the boundary (in the sense of Euclidean) and $u|_{\partial H^m}=(f^1,...,f^{n-1},\epsilon)$.
[ "math.DG" ]
[ 0.036067549139261, 0.063972763717174, 0.035391800105571004, -0.11812587082386002, 0.026559835299849004, 0.06177053600549601, 0.022673729807138002, -0.01358203869313, -0.079634822905063, -0.08333912491798401, 0.09024570137262301, -0.032061498612165, 0.008179005235433, -0.096875838935375, 0.007770231924951, 0.002545981202274, 0.046751514077186, -0.024975487962365, -0.038520690053701005, -0.025325123220682002, -0.021523129194974, 0.038860376924276005, 0.057037543505430006, 0.061006415635347006, -0.102020509541034, 0.003892933484166, 0.035977002233266005, 0.065188564360141, 0.014547410421073001, 0.027899745851755003, 0.076156452298164, -0.05789810046553601, -0.055035904049873005, -0.05027720332145601, -0.0039061317220330004, 0.10365021973848301, -0.020610382780432, 0.032455775886774, -0.077242396771907, 0.013393489643931, -0.080762207508087, 0.045384958386421, 0.030888600274920002, 0.044155962765216, -0.010513916611671, 0.016087977215647, 0.007609779946506001, 0.015055114403367001, 0.0057720486074680005, -0.00000886511043063365, -0.046854846179485, 0.049325473606586005, 0.10248256474733301, -0.00654084701091, -0.048174161463975004, 0.021112153306603, 0.039567578583955, 0.054177261888980005, 0.033623680472373005, 0.013154922053217001, 0.009558850899338, -0.055894583463668004, 0.0027855806984000003, -0.023582398891448003, 0.026102500036358, -0.043430682271718, 0.056345108896493, -0.017258174717426, -0.013164180330932002, 0.084883891046047, -0.008990819565951, 0.002749385312199, -0.11377039551734901, -0.029365859925746002, -0.023137835785746002, 0.020581871271133003, -0.126952931284904, 0.04645587876439, 0.069596976041793, -0.057302489876747006, 0.023501031100749, -0.002257348038256, 0.014849430881440001, -0.049184046685695, 0.04983602464199, -0.017472524195909, -0.087807290256023, 0.027962956577539003, 0.030327096581459004, -0.042427312582731004, -0.041197173297405, -0.11267031729221301, 0.049487013369798, -0.021441930904984002, -0.08619375526905, -0.05134305730462001, -0.05325472727417901, 0.10187324881553601, 0.022827817127108, 0.011333132162690001, -0.063907504081726, -0.05187625437974901, -0.036654151976108, 0.017064470797777002, 0.0064097242429850005, 0.008922100998461, -0.00797513872385, 0.029016546905040002, -0.000312894786475, 0.014360564760863, -0.026984037831425, -0.024728907272219002, -0.048585996031761, 0.04063581302762, -0.008754273876547, -0.039643540978431, 0.132475987076759, 0.007970773614943001, 0.009638662450015, 0.0023533727508030003, 0.029789978638291, -0.014438534155488, 0.006529845762997001, -0.038748517632484006, 0.028208063915371003, -0.0016228959430000002, 0.024536488577723004, 8.163283885777725e-34, 0.11984266340732501, 0.018071696162223, -0.016440466046333, 0.033224295824766, 0.00398743385449, 0.003953843843191, 0.07475746423006001, 0.029360398650169, 0.06085693091154001, 0.004768167622387001, -0.038006938993930005, 0.035293806344270005, -0.070590645074844, -0.009611644782125001, -0.034236535429954, -0.048053678125143, -0.01005012448877, 0.075773745775222, -0.027040420100092003, 0.018690520897507, 0.0019146177219220002, 0.033968206495046005, 0.10319585353136, -0.09479539841413401, 0.011841475963592, -0.050913006067276, 0.018060777336359, 0.012015341781079, 0.036034606397151, 0.015330419875681001, -0.010608229786157001, 0.032083775848150003, 0.031303223222494, -0.079611532390117, 0.08201606571674301, 0.07027584314346301, -0.060591582208871, 0.018336802721023, -0.040518265217542, -0.078289575874805, -0.050767637789249004, -0.017942624166607, 0.011914826929569002, 0.08886629343032801, -0.034678928554058006, -0.030571220442652, 0.00011572566290800001, 0.068946182727813, 0.015779472887516, -0.023676635697484003, -0.034806668758392, 0.035954020917415, -0.09563495218753801, -0.011700459755957002, -0.014781646430492, -0.060188140720129006, -0.043704874813556005, 0.006861706729978, 0.009687962010502, -0.015834378078579, 0.011303055100142002, 0.0037525848019860004, 0.045435015112161005, 0.011881000362336, 0.009089711122214001, -0.06610677391290601, 0.05323550477623901, 0.045859169214963004, -0.022287579253315003, -0.06314866244792901, 0.033336572349071, 0.028867032378911, -0.011737349443137, 0.031528268009424, 0.014602057635784002, -0.012014643289148001, 0.053131002932786005, -0.07173878699541, -0.015665836632251, -0.050701685249805006, -0.02815263159573, -0.07367260009050301, 0.018506770953536002, -0.051511686295270004, -0.07856004685163401, -0.059283252805471004, 0.024422036483883, -0.048041287809610006, -0.048950426280498005, -0.003228421323001, -0.081035196781158, -0.094028115272521, 0.028830863535404, 0.069525629281997, 0.023113260045647, -3.447961499199872e-33, -0.0074043790809810005, -0.044612698256969, 0.034238696098327005, 0.059258766472339006, -0.028164941817522004, 0.09248300641775101, 0.016598690301179, 0.125901073217391, -0.12443622946739101, -0.073674947023391, -0.023980341851711003, -0.000176702960743, -0.023713789880275, 0.029168339446187002, -0.07095285505056301, 0.050267700105905005, 0.029138484969735003, -0.008319446817040001, 0.020107910037040003, 0.11932667344808501, -0.012739723548293001, -0.02311679162085, -0.045798461884260004, 0.084706969559192, -0.050875455141067005, -0.009532071650028002, -0.004719116725027, -0.033661644905805005, -0.011902906000614001, 0.022964861243963002, 0.043678488582372006, -0.09781347960233601, -0.060728982090950005, -0.09101711958646701, -0.025697860866785, 0.034567788243293006, 0.023382525891065, 0.11180151998996701, 0.022083733230829003, 0.134688481688499, -0.030680771917104003, -0.051675003021955004, 0.046121180057525, 0.044179029762744, -0.071885153651237, 0.042158007621765005, -0.012911490164697, -0.065428592264652, -0.114707857370376, 0.09278524667024601, 0.0024911195505410003, -0.047646060585975, 0.0004896491300310001, 0.023689594119787, -0.041559983044862005, 0.035669393837451005, -0.051970992237329004, 0.016211897134780003, -0.048819478601217006, -0.053152851760387004, -0.059143021702766, 0.028439972549676003, 0.0501629114151, 0.070051059126853, 0.050603814423084, -0.018330356106162002, -0.096672385931015, -0.04129030555486601, 0.0007977618370200001, 0.09064392745494801, -0.06508852541446601, -0.065779596567153, 0.044529777020215, 0.025735173374414003, 0.040869876742362005, -0.03043233975768, 0.10371959954500101, -0.09821429848670901, -0.041831180453300004, -0.027502229437232004, 0.017870057374238, 0.07742983102798401, 0.068909414112567, 0.05929444357752801, 0.032521042972803005, 0.01311857625842, 0.05986336246132801, -0.048011031001806, -0.05736716091632801, 0.0511359795928, 0.063559137284755, 0.0006569498800670001, -0.037950657308101, -0.051443748176097, -0.007276372984051001, -3.760588285217636e-8, 0.084896959364414, -0.059758823364973006, 0.001822540420107, -0.07076833397150001, -0.006807800382375001, -0.05943091213703101, -0.027123486623167003, 0.015150897204875, -0.024782417342066, -0.008184172213077, -0.005708903074264001, 0.044821113348007, -0.033412761986255, -0.075075611472129, -0.062931589782238, -0.036228660494089, 0.028854276984930004, 0.09914129972457801, -0.031164785847067004, -0.02153942361474, -0.048127736896276, 0.041239496320486006, 0.07252101600170101, -0.0029185872990630003, 0.049404855817556007, -0.038571175187826004, -0.040669854730367, -0.080761604011058, -0.017979353666305, -0.048724964261054, 0.0027400238905100002, 0.043993331491947, 0.05571324750781, 0.033728905022144005, 0.004561189562082, 0.028616983443498, 0.037914186716079004, -0.043842040002346004, -0.08746732026338501, -0.035955742001533, -0.028261901810765003, 0.056009512394666006, -0.004248882178217, -0.029141562059521002, 0.071285292506217, 0.053534969687461006, -0.022792279720306, 0.08468535542488001, 0.025602107867598003, 0.12456169724464401, -0.054761417210102005, 0.04794118180871, 0.034162394702434006, 0.042591355741024, 0.039428658783435, -0.059558071196079004, -0.02587722428143, -0.078942947089672, 0.08942525088787001, -0.059152279049158006, 0.039859440177679006, -0.019843045622110003, 0.021505950018763, 0.0038045691326260003 ]
0704.0088
Some new experimental photonic flame effect features
The results of the spectral, energetical and temporal characteristics of radiation in the presence of the photonic flame effect are presented. Artificial opal posed on Cu plate at the temperature of liquid nitrogen boiling point (77 K) being irradiated by nanosecond ruby laser pulse produces long- term luminiscence with a duration till ten seconds with a finely structured spectrum in the the antistocks part of the spectrum. Analogous visible luminescence manifesting time delay appeared in other samples of the artificial opals posed on the same plate. In the case of the opal infiltrated with different nonlinear liquids the threshold of the luminiscence is reduced and the spatial disribution of the bright emmiting area on the opal surface is being changed. In the case of the putting the frozen nonlinear liquids on the Cu plate long-term blue bright luminiscence took place in the frozen species of the liquids. Temporal characteristics of this luminiscence are nearly the same as in opal matrixes.
[ "physics.optics" ]
[ -0.031749974936246005, -0.059652790427207, -0.026026546955108, 0.063361436128616, -0.009399443864822, -0.04534758254885601, 0.051057796925306, -0.043155357241630006, 0.041779890656471, -0.043567806482315, 0.024193948134779, 0.007361929863691, -0.022690553218126002, -0.05829357728362, 0.02889016456902, 0.032011955976486005, -0.0022197247017170002, -0.029606908559799004, -0.011373382993042, -0.005306718870997, 0.073818199336528, -0.12166704982519101, -0.029320126399397003, 0.023338099941611002, -0.076227590441703, 0.07562571763992301, 0.0007009537657720001, 0.06963636726140901, 0.039976511150598006, 0.084870383143424, 0.11505664885044001, -0.002687355037778, 0.017453318461775003, 0.086293548345565, 0.032055370509624, -0.10119184106588301, 0.022087270393967, 0.039766546338796005, -0.05914479121565801, -0.014930480159819001, 0.017951061949133002, 0.007770939264446001, -0.007960758171975, 0.016210263594985, 0.019634252414107, -0.032218530774116, 0.11870714277029001, -0.08999266475439001, -0.140898838639259, -0.047770455479621006, -0.002334698569029, 0.044978503137826004, -0.072618298232555, 0.039312314242124, -0.024864392355084003, -0.001593394903466, 0.020822323858737002, -0.008017900399863, 0.046594187617301004, -0.031816553324460005, -0.03732119128108, 0.072655968368053, -0.09078362584114001, 0.002331646857783, 0.050811659544706005, -0.012587161734700002, 0.011941601522266001, -0.046510271728038004, 0.014994828030467, 0.005558623000979, 0.059066992253065005, 0.05899379402399001, 0.024349324405193003, -0.034307867288589006, -0.030469613149762, -0.001195728778839, 0.07358768582344001, 0.07836091518402101, -0.05601433292031201, 0.028766592964529002, 0.051845647394657, -0.067980594933032, -0.013685843907296002, 0.064078494906425, -0.02817047201097, 0.055823653936386004, 0.037380095571279005, 0.032351307570934004, -0.042255535721778, -0.012370425276458001, -0.027165768668055004, 0.034014802426099, -0.025580652058124, -0.06562850624322801, 0.045889880508184, -0.00939485989511, 0.118216961622238, 0.003456785809248, 0.037113666534423, -0.007612298708409001, 0.014421068131923, -0.069742389023303, -0.11015298962593001, 0.109618753194808, -0.074043482542037, -0.020949838683009002, 0.068311497569084, 0.084522262215614, -0.045294646173715, 0.014399223960936002, 0.056981753557920005, -0.030141346156597002, -0.04082768410444201, -0.026598336175084003, -0.040000975131988005, 0.009518071077764001, -0.06854536384344101, 0.034933630377054, -0.048848841339349004, -0.033720299601554, -0.019370440393686003, 0.08840541541576301, 0.003951429389417001, 0.051087766885757, -0.009042583405971001, 0.025661766529083002, 0.026530038565397002, 4.8776451157859565e-33, 0.0014736813027410001, -0.035426106303930005, -0.078416913747787, -0.033774863928556005, -0.020949205383658003, 0.0034108215477310004, 0.020925661548972, -0.021988224238157, -0.054747767746448, -0.011988975107669001, 0.079809390008449, 0.072767972946166, -0.027430536225438003, 0.01615765504539, -0.035733841359615, 0.005595433991402001, 0.11239949613809501, 0.013511931523680002, -0.036314450204372004, 0.06267075240612001, -0.026722809299826, 0.024838747456669003, 0.028598336502909, -0.0370086543262, -0.047143153846263004, 0.021253135055303, -0.06986913084983801, -0.023598492145538, 0.019584428519010003, 0.010840442962944001, 0.0077200583182270004, 0.050650384277105005, -0.037234414368867, -0.001407367410138, 0.089573822915554, 0.019252002239227, 0.018352679908275, 0.024540362879633, 0.044906828552484006, -0.002794766565784, -0.043880261480808, 0.041551731526851, 0.039885472506284006, 0.078341364860534, -0.0036480769049370004, 0.033136434853076005, -0.07444030046463, 0.011244681663811, 0.047807931900024005, -0.001073067192919, -0.038938537240028, -0.017422344535589003, 0.029237801209092, -0.01978276669979, 0.05043614283204, 0.014792545698583001, 0.055116076022386, -0.020112900063395, 0.043824780732393, -0.07595002651214601, -0.000052608189434977255, -0.053918063640594004, 0.018996939063072, -0.041765373200178, -0.024437559768557, 0.032620459794998, -0.007929414510726, -0.026279861107468, 0.068701185286045, -0.0007733124075450001, -0.041190881282091, 0.045206096023321006, 0.08655556291341701, -0.0009195577586060001, 0.017397508025169, -0.020192496478557, 0.125821828842163, 0.0037558616604650005, -0.068482749164104, 0.060706108808517005, -0.018488612025976, -0.08615060150623301, -0.07830157130956601, -0.049774441868066004, -0.094078943133354, -0.05810009688138901, -0.09013193845748901, 0.018801564350724, -0.039124108850955006, 0.06195742636919001, -0.015259467065334001, -0.076430521905422, 0.045580673962831005, -0.038631796836853, -0.049771107733249005, -5.3675617738499154e-33, 0.014279796741902, -0.051611248403787, -0.059775583446025, 0.091035649180412, 0.07274455577135, 0.025007193908095002, -0.003144268412142, 0.07739955186843801, -0.023469278588891, -0.019245712086558002, 0.064590036869049, -0.019302360713481, -0.08935484290122901, -0.0059347548522050006, -0.070416070520877, 0.03588156029582, -0.005511972587555001, 0.05798496305942501, 0.10847578942775701, 0.0049086222425100004, -0.11411079019308001, 0.048348851501941, 0.021110329777002, 0.005732013378292, 0.039346188306808, 0.068145051598548, 0.034865237772464, -0.0059598311781880004, -0.065091237425804, -0.06553459167480401, -0.059705976396799004, 0.061728164553642, 0.031374994665384, -0.05504262447357101, -0.022953879088163, 0.11756704747676801, 0.07843454927206, -0.060944177210330006, -0.048718962818384004, -0.021523931995034003, 0.08501829952001501, 0.02551094815135, 0.01529180817306, -0.00007421093323500827, -0.051031742244958, 0.036766741424798, -0.037767309695482004, -0.022853618487715003, 0.009124704636633, 0.10190877318382201, 0.030190283432602, -0.053575370460748006, -0.09564673155546101, 0.014520366676151001, 0.025231240317225002, -0.054343868046998006, -0.034105442464351, 0.033525243401527, -0.012865409255027, 0.054540235549211, 0.048408832401037, -0.04054582491517, 0.067677542567253, 0.038127310574054, 0.003944664262235001, -0.0015284478431560001, -0.009786942973732001, 0.08145785331726, 0.037661664187908006, -0.05023293942213, 0.052375383675098, -0.039423301815986, -0.00084660941502, 0.06409466266632001, 0.042237121611833, -0.010931409895420002, -0.019617835059762, -0.024475248530507, -0.112897314131259, 0.040573082864284, -0.02475868910551, 0.10027671605348501, -0.0612140186131, 0.019805153831839003, 0.014287685044109, -0.022627875208854002, -0.013485271483659002, -0.053865183144807004, -0.088267132639884, -0.08316639810800501, 0.053797855973243006, -0.038427736610174006, 0.019941447302699002, -0.025634042918682, 0.10760499536991101, -4.98530070558445e-8, -0.029184468090534002, -0.027909647673368003, 0.0069784782826900005, 0.06663554161787001, -0.04916555806994401, -0.020185124129056, 0.082047797739505, -0.060747358947992006, -0.015340442769229001, -0.11534099280834101, -0.038502495735883005, 0.034756530076265, 0.06377801299095101, -0.06125085055828001, -0.0267203040421, 0.037886817008256, -0.014501976780593001, -0.15057118237018502, 0.0012698681093750001, 0.012932865880429, 0.047249767929315005, 0.01380799151957, 0.024814160540699, -0.04463665187358801, -0.111778825521469, -0.007359615527093, -0.029694221913814003, -0.016456702724099, 0.040104519575834004, -0.020810239017009003, -0.023169100284576003, -0.053163565695285006, 0.030881773680448, 0.032490346580743006, -0.027654534205794, -0.1036167293787, -0.07639878988265901, -0.036362215876579, -0.072843059897422, 0.022836433723568, -0.016128361225128, 0.033246040344238004, -0.021594617515802002, -0.011419432237744, 0.002156126545742, 0.0064128232188520005, -0.037927594035863, -0.001089811325073, -0.012523888610303001, 0.12883973121643, -0.006141202058643, 0.050353020429611005, -0.030703930184245002, -0.023959090933203003, -0.021127494052052, -0.10344833880662901, 0.006046094931662, 0.05723064020276, 0.035906326025724, -0.049474161118268, 0.08668152987957001, -0.047609388828277005, -0.001541220233775, 0.005066411569714001 ]
0704.0089
A general approach to statistical modeling of physical laws: nonparametric regression
Statistical modeling of experimental physical laws is based on the probability density function of measured variables. It is expressed by experimental data via a kernel estimator. The kernel is determined objectively by the scattering of data during calibration of experimental setup. A physical law, which relates measured variables, is optimally extracted from experimental data by the conditional average estimator. It is derived directly from the kernel estimator and corresponds to a general nonparametric regression. The proposed method is demonstrated by the modeling of a return map of noisy chaotic data. In this example, the nonparametric regression is used to predict a future value of chaotic time series from the present one. The mean predictor error is used in the definition of predictor quality, while the redundancy is expressed by the mean square distance between data points. Both statistics are used in a new definition of predictor cost function. From the minimum of the predictor cost function, a proper number of data in the model is estimated.
[ "physics.data-an", "physics.gen-ph" ]
[ -0.041292574256658006, -0.004862532019615001, 0.10061024129390701, 0.021884752437472, 0.019049488008022003, -0.093584090471267, -0.065607257187366, -0.025801546871662, 0.109598614275455, -0.030150668695569004, -0.005076092667877, -0.05253497138619401, 0.06544093787670101, -0.038718853145837, -0.07977274805307301, -0.056071043014526006, 0.030349295586347004, 0.023324940353631002, -0.008986805565655, -0.038539126515388, 0.020597161725163002, 0.046333421021699, -0.040047783404588005, 0.019138449802994003, 0.01842083223164, 0.017786571756005003, 0.013581783510744001, -0.0007598095107820001, -0.138674601912498, 0.002292695222422, 0.035209164023399006, -0.028149692341685004, -0.050613459199666005, 0.040242858231067005, -0.036661751568317004, -0.0797034278512, -0.049891240894794006, 0.014929259195923, -0.06002808734774501, 0.007669933605939001, -0.011596932075917001, -0.042652435600757, -0.020069342106580002, 0.09531027078628501, 0.05207339674234301, 0.041794456541538, 0.065516263246536, -0.135126367211341, -0.030216075479984002, 0.040525790303945, -0.08010071516036901, 0.083504021167755, 0.007816121913492001, 0.024135218933224, 0.07841683179140001, 0.026935141533613004, 0.069889023900032, -0.035957723855972006, 0.078149169683456, -0.000735421432182, 0.06109201908111501, -0.026444209739565003, -0.0067994194105260005, -0.004231241531670001, 0.030157569795846002, -0.009776999242603, 0.019685689359903003, 0.047558527439832, -0.004060931969434, 0.040057703852653004, -0.059256315231323006, 0.092917300760746, 0.02963200956583, -0.062993757426738, 0.016982870176434, 0.030730593949556004, 0.004858430474996, 0.064450301229953, 0.007673903834074001, -0.035383235663175, -0.016718484461307002, -0.040793176740407, -0.052117828279733006, -0.07729112356901101, 0.07701853662729201, 0.05141346529126101, 0.06291851401329, 0.055754948407411006, 0.07319451123476, -0.010110635310411, 0.05423181131482101, 0.012340758927166, -0.028379265218973004, 0.024650083854794003, 0.022222470492124002, 0.044026773422956, 0.08388365805149, -0.094759076833724, 0.11170908063650101, 0.040758918970823, -0.07153267413377701, -0.025884078815579, 0.035982120782136, 0.048650283366441005, 0.07503626495599701, -0.025753948837518, 0.07055552303791, -0.045813754200935, 0.018552016466856003, 0.020682387053966002, -0.029642149806022002, -0.011545306071639, -0.054069943726062004, 0.08834401518106401, 0.032922804355621005, -0.055796686559915, 0.003585043130442, 0.08730456978082601, -0.051583379507064, 0.049382243305444, 0.017565542832016, -0.085016749799251, -0.013940424658358002, -0.000968001550063, 0.039435438811779, -0.042993951588869005, -0.108563378453254, 4.3916490987239746e-33, -0.05077813938260001, -0.025793092325329003, -0.039841007441282, -0.056962590664625, -0.010155697353184001, 0.0019234779756510001, -0.030057322233915003, -0.08123514056205701, 0.11641837656497901, 0.016418103128671, -0.051620189100503006, -0.05312382429838101, -0.071140557527542, 0.020077170804142, -0.02503446675837, 0.04776227101683601, -0.036523111164569, 0.0042486800812180005, -0.013805085793137, -0.058434773236513006, -0.032494962215423, -0.048532571643590004, -0.043886587023735005, -0.064832560718059, -0.022827800363302002, 0.010439922101795, 0.017849802970886, -0.019911175593733, -0.021697442978620002, 0.017702005803585, 0.022591264918446003, 0.020689301192760003, 0.0011323047801850001, -0.058878950774669, 0.033022958785295, 0.013392796739935, -0.010483081452548, 0.039064418524503, -0.09859442710876401, -0.018732598051428, -0.007302717305719001, -0.072227731347084, -0.05786429345607701, -0.029224999248981004, 0.011797434650361, -0.027344116941094003, 0.11492642760276701, 0.0041951248422260005, 0.010211243294179, -0.09872169792652101, -0.019083932042121002, -0.065263099968433, -0.034801721572875005, -0.09967024624347601, -0.015237285755574, 0.017562478780746002, 0.010550349019467001, -0.039209950715303005, -0.10071299225091901, 0.10687652975320801, -0.149502038955688, 0.003680024296045, 0.08525151014328, -0.08775892853736801, 0.010281831026077002, 0.055400740355253004, 0.007245049346238001, -0.019634071737527, 0.05955230072140601, -0.018768357113003002, 0.11322688311338401, 0.036929700523614, -0.040292650461196004, 0.044097647070884004, -0.004944522865116, 0.015202770940959, 0.026938153430819, 0.013453376479446002, 0.007361862342804001, -0.027523946017026003, -0.015591043047606001, -0.052333604544401, -0.030192194506525, -0.023310208693146, 0.006359848659485001, 0.021564939990639003, -0.028887223452329, 0.043076988309621006, -0.07775242626667, 0.00032397318864200005, -0.07114154100418, -0.009314276278018, 0.021523999050259, 0.024328988045454, 0.004139041062444, -6.288806614822926e-33, -0.031556103378534005, 0.083135679364204, 0.08006859570741601, 0.10800777375698001, 0.004178688395768001, 0.040948908776044006, -0.042006678879261, 0.050177343189716006, 0.059571847319602, 0.027258841320872, -0.060246653854846004, -0.08145675808191301, 0.024458743631839003, 0.018522273749113003, 0.075026452541351, 0.073332324624061, 0.018879013136029, -0.07420255243778201, 0.03922114521265, 0.064586497843265, -0.037328585982322006, -0.0027261513751, 0.013169748708605001, -0.008719574660062, -0.064005330204963, 0.001964326715096, -0.037551142275333, 0.09790524840354901, -0.08550152182579, -0.045444585382938, -0.040859777480363006, -0.047710519284009004, 0.028414210304617, -0.030569020658731003, 0.011519621126353002, 0.013894371688365001, 0.061659846454858, 0.000503684452269, 0.021256100386381, -0.014593300409615002, 0.004202703479677001, 0.086398363113403, 0.038717199116945, -0.123937331140041, -0.044525153934955, -0.018755765631794003, 0.08009935170412001, 0.036055210977792004, 0.072370022535324, -0.04323215410113301, 0.050524428486824, 0.07241825759410801, -0.073858305811882, 0.012946083210408, -0.02463511377573, 0.049170106649398006, -0.061877120286226, -0.012392618693411002, 0.039005711674690004, -0.000890517490915, -0.027481028810143002, -0.030741129070520002, 0.020834000781178003, 0.076347649097442, -0.027106545865535, -0.0024276513140640004, -0.065739251673221, -0.040590815246105, -0.0009980705799530001, 0.010237097740173002, 0.040647257119417, -0.043277703225612, 0.00812851358205, 0.032181058079004, -0.00041863892693, -0.088871911168098, 0.010702291503548001, -0.018252553418278, -0.031137466430664004, 0.048102729022502004, 0.011214300990104, 0.07594783604145, 0.043390475213527006, -0.025812774896621003, -0.073759518563747, -0.004925652872771, 0.07738059014081901, -0.067077919840812, 0.049941077828407, 0.004448326304554, 0.002337125595659, 0.039697922766208, -0.054660327732563005, 0.095226608216762, -0.009469700045883002, -5.204745789910703e-8, 0.048239335417747005, -0.037932015955448005, 0.11203114688396401, 0.025974018499255003, 0.021471282467246, 0.007765772286802, 0.11023139208555201, -0.028333673253655003, -0.041665431112051, -0.04446290433406801, 0.058170892298221005, -0.059640567749738006, -0.044470008462667, 0.013158279471099, -0.026223616674542, -0.019512725993990003, 0.00579807953909, 0.031781591475009, -0.014363448135554001, -0.013434028252959002, 0.049224019050598006, 0.0016754913376640001, -0.02949141152203, 0.027013285085558003, 0.149217531085014, 0.030526399612426, -0.013675586320459001, -0.035669546574354005, -0.037467449903488, 0.002037812722846, -0.014458173885941, -0.025542059913277, 0.032383099198341, -0.021753994747996, -0.05444111302495001, -0.026756752282381002, 0.034330602735280005, 0.015842480584979002, 0.000673386384733, 0.06710718572139701, -0.002601474290713, 0.109519474208354, -0.03561246022582, 0.016963222995400002, 0.07086706161499001, -0.030281590297818003, 0.026212828233838, -0.150859966874122, 0.039118513464927, -0.009418671019375002, 0.110150024294853, -0.028517564758658003, -0.001600303105078, -0.020532464608550002, 0.048411019146442004, 0.034105319529771, -0.015479806810617001, 0.032587662339210004, -0.06355398148298201, 0.013796277344226001, -0.007675730157643001, -0.023235553875565, -0.081421136856079, -0.065831460058689 ]
0704.0090
Real Options for Project Schedules (ROPS)
Real Options for Project Schedules (ROPS) has three recursive sampling/optimization shells. An outer Adaptive Simulated Annealing (ASA) optimization shell optimizes parameters of strategic Plans containing multiple Projects containing ordered Tasks. A middle shell samples probability distributions of durations of Tasks. An inner shell samples probability distributions of costs of Tasks. PATHTREE is used to develop options on schedules.. Algorithms used for Trading in Risk Dimensions (TRD) are applied to develop a relative risk analysis among projects.
[ "cs.CE", "cond-mat.stat-mech", "cs.MS", "cs.NA", "physics.data-an" ]
[ -0.017890721559524002, 0.023118946701288, -0.038856677711009, 0.026609200984239002, 0.030396485701203003, -0.05940835550427401, -0.014006183482706, 0.034213170409202, 0.031364358961582, 0.033909104764461004, -0.08375906944274901, 0.012030456215143, 0.022707562893629, 0.0026002619415520004, -0.055837858468294005, -0.04945895820856001, -0.018999813124537003, -0.039759602397680005, 0.049078695476055006, -0.008971840143203002, 0.024003053084015003, -0.027017889544367003, -0.012565995566546001, -0.05475807934999401, 0.022466296330094, -0.045889198780059, 0.094704940915107, 0.014096803963184001, 0.000535073515493, 0.0037405174225560002, 0.026565458625555004, 0.08683568239212, 0.068482130765914, -0.124482132494449, 0.050364620983600006, 0.10395333170890801, -0.062163334339857004, 0.012277250178158, 0.025591697543859003, 0.033282898366451, -0.07946024835109701, 0.031208612024784, 0.017405387014150002, -0.019445516169071003, -0.020888449624180003, -0.06736691296100601, -0.019985053688287003, -0.07262990623712501, -0.05280790850520101, 0.037001334130764, -0.040599197149276005, -0.052251692861318005, -0.05977611616253801, -0.06431799381971301, -0.023340791463851002, 0.048526663333177004, -0.027727728709578, -0.050243712961673, 0.008613750338554, -0.026037516072392002, 0.057248447090387004, -0.075527414679527, 0.019735584035515, -0.046214334666728, 0.022535504773259003, 0.045656666159629, 0.001875534071587, 0.10304087400436401, 0.019552165642380003, 0.0033403523266310004, -0.0036483940202740005, 0.027345702052116002, -0.15358780324459, 0.00042626037611600003, 0.038676518946886, 0.069420427083969, 0.06558025628328301, -0.018821379169821, 0.029811128973960002, -0.068700321018695, -0.08748259395360901, 0.011128964833915001, -0.010388016700744001, 0.031678803265094, 0.065603733062744, 0.021618142724037, 0.016073854640126003, 0.062584802508354, 0.130628243088722, 0.007965981028974, 0.015332899987697001, -0.07457981258630701, -0.028062323108315003, 0.018551379442214, -0.07654162496328301, 0.004952259827405, -0.040979254990816005, 0.023689400404691002, 0.029129864647984, 0.0024256242904810003, -0.024468671530485, -0.039877984672784, 0.065862759947776, -0.060795467346906, -0.053559329360723, -0.053362347185611, 0.008035011589527, -0.038594774901866004, -0.06782717257738101, -0.009277005679905, -0.020013455301523, 0.034567512571811, 0.058150861412286, -0.091575473546981, 0.012701660394668001, 0.061407499015331005, -0.09048963338136601, -0.040116541087627, -0.05161614716053001, 0.054468624293804, 0.000620290753431, -0.008663180284202, 0.04274920746684, -0.017832987010478002, -0.050179947167634006, -0.010252675041556001, -0.020077012479305, 3.8445556607520504e-33, -0.02361867390573, -0.030993634834885004, -0.000994221423752, -0.051396179944276005, 0.087524302303791, -0.022636156529188003, 0.08721905946731501, 0.022880489006638003, 0.025952445343136003, -0.036921009421348, 0.007091083098202001, 0.027193289250135002, -0.026344390586018004, -0.028884451836347, 0.10101116448640801, -0.06643273681402201, -0.0006746188737450001, 0.130262583494186, -0.021302124485373, -0.045291353017091, -0.055116612464189, -0.129058614373207, 0.010514886118471001, -0.079046614468097, 0.11418983340263301, 0.014700626023113, 0.050052162259817005, -0.009702684357762, -0.019108839333057, 0.011286947876214001, 0.09832558780908501, 0.07652501016855201, -0.051353674381971005, -0.001453136792406, -0.03667863458395, 0.09956126660108501, -0.0808662250638, -0.002810479840263, 0.0017343872459600002, 0.064532577991485, 0.0025560767389830002, 0.007485367823392001, 0.080109246075153, 0.11045735329389501, 0.017082983627915, -0.023178070783615, 0.00945568550378, -0.043864239007234004, 0.013835972175002001, -0.046482823789119006, -0.021649571135640002, 0.002040672348812, 0.063911728560924, -0.017981288954615, -0.0045555708929890006, -0.031561609357595, 0.0028418169822540004, -0.024131882935762003, -0.020208580419421, 0.13225290179252602, 0.0035594662185750004, -0.034999702125787, -0.04419103264808601, 0.022697450593113, 0.005725328344851, 0.125402182340621, 0.011100497096776001, -0.049571342766284006, 0.11942640691995601, 0.007335301954299001, -0.003059186507016, -0.032510377466678, 0.080811932682991, -0.041632819920778004, -0.040265657007694, -0.020262496545910003, 0.060051169246435006, 0.050519414246082, -0.008751142770051, 0.047496382147073, -0.076681666076183, 0.069832131266593, -0.026942562311887002, -0.082528188824653, 0.076649971306324, -0.070800468325614, -0.005207438021898001, 0.026979250833392, -0.06588162481784801, -0.001887874910607, -0.029949519783258, 0.002071479335427, -0.049471817910671005, 0.083272017538547, 0.023609220981597002, -2.993310222673559e-33, -0.06731804460287001, -0.042066615074872006, 0.037489414215087, -0.000366763531928, 0.05848704278469, -0.017991749569773, -0.043254397809505005, -0.16882057487964602, 0.05547213181853201, 0.008434206247329, -0.12759210169315302, -0.030598755925893003, 0.003287937957793, -0.010013690218329001, 0.016847014427185, -0.027048936113715002, 0.044486723840236005, -0.11059615761041601, 0.07784733176231301, -0.05932996794581401, 0.007783403154462001, 0.064164154231548, -0.08739621937274901, 0.018567126244306002, 0.042327098548412004, -0.007766326889395001, 0.0064303777180610006, -0.016718890517950002, 0.017138943076133003, 0.005103617440909001, -0.04913002252578701, -0.038017231971025, -0.08429379016160901, 0.08713910728693, -0.014250552281737001, 0.012787523679435002, 0.005461198277771, 0.019010035321116, 0.023168953135609002, 0.09070119261741601, 0.044336926192045004, -0.013402371667325, -0.032998334616422, -0.034903608262538, -0.023858269676566003, 0.069759652018547, 0.026291133835911, -0.038971394300460004, 0.016555715352296, -0.089606530964374, 0.026456639170646, 0.061022099107503, -0.050839990377426, 0.0009544272325, 0.027673572301864003, -0.002533555496484, -0.141287982463836, -0.033985808491706, 0.061774257570505, 0.08085847645998001, 0.04873329773545201, 0.04676663875579801, 0.056479737162590006, 0.0036485409364100004, -0.064780458807945, 0.045664619654417, -0.020992072299122002, -0.068491406738758, -0.045982748270034006, -0.026471188291907, -0.044038679450750004, 0.057728916406631005, 0.022070977836847, 0.032953966408967, -0.062725037336349, -0.07132866978645301, 0.003383657895028, 0.045788191258907006, 0.0022572705056510003, -0.00102825614158, -0.045448131859302, 0.004524767864495001, -0.015395041555166002, 0.086038999259471, -0.036061137914657, 0.066459961235523, 0.007979697547852, 0.046620711684226004, 0.04177685081958701, 0.010705923661589001, -0.038009885698556005, -0.035989183932542, 0.08506433665752401, 0.055890426039695004, -0.02819182537496, -3.871327791671319e-8, 0.043920509517192, -0.003662445349618, 0.07383149862289401, -0.027381593361496002, 0.085112705826759, -0.037130482494831, -0.06805536150932301, 0.028546396642923, 0.011832384392619001, 0.019514646381139002, 0.06294333934783901, -0.0015216063475230002, 0.008185662329196, 0.011804182082414, -0.023497339338064003, -0.010634549893438, -0.012391866184771, 0.076753117144107, -0.020057030022144002, -0.008794988505542, 0.074006430804729, 0.050852060317993004, -0.013610714115202002, 0.006254741456359, 0.048734445124864, -0.034698639065027, 0.05708191171288401, 0.022287314757704003, 0.10500660538673401, 0.046130854636430005, 0.007947167381644001, -0.004269985482096001, 0.05131696909666, 0.052469331771135004, 0.045801453292369, -0.048575583845376004, -0.0030149966478340002, -0.007744342554360001, -0.033869542181491005, 0.06754831969738001, 0.037630040198564, -0.037999518215656, 0.03708815947175, 0.008290017955005, 0.015943031758069, 0.017053861171007, -0.09887955337762801, -0.065712623298168, 0.030334824696183003, -0.080252788960933, -0.019190454855561003, -0.010979929938912001, -0.014590566046535, 0.043033398687839, 0.059649515897035, 0.067114047706127, 0.023832403123378, -0.11293063312768901, 0.008887879550457, 0.015991115942597, -0.043492618948221005, -0.0044811065308740005, -0.059773579239845005, 0.006072365678846001 ]
0704.0091
Groups with finitely many conjugacy classes and their automorphisms
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreover, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable group $C$ can be realized as a group of outer automorphisms of a group $N$, where $N$ is a finitely generated group having Kazhdan's property (T) and containing exactly two conjugacy classes.
[ "math.GR" ]
[ -0.10320112109184201, 0.037549156695604005, -0.014949930831789, 0.057399492710828004, -0.026074096560478002, -0.016250066459178, 0.07600556313991501, -0.087081857025623, 0.05532526969909601, 0.017297474667429, 0.056399397552013, -0.0073441495187580004, 0.027385635301470004, -0.058581180870532004, -0.099346093833446, 0.011131768114864, -0.068295545876026, -0.0024056492839, -0.067869633436203, -0.026706898584961003, 0.0010093948803840001, -0.033579226583242, 0.034256905317306005, 0.039412256330251, -0.0037612812593570003, -0.08798368275165501, -0.110235303640365, -0.042188603430986, 0.095128014683723, -0.018079889938235002, -0.141684025526046, 0.021864630281925, -0.035686887800693005, 0.07655546069145201, -0.027836881577968, 0.041981350630521004, 0.0033906770404420004, 0.13781754672527302, 0.005907042417675001, 0.007073741871863001, 0.039997808635234, 0.029327301308512, -0.016733249649405, 0.09677354991436, 0.013222235254943001, 0.015601745806634001, -0.011358253657817001, 0.035377562046051005, -0.07710074633359901, 0.011593538336455001, -0.008268798701465001, -0.00003538034434313886, -0.023821150884032003, 0.06982567906379701, -0.044379483908414, -0.06767527759075101, -0.020433804020285003, -0.05015367642045, -0.079644829034805, -0.004982558079063001, 0.062308963388204006, -0.037199400365352006, -0.015644244849681, -0.07204520702362001, -0.127531379461288, 0.019863910973072, 0.026898892596364, 0.099132135510444, -0.012688782066106002, 0.055393382906913, 0.12372669577598501, -0.062000587582588, -0.03146519139409, 0.011675568297505, -0.004363442305475001, 0.002716701477766, -0.005044269841164, -0.000357089360477, -0.029069079086184002, -0.0015950041124590001, 0.0013160029193380002, -0.102989815175533, -0.022250102832913003, 0.023579323664307, 0.040471531450748006, 0.05493475124239901, 0.021612260490655, -0.003622147487476, -0.036432642489671, 0.07137136161327301, -0.042324043810367, 0.07956290245056101, 0.053546980023384004, -0.010484999977052, -0.015354920178651001, -0.008694163523614, 0.098778322339057, 0.036249790340662, -0.012749787420034001, 0.005471545737236, 0.028185293078422, 0.052066728472709004, 0.064763374626636, 0.010435808449983, -0.08846215903759001, -0.028124283999204, 0.007123852614313001, -0.028399031609296, -0.016448957845568, -0.008756710216403, -0.06280148774385401, -0.038390059024095, -0.015136649832129001, -0.050384152680635, -0.06782826781272801, -0.042062610387802006, 0.024106800556182, -0.05265480279922401, 0.141469031572341, -0.008397060446441, 0.06220416724681801, 0.023955108597874003, 0.041289184242486, 0.06931832432746801, 0.100565791130065, 0.07600203156471201, -0.017276844009757, 3.144972320145658e-33, 0.057249125093221005, 0.11248898506164501, -0.051227379590272, 0.046898737549781, -0.004558405838906, -0.011415422894060001, -0.045705452561378, 0.012459843419492, -0.035103775560855005, 0.016712710261344, 0.000694792368449, 0.008564271964132, 0.06473662704229301, -0.0017999396659430001, 0.075986228883266, 0.025566104799509003, -0.015338735654950001, -0.063297241926193, 0.034458596259355004, -0.08380794525146401, -0.032435931265354004, 0.12549971044063502, -0.058784034103155004, -0.107412740588188, -0.070934906601905, -0.013690502382814001, 0.005836520344018, 0.017294187098741, -0.072028413414955, 0.026630684733390003, 0.014149024151265002, -0.031962350010871, 0.042447045445442005, 0.066914826631546, -0.062095191329717005, 0.069122232496738, -0.089709118008613, -0.010450104251503, 0.019472694024443002, -0.004964682739228001, 0.023916082456707, 0.080642640590667, 0.033953487873077004, -0.074176669120788, -0.007633163128048, -0.024817513301968002, -0.007947736419737, -0.040889464318752004, -0.08916515856981201, 0.015503415837883, 0.015255649574100002, -0.010895855724811, -0.043853037059307, -0.084854826331138, -0.052891258150339, -0.014551269821822001, 0.025764906778931004, 0.042241755872964006, 0.006111861672252, 0.06504593044519401, -0.019228879362344003, 0.019256407395005, -0.011406580917537, -0.020679522305727, -0.014469151385128002, -0.070018619298934, 0.029952811077237, 0.014885943382978, 0.062942467629909, -0.049578808248043005, -0.009891232475638001, -0.034737408161163004, -0.017554188147187, 0.024277614429593003, -0.010996966622769002, 0.010867985896766, -0.001640422153286, -0.11130877584218901, -0.077853329479694, 0.054754547774791, 0.005302960518747, -0.065885633230209, -0.00029559223912600005, -0.061232239007949, -0.010915111750364, -0.0093599781394, 0.030005224049091003, 0.004460568539798, -0.008248344063758, -0.085008464753627, -0.044210597872734, -0.024713339284062, 0.038786187767982004, 0.031335949897766, -0.016992650926113, -5.2077514801457016e-33, -0.0053565902635450005, -0.034889601171016006, 0.04682160541415201, 0.072679594159126, 0.096554443240165, 0.033122569322586004, 0.020051307976245002, 0.015420511364936001, -0.074525617063045, -0.06597501784563001, 0.030432265251874, 0.046977851539850006, 0.055294137448072, 0.06458785384893401, 0.011847172863781001, -0.06671459972858401, -0.00921400822699, -0.012656214646995002, 0.024174101650714003, -0.0000664815233903937, 0.016460459679365002, 0.017782103270292, 0.016391972079873002, 0.12213152647018401, -0.016476836055517002, 0.018725067377090003, -0.043988242745399, 0.05613918602466501, 0.012880154885351, 0.09150031208992, 0.08576946705579701, -0.050708137452602005, -0.001418403233401, 0.019418662413954003, -0.01821207627654, -0.0070382608100770004, 0.08394072949886301, 0.147833868861198, -0.034665469080209003, 0.001240193494595, 0.038968455046415, -0.046695247292518005, 0.020697584375739, -0.0034738674294200003, -0.0015956022543830001, -0.038677848875522, 0.032208591699600005, -0.0067822905257340005, -0.057896070182323005, 0.008637202903628, 0.0066000679507850005, -0.025285063311457003, 0.065884605050086, 0.00811146851629, 0.08568543940782501, 0.037674333900213006, -0.028570815920829003, -0.001249902765266, -0.044546462595462, 0.033975504338741004, -0.032081544399261, -0.047140520066022006, 0.034589510411024, -0.075017631053924, -0.013548968359827001, -0.038041807711124004, -0.021037675440311, 0.010896497406065, -0.048478659242391, 0.014192881993949, -0.09983634948730401, -0.014777629636228001, -0.09453028440475401, 0.023448754101991, -0.024013891816139003, 0.035627126693725, -0.012005744501948001, 0.052874069660902, -0.023689346387982, -0.018422843888401, -0.036303386092185, -0.056294169276952, -0.056721176952123004, 0.04276655241847, -0.035273611545562, -0.131969198584556, 0.030289661139249004, 0.042351704090833005, 0.060940381139516005, 0.002733980771154, 0.02948341332376, 0.029239904135465, 0.042671456933021004, 0.128198012709617, 0.07818629592657, -3.91804029220566e-8, 0.044814657419919, -0.04875826463103201, 0.069976426661014, 0.000937040953431, -0.037993498146533, -0.03790745511651, -0.071250922977924, 0.012914542108774001, -0.016281185671687, 0.006700183730572001, 0.009171646088361001, 0.061753459274768004, 0.033921469002962, 0.061557170003652004, -0.08463020622730201, 0.054238252341747006, 0.011445844545960001, 0.022029526531696, 0.040314078330993, -0.002697367453947, -0.009630829095840001, -0.066383644938468, -0.05343883857131, -0.045491628348827, -0.045076359063386, -0.020090054720640002, -0.09240944683551701, -0.06098675355315201, -0.088850162923336, -0.011454124934971001, 0.047061029821634, 0.041599627584218, 0.020140420645475002, 0.019919827580451, -0.044521637260913, 0.017770735546946, -0.11274172365665401, -0.047994032502174, -0.031011417508125003, -0.03125812113285, 0.017007431015372002, -0.05315936729311901, -0.050818804651498004, 0.03660349547863, 0.021166197955608, -0.046502895653247, -0.014083842746913001, -0.035391345620155, -0.048829674720764, 0.08400944620370801, 0.08807285130023901, -0.0076012182980770004, 0.02264766767621, -0.052522052079439004, -0.05002507939934701, 0.073436588048934, 0.053543839603662005, 0.049042589962482, 0.09668418765068, -0.050565842539072, -0.067048519849777, 0.027975535020232003, -0.0016868287930260001, 0.040496699512004006 ]
0704.0092
Energy density for chiral lattice fermions with chemical potential
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
[ "hep-lat", "hep-ph" ]
[ -0.043902684003114006, -0.04509926959872201, -0.06408317387104001, 0.07466030120849601, -0.040318701416254, 0.090116895735263, 0.09486495703458701, 0.044179931282997006, -0.031912997364997, -0.020994670689105002, 0.008061282336711, -0.023640479892492003, -0.014637907035648, 0.047286383807659, 0.05402669310569701, -0.035684652626514005, 0.009452557191252, -0.053630195558071005, -0.051167666912078004, 0.05172071978449801, 0.044004596769809, 0.002120900666341, 0.117024384438991, -0.042456984519958, -0.008719584904611001, -0.07378605008125301, 0.030450850725173003, 0.058236964046955005, 0.040500801056623, 0.045009385794401, 0.07722828537225701, -0.01996274292469, -0.034065753221511, 0.05495002865791301, 0.015015418641269, 0.023685272783041, -0.036440763622522, 0.087844356894493, 0.013409258797764001, 0.042083498090505, -0.019251640886068, 0.10212266445159901, 0.012279246002435, -0.011783607304096002, -0.025581521913409, -0.069730877876281, 0.063711009919643, -0.06121219694614401, 0.005064061377197, -0.106813512742519, 0.11949171870946801, 0.059981405735015, 0.037844937294721, 0.080040894448757, -0.09383333474397601, 0.011314793489873002, 0.037053294479846004, -0.07957565784454301, -0.010702344588935, -0.057737383991479006, -0.041107557713985006, 0.034411642700433, 0.009802748449146, -0.029602596536278003, 0.06921225786209101, 0.009425986558198, -0.024974837899208003, 0.06028575450181901, 0.036344815045595, -0.0016118452185760002, 0.011951033957302001, 0.035264037549495, -0.12256220728158901, -0.069998659193515, 0.039690807461738004, 0.01856966689229, -0.025869252160191, -0.003776171710342, -0.024994436651468003, -0.040104139596223005, -0.09109676629304801, -0.005032524466514, 0.029342582449316004, -0.024493930861353003, 0.035098858177661, 0.028675533831119003, -0.051314145326614005, 0.045493509620428, 0.023779243230819, -0.016996886581182, 0.047136463224887, -0.040584221482276, -0.0022331348154690004, 0.024758489802479, -0.019973795861005002, -0.026081454008817003, 0.054681062698364, -0.053554005920886, 0.030318265780806004, -0.033273123204708, 0.035056576132774006, -0.035680171102285003, -0.008830478414893001, 0.044201899319887, 0.084920309484004, 0.06963849067687901, 0.080033369362354, 0.05721577256917901, 0.00463946070522, -0.023109667003154002, 0.071976341307163, 0.0055635371245440005, 0.024651631712913003, 0.014279356226325, -0.10750421136617601, 0.025262484326958, 0.040999922901391005, 0.084737211465835, 0.048467606306076, -0.013831201009452001, 0.023598281666636002, 0.0057156626135110005, -0.07737218588590601, 0.034912299364805, -0.05842730402946401, -0.036940608173608, -0.069727085530757, 1.180532537977011e-33, 0.00860489718616, -0.04677825793623901, 0.042249064892530004, 0.025127680972218003, 0.066531300544738, -0.00009069202496903019, -0.06611227989196701, -0.13809491693973502, -0.030250258743762002, -0.013634343631565002, -0.072988629341125, 0.070590153336524, -0.034231066703796005, -0.013161016628146002, -0.047794762998819004, 0.019126588478684002, -0.026465836912393, 0.058070711791515, 0.07953963428735701, -0.039708603173494006, -0.011149126105010001, 0.015257756225764002, 0.043436050415039, 0.055335178971290006, 0.009528443217277001, 0.029103275388479004, -0.004704645834863, 0.026070874184370003, -0.044473368674516005, -0.008571222424507, 0.00788733549416, 0.063092976808547, 0.032768469303846005, 0.065481700003147, 0.091165892779827, -0.006976821459829001, -0.050368502736091, 0.008781787939369, 0.024847550317645004, -0.07858218997716901, 0.016348805278539002, 0.028060950338840002, 0.032078690826892, -0.037423640489578004, 0.050610229372978, 0.014546110294759001, 0.126392468810081, 0.018728092312812, 0.020871743559837, -0.024811444804072002, -0.028742218390107002, 0.043222632259130006, 0.026770105585455003, 0.031693872064352, 0.008901136927306002, -0.08561323583126, 0.029399080201983, 0.022961460053920003, 0.10091310739517201, 0.043939977884292006, -0.009806422516703, 0.035712964832782, 0.039453189820051006, 0.000811956473626, 0.012929627671837002, 0.015884073451161003, -0.039660483598709, -0.038380552083253, 0.061540536582469, -0.000989686115644, -0.024853575974702002, 0.11466292291879601, 0.037288341671228006, -0.062565945088863, 0.032210398465394, 0.020958445966243, -0.030781965702772, -0.165629193186759, 0.018082175403833, -0.003603956894949, 0.002311628544703, -0.07164016366004901, -0.038386177271604004, -0.003045743564143, -0.045528985559940005, -0.036544114351272, -0.07670775055885301, -0.017116893082857, -0.007774355355650001, 0.023899497464299, -0.082508623600006, -0.036908630281686006, 0.097422048449516, -0.049386974424123, -0.021879972890019, -1.9828165241273423e-33, -0.029131494462490002, -0.07136296480894, 0.07769625633955, -0.014002660289406001, -0.026446016505360003, -0.034362409263849, -0.051758624613285, -0.000425763020757, 0.011719212867319001, -0.003218466881662, 0.012212273664772, 0.022410627454519, 0.016467696055769, -0.047547131776809005, -0.080327041447162, 0.08985744416713701, 0.005366172641515001, 0.017382284626364, 0.081509619951248, -0.017425764352083, -0.08674872666597301, -0.049902699887752006, -0.023449325934052002, 0.038329064846038, -0.032995499670505, 0.047805532813072, -0.013731713406741002, -0.012392585165798001, 0.020679095759987002, 0.061757933348417005, 0.0027013397775590003, -0.022416805848479, 0.004943542648106001, -0.07792080938816001, -0.039072599261999005, -0.049427833408117, 0.023832008242607002, 0.035006061196327, 0.031303290277719005, -0.020166598260402003, 0.007227185182273, -0.014675818383693001, -0.014278124086558002, -0.050301320850849006, 0.080392956733703, 0.026025528088212003, 0.017197048291563002, -0.09223806858062701, -0.07531094551086401, -0.058692455291748005, -0.008513775654137001, -0.036241333931684, 0.038216318935155, 0.015249077230691, -0.021507719531655003, -0.032583840191364004, -0.041076816618442, 0.071772396564483, 0.05145332962274501, -0.132804587483406, 0.029083013534545003, -0.031454838812351005, 0.14410692453384402, -0.068234540522098, -0.051783960312604, -0.015544012188911, -0.061966009438037005, 0.028592132031917003, 0.053190805017948005, 0.027535730972886002, 0.0004956446355200001, 0.040539279580116, 0.032440308481454, -0.012113763019442001, 0.055239524692296, 0.053702894598245, 0.11289142817258802, -0.103808224201202, -0.010668723843991, 0.045656882226467, -0.072989635169506, 0.06374471634626301, -0.09870289266109401, -0.077687881886959, 0.030085891485214, -0.03585397452116, -0.022447722032666, 0.07929038256406701, -0.0000711063839844428, -0.051807738840579, 0.051320668309926, -0.041591420769691, 0.036541745066642005, 0.007166672963649001, -0.0037174269091330005, -2.903862039715932e-8, 0.06598258018493601, -0.046904642134904, 0.018086664378643, -0.045576032251119, 0.015463642776012, -0.016785819083452003, 0.042823571711778, -0.05641486123204201, -0.020042659714818, -0.011300800368189002, 0.12198954820632901, 0.021089555695652, 0.042813718318939, -0.043845590204, 0.010171852074563, 0.018660079687833002, -0.08670532703399601, 0.04245256260037401, -0.032344222068786004, -0.040347602218389005, 0.044613391160964, 0.054993510246276, 0.024872830137610002, 0.024248827248811, -0.043889369815588004, -0.033559951931238, -0.10560785979032501, -0.109725467860698, -0.051436036825180005, -0.041462447494268, -0.033299189060926, -0.028618061915040002, 0.048608839511871005, 0.024792850017547, 0.06278176605701401, 0.001928242738358, -0.050722982734441, -0.017898924648761, 0.001439186627976, -0.026803513988852, 0.049852691590785, -0.031192421913146, 0.07616397738456701, 0.042366433888673005, 0.04184353724122, -0.025136273354291003, -0.036296069622039004, 0.10870303958654401, 0.08529951423406601, 0.026188598945736, -0.006513867992907, 0.05299759283661801, -0.03337213024497, -0.025482049211859002, -0.08073226362466801, -0.0025755986571310003, -0.099368326365947, 0.022079685702919002, 0.008471431210637, -0.041329849511384006, -0.019739501178264, -0.09497814625501601, -0.109271615743637, -0.026659391820430003 ]
0704.0093
Aspects of Electron-Phonon Self-Energy Revealed from Angle-Resolved Photoemission Spectroscopy
Lattice contribution to the electronic self-energy in complex correlated oxides is a fascinating subject that has lately stimulated lively discussions. Expectations of electron-phonon self-energy effects for simpler materials, such as Pd and Al, have resulted in several misconceptions in strongly correlated oxides. Here we analyze a number of arguments claiming that phonons cannot be the origin of certain self-energy effects seen in high-$T_c$ cuprate superconductors via angle resolved photoemission experiments (ARPES), including the temperature dependence, doping dependence of the renormalization effects, the inter-band scattering in the bilayer systems, and impurity substitution. We show that in light of experimental evidences and detailed simulations, these arguments are not well founded.
[ "cond-mat.supr-con", "cond-mat.str-el" ]
[ -0.07525684684515, -0.006871731020510001, -0.004874867852777001, 0.102122880518436, -0.0028843034524470004, -0.025916734710335003, 0.06717187911272, 0.031090714037418, -0.028868103399872003, 0.014212683774530001, 0.035073742270469, -0.015953553840517002, -0.04384354129433601, 0.019339367747306, 0.036162916570901, 0.012706907466053002, 0.058481704443693, -0.052234865725040006, -0.015488353557884001, 0.031286183744668, -0.004349923226982, -0.11546204239130001, 0.010892428457736001, -0.037295199930667, 0.117369122803211, 0.006343889050185, 0.031732857227325, -0.002428233856335, 0.018710108473896002, 0.009914100170135, 0.022558793425559002, 0.051106236875057005, -0.043098930269479, 0.065444886684417, -0.010378309525549, 0.008742479607462, 0.048321548849344004, -0.07193275541067101, 0.024068752303719, 0.012061459012329, 0.035067457705736, 0.061120890080928005, 0.035136830061674, -0.023002225905656003, 0.032668445259332005, -0.019940258935093002, 0.08085543662309601, 0.041717745363712005, -0.056469775736331, -0.016387950628995, 0.029497271403670002, 0.017481818795204003, 0.028813974931836003, -0.027612177655100004, -0.043602373450994006, 0.074868515133857, -0.00921132788062, 0.08957158029079401, 0.044256296008825004, 0.036324903368949, 0.011060049757361001, 0.016031488776206002, -0.042794041335582005, 0.016496559605002, 0.13241122663021002, -0.00854093581438, 0.021966867148876003, 0.098388567566871, 0.042907822877168, 0.038055501878261004, -0.00408908445388, 0.030214726924896, 0.0010108983842650001, -0.057600941509008005, 0.103952147066593, 0.077827341854572, -0.023602796718478, 0.044333804398775004, 0.0026218881830570003, -0.099814862012863, -0.087775394320487, 0.005713454913347, -0.004765438847243, -0.0031287234742190004, 0.014430303126573, 0.013844525441527, 0.035745497792959005, -0.027135651558637, -0.07263916730880701, -0.086721092462539, -0.0016811242094260002, -0.039657723158597, -0.095300465822219, -0.047853030264377004, 0.001998331164941, 0.056737270206213004, 0.070014826953411, -0.015436695888638002, -0.013382067903876001, -0.05228287354111601, 0.126689329743385, 0.011970009654760002, 0.013688809238374, 0.049179494380950005, 0.0020515427459030003, 0.001048850594088, 0.056887343525886, 0.081499278545379, 0.021873641759157, 0.006970867514610001, -0.009923565201461001, 0.039770565927028004, 0.028766807168722004, -0.11216220259666401, -0.050119094550609006, -0.030570281669497, -0.116716146469116, -0.0016460606129840001, -0.031036777421832, -0.010550830513238001, -0.090790465474128, 0.029140442609786002, -0.053456250578165006, 0.040283579379320006, -0.07917026430368401, -0.04860600456595401, -0.06141490489244401, 1.197495196965865e-33, 0.077126465737819, 0.041779506951570004, 0.021267339587211, -0.004725121427327001, 0.035856187343597, -0.082518465816974, -0.053217776119709, -0.049442857503890006, -0.07072868943214401, -0.022297108545899003, 0.044560771435499004, 0.057268060743808004, 0.08653230220079401, -0.014522613026201002, 0.041924692690372, 0.066068045794963, -0.09335333853960001, -0.067885175347328, 0.09910354763269401, 0.099839143455028, 0.033224582672119, 0.061892874538898, -0.011148366145789, 0.062436640262603, -0.028014682233333, 0.015030553564429, 0.019081154838204002, 0.010538190603256, -0.108143836259841, 0.014586911536753, 0.05880443751811901, 0.101385861635208, -0.007833500392735001, -0.034267250448465, 0.011247090063989001, -0.05439446866512201, -0.006977195385843, 0.0057057878002520004, 0.040892615914344004, -0.082654736936092, -0.009377093985676, -0.000060606649640249095, -0.007583911065012001, 0.11721291393041601, -0.036595780402421, -0.096043191850185, 0.055093359202146, -0.012497821822762, -0.005560918711125001, -0.056116998195648006, -0.017567479982972003, -0.0406398139894, -0.012134927324950001, 0.040251348167657006, 0.028590219095349003, -0.026941157877445002, 0.047028053551912, -0.010117103345692002, 0.10129489749670001, -0.002784165553748, 0.102148428559303, 0.053400322794914, -0.012124542146921002, 0.044752802699804, -0.16468764841556502, 0.033739123493433006, 0.029578978195786, 0.044574111700057005, 0.052595045417547004, -0.096723943948745, -0.017745569348335002, 0.048497967422008, 0.034755758941173005, -0.07722555100917801, 0.11599283665418601, 0.0433867610991, 0.030719878152012003, -0.124636091291904, 0.010735389776527, -0.032963734120130005, 0.013918037526309001, 0.001147233066149, 0.045064907521009, -0.068582028150558, -0.137604385614395, -0.035186558961868, -0.012490719556808002, -0.059636317193508, -0.063489444553852, 0.045677389949560006, 0.023726040497422003, -0.059262812137603, 0.060945414006710004, -0.095013990998268, -0.047823145985603006, -3.338373466950573e-33, 0.058829590678215006, -0.028988549485802, -0.017273295670747, -0.109205305576324, 0.006527521647512, -0.04736936092376701, 0.061157993972301004, 0.023115206509828002, 0.017823927104473003, -0.027779841795563, 0.09206569194793701, -0.016817362979054, 0.015011609531939002, -0.017694206908345, 0.003184219822287, -0.020204760134220002, -0.033361416310071, -0.054899960756301006, 0.0909114331007, -0.037194900214672005, 0.023214129731059, -0.026042111217975002, 0.080725148320198, 0.041199065744876, -0.023077515885233, 0.05420339107513401, -0.023473281413316, -0.060443792492151004, 0.011871264316141002, 0.009800009429454, 0.041736137121915005, 0.042672012001276, -0.050293263047933, 0.015619211830198002, -0.007524277549237001, 0.008028823882341, -0.042250800877809004, -0.015592918731272002, -0.015752999112010002, -0.09556906670331901, 0.024941869080066, -0.023800944909453003, 0.013455233536660002, 0.005912672262638001, 0.005307975690811001, -0.035684276372194006, -0.08482482284307401, 0.0034185757394880004, -0.018898652866482003, 0.0054046446457500005, 0.011707975529134001, -0.024460675194859, -0.039010170847177006, -0.0076940674334760005, -0.0035395624581720003, -0.018931455910205, 0.016258193179965002, 0.057632189244031004, 0.012888968922197002, -0.017925638705492002, -0.0340261682868, -0.077227838337421, 0.037460144609212, -0.038928307592868, -0.044041115790605004, -0.027810245752334, 0.004786811769008001, 0.038904067128896005, 0.12503573298454201, -0.055181402713060004, 0.073180392384529, 0.021478418260812003, -0.022741615772247002, -0.063165083527565, -0.024232650175690002, 0.039764240384101, 0.068717569112777, -0.049501858651638, -0.05944286659359901, 0.026851510629057003, -0.031786657869815, 0.071566745638847, -0.011309462599456001, -0.09628618508577301, 0.0497263148427, -0.001446962240152, -0.05768586695194201, 0.017659410834312002, -0.035066783428192, 0.025510977953672003, 0.06797835230827301, -0.11379586905241001, 0.066546380519866, -0.024460725486278003, 0.021213220432400003, -4.374028605980129e-8, -0.074881479144096, 0.051283720880746, 0.067022077739238, 0.056421153247356005, 0.010067488998174001, -0.09185587614774701, -0.026866139844059, 0.001990333897992, 0.011728009209036001, 0.01546153333038, 0.10574312508106201, -0.061765361577272006, -0.04373760148882801, -0.070316515862941, 0.078295826911926, -0.018210230395197, -0.011314535513520001, -0.027234818786382002, -0.027213618159294004, -0.072561755776405, -0.032263189554214006, -0.042695827782154, 0.021459128707647, -0.016115138307213003, 0.000986137543804, 0.016519313678145003, -0.017871411517262, -0.082857184112071, -0.034784715622663005, -0.0034795312676570004, -0.069820292294025, -0.069109879434108, 0.011814516037702, -0.0012190607376390001, 0.016622949391603, -0.034245908260345, -0.06290754675865101, 0.014709478244185002, -0.001117775449529, -0.038410224020481006, 0.00110884278547, -0.0031648168805980003, 0.034910455346107004, 0.084448046982288, 0.034537527710199, 0.025652393698692003, 0.022484693676233, 0.056188669055700004, 0.023265749216079, 0.02521981485188, -0.061225041747093006, -0.034245286136865005, 0.015427636913955002, -0.018498474732041, -0.0056422003544860004, -0.04653636738657901, -0.061893023550510004, 0.048224911093711006, 0.016771743074059, 0.049151174724102006, 0.055151589214801004, -0.023365827277302003, -0.08989965170621801, 0.028251601383090002 ]
0704.0094
Timing and Lensing of the Colliding Bullet Clusters: barely enough time and gravity to accelerate the bullet
We present semi-analytical constraint on the amount of dark matter in the merging bullet galaxy cluster using the classical Local Group timing arguments. We consider particle orbits in potential models which fit the lensing data. {\it Marginally consistent} CDM models in Newtonian gravity are found with a total mass M_{CDM} = 1 x 10^{15}Msun of Cold DM: the bullet subhalo can move with V_{DM}=3000km/s, and the "bullet" X-ray gas can move with V_{gas}=4200km/s. These are nearly the {\it maximum speeds} that are accelerable by the gravity of two truncated CDM halos in a Hubble time even without the ram pressure. Consistency breaks down if one adopts higher end of the error bars for the bullet gas speed (5000-5400km/s), and the bullet gas would not be bound by the sub-cluster halo for the Hubble time. Models with V_{DM}~ 4500km/s ~ V_{gas} would invoke unrealistic large amount M_{CDM}=7x 10^{15}Msun of CDM for a cluster containing only ~ 10^{14}Msun of gas. Our results are generalisable beyond General Relativity, e.g., a speed of $4500\kms$ is easily obtained in the relativistic MONDian lensing model of Angus et al. (2007). However, MONDian model with little hot dark matter $M_{HDM} \le 0.6\times 10^{15}\msun$ and CDM model with a small halo mass $\le 1\times 10^{15}\msun$ are barely consistent with lensing and velocity data.
[ "astro-ph" ]
[ 0.023041572421789003, 0.014928974211215001, -0.030571170151233003, 0.079529695212841, 0.044880475848913005, -0.032868634909391, -0.018518704921007, 0.069970242679119, -0.02102893218398, -0.044557023793458, 0.07043638080358501, -0.058344356715679, -0.017855443060398, -0.054514743387699, 0.034842621535062006, -0.09273947775363901, 0.130775198340415, -0.015235142782330001, -0.061255075037479005, -0.007081448566168, 0.020162377506494, 0.021616647019982, 0.000434106303146, 0.032502904534339, 0.032137528061866004, -0.013161952607333001, 0.017147954553365, -0.033695369958877, -0.016883119940757002, -0.06840110570192301, 0.006474171299487, -0.026852807030081003, -0.061782285571098, 0.051162052899599006, 0.065042562782764, 0.014840031974017, -0.016138404607772, -0.024130882695317, 0.011470152065157, -0.021619098260998, -0.011181882582604, 0.040237762033939, 0.026566689833998004, -0.012912882491946002, 0.001217435346916, -0.025013271719217002, -0.015304109081625002, 0.035578481853008, -0.11043386906385401, 0.020334867760539003, -0.06818095594644501, 0.007742943242192, -0.071984700858592, 0.058291852474212, 0.041590083390474, 0.042941045016050006, 0.000539540953468, -0.058154445141553004, 0.07948516309261301, -0.09765952080488201, -0.0037162443622940004, -0.05889980122447001, -0.029310865327715003, 0.026249151676893002, -0.009029581211507001, -0.024769607931375, 0.043125834316015, 0.0036329440772530004, -0.027602344751358, 0.07157941162586201, 0.051484651863574, 0.078204363584518, -0.026504371315240003, -0.016139656305313003, -0.056906372308731, 0.049020361155271, 0.031828995794057, -0.011664511635899, 0.062539517879486, -0.005547157023102001, 0.010331370867788, 0.017106721177697, -0.001347039244137, -0.076228655874729, -0.055772013962268004, -0.009402913041412001, -0.06090248003602, 0.069065421819686, -0.007235616445541, -0.039538100361824, 0.020636450499296, 0.006384707055985, -0.015411088243126002, -0.055307175964117, 0.039060451090335006, -0.037375189363956, 0.00026602484285800004, -0.031865682452917, 0.09690804034471501, 0.050953187048435, 0.021425273269414003, -0.008117582648992, -0.037631880491971005, 0.06566073745489101, 0.001312761334702, 0.025162320584058002, 0.044346425682306005, 0.0067254020832470006, -0.046703949570655004, 0.063874289393424, 0.119398184120655, 0.019901264458894, 0.001997298095375, -0.115680567920207, -0.031539931893348, -0.032675627619028, 0.061962161213159006, 0.026594411581754, -0.060731850564479, -0.011140921153128001, -0.043854616582393, -0.027539560571312002, -0.008665651082992, -0.006692993920296, 0.077717788517475, -0.01512383390218, -0.036107227206230004, 4.565370266044215e-33, 0.023148396983742003, -0.039872761815786, 0.014584795571863, -0.005542044527828, 0.025092866271734002, -0.039080865681171, -0.046985477209091006, 0.107284441590309, -0.040588498115539, -0.004182566888630001, -0.076199986040592, -0.073752976953983, -0.013766418211162002, -0.039215769618749, 0.019426917657256, -0.016942342743277, 0.061740115284919, 0.08342865109443601, -0.022377453744411, 0.009313820861279, -0.001929115853272, -0.030376316979527, -0.044234279543161004, -0.041804112493991005, -0.042636696249246, 0.170799762010574, 0.038807865232229004, -0.020694691687822002, 0.014085031114518, 0.009418609552085, -0.082619279623031, 0.035775423049926, 0.014873387292027002, 0.05684715136885601, -0.012673468329012, 0.084492653608322, -0.045788031071424005, -0.05144260078668501, -0.012151508592069002, -0.065970964729785, -0.002078751567751, 0.10099419951438901, -0.09507963061332701, -0.09023784846067401, -0.057392660528421006, -0.016981076449155003, -0.027316931635141, -0.078374691307544, -0.0007311776280400001, 0.034407388418912, 0.107520595192909, -0.023849077522754003, -0.02885079011321, 0.004464102908968, 0.09032588452100701, 0.049355894327163, -0.046715449541807, -0.020920583978295, 0.036822468042373005, 0.057303875684738007, 0.10716699063777901, -0.05576826632022801, 0.022152891382575, 0.023432349786162, -0.008759178221225001, 0.102361090481281, -0.010383657179772, 0.057347271591424005, 0.049780439585447006, -0.040262270718812006, -0.022441519424319, -0.039614085108041, 0.052995797246694, -0.008683254942297, 0.040638990700244, 0.004867174662649, 0.067458368837833, -0.028241910040378, -0.015180233865976, -0.02416506409645, 0.002110033761709, -0.06433243304491, -0.017158115282654002, -0.064201533794403, -0.06755742430686901, -0.005865298211574, -0.06332793831825201, 0.00007092786836437881, -0.065425440669059, -0.030082495883107, 0.034270461648702004, -0.030353741720318003, 0.019273739308118, -0.00842479430139, -0.10161326825618701, -5.277697067439475e-33, 0.053943317383527006, -0.029371919110417002, -0.033960450440645, 0.07779987901449201, 0.037217538803815, 0.07496760785579601, -0.052069768309593006, 0.002254453953355, -0.020162753760814, -0.042295806109905, -0.022658418864011, 0.055997774004936, -0.013572325929999001, -0.032139103859663, 0.05706668272614401, 0.018816884607076003, 0.09363315999507901, -0.0322234518826, -0.009319368749856, -0.017385838553309, 0.07799472659826201, -0.039214469492435004, 0.031427841633558, -0.037237506359815, -0.0025217675138260003, 0.029073592275381, -0.036970317363739, -0.046820856630802, -0.031672552227973, 0.015035009942948001, 0.021871410310268003, 0.0036394353955980004, -0.013190412893891001, 0.010958419181406, -0.04785504192113801, 0.064941048622131, -0.06973685324192, 0.060982495546340006, -0.017021767795085, -0.034490194171667, -0.010250055231153, 0.11017921566963101, -0.039915967732667, 0.025273680686950004, 0.025665406137704003, -0.060815077275037, 0.11365164816379501, -0.012509200721979, 0.07125277817249201, 0.004647503141313, -0.08504643291234901, -0.086998865008354, -0.032590877264738, 0.095021910965442, -0.068866364657878, 0.063838243484497, 0.03142324835062, -0.004446743987500001, 0.007274154573678001, -0.022470464929938, 0.034916389733552, -0.019098669290542002, 0.06976144015789, -0.057411085814237005, -0.017207076773047, -0.070059947669506, -0.055090572685003, -0.025534035637974004, -0.037581823766231, 0.006735855713486, 0.037190202623605, -0.030321951955556002, 0.057505648583173, 0.07061434537172301, -0.025441408157348, 0.032293800264596, 0.116245858371257, -0.007748227100819001, 0.030682383105158, 0.00082367536379, -0.040196113288402, 0.085937857627868, 0.007516443729400001, 0.06214438006281801, -0.010618707165122001, 0.004821329843252, -0.056171290576457006, -0.024465685710310003, -0.014960837550461, 0.017872165888547002, -0.091916725039482, -0.063842788338661, 0.10782948881387701, 0.003568064188584, -0.05748090147972101, -5.388530865957364e-8, 0.029958672821521003, 0.058098413050174005, -0.06266813725233, 0.039218131452798004, -0.043442830443382006, -0.013524034991860001, -0.07317323982715601, 0.08030255883932101, 0.083517216145992, 0.010948865674436, 0.144976913928985, -0.013993485830724002, -0.019852772355079002, 0.009005750529468, -0.058920327574014005, 0.07769092172384201, -0.053163480013608, -0.059031613171100006, -0.039752874523401004, 0.063546486198902, -0.0052646170370280005, -0.0026959925889960003, 0.08488705009222, -0.008106959983706, 0.034211736172437, 0.043863184750080005, -0.12422294169664301, 0.036591231822967, 0.024283641949295002, -0.0061416160315270005, -0.054914727807044005, 0.032222192734479, -0.069080628454685, 0.065231874585151, -0.037649951875209, -0.07756508141756001, -0.051609445363283005, 0.11959157139062801, 0.050517138093709, 0.043611414730548005, 0.070477612316608, -0.029620656743645002, -0.02040647342801, 0.021665222942829, -0.032121323049068, 0.09945909678936, -0.05790711194276801, -0.06640850752592001, -0.097855985164642, 0.086249880492687, -0.045041028410196006, 0.055337946861982006, -0.13324475288391102, -0.017958428710699, -0.022749677300453002, 0.008551065810024001, 0.013315616175532001, 0.013866494409739001, 0.005417327396571, -0.053311735391616, 0.032243758440017, -0.081418797373771, -0.057965118438005, 0.020088514313101002 ]
0704.0095
Geometry of Locally Compact Groups of Polynomial Growth and Shape of Large Balls
We get asymptotics for the volume of large balls in an arbitrary locally compact group G with polynomial growth. This is done via a study of the geometry of G and a generalization of P. Pansu's thesis. In particular, we show that any such G is weakly commensurable to some simply connected solvable Lie group S, the Lie shadow of G. We also show that large balls in G have an asymptotic shape, i.e. after a suitable renormalization, they converge to a limiting compact set which can be interpreted geometrically. We then discuss the speed of convergence, treat some examples and give an application to ergodic theory. We also answer a question of Burago about left invariant metrics and recover some results of Stoll on the irrationality of growth series of nilpotent groups.
[ "math.GR", "math.DG" ]
[ -0.014752724207937001, 0.030635105445981, -0.00898720882833, 0.075961358845233, 0.037688832730054, 0.06371601670980401, 0.069401413202285, -0.05587127804756101, 0.070706374943256, -0.11030326783657, 0.05177167057991, 0.030793312937021002, -0.057470370084047005, -0.050153005868196, -0.012848275713622001, -0.047322966158390004, -0.055661611258983, 0.020188579335808, -0.029554752632975002, 0.049980919808149005, 0.008922319859266, 0.021003317087888003, 0.038732159882783, 0.07661727815866401, 0.003520774422213, -0.082973375916481, -0.032545115798711, -0.009848386980593002, -0.0023445577826350004, -0.017219468951225, -0.09708728641271501, -0.011922689154744, 0.032016545534133, 0.019847527146339, 0.044814448803663004, 0.077336251735687, -0.011107722297310002, 0.043750394135713, -0.031769417226314, 0.005698987748473001, 0.04456952959299, 0.012537443079054002, 0.03870877996087, 0.088529042899608, -0.043944612145423, -0.022803457453846, 0.040410615503787, 0.045502450317144005, -0.08671616762876501, -0.021225795149803002, -0.024425271898508003, 0.020849216729402, 0.020919945091009, 0.038070265203714, -0.005769558250904001, -0.09852439910173401, -0.066690646111965, -0.039842821657657006, 0.053486462682485005, -0.069118127226829, 0.083247296512126, 0.034430269151926006, -0.046771138906478, -0.017809430137276, -0.055533759295940004, 0.007523319683969001, 0.138576209545135, -0.019719397649168, -0.053326465189456, 0.060865435749292006, 0.062152918428182005, 0.038252290338277005, -0.09245306998491201, -0.007005230523645001, -0.042808923870325005, -0.000609617854934, -0.091282218694686, 0.001413767691701, -0.041497409343719004, -0.032206106930971, 0.059033177793025006, 0.036441788077354, 0.026444552466273002, -0.0035011928994200005, -0.017003627493977002, 0.018452638760209, -0.018768990412354, 0.007197211496531001, -0.020082423463463003, -0.07862140983343101, 0.026463851332664, 0.044522859156131, -0.0435057207942, 0.028494969010353, 0.013707416132092, -0.025421414524316004, -0.11344579607248301, 0.011485365219414002, 0.084637351334095, 0.08685179054737001, 0.072140425443649, -0.018040711060166, 0.030398156493902, 0.049144323915243, 0.007299916818737001, 0.012916834093630002, -0.045530244708061, -0.030320264399051004, 0.0016003473429, 0.051392238587141, 0.017896303907036, -0.086697958409786, -0.012784353457391002, 0.05313875153660701, -0.013837673701345001, -0.027430020272731004, 0.060131836682558004, 0.065802410244941, -0.050817869603633006, 0.069623969495296, 0.128605857491493, 0.049114268273115005, -0.017115732654929, 0.031477283686399, 0.043204799294471005, 0.031131708994507002, -0.037400927394628004, 2.041878135758454e-33, 0.098106987774372, 0.007917872630059001, 0.030672054737806, 0.008436887525022, 0.019587308168411, 0.017008233815431, -0.01281398255378, 0.07264540344476701, 0.0036929668858640004, 0.031217107549309002, -0.05121248215436901, 0.055518001317977, 0.019346885383129002, -0.0012248140992590002, 0.04717319458723, -0.002823722548782, 0.017245486378669, 0.024868596345186, 0.04321289435029, -0.050246350467205006, -0.029010862112045004, 0.074921570718288, 0.022765181958675003, -0.025625120848417, -0.052145909518003006, 0.033746931701898006, 0.027694659307599002, 0.018261732533574, -0.031900387257337, 0.022481806576251002, 0.012093835510313001, -0.081944540143013, 0.011452087201178001, 0.095179460942745, 0.005118767730891, 0.027595859020948, -0.075596384704113, -0.027900872752070004, -0.032598692923784, -0.052158128470182, -0.007179787382483001, 0.026207461953163, -0.05212958157062501, -0.032619368284940005, -0.030801864340901004, -0.012880583293735001, 0.008066337555646001, 0.008442055433988, -0.000364692503353, -0.008945059962570001, 0.042774103581905004, 0.0027397088706490004, -0.13381297886371601, -0.063562430441379, 0.01363327819854, -0.045128468424081004, -0.081431925296783, 0.09719172120094301, 0.024085652083158, 0.061173133552074, 0.027592489495873004, -0.040862314403057, -0.01993309892714, -0.04245932772755601, -0.07267533242702401, -0.042627330869436, 0.022475529462099002, -0.014579629525542, 0.06508054584264701, -0.083015643060207, 0.0178410615772, -0.021465979516506, -0.010684605687856001, 0.06762078404426501, -0.070333592593669, 0.012897646054625001, 0.014477063901722001, 0.002268317854031, -0.12485786527395201, 0.049744963645935, -0.022594975307583, -0.129823088645935, -0.05275655537843701, -0.096581183373928, -0.11778118461370402, -0.038733229041099, 0.057044509798288005, 0.001880486379377, -0.04599167779088, -0.038304906338453, -0.10031449049711201, -0.015485635027289002, -0.015497371554374001, -0.019341899082064, -0.016115540638566, -2.7988434167712274e-33, 0.057510744780302006, -0.10622654855251301, -0.023189358413219, 0.06498970836400901, 0.069880574941635, 0.007158197928220001, 0.025580205023288, 0.076050363481044, -0.078153364360332, -0.052693139761686006, -0.044048022478818005, 0.087664753198623, 0.060282759368419, 0.052801523357629006, 0.0025636674836270004, -0.08159165084362001, 0.108916111290454, 0.007495079655200001, -0.072117514908313, 0.020634025335311, -0.0567387342453, 0.00048470922047200003, 0.026956109330058, -0.001618780661374, -0.035388853400945004, 0.040823329240083, -0.034523643553256, -0.036981258541345, -0.091736443340778, 0.09263337403535801, 0.058000657707452004, -0.06869030743837301, -0.071331329643726, 0.006962319370359, -0.049164544790983006, -0.040094900876283, 0.026647739112377004, 0.040507186204195, -0.06670463830232601, 0.065138056874275, 0.050258629024028, 0.047532815486192, 0.039312988519668, 0.011007284745573, 0.040816813707351005, -0.04475187882781, 0.025694869458675003, -0.0037850255612280003, -0.062185157090425006, 0.046499125659465006, -0.054405119270086004, 0.05234977975487701, 0.060535591095685, 0.044575802981853006, -0.009836878627538001, 0.072899915277957, 0.002625657478347, -0.023857934400439002, -0.06691480427980401, -0.054317742586135004, -0.047623433172702005, -0.043408919125795004, 0.033633865416049, 0.012243553064763001, 0.052551195025444, -0.032783038914203005, -0.010402904823422, -0.08348929882049501, 0.016885025426745002, 0.070571802556514, -0.056754328310489, -0.110340662300586, -0.019631404429674003, -0.003954042680561, -0.10095648467540701, 0.025849992409348002, 0.062716014683246, -0.017626669257879, -0.014318656176328002, -0.05941738188266701, 0.013086678460240002, 0.046747174113988, 0.051575880497694, 0.06672197580337501, 0.027786606922745004, -0.08058788627386, 0.034642376005649005, 0.0054708109237250006, -0.007917088456451001, 0.030022785067558, 0.021485969424247003, -0.113604731857776, 0.056938719004392006, 0.061417892575263006, 0.005944043863564, -3.710068696705093e-8, 0.041580159217119, -0.029644070193171, -0.003960268106311, 0.031996559351682004, 0.062377307564020004, -0.048453021794557, 0.026900887489318, 0.073710583150386, -0.039933528751134005, 0.10797746479511201, 0.043624922633171005, -0.0013056060997760001, -0.018394201993942, -0.015595924109220002, -0.0021732556633650003, 0.08117374777793801, 0.001426381291821, 0.019647909328341002, -0.028266802430152, -0.028366640210151003, 0.005226500798016001, -0.021125456318259003, -0.06527474522590601, 0.036305237561464004, -0.049054466187953005, -0.052381195127964006, -0.052181385457515, -0.05701204389333701, -0.07436381280422201, 0.012538683600723001, 0.047968354076147, 0.039107039570808, 0.11011761426925601, 0.053705278784036005, -0.046926848590373, -0.05185196548700301, -0.077167496085166, 0.044018223881721004, 0.053513836115598006, -0.013151122257113, -0.009178540669381001, -0.011907125823199001, 0.055487316101789, -0.006693797186017001, 0.000253303558565, -0.044531881809234, 0.028677050024271, 0.032450634986162005, -0.06871222704648901, 0.16769705712795202, 0.033523257821798005, 0.031918603926897, -0.07656179368495901, 0.031857408583164, 0.028587121516466002, 0.019729647785425002, 0.045805204659700005, -0.025257874280214, -0.010531990788877002, 0.021895576268434, -0.090069808065891, -0.022785902023315003, 0.03420865163207, 0.0030814064666620004 ]
0704.0096
Much ado about 248
In this note we present three representations of a 248-dimensional Lie algebra, namely the algebra of Lie point symmetries admitted by a system of five trivial ordinary differential equations each of order forty-four, that admitted by a system of seven trivial ordinary differential equations each of order twenty-eight and that admitted by one trivial ordinary differential equation of order two hundred and forty-four.
[ "nlin.SI" ]
[ -0.074164189398288, -0.033471524715423, 0.019353089854121, 0.016765303909778, -0.10986708104610401, 0.030567163601517, -0.02913475036621, -0.039081431925296006, 0.020837184041738, -0.078766874969005, 0.080173805356025, 0.019231762737035002, -0.07378742098808201, 0.007467573974281, 0.024675447493791, -0.014198616147041002, -0.158665746450424, 0.082885615527629, -0.082574181258678, 0.036188811063766, -0.007077526766806, 0.009778843261301, -0.06893518567085201, 0.036033801734447, -0.03962704911828, 0.009235663339495001, 0.063634261488914, -0.043756186962127006, -0.016879079863429, -0.053398806601762, 0.058430016040802, 0.054466735571622, -0.045618705451488, -0.006962245795875, -0.046893343329429, -0.059366129338741004, 0.012606239877641002, 0.020640516653656002, 0.017759410664439, -0.008704074658453001, 0.014137568883597, 0.023099049925804003, 0.020386395975947002, 0.07512941211462, 0.03426257520914, -0.055317394435405, -0.027729680761694003, -0.01909490302205, -0.004311604425311, -0.058514468371868, -0.022989882156252, 0.07901956140995, -0.047834459692239005, -0.020467430353164003, -0.022173518314957, -0.15380802750587402, -0.057232733815908, -0.041416708379983, -0.00135744723957, -0.00009497301653027536, 0.08777680248022, 0.037226378917694, 0.046241469681262005, 0.01883297227323, -0.09021047502756101, 0.033313188701868, 0.052009321749210004, -0.029289308935403, -0.024676706641912002, -0.047640454024076004, -0.066398993134498, -0.000198428882868, 0.0008180924342010001, -0.036292579025030004, -0.004439923446625, -0.036237630993127004, -0.0010220252443100002, -0.05424255877733201, 0.012850116938352, 0.009570366702973001, 0.008389752358198001, 0.003001590957865, -0.006828445009887001, 0.083096243441104, -0.041785720735788005, -0.024418098852038002, -0.041731338948011, 0.008099964819848001, 0.044157370924949, -0.030815912410616004, 0.059543695300817004, -0.070628270506858, -0.026900315657258003, 0.03094801865518, 0.052463993430137, 0.040894832462072005, -0.048236824572086, 0.08864440023899, -0.026814149692654003, 0.018209435045719, 0.035180170089006, -0.019624447450041, 0.045660044997930006, 0.041941631585359004, 0.09193608164787201, 0.046964544802904004, 0.003909492399543, -0.009337062016129001, -0.089025631546974, -0.012413831427693001, -0.061791006475687006, -0.10810586065053901, -0.014800561591982002, -0.029953993856906003, 0.05857538804411801, -0.010668734088540001, -0.046953648328781, -0.009571534581482001, 0.028332453221082004, -0.006187532562762, 0.092211559414863, 0.052015215158462004, 0.037535626441240005, 0.012367569841444001, 0.069795735180377, 0.0057841376401480005, -0.019383309409022, 1.633170504921052e-33, 0.016427991911768, 0.061074916273355005, 0.035490121692419004, 0.012484020553529, 0.05452137440443, -0.02246206253767, 0.054467964917421, 0.08583154529333101, -0.019409671425819, 0.09614639729261301, -0.123750776052474, 0.0007490917341780001, 0.061192329972982004, 0.017338931560516, -0.044502884149551, 0.058072138577699, 0.008614945225417, -0.017379825934767, -0.026645142585039003, -0.067182414233684, 0.097518563270568, 0.106161266565322, -0.075616300106048, 0.016073668375611, -0.047321584075689004, 0.087959565222263, 0.048495233058929006, 0.05604067817330301, -0.046515803784132004, 0.0034309201873830002, 0.019196540117263003, -0.09131282567977901, -0.005460883956402001, 0.0017775087617330002, 0.028636170551180003, 0.0056851957924660005, -0.073056191205978, 0.016446443274617, 0.017091609537601003, -0.029819503426551004, 0.014865932986140001, 0.015204216353595002, -0.026322260499, -0.028815431520342, -0.010223699733614, 0.084995180368423, 0.038867980241775006, 0.081195838749408, 0.031738199293613004, 0.044620245695114004, -0.046875171363353, 0.048927903175354004, -0.07741792500019, -0.019343990832567, -0.003214726224541, 0.000677912146784, -0.087163992226123, 0.020609248429536, -0.039650704711675006, 0.031562991440296, -0.061292067170143, -0.019632818177342002, -0.022647883743047003, -0.122105918824672, -0.041243601590394, 0.006810744293034, -0.0014337678439910002, -0.083424851298332, -0.010108542628586, 0.018179882317781, -0.053399387747049006, -0.014771680347621002, -0.033712998032569004, -0.04021605476737, 0.01364828646183, -0.042280934751033006, 0.112336829304695, -0.056171443313360006, -0.10546772927045801, -0.004723710473626, -0.086333855986595, -0.052812609821558006, -0.034662481397390005, 0.057574074715375005, 0.004814031533896, -0.0069242767058310005, -0.041670400649309006, 0.0018131170654660002, 0.044352445751428, -0.044844470918178, 0.017550019547343, -0.06581018120050401, -0.078943736851215, -0.03827129304409, 0.011419191025197001, -4.017302269787062e-33, -0.0044889650307590005, -0.000500922091305, -0.057966087013483006, -0.026736032217741002, -0.0037969052791590003, -0.024188177660107002, 0.016143972054123, 0.15152658522129, -0.014629569835960001, -0.027199452742934, -0.020780557766556, 0.080232016742229, 0.0013071227585890002, 0.005649514496326001, 0.046813994646072006, 0.039748802781105, 0.028691088780760002, -0.039290621876716, 0.004688553977757, -0.030878311023116, -0.040011350065469006, 0.151570901274681, -0.024944070726633003, -0.018601823598146, 0.034270741045475006, 0.068993605673313, 0.07033756375312801, -0.016272196546196, 0.047661114484071, 0.07884669303894, 0.08486977219581601, -0.09731370210647501, 0.042609013617038005, 0.071246728301048, -0.039361309260129006, 0.016440751031041, 0.071709290146827, 0.065014570951461, -0.035814743489027, 0.039896268397569004, -0.03629108518362, -0.006920293904840001, 0.10141593962907701, 0.11381785571575101, 0.062625229358673, 0.0036848492454730005, 0.021736308932304, 0.00035426655085700004, -0.06735796481370901, 0.072739981114864, -0.026400618255138, -0.04237990453839301, 0.021394953131675002, -0.042418289929628004, -0.042561922222375, 0.05567586421966501, 0.003883313620463, -0.053159601986408005, -0.028844648972153, -0.042026687413454, 0.051889590919017, -0.067678481340408, 0.077915079891681, -0.014338470995426001, -0.03138380870223, -0.0015732059255240002, -0.029188543558120002, -0.031639583408832, -0.009644464589655, -0.022836796939373002, -0.040570490062236, -0.026784373447299004, -0.09471897780895201, -0.054287247359752, 0.014795889146625002, -0.06785347312688801, -0.037294372916221, 0.011595305055379, 0.048905920237302, -0.032343983650207, -0.011064819991588001, -0.03221670538187, 0.054987385869026004, 0.011623363941907001, 0.02705112658441, -0.07385747134685501, 0.002435595961287, 0.036162100732326, 0.095527164638042, 0.030868344008922, -0.029299298301339004, 0.072536051273345, 0.012302620336413, 0.066348947584629, -0.025351407006382002, -3.91566388202591e-8, -0.004875146318227001, 0.02495870925486, -0.036422803997993004, 0.044106736779212, -0.058461498469114005, 0.012835076078772, -0.099880114197731, 0.10154170542955301, -0.027699135243892004, 0.082431033253669, 0.05632264167070301, 0.079489864408969, -0.11225757002830501, -0.044140733778476, 0.026768647134304, 0.008394661359488001, -0.06790617108345001, 0.01971192844212, -0.058132372796535006, -0.022560903802514003, 0.06550715118646601, -0.0009632392320780001, -0.08834718912839801, 0.012865204364061002, 0.046008110046386004, -0.011248528026044001, 0.067485310137271, -0.034553237259387005, 0.033600784838199005, 0.061652183532714004, 0.04730486497282901, -0.010257385671138, 0.015902128070592002, -0.041752416640520006, 0.00020904913253600002, -0.049175564199686, -0.040477130562067004, -0.06720501184463501, -0.025362631306052003, 0.024035325273871002, -0.023371608927845, -0.059109155088663004, 0.035625543445348004, 0.04466226324439, 0.09804274886846501, -0.021776553243398, -0.053637497127056004, -0.023005057126283, 0.048730712383985006, 0.049639761447906, -0.059238124638795006, 0.05432909727096501, -0.11837178468704201, 0.051266439259052006, -0.032273169606924, 0.017374420538544003, 0.032655157148838, -0.030937174335122, -0.009473469108343001, -0.030333153903484, -0.037682805210351, 0.09704431891441301, 0.051420107483863005, 0.025351371616125003 ]
0704.0097
Conformal Field Theory and Operator Algebras
We review recent progress in operator algebraic approach to conformal quantum field theory. Our emphasis is on use of representation theory in classification theory. This is based on a series of joint works with R. Longo.
[ "math-ph", "math.MP", "math.OA" ]
[ -0.10217182338237701, 0.0041737691499290006, -0.030082197859883003, 0.024907106533646, -0.074430979788303, 0.062721170485019, 0.013246611692011, -0.07533475756645201, -0.028635086491703002, -0.052794694900512, -0.013892618939280002, 0.028739774599671003, -0.12261129170656201, 0.025873245671391, 0.033029578626155, -0.0036541258450590005, -0.036445006728172004, 0.04024625942111, -0.08539766818284901, -0.007903681136667, -0.004140528384596, -0.012520534917712002, -0.050272140651941, 0.022561719641089002, -0.021035959944128, -0.054015040397644, 0.06024813279509501, -0.0012805878650390002, 0.036056235432624005, 0.005679675377905, -0.08782617002725601, 0.102932527661323, 0.041697826236486005, -0.032074533402919, -0.082146026194095, 0.030254680663347, 0.048265036195516, 0.002998436102643, 0.0015065007610240001, -0.052746795117855, 0.012935663573443001, 0.041831444948911, -0.019784307107329, 0.06237768754363, 0.021015068516135, -0.022247936576604, 0.082453213632106, -0.005684500560164001, 0.024682877585291002, -0.048232447355985, 0.02004057355225, 0.06635258346796001, 0.027543431147933003, 0.026457222178578002, -0.024255864322185003, -0.06326849758625, -0.005687151104211001, -0.010208481922745, -0.038969282060861005, -0.045128487050533, -0.072085656225681, 0.007463542744517, 0.032922070473432, 0.06476218998432101, 0.043263077735900005, -0.0006612584693350001, 0.032916639000177, 0.01359225064516, -0.024832790717482, -0.079472295939922, -0.08025989681482301, -0.034661520272493, -0.077057167887687, -0.036522768437862, 0.04166725650429701, 0.036006897687911, 0.028185427188873003, 0.031685374677181, 0.041647158563137006, -0.060958448797464, 0.034518394619226005, -0.0033478690311310004, 0.044670794159173, 0.039243012666702, 0.11201167106628401, 0.013521627523005002, -0.047084867954254005, 0.006271059624850001, -0.036677546799182004, -0.003755049081519, 0.04875842854380601, -0.083154149353504, 0.009358211420476001, -0.012989967130124002, -0.010266689583659, 0.034285157918930005, -0.05572335422039001, 0.07852602750062901, -0.031615044921636005, -0.03134274855256, 0.056196648627519004, -0.0031845399644220003, 0.05401180684566401, 0.008458212949335001, 0.06547280400991401, 0.05474265292286801, 0.017682060599327, -0.0037419626023620003, -0.003920855000615, -0.019425394013524, -0.016339473426342, -0.056683003902435004, -0.038063667714595004, -0.084237068891525, 0.020194802433252, 0.0251667778939, -0.007998805493116, 0.070578880608081, -0.040846537798643, 0.03073551878333, 0.00274700531736, 0.005634307395666001, -0.02300695516169, 0.034003201872110006, 0.08476790785789401, 0.019856987521052003, -0.09239861369132901, -1.5680275008166099e-34, 0.007053318899124, 0.036013074219226004, 0.001681233406998, 0.010467400774359, 0.06803456693887701, 0.012429248541593002, 0.067803390324115, 0.043165154755115, -0.028385974466800003, 0.032580669969320006, 0.063242763280868, 0.023762568831443003, 0.048656672239303006, -0.071966014802455, 0.013670542277395002, -0.040855173021554, -0.015966817736625002, -0.027346543967723003, -0.0749307051301, -0.06527567654848, 0.016007592901587, 0.045296035706996, -0.032257135957479005, 0.056161031126976006, 0.042357940226793005, -0.021817300468683003, 0.021873945370316002, 0.014364642091095002, -0.034070141613483006, -0.003178130835294, -0.018205815926194, -0.019342327490448, 0.020675433799624002, -0.025921093299984002, -0.029580762609839002, -0.029796302318572002, -0.037210289388895, 0.024507090449333004, -0.026597341522574, -0.087538175284862, -0.05528937280178001, -0.07125315070152201, -0.023489322513341, -0.016854906454682, -0.033095750957727, -0.028512420132756, 0.05260572955012301, 0.033566698431968, 0.073432557284832, -0.073987662792205, 0.043260376900434, -0.05905478447675701, -0.133451655507087, -0.047095231711864007, 0.021431468427181, 0.088237315416336, 0.0029253247193990004, 0.04240835830569201, 0.014564536511898001, -0.041377425193786004, -0.06333777308464, 0.051887057721614005, -0.045075912028551005, -0.008702757768332, -0.084419444203376, -0.04972388967871601, -0.030753536149859, -0.09544340521097101, -0.011153375729918001, 0.09258209913969001, 0.050259884446859006, 0.069808281958103, -0.07203440368175501, 0.027300849556922004, 0.040305107831954005, -0.021331032738089003, -0.0023145894519980004, -0.07505185902118601, -0.034320086240768, 0.022886220365762003, -0.086239159107208, 0.014692544005811001, -0.028330933302640002, 0.09152015298604901, -0.070676483213901, -0.054071877151727, -0.023830162361264003, -0.010593913495540001, 0.025162642821669003, -0.073983147740364, -0.053147833794355004, 0.012583426199853, 0.0030584046617150003, 0.008923377841711001, -0.033812470734119006, -3.327064843953677e-33, 0.006895185448229001, -0.061287183314561004, 0.021699037402868, -0.12122915685176801, 0.00305513292551, -0.035189192742109, -0.057969044893980005, 0.069023415446281, 0.000832526362501, -0.036692082881927005, -0.013614493422210001, 0.10262958705425201, -0.027184257283806003, 0.029010247439146004, 0.020042791962623003, -0.037273578345775, 0.043459843844175006, -0.00007775298581691459, -0.0037117360625410004, -0.037439893931150006, 0.028816666454076004, 0.04181708022952001, 0.034712880849838, -0.026547981426119003, -0.072132803499698, 0.0043210927397010004, 0.070180311799049, 0.039158925414085, 0.041432790458202, 0.038667395710945004, -0.025993784889578, -0.119412742555141, 0.01693813316524, 0.027920691296458, -0.086551189422607, -0.0024321384262290004, 0.018662517890334, 0.036247439682483, 0.009071387350559, 0.062809035181999, -0.020627727732062003, -0.027765955775976, 0.008054032921791, 0.032732438296079004, 0.036376409232616, -0.101777404546737, 0.044828101992607006, 0.024795193225145003, -0.057944592088460006, 0.039605952799320006, 0.058286380022764005, -0.0069428631104520005, 0.014726312831044001, 0.022459927946329002, -0.077635571360588, 0.08190087974071501, 0.00737513648346, -0.07324506342411001, 0.032949831336736006, -0.020867627114057003, -0.018894504755735002, 0.040092479437589, 0.09680144488811401, 0.11113023012876501, 0.053070563822984, -0.025634529069066003, -0.017058879137039, 0.057024076581001004, 0.066234767436981, 0.037434555590152005, -0.031200550496578, 0.0006829862832090001, -0.040452256798744, 0.11248510330915401, 0.061549343168735005, -0.075546599924564, -0.0014679513406000001, -0.00011494186037400001, 0.059231013059616006, -0.036546692252159, 0.017132803797721002, -0.049086567014455004, -0.004327497910708, 0.10338397324085201, -0.0058834664523600005, -0.079314813017845, 0.039481073617935, 0.05406812578439701, 0.09718546271324101, -0.037037532776594, 0.052255693823099005, 0.004154399037361, 0.0035873053129760004, 0.096741676330566, 0.03893469274044, -3.053477115599889e-8, -0.030069958418607004, -0.035072173923254006, 0.04674029350280701, 0.015191480517387002, 0.052470251917839, -0.05039769783616, -0.009904678910970001, -0.006664916407316, -0.065532192587852, 0.063420429825782, -0.024040967226028002, 0.051805350929498006, -0.137156322598457, -0.08610125631093901, 0.028339171782135002, -0.002881981898099, 0.014038126915693, 0.002513606334105, -0.013451156206429001, 0.042581364512443, 0.033016633242368004, -0.069314368069171, -0.027974499389529003, -0.014159154146909, -0.00215747882612, -0.09889302402734701, -0.13889767229557, -0.07500291615724501, -0.047599576413631, 0.07914192229509301, -0.047860391438007, 0.11395470052957501, -0.022825676947832003, 0.007961525581777, -0.003071591490879, -0.105968348681926, -0.031474459916353004, -0.135060921311378, -0.049056891351938005, 0.16379924118518802, 0.033362664282321, 0.054873786866664005, 0.071422956883907, 0.004611144773662, 0.07170988619327501, -0.010127962566912, 0.0055543300695710006, 0.033608090132474004, 0.072180539369583, 0.11448564380407301, 0.045640405267477, -0.014820068143308001, -0.08227427303791, 0.006691705901175, -0.09588381648063601, 0.009750950150191002, 0.021459348499774003, 0.012683432549238, 0.005966977216303001, -0.044313080608844, -0.033227778971195006, 0.081628620624542, 0.04981857910752201, 0.047326054424047005 ]
0704.0098
Sparsely-spread CDMA - a statistical mechanics based analysis
Sparse Code Division Multiple Access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of non-zero elements, is presented and analysed using methods of statistical physics. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code.
[ "cs.IT", "math.IT" ]
[ 0.015002631582319001, -0.027010930702090003, -0.055970132350921006, -0.055119723081588, -0.029363367706537004, -0.07204432785511, -0.047287881374359006, -0.0464344099164, -0.022667735815048003, 0.003866955405101, 0.057535577565431005, 0.097871914505958, 0.032093349844217, -0.068364910781383, 0.010792412795126001, -0.0028983543161300003, -0.024353122338652004, -0.009976278059184001, -0.01885187998414, 0.022148614749312002, 0.007199226412922001, 0.017326340079307, -0.101194843649864, 0.0064888568595050005, 0.06159054115414601, 0.048288427293300004, 0.08288405090570401, 0.0011878798250100002, -0.013464924879372, 0.007455105893313001, 0.026786187663674, 0.039397623389959, 0.058792710304260004, 0.009744856506586, 0.019844559952616, 0.009911318309605, 0.021006491035223, 0.041146717965602, 0.030570659786462003, 0.104763314127922, -0.025243258103728003, 0.055490206927061005, 0.005801342427730001, 0.08425149321556001, -0.02264455333352, -0.037570465356111006, 0.017244312912225, -0.024637050926685, 0.022397251799702003, -0.08957197517156601, 0.035242732614278, 0.10787099599838201, -0.011115808971226, 0.042630661278963006, -0.0007713764207430001, -0.189551457762718, -0.035846807062625004, -0.000573343306314, -0.012052990496158001, 0.09717851877212501, -0.005218989215791001, 0.013384024612605001, 0.017183775082230002, 0.033633209764957005, 0.048058163374662004, 0.010697484947741, 0.021377516910433002, 0.07687075436115201, -0.010287084616720002, -0.015198076143860002, -0.06778947263956, 0.033791933208703, -0.024026747792959, 0.085440911352634, 0.047494623810052004, -0.051734149456024, -0.061513286083936004, -0.021290082484483, 0.05742869526147801, 0.02322544902563, -0.044298354536294, -0.004796560853719, -0.00335749448277, -0.064481191337108, 0.020958406850695003, 0.035307016223669004, -0.002371340058743, 0.081218242645263, 0.008892646990716001, -0.036562174558639006, -0.013806856237351001, -0.010030846111476002, -0.05034702271223, 0.11070641130208901, -0.059344101697206005, -0.022662639617919002, 0.010541636496782001, -0.088375061750411, 0.032959844917058, 0.06688701361417701, 0.018060442060232003, -0.097093738615512, 0.0010255436645820002, -0.035025559365749005, -0.006352975033223, -0.009210008196532001, 0.074786484241485, 0.052050311118364, 0.04305788502097101, 0.012953080236911002, 0.041642528027296004, 0.044006302952766, -0.08162186294794001, 0.023586433380842, -0.080745242536067, -0.013338570483028, 0.029352867975831, 0.03636373206973, -0.014554535970091001, -0.068624652922153, -0.005019935313612001, -0.14173562824726102, -0.034711796790361, 0.004788501188158, -0.020408987998962, 0.059234734624624, -0.039772782474756005, 1.1393971233604422e-33, -0.04801161587238301, 0.016925664618611003, -0.003198968013748, 0.020134540274739002, -0.04163917899131701, 0.000865667709149, 0.048753611743450005, -0.031997799873352, -0.026834363117814, 0.069485634565353, -0.043762449175119005, 0.08861933648586201, -0.014847103506326, 0.039741989225149, -0.07447025924921001, 0.037994537502527, -0.06979827582836101, -0.049312740564346, 0.0034766355529420004, -0.025465114042162004, 0.07461073994636501, 0.005146385170519001, -0.011105683632194, -0.023289827629923, 0.031487684696912, -0.0026948433369390003, -0.0027591518592080004, -0.125774130225181, 0.08178368955850601, 0.065322451293468, -0.047301135957241, -0.0035444220993660004, 0.035431683063507004, -0.060125082731246005, 0.050775431096553005, 0.029505424201488002, 0.001920670270919, -0.013233914040029, -0.077136605978012, -0.06209356337785701, 0.039860494434833006, -0.051290083676576004, -0.039227541536092, -0.128799527883529, 0.018519598990678003, -0.004918616730719001, -0.016260152682662, 0.027825947850942, -0.004835254978388001, -0.032927431166172, 0.007935131900012, 0.009691525250673001, -0.012983744964003001, 0.050655830651521, 0.011132273823022001, -0.04767296090722, 0.028325213119387002, -0.071107313036918, 0.069090999662876, 0.11439217627048401, -0.044309094548225, -0.014847229234874, 0.048672884702682, -0.017115930095314, 0.06772625446319501, -0.0025378908030680002, -0.059255979955196006, -0.018445130437612003, 0.039681438356637004, -0.034585248678922, 0.062713831663131, 0.034549813717603, -0.04866271466016701, -0.070364125072956, -0.023529451340436002, -0.054029390215873004, 0.093294195830821, 0.009293001145124, 0.001087048905901, 0.012225215323269001, -0.053004804998636, -0.009574489668011001, 0.005034561734646, -0.014933466911315, -0.039406429976224004, 0.09903369843959801, -0.077581547200679, -0.036475200206041, -0.150661557912826, 0.01504477020353, 0.026431748643517, -0.036537542939186006, -0.016504814848303, 0.001307851052843, 0.034038688987493, -2.010845084896745e-33, -0.08427510410547201, 0.059194650501012004, 0.060248367488384004, 0.009798634797334001, -0.024845993146300004, -0.110721513628959, -0.0012328397715460002, 0.048759546130895004, 0.040446985512971004, 0.049505610018968006, 0.012483525089919002, -0.018856601789593003, -0.049446515738964004, 0.034226968884468, 0.09906775504350601, 0.011269660666584, 0.041805189102888, 0.085628107190132, 0.023953229188919, 0.042610522359609, -0.0037070526741440003, 0.042363259941339, 0.012796530500054, -0.041542109102010005, 0.04020082950592, 0.012992866337299002, -0.046758409589529, 0.09125883132219301, 0.06809888780117, -0.07193802297115301, -0.016102517023682, 0.037944048643112, 0.022383233532309, -0.017149265855550003, -0.008286817930638, 0.012584242038428001, 0.016654219478368003, 0.093547321856021, 0.039077937602996, 0.025288064032793003, -0.032395537942647004, 0.039502348750829, -0.015536098740994, -0.024164758622646002, 0.055916555225849006, -0.011531811207532001, -0.00046671982272500004, 0.05339292064309101, 0.002710282104089, 0.007159116677939, 0.095626384019851, 0.023734917864203002, 0.006519600283354, 0.061873573809862005, -0.014931208454072002, 0.067732587456703, -0.088095188140869, 0.096387237310409, 0.03981677442789, -0.038407482206821005, 0.006815551314502, -0.102763980627059, 0.0007490254356520001, -0.07932283729314801, 0.037370964884757, -0.056592866778373004, 0.013082167133688, -0.042780205607414, -0.06357687711715601, 0.055019948631525005, -0.019731990993022003, -0.036393970251083006, -0.046056687831878, 0.019990023225545002, 0.03026969358325, 0.010618175379931, -0.041107717901468006, -0.060583584010601, -0.044957622885704006, 0.098005004227161, -0.048858027905225004, 0.033675819635391, 0.00288035464473, 0.0061090802773830005, 0.024788802489638002, 0.085820831358432, 0.075984984636306, -0.08546706289052901, 0.01672008447349, 0.0009848286863410002, -0.040658876299858, 0.050379745662212004, 0.075879856944084, -0.028263254091143, -0.057319011539220005, -3.937651271712639e-8, -0.047829050570726006, -0.07601562142372101, -0.027921354398131003, -0.102907888591289, 0.07990558445453601, 0.006649767979979001, 0.023137222975492002, 0.016276964917778, 0.001577171729877, -0.09627436101436601, 0.093021266162395, 0.013809522613883001, -0.07284072041511501, 0.016044719144701, -0.000941468286328, 0.040421642363071005, -0.09515599906444501, -0.10212161391973401, -0.020086476579308003, -0.0030219284817570003, -0.041151214390993, -0.021109443157911002, 0.06507018208503701, 0.037876348942518005, -0.08464650064706801, -0.018480185419321, 0.0016907645622260001, 0.011726992204785002, 0.08558358997106501, -0.030969949439167, -0.028442466631531, 0.019507257267832003, 0.05559159070253301, -0.006063341163098, -0.128554001450538, 0.04453781992197001, 0.073949664831161, 0.0065424102358520005, -0.05493754521012301, -0.015924924984574002, 0.06370242685079501, -0.12138478457927701, 0.066824741661548, -0.010707260109484001, 0.007593789603561001, 0.011659353040158001, 0.05237006768584201, 0.015869211405515, 0.038300275802612006, -0.047192357480525006, -0.000906640954781, 0.037523526698350004, -0.12021200358867601, 0.0008874583290880001, 0.027696102857589004, -0.041665367782115006, -0.044034201651811, 0.0025968828704200004, 0.06926529109477901, -0.0026795265730470003, -0.08135646581649701, 0.061374813318252, -0.055995844304561004, 0.044986866414546 ]
0704.0099
On Ando's inequalities for convex and concave functions
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| \ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| \le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on $[0,\infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| \le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| \ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $A\ge ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
[ "math.FA" ]
[ -0.056337080895900005, -0.051836550235748007, -0.019666802138090002, -0.05889643728733, 0.027674065902829004, 0.016072871163487, 0.041989102959632006, -0.031519219279289, -0.064503408968448, 0.04389365017414, -0.012301851995289001, 0.034601468592882004, 0.073760665953159, -0.04417178779840401, -0.006567411124706, 0.07370627671480101, 0.08066565543413101, -0.0011852486059060001, -0.081921584904193, 0.048744179308414, 0.026939410716295003, -0.060010660439729004, -0.028274614363908, 0.029563898220658004, -0.023518038913607, -0.11657550185918801, -0.06605140864849, -0.020504744723439, -0.07871326804161001, 0.08529124408960301, -0.09244722872972401, -0.003198865568265, 0.075146444141864, -0.043148256838321006, -0.050088308751583, 0.066835142672061, 0.079358793795108, 0.020609291270375002, 0.076372884213924, -0.064780041575431, -0.07879237830638801, 0.007677904330193001, 0.036607723683118, 0.007691942155361, -0.01492678746581, -0.018002530559897003, 0.038418773561716, -0.137557223439216, -0.047394644469022, -0.010442587547004, -0.020995169878005003, 0.033897902816534, -0.034427512437105005, 0.014565387740731002, -0.08261636644601801, -0.04809069633483801, 0.008346602320671, 0.045304276049137004, -0.027459600940346003, 0.020147772505879003, 0.04084288328886, -0.101668149232864, -0.027113245800137003, 0.09893535077571801, 0.006003885064274001, 0.012051234021782, 0.036671608686447005, 0.005594891030341001, -0.050035696476697006, 0.038918711245059, 0.06122795864939601, 0.00652826949954, -0.05185143277049, 0.005051550455391, 0.031992126256227, 0.0012290569720780002, 0.027994500473141, 0.11106261610984801, -0.015256733633577001, -0.09444753080606401, 0.08011849969625401, -0.026787765324115004, -0.031453840434551, -0.00370330014266, 0.009775671176612, -0.016965614631772, -0.002545994007959, 0.039778824895620006, 0.057331990450620006, -0.051584802567958006, -0.022753115743398, 0.009194808080792, -0.032083269208669, -0.003964490722864001, -0.007430027239024001, -0.11426545679569201, -0.033283349126577, 0.02559989131987, 0.009529873728752001, 0.065362639725208, -0.02416399680078, 0.0033386640716340002, -0.035314995795488004, 0.021413313224911003, 0.068939246237277, 0.044479958713054005, 0.007875353097915, -0.028286142274737, 0.043333083391189006, 0.066033408045768, 0.084719806909561, 0.03496965393424, 0.13660246133804302, -0.012026229873299, -0.022475406527519, -0.017553174868226003, 0.050288032740354004, 0.007069205865263, 0.10980466008186301, -0.037305142730474, 0.004226579330861, -0.067981742322444, 0.025528516620397002, 0.0016309324419120001, -0.003915813285857, 0.039770565927028004, -0.067160092294216, 7.63998300447942e-33, 0.025921372696757, -0.082003027200698, 0.029534503817558, 0.008910804055631001, 0.10944166779518101, 0.060394540429115004, -0.070228554308414, -0.006471653468906001, 0.012238989584147, 0.005501870531588, 0.022971799597144002, 0.07161026448011301, -0.040599647909402, -0.012210205197334002, 0.027379831299185003, 0.015576916746795, 0.019471183419227, -0.076223820447921, -0.005944543983787001, -0.14023733139038, -0.027838025242090003, -0.099410533905029, -0.02154971845448, 0.10654290020465801, 0.088198505342006, -0.07642440497875201, 0.041412204504013006, -0.065887451171875, -0.06941056251525801, -0.032158125191926006, 0.051809079945087, -0.007627239450812001, 0.025720840319991, 0.027729582041502002, -0.04122545197606, 0.05153274536132801, -0.03995057195425, -0.021194683387875002, -0.053371898829936, -0.044547799974679, -0.07414291799068401, 0.016998434439301, -0.063767470419406, -0.029644299298524003, -0.015071887522935002, -0.06632698327302901, -0.023390224203467, 0.008434118703007, 0.059244211763143005, -0.012611502781510001, 0.040131159126758006, -0.0177837703377, -0.053079776465892, -0.073585040867328, -0.05141327157616601, -0.0021311948075890003, 0.028300428763031002, 0.057174049317836005, 0.08009276539087201, 0.06212771311402301, -0.07867266982793801, -0.015635229647159, 0.035364139825105, -0.10082764923572501, -0.044740375131368006, 0.011092498898506001, -0.017804460600018, -0.011246565729379002, 0.023586925119161002, -0.046028815209865, 0.028263492509722002, -0.015698373317718003, -0.012650990858674, -0.010653866454958002, 0.0020372928120190002, 0.10259110480546901, -0.05385816842317501, -0.072285771369934, -0.10653631389141001, -0.008139387704432, 0.019649170339107, -0.007476944942027001, 0.059607557952404, -0.007584711071103, -0.09779766947031, -0.028915995731949, 0.028419576585292, -0.058631479740142003, 0.029895091429352004, 0.027317922562360004, -0.019774723798036003, 0.016392659395933002, 0.008500578813254, 0.046372789889574, 0.053660020232200005, -6.323527779210341e-33, -0.087927959859371, -0.057712875306606, -0.075040519237518, 0.016703940927982, 0.053740344941616, -0.021143013611435002, 0.053522676229476006, 0.007196504622697, -0.044881250709295, -0.05724264681339201, 0.070757068693637, -0.021155154332518, -0.025091107934713003, 0.029927905648946002, 0.0027084536850450003, -0.058505546301603005, 0.016865570098161, 0.041611328721046004, 0.013452502898871002, -0.045038070529699006, 0.015699466690421, 0.037976592779159005, 0.057568319141864006, 0.08982275426387701, 0.007835919037461, 0.063309997320175, 0.015517486259341, 0.051486574113368, -0.07943277806043601, -0.023171164095401, -0.0032604224979870004, 0.042370270937681004, 0.028292810544371, -0.00846920069307, -0.008103835396468001, -0.037704285234212, 0.010759146884083, -0.038471944630146006, -0.054902948439121003, 0.13171128928661302, -0.035320959985256, 0.05684308335185, 0.049571599811315, -0.038134593516588, -0.044364176690578, 0.039677429944276005, 0.026788253337144, 0.017299139872193, -0.007207911927253001, -0.008485720492899, 0.067981384694576, -0.024421086534857, -0.10062837600708001, -0.021842876449227, -0.020412798970937, -0.009078312665224, -0.015463974326848002, -0.022294089198112002, 0.020074900239706, -0.038305874913930005, -0.10179005563259101, 0.019807841628789003, -0.031911842525005, 0.0036814645864060003, 0.021122818812727002, 0.035349994897842005, -0.001130458316765, -0.023569487035274003, 0.064578518271446, 0.05769357830286, -0.06601345539093001, -0.009799115359783001, 0.024248573929071003, 0.016399560496211, -0.036867760121822, 0.071170389652252, 0.10923396050930001, -0.008687296882271, -0.061551909893751006, 0.11004605889320301, -0.014907401055097, 0.03818679228425, 0.061610721051692005, 0.19515869021415702, -0.09555543959140701, -0.058273985981941, -0.070691816508769, 0.058666307479143004, -0.0033064363524310005, 0.085455052554607, -0.038705959916114, 0.067423775792121, 0.037500016391277, -0.06765411049127501, 0.057696908712387, -4.113718077292105e-8, 0.043098509311676005, -0.06691826879978101, -0.023423265665769, -0.004635158460587, 0.002881313674151, -0.043462496250867004, 0.006096417084336001, 0.017711756750941002, -0.035130705684423, 0.000798261666204, -0.069069564342498, 0.10969906300306301, -0.03812751173973, -0.04282096773386, -0.051025353372097, 0.034744977951049, 0.0030046540778130002, -0.030958333984017, 0.023339193314313, -0.010521768592298001, 0.024618200957775, 0.019688263535499, 0.0344461761415, 0.032002430409193004, -0.037476342171430005, 0.0043462412431830005, -0.034679349511861, -0.074866443872451, 0.015565862879157, 0.079122222959995, -0.037753269076347004, 0.038017079234123, 0.065862089395523, -0.001245363731868, 0.0031577080953860003, -0.004293814767152001, 0.0027843175921580003, -0.0016437545418730001, -0.090988740324974, 0.042597070336341004, -0.006304490845650001, 0.0017827736446630001, 0.013045952655375, -0.008399421349167, -0.016124069690704002, -0.029608041048049004, 0.06670353561639701, 0.092790372669696, -0.030226018279790004, 0.053880970925092, 0.045443147420883005, 0.011420462280511, 0.07378192991018201, 0.018464071676135, -0.024603279307484002, -0.099154360592365, 0.010649475269019, 0.011736723594367001, 0.092357128858566, 0.02984919026494, 0.09458792954683301, -0.027777202427387, 0.030951866880059003, -0.023920092731714002 ]
0704.0100
Topology Change of Black Holes
The topological structure of the event horizon has been investigated in terms of the Morse theory. The elementary process of topological evolution can be understood as a handle attachment. It has been found that there are certain constraints on the nature of black hole topological evolution: (i) There are n kinds of handle attachments in (n+1)-dimensional black hole space-times. (ii) Handles are further classified as either of black or white type, and only black handles appear in real black hole space-times. (iii) The spatial section of an exterior of the black hole region is always connected. As a corollary, it is shown that the formation of a black hole with an S**(n-2) x S**1 horizon from that with an S**(n-1) horizon must be non-axisymmetric in asymptotically flat space-times.
[ "gr-qc" ]
[ -0.039683151990175004, -0.056939791887998005, 0.0025671219918870004, 0.11854182928800501, -0.035514134913682, 0.022579507902264002, -0.011986318044364001, -0.010847981087863001, 0.10673630237579301, -0.072093874216079, -0.012390245683491001, 0.00861500762403, -0.10285948216915101, 0.0009728279546830001, -0.050427045673131006, -0.061654154211282, -0.052197746932506006, -0.100289672613143, 0.032229796051979, 0.017705891281366, 0.010023056529462001, 0.020317794755101003, 0.03288198262453, 0.038599345833063, -0.05274735763669, -0.009267233312129001, -0.022239703685045003, 0.023942781612277003, 0.059006318449974005, -0.029472958296537004, 0.007775053381919, 0.00036171593819700004, -0.04070297256112, -0.076849147677421, 0.09355517476797101, 0.019162928685545002, 0.06385429203510201, 0.13257797062397, -0.051202129572629006, -0.021186470985412, 0.06635787338018401, -0.009934389032423, 0.10686881840229001, 0.028264539316296, -0.018106333911418002, 0.043494258075952, -0.05415042117238, 0.032294277101755, -0.08998354524374001, -0.045067783445119004, -0.010934357531368, -0.015417069196701001, -0.041516408324241, 0.005441767629235, 0.02341528981924, 0.07062605768442101, -0.025431551039218, 0.005332663655281, 0.009394715540111, -0.036124560981988005, 0.086911290884017, -0.019902721047401, -0.009172464720904001, 0.011513989418745001, 0.0074577187187960005, 0.0008703829953440001, -0.009592674672603, -0.006323966663330001, -0.053316909819841, 0.028364695608615, -0.015582263469696002, 0.075053334236145, -0.091561943292617, -0.079027332365512, 0.114822335541248, 0.022234311327338, -0.006061062682420001, 0.06098452955484301, 0.009530724957585, -0.0040619517676530005, 0.058822590857744, 0.102178990840911, 0.011401062831282002, 0.07032994925975801, -0.05711797997355401, -0.0026105018332600004, -0.100950002670288, -0.07085186988115301, -0.02330257743597, 0.001953399507328, -0.002650103764608, -0.034770037978887, -0.029368521645665002, -0.093319542706012, 0.01756795682013, -0.039061013609170005, -0.061795052140951004, 0.06659261137247001, 0.09375456720590501, -0.001755643053911, -0.030418038368225004, -0.13391788303852, -0.014024936594069, -0.009454695507884001, 0.07995918393135, 0.064835138618946, -0.053028628230094, -0.039736967533826, -0.043012991547584006, -0.039817526936531004, 0.027413699775934, -0.044934619218111004, 0.00210003554821, -0.082783363759517, -0.052713666111230004, -0.019402695819735003, -0.017834864556789003, 0.045311342924833006, 0.006528413854539001, 0.087220527231693, -0.0069635515101250005, 0.06009709835052401, -0.05564775690436301, -0.048902370035648006, -0.04741393029689701, -0.012459286488592, 0.019208755344152003, 1.9505051231591143e-33, 0.064121805131435, -0.018597869202494, -0.070555880665779, -0.000992744113318, 0.036308992654085, 0.031503625214099, 0.033795472234487, 0.044329788535833005, 0.041472952812910004, 0.06509374827146501, -0.03252387791872, -0.004401805344969, -0.012310835532844, 0.022182943299412002, 0.05708989500999401, 0.016387851908802, 0.06172616034746101, 0.036582019180059, -0.024364331737160003, -0.028185375034809, -0.06652633845806101, 0.06592677533626501, -0.080975607037544, -0.097237192094326, 0.035714980214834005, 0.044875655323266005, -0.011734303086996, -0.025195971131324, -0.006518342066556, -0.005379900801926, -0.034201920032501006, 0.032195098698139, -0.09360761195421201, 0.031551502645015, -0.006118076387792001, 0.054977353662252, 0.036834418773651005, 0.016998207196593, -0.167012229561805, -0.004030471667647, -0.026247875764966, 0.008584885857999, -0.08462944626808101, 0.040739450603723006, 0.001676673302426, -0.074503347277641, 0.098538383841514, -0.054889984428882, -0.022056212648749, -0.001471417839638, 0.055330757051706, 0.008207096718251001, -0.029094025492668003, 0.060384847223758004, 0.014632142148911, -0.041764430701732004, -0.014613516628742001, -0.016397913917899, 0.005281410180032, 0.091731913387775, 0.044742703437805, -0.037385627627372006, -0.015559585765004002, -0.041741114109754, -0.018879385665059003, -0.006920014508068, 0.099940136075019, -0.037583816796541006, -0.002127098850905, -0.034681357443332006, -0.007116489112377, 0.009921678341925, -0.041945669800043, -0.033321611583232005, -0.06659053266048401, -0.038842208683490004, 0.019302308559417003, 0.043151713907718006, 0.079684764146804, 0.05651244521141, 0.011894910596311, -0.054587733000516, 0.020538456737995002, -0.027106503024697002, -0.07510919123888, 0.006830219645053001, 0.022706147283315003, 0.04101888090372, 0.039945032447576, -0.044694673269987, -0.09200956672430001, -0.028506778180599, 0.0664037540555, 0.02184191532433, -0.010033482685685, -5.309422925284198e-33, 0.012372803874313, -0.048281829804182004, 0.0029841249343, -0.011254910379648, -0.061110161244869, 0.07485863566398601, -0.029993878677487002, -0.00037775473902000004, -0.054519761353731, -0.049653831869363, -0.033256497234106, 0.06862103193998301, 0.042943563312292, 0.020611410960555, 0.015671832486987003, -0.093108087778091, -0.0035266438499090003, 0.07045065611600801, -0.04102337360382, -0.008645748719573, 0.10287210345268201, 0.035017557442188, -0.05170388147234901, -0.063320517539978, 0.014260696247220001, -0.021268557757139, 0.048898868262767, 0.044279538094997004, -0.007741411216557001, 0.11072412133216801, -0.07286531478166501, -0.10733594000339501, -0.053286544978618004, 0.06357345730066301, -0.05537449568510001, 0.042097121477127006, 0.007865640334784001, 0.057796008884906006, -0.08098442852497101, 0.010892877355217, 0.04489829018712, 0.041405461728572006, -0.023778857663273003, 0.11672481149435, 0.07472413778305001, 0.003949062433093, -0.05061531811952501, 0.07677090167999201, -0.022471649572253, -0.003150458214804, -0.083909407258033, -0.070286847651004, 0.033998861908912, 0.039888013154268, -0.087199665606021, 0.10544866323471001, 0.0034435924608260003, -0.09726903587579701, -0.010699305683374, 0.015392431989312002, 0.032398700714111, -0.028794212266802004, 0.007768457289785001, 0.076630234718322, 0.07179893553256901, -0.080582909286022, -0.05459057912230401, -0.085193261504173, -0.10151327401399601, 0.025078253820538, -0.09439780563116, -0.046726714819669, -0.011335054412484, -0.022861065343022003, 0.047401450574398006, 0.036523289978504, 0.07905768603086401, -0.04464977607131, 0.046415489166975, -0.030329069122672, -0.023211058229207, -0.034525346010923004, 0.147963523864746, -0.000575531565118, 0.073915295302867, 0.064454220235347, 0.041591037064790004, -0.037125308066606, 0.038172151893377006, 0.017682032659649002, -0.043469659984111, -0.06096787378191901, -0.009362255223095, 0.06898856908082901, -0.06766273081302601, -4.695643340824063e-8, 0.062517300248146, -0.022696817293763, 0.041381139308214, 0.006254442967474001, -0.052385136485099, 0.011537158861756, -0.024898033589124003, -0.024821119382977003, 0.02178494259715, 0.045949064195156, -0.078197732567787, 0.022626167163252, -0.092600271105766, -0.009729880839586001, -0.058369994163513, 0.083256341516971, 0.049227889627218004, -0.038221076130867004, -0.014169364236295001, 0.036225873976945, 0.001958646113052, 0.028686290606856003, 0.073572300374507, -0.055121757090091004, -0.017938064411282, -0.060950249433517005, -0.010728993453085001, 0.023215599358081002, -0.020221728831529003, -0.0026462096720930002, -0.068133160471916, 0.066024646162986, 0.002437577117234, 0.053290661424398006, -0.039317317306995, -0.019788684323430002, -0.022056773304939003, 0.047043059021234006, -0.004048649687319, 0.049485508352518005, 0.044907897710800004, 0.042907811701297004, -0.014331283979117001, -0.017320662736892003, -0.027568049728870003, 0.064032144844532, 0.011916909366846001, -0.023782145231962003, -0.004616091959178, 0.074679642915725, -0.044928431510925, 0.028556130826473004, -0.065231569111347, -0.021059000864624002, -0.01712236739695, 0.023959228768944, 0.063157148659229, -0.042473189532756, 0.007641500793397001, 0.044307973235845004, -0.013762335292994001, -0.019775347784161002, 0.034755982458591, -0.007173699326813001 ]